1
|
Lee H, Kim J, Myung S, Jung TG, Han DW, Kim B, Lee JC. Extraction of γ-chitosan from insects and fabrication of PVA/γ-chitosan/kaolin nanofiber wound dressings with hemostatic properties. DISCOVER NANO 2024; 19:77. [PMID: 38693438 PMCID: PMC11063014 DOI: 10.1186/s11671-024-04016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
A nanofiber-based composite nonwoven fabric was fabricated for hemostatic wound dressing, integrating polyvinyl alcohol (PVA), kaolin, and γ-chitosan extracted from three type of insects. The γ-chitosan extracted from Protaetia brevitarsis seulensis exhibited the highest yield at 21.5%, and demonstrated the highest moisture-binding capacity at 535.6%. In the fabrication process of PVA/kaolin/γ-chitosan nonwoven fabrics, an electrospinning technique with needle-less and mobile spinneret was utilized, producing nanofibers with average diameters ranging from 172 to 277 nm. The PVA/kaolin/γ-chitosan nonwoven fabrics demonstrated enhanced biocompatibility, with cell survival rates under certain compositions reaching up to 86.9% (compared to 74.2% for PVA). Furthermore, the optimized fabric compositions reduced blood coagulation time by approximately 2.5-fold compared to PVA alone, highlighting their efficacy in hemostasis. In other words, the produced PVA/kaolin/γ-chitosan nonwoven fabrics offer potential applications as hemostatic wound dressings with excellent biocompatibility and improved hemostatic performance.
Collapse
Affiliation(s)
- Hakyong Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jinkyeong Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suwan Myung
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Chungju, 28160, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute, Seoul National University Dental Hospital, Seoul, 03080, Republic of Korea.
| | - Jae-Chang Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| |
Collapse
|
2
|
Silencing of the mitochondrial ribosomal protein L-24 gene activates the oxidative stress response in Caenorhabditis elegans. Biochim Biophys Acta Gen Subj 2023; 1867:130255. [PMID: 36265765 DOI: 10.1016/j.bbagen.2022.130255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
The mitochondrial translation machinery allows the synthesis of the mitochondrial-encoded subunits of the electron transport chain. Defects in this process lead to mitochondrial physiology failure; in humans, they are associated with early-onset, extremely variable and often fatal disorder. The use of a simple model to study the mitoribosomal defects is mandatory to overcome the difficulty to analyze the impact of pathological mutations in humans. In this paper we study in nematode Caenorhabditis elegans the silencing effect of the mrpl-24 gene, coding for the mitochondrial ribosomal protein L-24 (MRPL-24). This is a structural protein of the large subunit 39S of the mitoribosome and its effective physiological function is not completely elucidated. We have evaluated the nematode's fitness fault and investigated the mitochondrial defects associated with MRPL-24 depletion. The oxidative stress response activation due to the mitochondrial alteration has been also investigated as a compensatory physiological mechanism. For the first time, we demonstrated that MRPL-24 reduction increases the expression of detoxifying enzymes such as SOD-3 and GST-4 through the involvement of transcription factor SKN-1. BACKGROUND In humans, mutations in genes encoding mitochondrial ribosomal proteins (MRPs) often cause early-onset, severe, fatal and extremely variable clinical defects. Mitochondrial ribosomal protein L-24 (MRPL24) is a structural protein of the large subunit 39S of the mitoribosome. It is highly conserved in different species and its effective physiological function is not completely elucidated. METHODS We characterized the MRPL24 functionality using the animal model Caenorhabditis elegans. We performed the RNA mediated interference (RNAi) by exposing the nematodes' embryos to double-stranded RNA (dsRNA) specific for the MRPL-24 coding sequence. We investigated for the first time in C. elegans, the involvement of the MRPL-24 on the nematode's fitness and its mitochondrial physiology. RESULTS Mrpl-24 silencing in C. elegans negatively affected the larval development, progeny production and body bending. The analysis of mitochondrial functionality revealed loss of mitochondrial network and impairment of mitochondrial functionality, as the decrease of oxygen consumption rate and the ROS production, as well as reduction of mitochondrial protein synthesis. Finally, the MRPL-24 depletion activated the oxidative stress response, increasing the expression levels of two detoxifying enzymes, SOD-3 and GST-4. CONCLUSIONS In C. elegans the MRPL-24 depletion activated the oxidative stress response. This appears as a compensatory mechanism to the alteration of the mitochondrial functionality and requires the involvement of transcription factor SKN-1. GENERAL SIGNIFICANCE C. elegans resulted in a good model for the study of mitochondrial disorders and its use as a simple and pluricellular organism could open interesting perspectives to better investigate the pathologic mechanisms underlying these devastating diseases.
Collapse
|
3
|
Fanizza C, Stefanelli M, Risuglia A, Bruni E, Ietto F, Incoronato F, Marra F, Preziosi A, Mancini P, Sarto MS, Uccelletti D. In Vitro and In Vivo Biocompatibility Studies on Engineered Fabric with Graphene Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1405. [PMID: 35564114 PMCID: PMC9100993 DOI: 10.3390/nano12091405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
To produce clothes made with engineered fabrics to monitor the physiological parameters of workers, strain sensors were produced by depositing two different types of water-based inks (P1 and P2) suitably mixed with graphene nanoplatelets (GNPs) on a fabric. We evaluated the biocompatibility of fabrics with GNPs (GNP fabric) through in vitro and in vivo assays. We investigated the effects induced on human keratinocytes by the eluates extracted from GNP fabrics by the contact of GNP fabrics with cells and by seeding keratinocytes directly onto the GNP fabrics using a cell viability test and morphological analysis. Moreover, we evaluated in vivo possible adverse effects of the GNPs using the model system Caenorhabditis elegans. Cell viability assay, morphological analysis and Caenorhabditis elegans tests performed on smart fabric treated with P2 (P2GNP fabric) did not show significant differences when compared with their respective control samples. Instead, a reduction in cell viability and changes in the membrane microvilli structure were found in cells incubated with smart fabric treated with P1. The results were helpful in determining the non-toxic properties of the P2GNP fabric. In the future, therefore, graphene-based ink integrated into elastic fabric will be developed for piezoresistive sensors.
Collapse
Affiliation(s)
- Carla Fanizza
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DITSIPIA), National Institute for Insurance against Accidents at Work (INAIL), 00143 Rome, Italy; (M.S.); (A.R.); (F.I.); (F.I.)
| | - Mara Stefanelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DITSIPIA), National Institute for Insurance against Accidents at Work (INAIL), 00143 Rome, Italy; (M.S.); (A.R.); (F.I.); (F.I.)
| | - Anna Risuglia
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DITSIPIA), National Institute for Insurance against Accidents at Work (INAIL), 00143 Rome, Italy; (M.S.); (A.R.); (F.I.); (F.I.)
| | - Erika Bruni
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (A.P.); (D.U.)
| | - Federica Ietto
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DITSIPIA), National Institute for Insurance against Accidents at Work (INAIL), 00143 Rome, Italy; (M.S.); (A.R.); (F.I.); (F.I.)
| | - Federica Incoronato
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DITSIPIA), National Institute for Insurance against Accidents at Work (INAIL), 00143 Rome, Italy; (M.S.); (A.R.); (F.I.); (F.I.)
| | - Fabrizio Marra
- Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy; (F.M.); (M.S.S.)
- Research Center for Nanotechnology Applied to Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Adele Preziosi
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (A.P.); (D.U.)
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Sabrina Sarto
- Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy; (F.M.); (M.S.S.)
- Research Center for Nanotechnology Applied to Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (A.P.); (D.U.)
- Research Center for Nanotechnology Applied to Engineering, Sapienza University of Rome, 00184 Rome, Italy
| |
Collapse
|
4
|
A GDPase/UDPase bifunctional enzyme from Candida albicans: purification and biochemical characterization. Antonie Van Leeuwenhoek 2022; 115:505-519. [PMID: 35175437 DOI: 10.1007/s10482-022-01714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
The most frequently isolated human fungal pathogen is Candida albicans which is responsible for about 50% of all Candida infections. In healthy individuals, this organism resides as a part of the normal microbiota in equilibrium with the host. However, under certain conditions, particularly in immunocompromised patients, this opportunistic pathogen adheres to host cells causing serious systemic infections. Thus, much effort has been dedicated to the study of its physiology with emphasis on factors associated to pathogenicity. A representative analysis deals with the mechanisms of glycoprotein assembly as many cell surface antigens and other macromolecules that modulate the immune system fall within this chemical category. In this regard, studies of the terminal protein glycosylation stage which occurs in Golgi vesicles has led to the identification of nucleotidases that convert glycosyltransferase-generated dinucleotides into the corresponding mononucleotides, thus playing a double function: their activity prevent inhibition of further glycosyl transfer by the accumulation of dinucleotides and the resulting mononucleotides are exchanged by specific membrane transporters for equimolecular amounts of sugar donors from the cytosol. Here, using a simple protocol for protein separation we isolated a bifunctional nucleotidase from C. albicans active on GDP and UDP that was characterized in terms of its molecular mass, response to bivalent ions and other factors, substrate specificity and affinity. Results are discussed in terms of the similarities and differences of this nucleotidase with similar counterparts from other organisms thus contributing to the knowledge of a bifunctional diphosphatase not described before in C. albicans.
Collapse
|
5
|
Bruni E, Simonetti G, Bovone B, Casagrande C, Castellani F, Riccardi C, Pomata D, Di Filippo P, Federici E, Buiarelli F, Uccelletti D. Evaluation of Bioaerosol Bacterial Components of a Wastewater Treatment Plant Through an Integrate Approach and In Vivo Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010273. [PMID: 31906026 PMCID: PMC6981557 DOI: 10.3390/ijerph17010273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023]
Abstract
Wastewater carries different pathogenic and non-pathogenic microorganisms that can be dispersed in the surrounding environment. Workers who frequent sewage treatment plants can therefore be exposed to aerosols that contain a high concentration of potentially dangerous biological agents, or they can come into direct contact with contaminated material. This can lead to allergies, infections and occupational health-associated diseases. A characterization of biological risk assessment of bioaerosol exposure is necessary. The aim of this study was to evaluate the application of an interdisciplinary method that combines chemical and biological approaches for the analysis of a bioaerosol derived from a wastewater treatment plant (WWTP) situated in Italy. Sampled filters were analyzed by HPLC-MS/MS spectroscopy that searched for different chemical biomarkers of airborne microorganisms. The analytical quantification was compared to the biological cultural method that revealed an underrated microbial concentration. Furthermore, next generation sequencing analysis was used also to identify the uncultivable species that were not detected by the culture dependent-method. Moreover, the simple animal model Caenorhabditis elegans was used to evaluate the pathogenicity of two isolates—Acinetobacter iwoffii and Micrococcus luteus—that showed multidrug-resistance. This work represents a starting point for the development of a multidisciplinary approach for the validation of bioaerosol exposure on WWTP workplaces.
Collapse
Affiliation(s)
- Erika Bruni
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (B.B.)
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
| | - Beatrice Bovone
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (B.B.)
| | - Chiara Casagrande
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (C.C.); (E.F.)
| | - Federica Castellani
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
| | - Carmela Riccardi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
- Inail DIT, 00143 Rome, Italy
| | - Donatella Pomata
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
- Inail DIT, 00143 Rome, Italy
| | - Patrizia Di Filippo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
- Inail DIT, 00143 Rome, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (C.C.); (E.F.)
| | - Francesca Buiarelli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (B.B.)
- Correspondence:
| |
Collapse
|
6
|
Schifano E, Ficociello G, Vespa S, Ghosh S, Cipollo JF, Talora C, Lotti LV, Mancini P, Uccelletti D. Pmr-1 gene affects susceptibility of Caenorhabditis elegans to Staphylococcus aureus infection through glycosylation and stress response pathways' alterations. Virulence 2019; 10:1013-1025. [PMID: 31771413 PMCID: PMC6930020 DOI: 10.1080/21505594.2019.1697118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signaling can elicit different pathways involved in an extreme variety of biological processes. Calcium levels must be tightly regulated in a spatial and temporal manner in order to be efficiently and properly utilized in the host physiology. The Ca2+-ATPase, encoded by pmr-1 gene, was first identified in yeast and localized to the Golgi and it appears to be involved in calcium homeostasis. PMR-1 function is evolutionary conserved from yeast to human, where mutations in the orthologous gene ATP2C1 cause Hailey-Hailey disease. In this work, we used the Caenorhabditis elegans model system to gain insight into the downstream response elicited by the loss of pmr-1 gene. We found that pmr-1 knocked down animals not only showed defects in the oligosaccharide structure of glycoproteins at the cell surface but also were characterized by reduced susceptibility to bacterial infection. Although increased resistance to the infection might be related to lack of regular recognition of C. elegans surface glycoproteins by microbial agents, we provide genetic evidence that pmr-1 interfered nematodes mounted a stronger innate immune response to Gram-positive bacterial infection. Thus, our observations indicate pmr-1 as a candidate gene implicated in mediating the worm's innate immune response.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| | - Graziella Ficociello
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| | - Simone Vespa
- Department of Experimental Medicine, University of Rome, Rome, Italy
| | - Salil Ghosh
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Patrizia Mancini
- Department of Experimental Medicine, University of Rome, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "Charles Darwin", University of Rome, Rome, Italy
| |
Collapse
|
7
|
Guantario B, Zinno P, Schifano E, Roselli M, Perozzi G, Palleschi C, Uccelletti D, Devirgiliis C. In Vitro and in Vivo Selection of Potentially Probiotic Lactobacilli From Nocellara del Belice Table Olives. Front Microbiol 2018; 9:595. [PMID: 29643848 PMCID: PMC5882814 DOI: 10.3389/fmicb.2018.00595] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value.
Collapse
Affiliation(s)
- Barbara Guantario
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Paola Zinno
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Marianna Roselli
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Giuditta Perozzi
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| | - Claudio Palleschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Italy
| | - Chiara Devirgiliis
- Food & Nutrition Research Centre, Council for Agricultural Research and Economics, Rome, Italy
| |
Collapse
|
8
|
Impact of a Complex Food Microbiota on Energy Metabolism in the Model Organism Caenorhabditis elegans. BIOMED RESEARCH INTERNATIONAL 2015; 2015:621709. [PMID: 25961031 PMCID: PMC4417589 DOI: 10.1155/2015/621709] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/11/2014] [Indexed: 02/03/2023]
Abstract
The nematode Caenorhabditis elegans is widely used as a model system for research on aging, development, and host-pathogen interactions. Little is currently known about the mechanisms underlying the effects exerted by foodborne microbes. We took advantage of C. elegans to evaluate the impact of foodborne microbiota on well characterized physiological features of the worms. Foodborne lactic acid bacteria (LAB) consortium was used to feed nematodes and its composition was evaluated by 16S rDNA analysis and strain typing before and after colonization of the nematode gut. Lactobacillus delbrueckii, L. fermentum, and Leuconostoc lactis were identified as the main species and shown to display different worm gut colonization capacities. LAB supplementation appeared to decrease nematode lifespan compared to the animals fed with the conventional Escherichia coli nutrient source or a probiotic bacterial strain. Reduced brood size was also observed in microbiota-fed nematodes. Moreover, massive accumulation of lipid droplets was revealed by BODIPY staining. Altered expression of nhr-49, pept-1, and tub-1 genes, associated with obesity phenotypes, was demonstrated by RT-qPCR. Since several pathways are evolutionarily conserved in C. elegans, our results highlight the nematode as a valuable model system to investigate the effects of a complex microbial consortium on host energy metabolism.
Collapse
|
9
|
Massalski C, Bloch J, Zebisch M, Steinebrunner I. The biochemical properties of the Arabidopsis ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 contradict a direct role in purinergic signaling. PLoS One 2015; 10:e0115832. [PMID: 25822168 PMCID: PMC4379058 DOI: 10.1371/journal.pone.0115832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) AtAPY1 was previously shown to be involved in growth and development, pollen germination and stress responses. It was proposed to perform these functions through regulation of extracellular ATP signals. However, a GFP-tagged version was localized exclusively in the Golgi and did not hydrolyze ATP. In this study, AtAPY1 without the bulky GFP-tag was biochemically characterized with regard to its suggested role in purinergic signaling. Both the full-length protein and a soluble form without the transmembrane domain near the N-terminus were produced in HEK293 cells. Of the twelve nucleotide substrates tested, only three--GDP, IDP and UDP--were hydrolyzed, confirming that ATP was not a substrate of AtAPY1. In addition, the effects of pH, divalent metal ions, known E-NTPDase inhibitors and calmodulin on AtAPY1 activity were analyzed. AtAPY1-GFP extracted from transgenic Arabidopsis seedlings was included in the analyses. All three AtAPY1 versions exhibited very similar biochemical properties. Activity was detectable in a broad pH range, and Ca(2+), Mg(2+) and Mn(2+) were the three most efficient cofactors. Of the inhibitors tested, vanadate was the most potent one. Surprisingly, sulfonamide-based inhibitors shown to inhibit other E-NTPDases and presumed to inhibit AtAPY1 as well were not effective. Calmodulin stimulated the activity of the GFP-tagless membranous and soluble AtAPY1 forms about five-fold, but did not alter their substrate specificities. The apparent Km values obtained with AtAPY1-GFP indicate that AtAPY1 is primarily a GDPase. A putative three-dimensional structural model of the ecto-domain is presented, explaining the potent inhibitory potential of vanadate and predicting the binding mode of GDP. The found substrate specificity classifies AtAPY1 as a nucleoside diphosphatase typical of N-terminally anchored Golgi E-NTPDases and negates a direct function in purinergic signaling.
Collapse
Affiliation(s)
- Carolin Massalski
- Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Jeannine Bloch
- Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Matthias Zebisch
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
10
|
Delgado-Carmona JD, Ramírez-Quijas MD, Vega-González A, López-Romero E, Cuéllar-Cruz M. Changes in GDPase/UDPase enzymatic activity in response to oxidative stress in four Candida species. Folia Microbiol (Praha) 2015; 60:343-50. [PMID: 25762354 DOI: 10.1007/s12223-015-0382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The terminal processing of proteins and lipids occurs in the Golgi apparatus and involves the transport of sugar nucleotides into the Golgi lumen by specific carriers and the accumulation of nucleoside diphosphates (NDPs) as a result of oligosaccharide-protein glycosyltransferase activity. NDPs are converted into the corresponding nucleoside monophosphates (NMPs) by nucleoside diphosphatases (NDPases), thus relieving inhibition of sugar transferases. In addition, NMPs are then exchanged for equimolecular amounts of cytosolic sugar nucleotides by antiport transport systems. NDPases, commonly GDPase and UDPase, thus play a critical role in glycoprotein maturation and may influence fungal pathogenesis, morphogenesis, and cell wall properties. Interest of this laboratory has recently focused on the effect of reactive oxygen species (ROS) on enzymes involved in detoxification of these oxidants and on the metabolism of biomolecules such as lipids, nucleic acids, and proteins in human pathogenic Candida species. We therefore consider it important to extend these studies to determine how GDPase and UDPase are affected after exposure of cells to oxidants such as menadione, a superoxide (O2 (•-))-generator, and H2O2. Results indicate that activity of both enzymes decrease in response to these agents suggesting that ROS may also affect other critical cell functions such as protein glycosylation.
Collapse
Affiliation(s)
- Jenny Daniela Delgado-Carmona
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|
11
|
Qiao Y, Pengsakul T. Cloning and expression of apyrase gene from Ancylostoma caninum in Escherechia coli. Acta Parasitol 2014. [PMID: 26204021 DOI: 10.1515/ap-2015-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apyrase encoding metal-ions activated plasma membrane protease is present in animal and plant tissues. This enzyme can hydrolyze ADP and ATP pyrophosphate bond, resulting in AMP and free phosphate groups, and plays an important role for insects and parasites to evade host immune system. However localization and function of apyrase in the canine hookworm, Ancylostoma caninum, remains unknown. To analyze apyrase gene in A. caninum (a eukaryotic parasitic hookworm), a pair of primers was designed according to the previous EST data. The full-length cDNA of apyrase gene was amplified from A. caninum by RT-PCR. The partial cDNA of apyrase encodes 249 amino acid protein was expressed in Escherechia coli. The recombinant protein was induced to express under proper conditions and the molecular size was as expected. The recombinant protein was purified. The transcripts of apyrase in different stages of A. caninum were analyzed by the Real-time PCR assay, and Immuno-localization assays were used to research the protein expression in different stages of A. caninum.
Collapse
|
12
|
Rooklin DW, Lu M, Zhang Y. Revelation of a catalytic calcium-binding site elucidates unusual metal dependence of a human apyrase. J Am Chem Soc 2012; 134:15595-603. [PMID: 22928549 PMCID: PMC3461190 DOI: 10.1021/ja307267y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human soluble calcium-activated nucleotidase 1 (hSCAN-1) represents a new family of apyrase enzymes that catalyze the hydrolysis of nucleotide di- and triphosphates, thereby modulating extracellular purinergic and pyrimidinergic signaling. Among well-characterized phosphoryl transfer enzymes, hSCAN-1 is unique not only in its unusual calcium-dependent activation, but also in its novel phosphate-binding motif. Its catalytic site does not utilize backbone amide groups to bind phosphate, as in the common P-loop, but contains a large cluster of acidic ionizable side chains. By employing a state-of-the-art computational approach, we have revealed a previously uncharacterized catalytic calcium-binding site in hSCAN-1, which elucidates the unusual calcium-dependence of its apyrase activity. In a high-order coordination shell, the newly identified calcium ion organizes the active site residues to mediate nucleotide binding, to orient the nucleophilic water, and to facilitate the phosphoryl transfer reaction. From ab initio QM/MM molecular dynamics simulations with umbrella sampling, we have characterized a reverse protonation catalytic mechanism for hSCAN-1 and determined its free energy reaction profile. Our results are consistent with available experimental studies and provide new detailed insight into the structure-function relationship of this novel calcium-activated phosphoryl transfer enzyme.
Collapse
Affiliation(s)
- David W. Rooklin
- Department of Chemistry, New York University, New York, NY 10003
| | - Min Lu
- Public Health Research Institute Center, Department of Microbiology and Molecular Genetics, UMDNJ – New Jersey Medical School, Newark, NJ 07103
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003
| |
Collapse
|
13
|
Liu L, Hirschberg CB. Developmental diseases caused by impaired nucleotide sugar transporters. Glycoconj J 2012; 30:5-10. [PMID: 22527830 DOI: 10.1007/s10719-012-9375-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/28/2012] [Indexed: 01/24/2023]
Abstract
Nucleotide sugar transporters play critical roles in glycosylation of proteins, lipids and proteoglycans, which are essential for organogenesis, development, mammalian cellular immunity and pathogenicity of human pathogenic agents. Functional deficiencies of these transporters result in global defects of glycoconjugates, which in turn lead to a diversity of biochemical, physiological and pathological phenotypes. In this short review, we will highlight human and bovine diseases caused by mutations of these transporters.
Collapse
Affiliation(s)
- Li Liu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Evans-E438, 72 East Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
14
|
Calì T, Fedrizzi L, Ottolini D, Gomez-Villafuertes R, Mellström B, Naranjo JR, Carafoli E, Brini M. Ca2+-activated nucleotidase 1, a novel target gene for the transcriptional repressor DREAM (downstream regulatory element antagonist modulator), is involved in protein folding and degradation. J Biol Chem 2012; 287:18478-91. [PMID: 22451650 DOI: 10.1074/jbc.m111.304733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DREAM is a Ca(2+)-dependent transcriptional repressor highly expressed in neuronal cells. A number of genes have already been identified as the target of its regulation. Targeted analysis performed on cerebella from transgenic mice expressing a dominant active DREAM mutant (daDREAM) showed a drastic reduction of the amount of transcript of Ca(2+)-activated nucleotidase 1 (CANT1), an endoplasmic reticulum (ER)-Golgi resident Ca(2+)-dependent nucleoside diphosphatase that has been suggested to have a role in glucosylation reactions related to the quality control of proteins in the ER and the Golgi apparatus. CANT1 down-regulation was also found in neuroblastoma SH-SY5Y cells stably overexpressing wild type (wt) DREAM or daDREAM, thus providing a simple cell model to investigate the protein maturation pathway. Pulse-chase experiments demonstrated that the down-regulation of CANT1 is associated with reduced protein secretion and increased degradation rates. Importantly, overexpression of wtDREAM or daDREAM augmented the expression of the EDEM1 gene, which encodes a key component of the ER-associated degradation pathway, suggesting an alternative pathway to enhanced protein degradation. Restoring CANT1 levels in neuroblastoma clones recovered the phenotype, thus confirming a key role of CANT1, and of the regulation of its gene by DREAM, in the control of protein synthesis and degradation.
Collapse
Affiliation(s)
- Tito Calì
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Manque PA, Woehlbier U, Lara AM, Tenjo F, Alves JM, Buck GA. Identification and characterization of a novel calcium-activated apyrase from Cryptosporidium parasites and its potential role in pathogenesis. PLoS One 2012; 7:e31030. [PMID: 22363541 PMCID: PMC3280346 DOI: 10.1371/journal.pone.0031030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/30/2011] [Indexed: 01/20/2023] Open
Abstract
Herein, we report the biochemical and functional characterization of a novel Ca2+-activated nucleoside diphosphatase (apyrase), CApy, of the intracellular gut pathogen Cryptosporidium. The purified recombinant CApy protein displayed activity, substrate specificity and calcium dependency strikingly similar to the previously described human apyrase, SCAN-1 (soluble calcium-activated nucleotidase 1). CApy was found to be expressed in both Cryptosporidium parvum oocysts and sporozoites, and displayed a polar localization in the latter, suggesting a possible co-localization with the apical complex of the parasite. In vitro binding experiments revealed that CApy interacts with the host cell in a dose-dependent fashion, implying the presence of an interacting partner on the surface of the host cell. Antibodies directed against CApy block Cryptosporidium parvum sporozoite invasion of HCT-8 cells, suggesting that CApy may play an active role during the early stages of parasite invasion. Sequence analyses revealed that the capy gene shares a high degree of homology with apyrases identified in other organisms, including parasites, insects and humans. Phylogenetic analysis argues that the capy gene is most likely an ancestral feature that has been lost from most apicomplexan genomes except Cryptosporidium, Neospora and Toxoplasma.
Collapse
Affiliation(s)
- Patricio A. Manque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ute Woehlbier
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ana M. Lara
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fernando Tenjo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - João M. Alves
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Gerhardt J, Steinbrech C, Büchi O, Behnke S, Bohnert A, Fritzsche F, Liewen H, Stenner F, Wild P, Hermanns T, Müntener M, Dietel M, Jung K, Stephan C, Kristiansen G. The androgen-regulated Calcium-Activated Nucleotidase 1 (CANT1) is commonly overexpressed in prostate cancer and is tumor-biologically relevant in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1847-60. [PMID: 21435463 DOI: 10.1016/j.ajpath.2010.12.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 11/18/2010] [Accepted: 12/16/2010] [Indexed: 11/18/2022]
Abstract
Previously, we identified the calcium-activated nucleotidase 1 (CANT1) transcript as up-regulated in prostate cancer. Now, we studied CANT1 protein expression in a large cohort of nearly 1000 prostatic tissue samples including normal tissue, prostatic intraepithelial neoplasia (PIN), primary carcinomas, metastases, and castrate-resistant carcinomas, and further investigated its functional relevance. CANT1 displayed predominantly a Golgi-type immunoreactivity with additional and variable cytoplasmic staining. In comparison to normal tissues, the staining intensity was significantly increased in PIN lesions and cancer. In cancer, high CANT1 levels were associated with a better prognosis, and castrate-resistant carcinomas commonly showed lower CANT1 levels than primary carcinomas. The functional role of CANT1 was investigated using RNA interference in two prostate cancer cell lines with abundant endogenous CANT1 protein. On CANT1 knockdown, a significantly diminished cell number and DNA synthesis rate, a cell cycle arrest in G(1) phase, and a strong decrease of cell transmigration rate and wound healing capacity of CANT1 knockdown cells was found. However, on forced CANT1 overexpression, cell proliferation and migration remained unchanged. In summary, CANT1 is commonly overexpressed in the vast majority of primary prostate carcinomas and in the precursor lesion PIN and may represent a novel prognostic biomarker. Moreover, this is the first study to demonstrate a functional involvement of CANT1 in tumor biology.
Collapse
Affiliation(s)
- Josefine Gerhardt
- Department of Surgical Pathology, UniversitätsSpital Zürich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hewitson JP, Harcus Y, Murray J, van Agtmaal M, Filbey KJ, Grainger JR, Bridgett S, Blaxter ML, Ashton PD, Ashford DA, Curwen RS, Wilson RA, Dowle AA, Maizels RM. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J Proteomics 2011; 74:1573-94. [PMID: 21722761 DOI: 10.1016/j.jprot.2011.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/20/2011] [Accepted: 06/05/2011] [Indexed: 01/25/2023]
Abstract
The intestinal helminth parasite, Heligmosomoides polygyrus bakeri offers a tractable experimental model for human hookworm infections such as Ancylostoma duodenale and veterinary parasites such as Haemonchus contortus. Parasite excretory-secretory (ES) products represent the major focus for immunological and biochemical analyses, and contain immunomodulatory molecules responsible for nematode immune evasion. In a proteomic analysis of adult H. polygyrus secretions (termed HES) matched to an extensive transcriptomic dataset, we identified 374 HES proteins by LC-MS/MS, which were distinct from those in somatic extract HEx, comprising 446 identified proteins, confirming selective export of ES proteins. The predominant secreted protein families were proteases (astacins and other metalloproteases, aspartic, cysteine and serine-type proteases), lysozymes, apyrases and acetylcholinesterases. The most abundant products were members of the highly divergent venom allergen-like (VAL) family, related to Ancylostoma secreted protein (ASP); 25 homologues were identified, with VAL-1 and -2 also shown to be associated with the parasite surface. The dominance of VAL proteins is similar to profiles reported for Ancylostoma and Haemonchus ES products. Overall, this study shows that the secretions of H. polygyrus closely parallel those of clinically important GI nematodes, confirming the value of this parasite as a model of helminth infection.
Collapse
Affiliation(s)
- James P Hewitson
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
A calcium-activated nucleotidase secreted from Ostertagia ostertagi 4th-stage larvae is a member of the novel salivary apyrases present in blood-feeding arthropods. Parasitology 2011; 138:333-43. [PMID: 20809998 DOI: 10.1017/s0031182010001241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apyrases (ATP-diphosphohydrolase) comprise a ubiquitous class of glycosylated nucleotidases that hydrolyse extracellular ATP and ADP to orthophosphate and AMP. One class of newly-described, Ca2+-dependent, salivary apyrases known to counteract blood-clotting, has been identified in haematophagous arthropods. Herein, we have identified a gene (Oos-apy-1) encoding a protein that structurally conforms to the Ca2+-activated apyrase from the bed bug, Cimex lectularius, by immunologically screening an Ostertagia L4 cDNA expression library. The expressed protein (rOos-APY-1) was biochemically functional in the presence of Ca2+ only, with greatest activity on ATP, ADP, UTP and UDP. Host antibodies to the fusion protein appeared as early as 14 days post-infection (p.i.) and increased through 30 days p.i. Immunohistochemical and Western blot analyses demonstrated that the native Oos-APY-1 protein is present in the glandular bulb of the oesophagus and is confined to the L4. A putative signal sequence at the N-terminus and near 100% identity with a Teladorsagia circumcincta L4 secreted protein is consistent with the native protein being secreted at the cellular level. Predicated upon substrate specificity, the native protein may be used by the parasite to control the levels of host extracellular nucleotides released by locally-damaged tissues in an effort to modulate immune intervention and inflammation.
Collapse
|
19
|
A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin. Proc Natl Acad Sci U S A 2011; 108:11756-65. [PMID: 21677192 DOI: 10.1073/pnas.1018098108] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tunicamycin (TM) inhibits eukaryotic asparagine-linked glycosylation, protein palmitoylation, ganglioside production, proteoglycan synthesis, 3-hydroxy-3-methylglutaryl coenzyme-A reductase activity, and cell wall biosynthesis in bacteria. Treatment of cells with TM elicits endoplasmic reticulum stress and activates the unfolded protein response. Although widely used in laboratory settings for many years, it is unknown how TM enters cells. Here, we identify in an unbiased genetic screen a transporter of the major facilitator superfamily, major facilitator domain containing 2A (MFSD2A), as a critical mediator of TM toxicity. Cells without MFSD2A are TM-resistant, whereas MFSD2A-overexpressing cells are hypersensitive. Hypersensitivity is associated with increased cellular TM uptake concomitant with an enhanced endoplasmic reticulum stress response. Furthermore, MFSD2A mutant analysis reveals an important function of the C terminus for correct intracellular localization and protein stability, and it identifies transmembrane helical amino acid residues essential for mediating TM sensitivity. Overall, our data uncover a critical role for MFSD2A by acting as a putative TM transporter at the plasma membrane.
Collapse
|
20
|
Nisbet AJ, Zarlenga DS, Knox DP, Meikle LI, Wildblood LA, Matthews JB. A calcium-activated apyrase from Teladorsagia circumcincta: an excretory/secretory antigen capable of modulating host immune responses? Parasite Immunol 2011; 33:236-43. [PMID: 21208222 DOI: 10.1111/j.1365-3024.2011.01278.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A cDNA representing the gene Teladorsagia circumcincta apyrase-1 (Tci-apy-1) was isolated, by PCR, from a T. circumcincta fourth-stage larval (L4) cDNA library. The closest orthologue of this gene is a Ca(2+)-dependent apyrase from Ostertagia ostertagi, with 92% amino acid identity across all 339 residues. Tci-apy-1 is transcribed in a stage-specific manner, the transcript being predominant in L4, detectable in the adult cDNA, but absent from eggs and infective third-stage larvae (L3). The protein, Tci-APY-1, was detected by immunoblotting in extracts of L4 nematodes and was present in excretory/secretory products from the same developmental stage. A recombinant version of Tci-APY-1 was expressed in bacteria as an active enzyme that hydrolysed nucleoside triphosphate substrates with a preference of ATP over other nucleoside triphosphates. Recombinant Tci-APY-1 hydrolysed ATP and ADP but not AMP. Apyrase activity was divalent cation-dependent, with no hydrolysis in the presence of Mg(2+), but activation in the presence of Ca(2+). Recombinant Tci-APY-1 was bound by IgG present in serum and both IgG and IgA present in abomasal mucus from trickle-infected, immune sheep but not in material derived from lambs exposed to a single infection. The potential immunomodulatory roles of this Tci-APY-1 are discussed in relation to purinergic signalling.
Collapse
Affiliation(s)
- A J Nisbet
- Parasitology Division, Moredun Research Institute, Penicuik, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Morphogenesis is an important component of animal development. Genetic redundancy has been proposed to be common among morphogenesis genes, posing a challenge to the genetic dissection of morphogenesis mechanisms. Genetic redundancy is more generally a challenge in biology, as large proportions of the genes in diverse organisms have no apparent loss of function phenotypes. Here, we present a screen designed to uncover redundant and partially redundant genes that function in an example of morphogenesis, gastrulation in Caenorhabditis elegans. We performed an RNA interference (RNAi) enhancer screen in a gastrulation-sensitized double-mutant background, targeting genes likely to be expressed in gastrulating cells or their neighbors. Secondary screening identified 16 new genes whose functions contribute to normal gastrulation in a nonsensitized background. We observed that for most new genes found, the closest known homologs were multiple other C. elegans genes, suggesting that some may have derived from rounds of recent gene duplication events. We predict that such genes are more likely than single copy genes to comprise redundant or partially redundant gene families. We explored this prediction for one gene that we identified and confirmed that this gene and five close relatives, which encode predicted substrate recognition subunits (SRSs) for a CUL-2 ubiquitin ligase, do indeed function partially redundantly with each other in gastrulation. Our results implicate new genes in C. elegans gastrulation, and they show that an RNAi-based enhancer screen in C. elegans can be used as an efficient means to identify important but redundant or partially redundant developmental genes.
Collapse
|
22
|
Tanaka K, Swanson SJ, Gilroy S, Stacey G. Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:705-19. [PMID: 20671112 PMCID: PMC2949047 DOI: 10.1104/pp.110.162503] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/28/2010] [Indexed: 05/19/2023]
Abstract
Extracellular ATP induces a rise in the level of cytosolic free calcium ([Ca(2+)](cyt)) in plant cells. To expand our knowledge about the function of extracellular nucleotides in plants, the effects of several nucleotide analogs and pharmacological agents on [Ca(2+)](cyt) changes were studied using transgenic Arabidopsis (Arabidopsis thaliana) expressing aequorin or the fluorescence resonance energy transfer-based Ca(2+) sensor Yellow Cameleon 3.6. Exogenously applied CTP caused elevations in [Ca(2+)](cyt) that displayed distinct time- and dose-dependent kinetics compared with the purine nucleotides ATP and GTP. The inhibitory effects of antagonists of mammalian P2 receptors and calcium influx inhibitors on nucleotide-induced [Ca(2+)](cyt) elevations were distinct between CTP and purine nucleotides. These results suggest that distinct recognition systems may exist for the respective types of nucleotides. Interestingly, a mutant lacking the heterotrimeric G protein Gβ-subunit exhibited a remarkably higher [Ca(2+)](cyt) elevation in response to all tested nucleotides in comparison with the wild type. These data suggest a role for Gβ in negatively regulating extracellular nucleotide signaling and point to an important role for heterotrimeric G proteins in modulating the cellular effects of extracellular nucleotides. The addition of extracellular nucleotides induced multiple temporal [Ca(2+)](cyt) oscillations, which could be localized to specific root cells. The oscillations were attenuated by a vesicle-trafficking inhibitor, indicating that the oscillations likely require ATP release via exocytotic secretion. The results reveal new molecular details concerning extracellular nucleotide signaling in plants and the importance of fine control of extracellular nucleotide levels to mediate specific plant cell responses.
Collapse
Affiliation(s)
| | | | | | - Gary Stacey
- National Center for Soybean Biotechnology, Division of Plant Sciences (K.T., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211; Botany Department, University of Wisconsin, Madison, Wisconsin 53706 (S.J.S., S.G.)
| |
Collapse
|
23
|
Protein misfolding induces hypoxic preconditioning via a subset of the unfolded protein response machinery. Mol Cell Biol 2010; 30:5033-42. [PMID: 20733002 DOI: 10.1128/mcb.00922-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prolonged cellular hypoxia results in energy failure and ultimately cell death. However, less-severe hypoxia can induce a cytoprotective response termed hypoxic preconditioning (HP). The unfolded protein response pathway (UPR) has been known for some time to respond to hypoxia and regulate hypoxic sensitivity; however, the role of the UPR, if any, in HP essentially has been unexplored. We have shown previously that a sublethal hypoxic exposure of the nematode Caenorhabditis elegans induces a protein chaperone component of the UPR (L. L. Anderson, X. Mao, B. A. Scott, and C. M. Crowder, Science 323:630-633, 2009). Here, we show that HP induces the UPR and that the pharmacological induction of misfolded proteins is itself sufficient to stimulate a delayed protective response to hypoxic injury that requires the UPR pathway proteins IRE-1, XBP-1, and ATF-6. HP also required IRE-1 but not XBP-1 or ATF-6; instead, GCN-2, which is known to suppress translation and induce an adaptive transcriptional response under conditions of UPR activation or amino acid deprivation, was required for HP. The phosphorylation of the translation factor eIF2α, an established mechanism of GCN-2-mediated translational suppression, was not necessary for HP. These data suggest a model where hypoxia-induced misfolded proteins trigger the activation of IRE-1, which along with GCN-2 controls an adaptive response that is essential to HP.
Collapse
|
24
|
Huber C, Oulès B, Bertoli M, Chami M, Fradin M, Alanay Y, Al-Gazali LI, Ausems MG, Bitoun P, Cavalcanti DP, Krebs A, Le Merrer M, Mortier G, Shafeghati Y, Superti-Furga A, Robertson SP, Le Goff C, Muda AO, Paterlini-Bréchot P, Munnich A, Cormier-Daire V. Identification of CANT1 mutations in Desbuquois dysplasia. Am J Hum Genet 2009; 85:706-10. [PMID: 19853239 DOI: 10.1016/j.ajhg.2009.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/15/2009] [Accepted: 10/02/2009] [Indexed: 01/17/2023] Open
Abstract
Desbuquois dysplasia is a severe condition characterized by short stature, joint laxity, scoliosis, and advanced carpal ossification with a delta phalanx. Studying nine Desbuquois families, we identified seven distinct mutations in the Calcium-Activated Nucleotidase 1 gene (CANT1), which encodes a soluble UDP-preferring nucleotidase belonging to the apyrase family. Among the seven mutations, four were nonsense mutations (Del 5' UTR and exon 1, p.P245RfsX3, p.S303AfsX20, and p.W125X), and three were missense mutations (p.R300C, p.R300H, and p.P299L) responsible for the change of conserved amino acids located in the seventh nucleotidase conserved region (NRC). The arginine substitution at position 300 was identified in five out of nine families. The specific function of CANT1 is as yet unknown, but its substrates are involved in several major signaling functions, including Ca2+ release, through activation of pyrimidinergic signaling. Importantly, using RT-PCR analysis, we observed a specific expression in chondrocytes. We also found electron-dense material within distended rough endoplasmic reticulum in the fibroblasts of Desbuquois patients. Our findings demonstrate the specific involvement of a nucleotidase in the endochondral ossification process.
Collapse
|
25
|
The ESCRT-III protein CeVPS-32 is enriched in domains distinct from CeVPS-27 and CeVPS-23 at the endosomal membrane of epithelial cells. Biol Cell 2009; 101:599-615. [PMID: 19432559 DOI: 10.1042/bc20090025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Within the endocytic pathway, the ESCRT (endosomal sorting complex required for transport) machinery is essential for the biogenesis of MVBs (multivesicular bodies). In yeast, ESCRTs are recruited at the endosomal membrane and are involved in cargo sorting into intralumenal vesicles of the MVBs. RESULTS In the present study, we characterize the ESCRT-III protein CeVPS-32 (Caenorhabditis elegans vacuolar protein sorting 32) and its interactions with CeVPS-27, CeVPS-23 and CeVPS-4. In contrast with other CevpsE (class E vps) genes, depletion of Cevps-32 is embryonic lethal with severe defects in the remodelling of epithelial cell shape during organogenesis. Furthermore, Cevps-32 animals display an accumulation of enlarged early endosomes in epithelial cells and an accumulation of autophagosomes. The CeVPS-32 protein is enriched in epithelial tissues and in residual bodies during spermatid maturation. We show that CeVPS-32 and CeVPS-27/Hrs (hepatocyte-growth-factor-regulated tyrosine kinase substrate) are enriched in distinct subdomains at the endosomal membrane. CeVPS-27-positive subdomains are also enriched for the ESCRT-I protein CeVPS-23/TSG101 (tumour susceptibility gene 101). The formation of CeVPS-27 subdomains is not affected by the depletion of CeVPS-23, CeVPS-32 or the ATPase CeVPS-4. CONCLUSION Our results suggest that the formation of membrane subdomains is essential for the maturation of endosomes.
Collapse
|
26
|
Dejima K, Murata D, Mizuguchi S, Nomura KH, Gengyo-Ando K, Mitani S, Kamiyama S, Nishihara S, Nomura K. The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans. FASEB J 2009; 23:2215-25. [PMID: 19270184 DOI: 10.1096/fj.08-123737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the solute carrier 35B1 (SLC35B1) is evolutionarily conserved, its functions in metazoans remain unknown. To elucidate its function, we examined developmental roles of an SLC35B1 family gene (HUT-1: homolog of UDP-Gal transporter) in Caenorhabditis elegans. We isolated a deletion mutant of the gene and characterized phenotypes of the mutant and hut-1 RNAi-treated worms. GFP-HUT-1 reporter analysis was performed to examine gene expression patterns. We also tested whether several nucleotide sugar transporters can compensate for hut-1 deficiency. The hut-1 deletion mutant and RNAi worms showed larval growth defect and lethality with disrupted intestinal morphology. Inactivation of hut-1 induced chronic endoplasmic reticulum (ER) stress, and hut-1 showed genetic interactions with the atf-6, pek-1, and ire-1 genes involved in unfolded protein response signaling. ER ultrastructure and ER marker distribution in hut-1-deficient animals showed that HUT-1 is required for maintenance of ER structure. Reporter analysis revealed that HUT-1 is an ER protein ubiquitously expressed in tissues, including the intestine. Lethality and the ER stress phenotype of the mutant were rescued with the human hut-1 ortholog UGTrel1. These results indicate important roles for hut-1 in development and maintenance of ER homeostasis in C. elegans.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Biology, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|