1
|
Syed S, Painda MYK, Ghafoor D, Gu D, Wang F. Physiological roles and therapeutic implications of USP6. Cell Death Discov 2025; 11:231. [PMID: 40348771 PMCID: PMC12065817 DOI: 10.1038/s41420-025-02466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Ubiquitin-specific protease 6 (USP6) is a member of deubiquitinating enzyme family, recognized for its essential roles in physiological and pathological processes. USP6 is initially identified as a hominoid-specific enzyme residing on chromosome 17p13. USP6 is involved in regulating cellular functions, signaling pathways, protein degradation, intracellular trafficking, tumorigenesis and immune responses. USP6 is pivotal in signaling pathways, including NF-κB, JAK-STAT, and Wnt, which are fundamental for maintaining cellular homeostasis and mediating stress responses. Dysregulation of USP6 has been implicated in a spectrum of diseases, including bone tumors, breast and colorectal cancers, cranial fasciitis, and neurological disorders such as memory dysfunction. Furthermore, USP6 is involved in emerging therapeutic strategies highlighting its implications for drug development. A number of potential small molecule inhibitors are known to be responsible for suppression of USP6, such as Momelotinib (CYT387), FT385, USP30 Inh-1, -2 and -3, 2,6-Diaminopyridine-3,5-bis(thiocyanate) (PR-619) and so on. This review explores the emerging role of USP6 as a key regulator of cellular signaling pathways, its involvement in disease progression, its physiological functions, and the inhibitors that effectively suppress USP6 activity in detail. The comprehensive study provides insight to enhance our understanding of biological importance and therapeutic interventions of USP6 in drug development.
Collapse
Affiliation(s)
- Suaad Syed
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | | | - Dawood Ghafoor
- Veterinary Preclinical Sciences, College of Science and Engineering (CSE), James Cook University, Townsville, QLD, 4811, Australia
| | - Dongjin Gu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Luan Y, Deng Z, Zhu Y, Dai L, Yang Y, Xia Z. Decoupling actin assembly from microtubule disassembly by TBC1D3C-mediated direct GEF-H1 activation. Life Sci Alliance 2025; 8:e202402585. [PMID: 39467635 PMCID: PMC11519374 DOI: 10.26508/lsa.202402585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Actin and microtubules are essential cytoskeletal components and coordinate their dynamics through multiple coupling and decoupling mechanisms. However, how actin and microtubule dynamics are decoupled remains incompletely understood. Here, we identified TBC1D3C as a new regulator that can decouple actin filament assembly from microtubule disassembly. We showed that TBC1D3C induces the release of GEF-H1 from microtubules into the cytosol without perturbing microtubule arrays, leading to RhoA activation and actin filament assembly. Mechanistically, we found that TBC1D3C directly binds to GEF-H1, disrupting its interaction with the Tctex-DIC-14-3-3 complex and thereby displacing GEF-H1 from microtubules independently of microtubule disassembly. Super-resolution microscopy and live-cell imaging further confirmed that TBC1D3C triggers GEF-H1 release and actin filament assembly while maintaining microtubule integrity. Therefore, our findings demonstrated that TBC1D3C functions as a direct GEF activator and a novel regulator in decoupling actin assembly from microtubule disassembly, providing new insights into cytoskeletal regulation.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhifeng Deng
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yutong Zhu
- Research and Development Center, Beijing, China
| | - Lisi Dai
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Lupi M, Avanzato D, Confalonieri S, Martino F, Pennisi R, Pupo E, Audrito V, Freddi S, Bertalot G, Montani F, Matoskova B, Sigismund S, Di Fiore PP, Lanzetti L. TBC1 domain-containing proteins are frequently involved in triple-negative breast cancers in connection with the induction of a glycolytic phenotype. Cell Death Dis 2024; 15:647. [PMID: 39231952 PMCID: PMC11375060 DOI: 10.1038/s41419-024-07037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Metabolic plasticity is a hallmark of cancer, and metabolic alterations represent a promising therapeutic target. Since cellular metabolism is controlled by membrane traffic at multiple levels, we investigated the involvement of TBC1 domain-containing proteins (TBC1Ds) in the regulation of cancer metabolism. These proteins are characterized by the presence of a RAB-GAP domain, the TBC1 domain, and typically function as attenuators of RABs, the master switches of membrane traffic. However, a number of TBC1Ds harbor mutations in their catalytic residues, predicting biological functions different from direct regulation of RAB activities. Herein, we report that several genes encoding for TBC1Ds are expressed at higher levels in triple-negative breast cancers (TNBC) vs. other subtypes of breast cancers (BC), and predict prognosis. Orthogonal transcriptomics/metabolomics analysis revealed that the expression of prognostic TBC1Ds correlates with elevated glycolytic metabolism in BC cell lines. In-depth investigations of the three top hits from the previous analyses (TBC1D31, TBC1D22B and TBC1D7) revealed that their elevated expression is causal in determining a glycolytic phenotype in TNBC cell lines. We further showed that the impact of TBC1D7 on glycolytic metabolism of BC cells is independent of its known participation in the TSC1/TSC2 complex and consequent downregulation of mTORC1 activity. Since TBC1D7 behaves as an independent prognostic biomarker in TNBC, it could be used to distinguish good prognosis patients who could be spared aggressive therapy from those with a poor prognosis who might benefit from anti-glycolytic targeted therapies. Together, our results highlight how TBC1Ds connect disease aggressiveness with metabolic alterations in TNBC. Given the high level of heterogeneity among this BC subtype, TBC1Ds could represent important tools in predicting prognosis and guiding therapy decision-making.
Collapse
Grants
- IG #22811 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- MFAG-2021 #26004 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #24415 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #23060 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2022 Prot. 2022W93FTW Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Finalizzata RF-2021-12373957 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
Collapse
Affiliation(s)
- Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Department of Veterinary Sciences, Infectious Diseases Unit, University of Torino, Turin, Italy
| | | | - Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | | | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, Alessandria, Italy
| | - Stefano Freddi
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Giovanni Bertalot
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy, and Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | | | | | - Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| |
Collapse
|
4
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Rao XS, Cong XX, Gao XK, Shi YP, Shi LJ, Wang JF, Ni CY, He MJ, Xu Y, Yi C, Meng ZX, Liu J, Lin P, Zheng LL, Zhou YT. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ 2021; 28:3214-3234. [PMID: 34045668 PMCID: PMC8630067 DOI: 10.1038/s41418-021-00809-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of glucose homeostasis contributes to insulin resistance and type 2 diabetes. Whilst exercise stimulated activation of AMP-activated protein kinase (AMPK), an important energy sensor, has been highlighted for its potential to promote insulin-stimulated glucose uptake, the underlying mechanisms for this remain largely unknown. Here we found that AMPK positively regulates the activation of Rab5, a small GTPase which is involved in regulating Glut4 translocation, in both myoblasts and skeletal muscles. We further verified that TBC1D17, identified as a potential interacting partner of Rab5 in our recent study, is a novel GTPase activating protein (GAP) of Rab5. TBC1D17-Rab5 axis regulates transport of Glut1, Glut4, and transferrin receptor. TBC1D17 interacts with Rab5 or AMPK via its TBC domain or N-terminal 1-306 region (N-Ter), respectively. Moreover, AMPK phosphorylates the Ser 168 residue of TBC1D17 which matches the predicted AMPK consensus motif. N-Ter of TBC1D17 acts as an inhibitory region by directly interacting with the TBC domain. Ser168 phosphorylation promotes intra-molecular interaction and therefore enhances the auto-inhibition of TBC1D17. Our findings reveal that TBC1D17 acts as a molecular bridge that links AMPK and Rab5 and delineate a previously unappreciated mechanism by which the activation of TBC/RabGAP is regulated.
Collapse
Affiliation(s)
- Xi Sheng Rao
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xia Cong
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiu Kui Gao
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Pu Shi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Jing Shi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Feng Wang
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Yao Ni
- grid.35403.310000 0004 1936 9991The School of Molecular and Cellular Biology, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Ming Jie He
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- grid.13402.340000 0004 1759 700XDepartment of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yi
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhuo-Xian Meng
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Zhejiang Provincial Key Laboratory of Pancreatic Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinling Liu
- grid.13402.340000 0004 1759 700XDepartment of Pulmonology, the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Peng Lin
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ling Zheng
- grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ting Zhou
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XKey Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Lo Faro V, Ten Brink JB, Snieder H, Jansonius NM, Bergen AA. Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma. BMC Genomics 2021; 22:590. [PMID: 34348663 PMCID: PMC8336345 DOI: 10.1186/s12864-021-07846-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. RESULTS We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p-value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. CONCLUSIONS Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease. Additional genetic and functional studies are warranted to ascertain the contribution of CNVs in POAG.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Jacoline B Ten Brink
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arthur A Bergen
- Departments of Clinical Genetics and Ophthalmology, Amsterdam University Medical Center (AMC), Location AMC K2-217
- AMC-UvA, P.O.Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Department of Ophthalmology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands. .,Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Hou QQ, Xiao Q, Sun XY, Ju XC, Luo ZG. TBC1D3 promotes neural progenitor proliferation by suppressing the histone methyltransferase G9a. SCIENCE ADVANCES 2021; 7:7/3/eaba8053. [PMID: 33523893 PMCID: PMC7810367 DOI: 10.1126/sciadv.aba8053] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/23/2020] [Indexed: 05/16/2023]
Abstract
Genomic changes during human linage evolution contribute to the expansion of the cerebral cortex to allow more advanced thought processes. The hominoid-specific gene TBC1D3 displays robust capacity of promoting the generation and proliferation of neural progenitors (NPs), which are thought to contribute to cortical expansion. However, the underlying mechanisms remain unclear. Here, we found that TBC1D3 interacts with G9a, a euchromatic histone lysine N-methyltransferase, which mediates dimethylation of histone 3 in lysine 9 (H3K9me2), a suppressive mark for gene expression. TBC1D3 displayed an inhibitory role in G9a's histone methyltransferase activity. Treatment with G9a inhibitor markedly increased NP proliferation and promoted human cerebral organoid expansion, mimicking the effects caused by TBC1D3 up-regulation. By contrast, blockade of TBC1D3/G9a interaction to disinhibit G9a caused up-regulation of H3K9me2, suppressed NP proliferation, and impaired organoid development. Together, this study has demonstrated a mechanism underlying the role of a hominoid-specific gene in promoting cortical expansion.
Collapse
Affiliation(s)
- Qiong-Qiong Hou
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Qi Xiao
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China.
| |
Collapse
|
8
|
Kim Nguyen NT, Ohbayashi N, Kanaho Y, Funakoshi Y. TBC1D24 regulates recycling of clathrin-independent cargo proteins mediated by tubular recycling endosomes. Biochem Biophys Res Commun 2020; 528:220-226. [PMID: 32475639 DOI: 10.1016/j.bbrc.2020.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/02/2020] [Indexed: 11/19/2022]
Abstract
Many plasma membrane proteins enter cells by clathrin-independent endocytosis (CIE). Rab family small GTPases play pivotal roles in CIE and following intracellular trafficking of cargo proteins. Here, we provide evidence that TBC1D24, which contains an atypical Rab GAP domain, facilitates formation of tubular recycling endosomes (TREs) that are a hallmark of the CIE cargo trafficking pathway in HeLa cells. Overexpression of TBC1D24 in HeLa cells dramatically increased TREs loaded with CIE cargo proteins, while deletion of TBC1D24 impaired TRE formation and delayed the recycling of CIE cargo proteins back to the plasma membrane. We also found that TBC1D24 binds to Rab22A, through which TBC1D24 regulates TRE-mediated CIE cargo recycling. These findings provide insight into regulatory mechanisms for CIE cargo trafficking.
Collapse
Affiliation(s)
- Nguyen Thi Kim Nguyen
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Yuji Funakoshi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
9
|
Bekpen C, Tautz D. Human core duplicon gene families: game changers or game players? Brief Funct Genomics 2020; 18:402-411. [PMID: 31529038 PMCID: PMC6920530 DOI: 10.1093/bfgp/elz016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
Illuminating the role of specific gene duplications within the human lineage can provide insights into human-specific adaptations. The so-called human core duplicon gene families have received particular attention in this respect, due to special features, such as expansion along single chromosomes, newly acquired protein domains and signatures of positive selection. Here, we summarize the data available for 10 such families and include some new analyses. A picture emerges that suggests broad functions for these protein families, possibly through modification of core cellular pathways. Still, more dedicated studies are required to elucidate the function of core-duplicons gene families and how they have shaped adaptations and evolution of humans.
Collapse
Affiliation(s)
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
10
|
Abstract
Macropinosome formation occurs as a localized sequence of biochemical activities and associated morphological changes, which may be considered a form of signal transduction leading to the construction of an organelle. Macropinocytosis may also convey information about the availability of extracellular nutrients to intracellular regulators of metabolism. Consistent with this idea, activation of the metabolic regulator mechanistic target of rapamycin complex-1 (mTORC1) in response to acute stimulation by growth factors and extracellular amino acids requires internalization of amino acids by macropinocytosis. This suggests that macropinocytosis is necessary for mTORC1-dependent growth of metazoan cells, both as a route for delivery of amino acids to sensors associated with lysosomes and as a platform for growth factor-dependent signalling to mTORC1 via phosphatidylinositol 3-kinase (PI3K) and the Akt pathway. Because the biochemical signals required for the construction of macropinosomes are also required for cell growth, and inhibition of macropinocytosis inhibits growth factor signalling to mTORC1, we propose that signalling by growth factor receptors is organized into stochastic, structure-dependent cascades of chemical reactions that both build a macropinosome and stimulate mTORC1. More generally, as discrete units of signal transduction, macropinosomes may be subject to feedback regulation by metabolism and cell dimensions. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, MI 48109-5620 , USA
| | - Sei Yoshida
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, MI 48109-5620 , USA
| |
Collapse
|
11
|
Lin L, Lyu Q, Kwan PY, Zhao J, Fan R, Chai A, Lai CSW, Chan YS, Shen X, Lai KO. The epilepsy and intellectual disability-associated protein TBC1D24 regulates the maintenance of excitatory synapses and animal behaviors. PLoS Genet 2020; 16:e1008587. [PMID: 32004315 PMCID: PMC7015432 DOI: 10.1371/journal.pgen.1008587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 02/12/2020] [Accepted: 12/29/2019] [Indexed: 12/27/2022] Open
Abstract
Perturbation of synapse development underlies many inherited neurodevelopmental disorders including intellectual disability (ID). Diverse mutations on the human TBC1D24 gene are strongly associated with epilepsy and ID. However, the physiological function of TBC1D24 in the brain is not well understood, and there is a lack of genetic mouse model that mimics TBC1D24 loss-of-function for the study of animal behaviors. Here we report that TBC1D24 is present at the postsynaptic sites of excitatory synapses, where it is required for the maintenance of dendritic spines through inhibition of the small GTPase ARF6. Mice subjected to viral-mediated knockdown of TBC1D24 in the adult hippocampus display dendritic spine loss, deficits in contextual fear memory, as well as abnormal behaviors including hyperactivity and increased anxiety. Interestingly, we show that the protein stability of TBC1D24 is diminished by the disease-associated missense mutation that leads to F251L amino acid substitution. We further generate the F251L knock-in mice, and the homozygous mutants show increased neuronal excitability, spontaneous seizure and pre-mature death. Moreover, the heterozygous F251L knock-in mice survive into adulthood but display dendritic spine defects and impaired memory. Our findings therefore uncover a previously uncharacterized postsynaptic function of TBC1D24, and suggest that impaired dendritic spine maintenance contributes to the pathophysiology of individuals harboring TBC1D24 gene mutations. The F251L knock-in mice represent a useful animal model for investigation of the mechanistic link between TBC1D24 loss-of-function and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lianfeng Lin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Quanwei Lyu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Pui-Yi Kwan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Junjun Zhao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ruolin Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Anping Chai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Xuting Shen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Suzuki IK. Molecular drivers of human cerebral cortical evolution. Neurosci Res 2019; 151:1-14. [PMID: 31175883 DOI: 10.1016/j.neures.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023]
Abstract
One of the most important questions in human evolutionary biology is how our ancestor has acquired an expanded volume of the cerebral cortex, which may have significantly impacted on improving our cognitive abilities. Recent comparative approaches have identified developmental features unique to the human or hominid cerebral cortex, not shared with other animals including conventional experimental models. In addition, genomic, transcriptomic, and epigenomic signatures associated with human- or hominid-specific processes of the cortical development are becoming identified by virtue of technical progress in the deep nucleotide sequencing. This review discusses ontogenic and phylogenetic processes of the human cerebral cortex, followed by the introduction of recent comprehensive approaches identifying molecular mechanisms potentially driving the evolutionary changes in the cortical development.
Collapse
Affiliation(s)
- Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KULeuven, 3000 Leuven, Belgium; Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium.
| |
Collapse
|
13
|
Qin S, Dorschner RA, Masini I, Lavoie-Gagne O, Stahl PD, Costantini TW, Baird A, Eliceiri BP. TBC1D3 regulates the payload and biological activity of extracellular vesicles that mediate tissue repair. FASEB J 2019; 33:6129-6139. [PMID: 30715917 PMCID: PMC6463925 DOI: 10.1096/fj.201802388r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
Healthy repair of cutaneous injury is a coordinated response of inflammatory cells, secreted factors, and biologically active extracellular vesicles (EVs). Although constitutive release of EVs into biologic fluids is a hallmark of cultured cells and tumors, their payload and biologic activity appears to be tightly regulated. We show that Tre-2/Bub2/Cdc16 (TBC1) domain family member 3 (TBC1D3) drives the release of an EV population that causes a decrease in phosphorylation of the transcription factor signal transducer and activator of transcription 3 in naive recipient cells. To explore the biologic activity of EVs in vivo, we used a mouse model of sterile subcutaneous inflammation to determine the payload and biologic activity of EVs released into the microenvironment by committed myeloid lineages and stroma. Expression of TBC1D3 in macrophages altered the payload of their released EVs, including RNA-binding proteins, molecular motors, and proteins regulating secretory pathways. A wound-healing model demonstrated that closure was delayed by EVs released under the control of TBC1D3. We show that modulating the secretory repertoire of a cell regulates EV payload and biologic activity that affects outcomes in tissue repair and establishes a strategy for modifying EVs mediating specific biologic responses.-Qin, S., Dorschner, R. A., Masini, I., Lavoie-Gagne, O., Stahl, P. D., Costantini, T. W., Baird, A., Eliceiri, B. P. TBC1D3 regulates the payload and biological activity of extracellular vesicles that mediate tissue repair.
Collapse
Affiliation(s)
- Shu Qin
- Department of Surgery, University of California–San Diego, La Jolla, California, USA
- Department of Plastic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China; and
| | - Robert A. Dorschner
- Department of Surgery, University of California–San Diego, La Jolla, California, USA
| | - Irene Masini
- Department of Surgery, University of California–San Diego, La Jolla, California, USA
| | - Ophelia Lavoie-Gagne
- Department of Surgery, University of California–San Diego, La Jolla, California, USA
| | - Philip D. Stahl
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd W. Costantini
- Department of Surgery, University of California–San Diego, La Jolla, California, USA
| | - Andrew Baird
- Department of Surgery, University of California–San Diego, La Jolla, California, USA
| | - Brian P. Eliceiri
- Department of Surgery, University of California–San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Abstract
Macropinocytosis is an actin-driven form of clathrin-independent endocytosis that generates an enlarged structure, the macropinosome. Although many studies focus on signaling molecules and phosphoinositides involved in initiating macropinocytosis, the commitment to forming a macropinosome and the handling of that membrane have not been studied in detail. Here we show in HT1080 cells, a human fibrosarcoma cell line, a requirement for microtubules, dynein, the JIP3 microtubule motor scaffold protein, and Arf6, a JIP3 interacting protein, for the formation and inward movement of the macropinosome. While actin and myosin II also play critical roles in the formation of ruffling membrane, microtubules provide an important tract for initiation, sealing, and transport of the macropinosome through the actin- and myosin-rich lamellar region.
Collapse
Affiliation(s)
- Chad D Williamson
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, and.,Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Julie G Donaldson
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, and
| |
Collapse
|
15
|
Adewoye AB, Shrine N, Odenthal-Hesse L, Welsh S, Malarstig A, Jelinsky S, Kilty I, Tobin MD, Hollox EJ, Wain LV. Human CCL3L1 copy number variation, gene expression, and the role of the CCL3L1-CCR5 axis in lung function. Wellcome Open Res 2018; 3:13. [PMID: 29682616 PMCID: PMC5883389 DOI: 10.12688/wellcomeopenres.13902.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/21/2023] Open
Abstract
Background: The CCL3L1-CCR5 signaling axis is important in a number of inflammatory responses, including macrophage function, and T-cell-dependent immune responses. Small molecule CCR5 antagonists exist, including the approved antiretroviral drug maraviroc, and therapeutic monoclonal antibodies are in development. Repositioning of drugs and targets into new disease areas can accelerate the availability of new therapies and substantially reduce costs. As it has been shown that drug targets with genetic evidence supporting their involvement in the disease are more likely to be successful in clinical development, using genetic association studies to identify new target repurposing opportunities could be fruitful. Here we investigate the potential of perturbation of the CCL3L1-CCR5 axis as treatment for respiratory disease. Europeans typically carry between 0 and 5 copies of CCL3L1 and this multi-allelic variation is not detected by widely used genome-wide single nucleotide polymorphism studies. Methods: We directly measured the complex structural variation of CCL3L1 using the Paralogue Ratio Test and imputed (with validation) CCR5del32 genotypes in 5,000 individuals from UK Biobank, selected from the extremes of the lung function distribution, and analysed DNA and RNAseq data for CCL3L1 from the 1000 Genomes Project. Results: We confirmed the gene dosage effect of CCL3L1 copy number on CCL3L1 mRNA expression levels. We found no evidence for association of CCL3L1 copy number or CCR5del32 genotype with lung function. Conclusions: These results suggest that repositioning CCR5 antagonists is unlikely to be successful for the treatment of airflow obstruction.
Collapse
Affiliation(s)
- Adeolu B. Adewoye
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Linda Odenthal-Hesse
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | | | - Scott Jelinsky
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Iain Kilty
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK,National Institute of Health Research Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK,
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, UK,National Institute of Health Research Biomedical Research Centre, University of Leicester, Leicester, UK,
| |
Collapse
|
16
|
Calmodulin promotes matrix metalloproteinase 9 production and cell migration by inhibiting the ubiquitination and degradation of TBC1D3 oncoprotein in human breast cancer cells. Oncotarget 2018; 8:36383-36398. [PMID: 28422741 PMCID: PMC5482662 DOI: 10.18632/oncotarget.16756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
The hominoid oncoprotein TBC1D3 enhances growth factor (GF) signaling and GF signaling, conversely, induces the ubiquitination and subsequent degradation of TBC1D3. However, little is known regarding the regulation of this degradation, and the role of TBC1D3 in the progression of tumors has also not been defined. In the present study, we demonstrated that calmodulin (CaM), a ubiquitous cellular calcium sensor, specifically interacted with TBC1D3 in a Ca2+-dependent manner and inhibited GF signaling-induced ubiquitination and degradation of the oncoprotein in both cytoplasm and nucleus of human breast cancer cells. The CaM-interacting site of TBC1D3 was mapped to amino acids 157~171, which comprises two 1–14 hydrophobic motifs and one lysine residue (K166). Deletion of these motifs was shown to abolish interaction between TBC1D3 and CaM. Surprisingly, this deletion mutation caused inability of GF signaling to induce the ubiquitination and subsequent degradation of TBC1D3. In agreement with this, we identified lysine residue 166 within the CaM-interacting motifs of TBC1D3 as the actual site for the GF signaling-induced ubiquitination using mutational analysis. Point mutation of this lysine residue exhibited the same effect on TBC1D3 as the deletion mutant, suggesting that CaM inhibits GF signaling-induced degradation of TBC1D3 by occluding its ubiquitination at K166. Notably, we found that TBC1D3 promoted the expression and activation of MMP-9 and the migration of MCF-7 cells. Furthermore, interaction with CaM considerably enhanced such effect of TBC1D3. Taken together, our work reveals a novel model by which CaM promotes cell migration through inhibiting the ubiquitination and degradation of TBC1D3.
Collapse
|
17
|
Adewoye AB, Shrine N, Odenthal-Hesse L, Welsh S, Malarstig A, Jelinsky S, Kilty I, Tobin MD, Hollox EJ, Wain LV. Human CCL3L1 copy number variation, gene expression, and the role of the CCL3L1-CCR5 axis in lung function. Wellcome Open Res 2018. [DOI: 10.12688/wellcomeopenres.13902.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The CCL3L1-CCR5 signaling axis is important in a number of inflammatory responses, including macrophage function, and T-cell-dependent immune responses. Small molecule CCR5 antagonists exist, including the approved antiretroviral drug maraviroc, and therapeutic monoclonal antibodies are in development. Repositioning of drugs and targets into new disease areas can accelerate the availability of new therapies and substantially reduce costs. As it has been shown that drug targets with genetic evidence supporting their involvement in the disease are more likely to be successful in clinical development, using genetic association studies to identify new target repurposing opportunities could be fruitful. Here we investigate the potential of perturbation of the CCL3L1-CCR5 axis as treatment for respiratory disease. Europeans typically carry between 0 and 5 copies of CCL3L1 and this multi-allelic variation is not detected by widely used genome-wide single nucleotide polymorphism studies. Methods: We directly measured the complex structural variation of CCL3L1 using the Paralogue Ratio Test and imputed (with validation) CCR5del32 genotypes in 5,000 individuals from UK Biobank, selected from the extremes of the lung function distribution, and analysed DNA and RNAseq data for CCL3L1 from the 1000 Genomes Project. Results: We confirmed the gene dosage effect of CCL3L1 copy number on CCL3L1 mRNA expression levels. We found no evidence for association of CCL3L1 copy number or CCR5del32 genotype with lung function. Conclusions: These results suggest that repositioning CCR5 antagonists is unlikely to be successful for the treatment of airflow obstruction.
Collapse
|
18
|
Caldieri G, Barbieri E, Nappo G, Raimondi A, Bonora M, Conte A, Verhoef LGGC, Confalonieri S, Malabarba MG, Bianchi F, Cuomo A, Bonaldi T, Martini E, Mazza D, Pinton P, Tacchetti C, Polo S, Di Fiore PP, Sigismund S. Reticulon 3-dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science 2018; 356:617-624. [PMID: 28495747 DOI: 10.1126/science.aah6152] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/21/2017] [Accepted: 03/24/2017] [Indexed: 11/02/2022]
Abstract
The integration of endocytic routes is critical to regulate receptor signaling. A nonclathrin endocytic (NCE) pathway of the epidermal growth factor receptor (EGFR) is activated at high ligand concentrations and targets receptors to degradation, attenuating signaling. Here we performed an unbiased molecular characterization of EGFR-NCE. We identified NCE-specific regulators, including the endoplasmic reticulum (ER)-resident protein reticulon 3 (RTN3) and a specific cargo, CD147. RTN3 was critical for EGFR/CD147-NCE, promoting the creation of plasma membrane (PM)-ER contact sites that were required for the formation and/or maturation of NCE invaginations. Ca2+ release at these sites, triggered by inositol 1,4,5-trisphosphate (IP3)-dependent activation of ER Ca2+ channels, was needed for the completion of EGFR internalization. Thus, we identified a mechanism of EGFR endocytosis that relies on ER-PM contact sites and local Ca2+ signaling.
Collapse
Affiliation(s)
- Giusi Caldieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Elisa Barbieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Gilda Nappo
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Andrea Raimondi
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy
| | - Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies Center, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alexia Conte
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Lisette G G C Verhoef
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Stefano Confalonieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Fabrizio Bianchi
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Alessandro Cuomo
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Tiziana Bonaldi
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Emanuele Martini
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Davide Mazza
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies Center, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo Tacchetti
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy. .,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy.,Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
19
|
Finelli MJ, Oliver PL. TLDc proteins: new players in the oxidative stress response and neurological disease. Mamm Genome 2017; 28:395-406. [PMID: 28707022 PMCID: PMC5614904 DOI: 10.1007/s00335-017-9706-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) arises from an imbalance in the cellular redox state, which can lead to intracellular damage and ultimately cell death. OS occurs as a result of normal ageing, but it is also implicated as a common etiological factor in neurological disease; thus identifying novel proteins that modulate the OS response may facilitate the design of new therapeutic approaches applicable to many disorders. In this review, we describe the recent progress that has been made using a range of genetic approaches to understand a family of proteins that share the highly conserved TLDc domain. We highlight their shared ability to prevent OS-related cell death and their unique functional characteristics, as well as discussing their potential application as new neuroprotective factors. Furthermore, with an increasing number of pathogenic mutations leading to epilepsy and hearing loss being discovered in the TLDc protein TBC1D24, understanding the function of this family has important implications for a range of inherited neurological diseases.
Collapse
Affiliation(s)
- Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
20
|
Bekpen C, Künzel S, Xie C, Eaaswarkhanth M, Lin YL, Gokcumen O, Akdis CA, Tautz D. Segmental duplications and evolutionary acquisition of UV damage response in the SPATA31 gene family of primates and humans. BMC Genomics 2017; 18:222. [PMID: 28264649 PMCID: PMC5338094 DOI: 10.1186/s12864-017-3595-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Background Segmental duplications are an abundant source for novel gene functions and evolutionary adaptations. This mechanism of generating novelty was very active during the evolution of primates particularly in the human lineage. Here, we characterize the evolution and function of the SPATA31 gene family (former designation FAM75A), which was previously shown to be among the gene families with the strongest signal of positive selection in hominoids. The mouse homologue for this gene family is a single copy gene expressed during spermatogenesis. Results We show that in primates, the SPATA31 gene duplicated into SPATA31A and SPATA31C types and broadened the expression into many tissues. Each type became further segmentally duplicated in the line towards humans with the largest number of full-length copies found for SPATA31A in humans. Copy number estimates of SPATA31A based on digital PCR show an average of 7.5 with a range of 5–11 copies per diploid genome among human individuals. The primate SPATA31 genes also acquired new protein domains that suggest an involvement in UV response and DNA repair. We generated antibodies and show that the protein is re-localized from the nucleolus to the whole nucleus upon UV-irradiation suggesting a UV damage response. We used CRISPR/Cas mediated mutagenesis to knockout copies of the gene in human primary fibroblast cells. We find that cell lines with reduced functional copies as well as naturally occurring low copy number HFF cells show enhanced sensitivity towards UV-irradiation. Conclusion The acquisition of new SPATA31 protein functions and its broadening of expression may be related to the evolution of the diurnal life style in primates that required a higher UV tolerance. The increased segmental duplications in hominoids as well as its fast evolution suggest the acquisition of further specific functions particularly in humans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3595-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cemalettin Bekpen
- Max-Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, 24306, Plön, Germany.
| | - Sven Künzel
- Max-Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, 24306, Plön, Germany
| | - Chen Xie
- Max-Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, 24306, Plön, Germany
| | - Muthukrishnan Eaaswarkhanth
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, 14260-1300, NY, USA.,Present address: Population Genomics and Genetic Epidemiology Unit, Dasman Diabetes Institute, P.O.Box 1180, Dasman, 15462, Kuwait
| | - Yen-Lung Lin
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, 14260-1300, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, 14260-1300, NY, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, CH-7270, Switzerland
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, August-Thienemann Strasse 2, 24306, Plön, Germany.
| |
Collapse
|
21
|
Baird A, Deng C, Eliceiri MH, Haghi F, Dang X, Coimbra R, Costantini TW, Torbett BE, Eliceiri BP. Mice engrafted with human hematopoietic stem cells support a human myeloid cell inflammatory response in vivo. Wound Repair Regen 2016; 24:1004-1014. [PMID: 27663454 DOI: 10.1111/wrr.12471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Mice engrafted with human CD34+ hematopoietic stem and progenitor cells (CD34+ -HSPCs) have been used to study human infection, diabetes, sepsis, and burn, suggesting that they could be highly amenable to characterizing the human inflammatory response to injury. To this end, human leukocytes infiltrating subcutaneous implants of polyvinyl alcohol (PVA) sponges were analyzed in immunodeficient NSG mice reconstituted with CD34+ -HSPCs. It was reported that human CD45+ (hCD45+ ) leukocytes were present in PVA sponges 3 and 7 days postimplantation and could be localized within the sponges by immunohistochemistry. The different CD45+ subtypes were characterized by flow cytometry and the profile of human cytokines they secreted into PVA wound fluid was assessed using a human-specific multiplex bead analyses of human IL-12p70, TNFα, IL-10, IL-6, IL1β, and IL-8. This enabled tracking the functional contributions of HLA-DR+ , CD33+ , CD19+ , CD62L+ , CD11b+ , or CX3CR1+ hCD45+ infiltrating inflammatory leukocytes. PCR of cDNA prepared from these cells enabled the assessment and differentiation of human, mouse, and uniquely human genes. These findings support the hypothesis that mice engrafted with CD34+ -HSPCs can be deployed as precision avatars to study the human inflammatory response to injury.
Collapse
Affiliation(s)
- Andrew Baird
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Chenliang Deng
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Matthew H Eliceiri
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Fatima Haghi
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Xitong Dang
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California.,The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Todd W Costantini
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
| | - Brian P Eliceiri
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| |
Collapse
|
22
|
Ju XC, Hou QQ, Sheng AL, Wu KY, Zhou Y, Jin Y, Wen T, Yang Z, Wang X, Luo ZG. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice. eLife 2016; 5. [PMID: 27504805 PMCID: PMC5028191 DOI: 10.7554/elife.18197] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022] Open
Abstract
Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding. DOI:http://dx.doi.org/10.7554/eLife.18197.001 The outer layer of the mammalian brain the cerebral cortex plays a key role in memory, attention, awareness and thought. While rodents have a smooth cortical surface, the cortex of larger mammals such as primates is organized into folds and furrows. These folds increase the amount of cortex that can fit inside the confines of the skull, and are thought to have allowed the evolution of more advanced thought processes. Mutations in various genes are likely to have contributed to the expansion and folding of the cortex. These mutations may not always have involved changes in the instructions encoded within the genes, but might instead have involved changes in the number of copies of a gene. One plausible candidate gene is TBC1D3, which is only found in the great apes and is active in the cortex. The chimpanzee genome contains a single copy of TBC1D3 whereas the human genome contains multiple copies. Ju, Hou et al. have now shown that introducing the TBC1D3 gene into mouse embryos triggers changes in the embryonic cortex. Specifically, this gene increases the number of a type of cell called the outer radial glial cell in the cortex. These cells give rise to new neurons, and are usually rare in mice but abundant in the brains of animals with a folded cortex. Additional experiments using samples of human brain tissue confirmed that TBC1D3 is required for the outer radial glial cells to form. The samples were collected from miscarried fetuses with the informed consent of the patients and following approved protocols and ethical guidelines. Finally, introducing the TBC1D3 gene into the mouse genome also gave rise to animals with a folded cortex, rather than their usual smooth brain surface. Further work is now required to identify how TBC1D3 helps to generate outer radial glial cells, and to work out how these cells cause the cortex to expand. Testing the behavior of mice with the TBC1D3 gene could also uncover the links between cortical folding and thought processes. DOI:http://dx.doi.org/10.7554/eLife.18197.002
Collapse
Affiliation(s)
- Xiang-Chun Ju
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China.,Chinese Academy of Sciences University, Beijing, China
| | - Qiong-Qiong Hou
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China.,Chinese Academy of Sciences University, Beijing, China
| | - Ai-Li Sheng
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Kong-Yan Wu
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhou
- The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Jin
- The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tieqiao Wen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengang Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xiaoqun Wang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Ge Luo
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China.,Chinese Academy of Sciences University, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.,ShanghaiTech University, Shanghai, China
| |
Collapse
|
23
|
Baird A, Costantini T, Coimbra R, Eliceiri BP. Injury, inflammation and the emergence of human-specific genes. Wound Repair Regen 2016; 24:602-6. [PMID: 26874655 PMCID: PMC5021143 DOI: 10.1111/wrr.12422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/08/2016] [Indexed: 12/22/2022]
Abstract
In light of the central role of inflammation in normal wound repair and regeneration, we hypothesize that the preponderance of human‐specific genes expressed in human inflammatory cells is commensurate with the genetic versatility of inflammatory response and the emergence of injuries associated with uniquely hominid behaviors, like a bipedal posture and the use of tools, weapons and fire. The hypothesis underscores the need to study human‐specific signaling pathways in experimental models of injury and infers that a selection of human‐specific genes, driven in part by the response to injury, may have facilitated the emergence of multifunctional genes expressed in other tissues.
Collapse
Affiliation(s)
- Andrew Baird
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, San Diego, California
| | - Todd Costantini
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, San Diego, California
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, San Diego, California
| | - Brian P Eliceiri
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, San Diego, California
| |
Collapse
|
24
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
25
|
He Z, Tian T, Guo D, Wu H, Chen Y, Zhang Y, Wan Q, Zhao H, Wang C, Shen H, Zhao L, Bu X, Wan M, Shen C. Cytoplasmic retention of a nucleocytoplasmic protein TBC1D3 by microtubule network is required for enhanced EGFR signaling. PLoS One 2014; 9:e94134. [PMID: 24714105 PMCID: PMC3979746 DOI: 10.1371/journal.pone.0094134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
The hominoid oncogene TBC1D3 enhances epidermal growth factor receptor (EGFR) signaling and induces cell transformation. However, little is known regarding its spatio-temporal regulation and mechanism of tumorigenesis. In the current study, we identified the microtubule subunit β-tubulin as a potential interaction partner for TBC1D3 using affinity purification combined with mass spectrometry analysis. The interaction between TBC1D3 and β-tubulin was confirmed by co-immunoprecipitation. Using the same method, we also revealed that TBC1D3 co-precipitated with endogenous α-tubulin, another subunit of the microtubule. In agreement with these results, microtubule cosedimentation assays showed that TBC1D3 associated with the microtubule network. The β-tubulin-interacting site of TBC1D3 was mapped to amino acids 286∼353 near the C-terminus of the TBC domain. Deletion mutation within these amino acids was shown to abolish the interaction of TBC1D3 with β-tubulin. Interestingly, the deletion mutation caused a complete loss of TBC1D3 from the cytoplasmic filamentous and punctate structures, and TBC1D3 instead appeared in the nucleus. Consistent with this, wild-type TBC1D3 exhibited the same nucleocytoplasmic distribution in cells treated with the microtubule depolymerizing agent nocodazole, suggesting that the microtubule network associates with and retains TBC1D3 in the cytoplasm. We further found that deficiency in β-tubulin-interacting resulted in TBC1D3's inability to inhibit c-Cbl recruitment and EGFR ubiquitination, ultimately leading to dysregulation of EGFR degradation and signaling. Taken together, these studies indicate a novel model by which the microtubule network regulates EGFR stability and signaling through tubulin dimer/oligomer interaction with the nucleocytoplasmic protein TBC1D3.
Collapse
Affiliation(s)
- Ze He
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Tian Tian
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dan Guo
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Huijuan Wu
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Chen
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yongchen Zhang
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Qing Wan
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Huzi Zhao
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Congyang Wang
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Hongjing Shen
- Department of Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Lei Zhao
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaodong Bu
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meiling Wan
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Chuanlu Shen
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
- * E-mail:
| |
Collapse
|
26
|
Aklillu E, Odenthal-Hesse L, Bowdrey J, Habtewold A, Ngaimisi E, Yimer G, Amogne W, Mugusi S, Minzi O, Makonnen E, Janabi M, Mugusi F, Aderaye G, Hardwick R, Fu B, Viskaduraki M, Yang F, Hollox EJ. CCL3L1 copy number, HIV load, and immune reconstitution in sub-Saharan Africans. BMC Infect Dis 2013; 13:536. [PMID: 24219137 PMCID: PMC3829100 DOI: 10.1186/1471-2334-13-536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The role of copy number variation of the CCL3L1 gene, encoding MIP1α, in contributing to the host variation in susceptibility and response to HIV infection is controversial. Here we analyse a sub-Saharan African cohort from Tanzania and Ethiopia, two countries with a high prevalence of HIV-1 and a high co-morbidity of HIV with tuberculosis. METHODS We use a form of quantitative PCR called the paralogue ratio test to determine CCL3L1 gene copy number in 1134 individuals and validate our copy number typing using array comparative genomic hybridisation and fiber-FISH. RESULTS We find no significant association of CCL3L1 gene copy number with HIV load in antiretroviral-naïve patients prior to initiation of combination highly active anti-retroviral therapy. However, we find a significant association of low CCL3L1 gene copy number with improved immune reconstitution following initiation of highly active anti-retroviral therapy (p = 0.012), replicating a previous study. CONCLUSIONS Our work supports a role for CCL3L1 copy number in immune reconstitution following antiretroviral therapy in HIV, and suggests that the MIP1α -CCR5 axis might be targeted to aid immune reconstitution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Edward J Hollox
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
27
|
Bhattacharyya S, Mulherkar N, Chandran K. Endocytic pathways involved in filovirus entry: advances, implications and future directions. Viruses 2013; 4:3647-64. [PMID: 23342373 PMCID: PMC3528284 DOI: 10.3390/v4123647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Detailed knowledge of the host-virus interactions that accompany filovirus entry into cells is expected to identify determinants of viral virulence and host range, and to yield targets for the development of antiviral therapeutics. While it is generally agreed that filovirus entry into the host cytoplasm requires viral internalization into acidic endosomal compartments and proteolytic cleavage of the envelope glycoprotein by endo/lysosomal cysteine proteases, our understanding of the specific endocytic pathways co-opted by filoviruses remains limited. This review addresses the current knowledge on cellular endocytic pathways implicated in filovirus entry, highlights the consensus as well as controversies, and discusses important remaining questions.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Atomic Energy-Centre for Excellence in Basic Sciences, University of Mumbai, Health Centre Building, Vidyanagari, Kalina, Santacruz East, Mumbai 400098, India; E-Mail:
| | - Nirupama Mulherkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; E-Mail:
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-8851
| |
Collapse
|
28
|
Kong C, Lange JJ, Samovski D, Su X, Liu J, Sundaresan S, Stahl PD. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by protein palmitoylation. Biochem Biophys Res Commun 2013; 434:388-93. [PMID: 23578663 DOI: 10.1016/j.bbrc.2013.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/21/2022]
Abstract
Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.
Collapse
Affiliation(s)
- Chen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kong C, Samovski D, Srikanth P, Wainszelbaum MJ, Charron AJ, Liu J, Lange JJ, Chen PI, Pan ZQ, Su X, Stahl PD. Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is mediated by CUL7 E3 ligase. PLoS One 2012; 7:e46485. [PMID: 23029530 PMCID: PMC3459922 DOI: 10.1371/journal.pone.0046485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022] Open
Abstract
Expression of the hominoid-specific TBC1D3 oncoprotein enhances growth factor receptor signaling and subsequently promotes cellular proliferation and survival. Here we report that TBC1D3 is degraded in response to growth factor signaling, suggesting that TBC1D3 expression is regulated by a growth factor-driven negative feedback loop. To gain a better understanding of how TBC1D3 is regulated, we studied the effects of growth factor receptor signaling on TBC1D3 post-translational processing and turnover. Using a yeast two-hybrid screen, we identified CUL7, the scaffolding subunit of the CUL7 E3 ligase complex, as a TBC1D3-interacting protein. We show that CUL7 E3 ligase ubiquitinates TBC1D3 in response to serum stimulation. Moreover, TBC1D3 recruits F-box 8 (Fbw8), the substrate recognition domain of CUL7 E3 ligase, in pull-down experiments and in an in vitro assay. Importantly, alkaline phosphatase treatment of TBC1D3 suppresses its ability to recruit Fbw8, indicating that TBC1D3 phosphorylation is critical for its ubiquitination and degradation. We conclude that serum- and growth factor-stimulated TBC1D3 ubiquitination and degradation are regulated by its interaction with CUL7-Fbw8.
Collapse
Affiliation(s)
- Chen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dmitri Samovski
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Priya Srikanth
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marisa J. Wainszelbaum
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Audra J. Charron
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jialiu Liu
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeffrey J. Lange
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pin-I Chen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, Icahn Medical Institute, New York, New York, United States of America
| | - Xiong Su
- Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (XS); (PDS)
| | - Philip D. Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (XS); (PDS)
| |
Collapse
|
30
|
Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47:535-46. [PMID: 22795129 DOI: 10.1016/j.molcel.2012.06.009] [Citation(s) in RCA: 481] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/03/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022]
Abstract
The tuberous sclerosis complex (TSC) tumor suppressors form the TSC1-TSC2 complex, which limits cell growth in response to poor growth conditions. Through its GTPase-activating protein (GAP) activity toward Rheb, this complex inhibits the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), a key promoter of cell growth. Here, we identify and biochemically characterize TBC1D7 as a stably associated and ubiquitous third core subunit of the TSC1-TSC2 complex. We demonstrate that the TSC1-TSC2-TBC1D7 (TSC-TBC) complex is the functional complex that senses specific cellular growth conditions and possesses Rheb-GAP activity. Sequencing analyses of samples from TSC patients suggest that TBC1D7 is unlikely to represent TSC3. TBC1D7 knockdown decreases the association of TSC1 and TSC2 leading to decreased Rheb-GAP activity, without effects on the localization of TSC2 to the lysosome. Like the other TSC-TBC components, TBC1D7 knockdown results in increased mTORC1 signaling, delayed induction of autophagy, and enhanced cell growth under poor growth conditions.
Collapse
Affiliation(s)
- Christian C Dibble
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wainszelbaum MJ, Liu J, Kong C, Srikanth P, Samovski D, Su X, Stahl PD. TBC1D3, a hominoid-specific gene, delays IRS-1 degradation and promotes insulin signaling by modulating p70 S6 kinase activity. PLoS One 2012; 7:e31225. [PMID: 22348058 PMCID: PMC3278430 DOI: 10.1371/journal.pone.0031225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/04/2012] [Indexed: 12/22/2022] Open
Abstract
Insulin/IGF-1 signaling plays a pivotal role in the regulation of cellular homeostasis through its control of glucose metabolism as well as due to its effects on cell proliferation. Aberrant regulation of insulin signaling has been repeatedly implicated in uncontrolled cell growth and malignant transformations. TBC1D3 is a hominoid specific gene previously identified as an oncogene in breast and prostate cancers. Our efforts to identify the molecular mechanisms of TBC1D3-induced oncogenesis revealed the role of TBC1D3 in insulin/IGF-1 signaling pathway. We document here that TBC1D3 intensifies insulin/IGF-1-induced signal transduction through intricate, yet elegant fine-tuning of signaling mechanisms. We show that TBC1D3 expression substantially delayed ubiquitination and degradation of insulin receptor substrate-1 (IRS-1). This effect is achieved through suppression of serine phosphorylation at S636/639, S307 and S312 of IRS-1, which are key phosphorylation sites required for IRS-1 degradation. Furthermore, we report that the effect of TBC1D3 on IRS-1:S636/639 phosphorylation is mediated through TBC1D3-induced activation of protein phosphatase 2A (PP2A), followed by suppression of T389 phosphorylation on p70 S6 kinase (S6K). TBC1D3 specifically interacts with PP2A regulatory subunit B56γ, indicating that TBC1D3 and PP2A B56γ operate jointly to promote S6K:T389 dephosphorylation. These findings suggest that TBC1D3 plays an unanticipated and potentially unique role in the fine-tuning of insulin/IGF-1 signaling, while providing novel insights into the regulation of tumorigenesis by a hominoid-specific protein.
Collapse
Affiliation(s)
- Marisa J. Wainszelbaum
- Department of Cell Biology and Physiology, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jialu Liu
- Department of Cell Biology and Physiology, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chen Kong
- Department of Cell Biology and Physiology, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Priya Srikanth
- Department of Cell Biology and Physiology, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dmitri Samovski
- Department of Cell Biology and Physiology, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiong Su
- Department of Cell Biology and Physiology, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: xsu@.wustl.edu (XS); (PDS)
| | - Philip D. Stahl
- Department of Cell Biology and Physiology, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: xsu@.wustl.edu (XS); (PDS)
| |
Collapse
|
32
|
Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 2012; 13:67-73. [PMID: 22251903 DOI: 10.1038/nrm3267] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs) are characterized by the presence of highly conserved TBC domains and act as negative regulators of RABs. The importance of TBC/RABGAPs in the regulation of specific intracellular trafficking routes is now emerging, as is their role in different diseases. Importantly, TBC/RABGAPs act as key regulatory nodes, integrating signalling between RABs and other small GTPases and ensuring the appropriate retrieval, transport and delivery of different intracellular vesicles.
Collapse
|
33
|
ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci U S A 2011; 108:E559-68. [PMID: 21825135 DOI: 10.1073/pnas.1100745108] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Amyloid β (Aβ) peptides, the primary constituents of senile plaques and a hallmark in Alzheimer's disease pathology, are generated through the sequential cleavage of amyloid precursor protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. The early endosome is thought to represent a major compartment for APP processing; however, the mechanisms of how BACE1 encounters APP are largely unknown. In contrast to APP internalization, which is clathrin-dependent, we demonstrate that BACE1 is sorted to early endosomes via a route controlled by the small GTPase ADP ribosylation factor 6 (ARF6). Altering ARF6 levels or its activity affects endosomal sorting of BACE1, and consequently results in altered APP processing and Aβ production. Furthermore, sorting of newly internalized BACE1 from ARF6-positive towards RAB GTPase 5 (RAB5)-positive early endosomes depends on its carboxyterminal short acidic cluster-dileucine motif. This ARF6-mediated sorting of BACE1 is confined to the somatodendritic compartment of polarized neurons in agreement with Aβ peptides being primarily secreted from here. These results demonstrate a spatial separation between APP and BACE1 during surface-to-endosome transport, suggesting subcellular trafficking as a regulatory mechanism for this proteolytic processing step. It thereby provides a novel avenue to interfere with Aβ production through a selective modulation of the distinct endosomal transport routes used by BACE1 or APP.
Collapse
|
34
|
Abstract
The TBC (Tre-2/Bub2/Cdc16) domain was originally identified as a conserved domain among the tre-2 oncogene product and the yeast cell cycle regulators Bub2 and Cdc16, and it is now widely recognized as a conserved protein motif that consists of approx. 200 amino acids in all eukaryotes. Since the TBC domain of yeast Gyps [GAP (GTPase-activating protein) for Ypt proteins] has been shown to function as a GAP domain for small GTPase Ypt/Rab, TBC domain-containing proteins (TBC proteins) in other species are also expected to function as a certain Rab-GAP. More than 40 different TBC proteins are present in humans and mice, and recent accumulating evidence has indicated that certain mammalian TBC proteins actually function as a specific Rab-GAP. Some mammalian TBC proteins {e.g. TBC1D1 [TBC (Tre-2/Bub2/Cdc16) domain family, member 1] and TBC1D4/AS160 (Akt substrate of 160 kDa)} play an important role in homoeostasis in mammals, and defects in them are directly associated with mouse and human diseases (e.g. leanness in mice and insulin resistance in humans). The present study reviews the structure and function of mammalian TBC proteins, especially in relation to Rab small GTPases.
Collapse
|
35
|
Falace A, Filipello F, La Padula V, Vanni N, Madia F, De Pietri Tonelli D, de Falco FA, Striano P, Dagna Bricarelli F, Minetti C, Benfenati F, Fassio A, Zara F. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet 2010; 87:365-70. [PMID: 20727515 PMCID: PMC2933335 DOI: 10.1016/j.ajhg.2010.07.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 12/28/2022] Open
Abstract
Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders.
Collapse
Affiliation(s)
- Antonio Falace
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Fabia Filipello
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
| | - Veronica La Padula
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | - Nicola Vanni
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Francesca Madia
- Laboratory of Genetics, E.O. Ospedali Galliera, Genoa, 16128, Italy
| | - Davide De Pietri Tonelli
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | | | - Pasquale Striano
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | | | - Carlo Minetti
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, 16163, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova and National Institute of Neuroscience, Genoa, 16132, Italy
| | - Federico Zara
- Laboratory of Neurogenetics, Department of Neuroscience, Institute G. Gaslini and University of Genova, Genoa, 16147, Italy
| |
Collapse
|
36
|
Corbett MA, Bahlo M, Jolly L, Afawi Z, Gardner AE, Oliver KL, Tan S, Coffey A, Mulley JC, Dibbens LM, Simri W, Shalata A, Kivity S, Jackson GD, Berkovic SF, Gecz J. A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. Am J Hum Genet 2010; 87:371-5. [PMID: 20797691 DOI: 10.1016/j.ajhg.2010.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/22/2010] [Accepted: 08/04/2010] [Indexed: 11/17/2022] Open
Abstract
We characterized an autosomal-recessive syndrome of focal epilepsy, dysarthria, and mild to moderate intellectual disability in a consanguineous Arab-Israeli family associated with subtle cortical thickening. We used multipoint linkage analysis to map the causative mutation to a 3.2 Mb interval within 16p13.3 with a LOD score of 3.86. The linked interval contained 160 genes, many of which were considered to be plausible candidates to harbor the disease-causing mutation. To interrogate the interval in an efficient and unbiased manner, we used targeted sequence enrichment and massively parallel sequencing. By prioritizing unique variants that affected protein translation, a pathogenic mutation was identified in TBC1D24 (p.F251L), a gene of unknown function. It is a member of a large gene family encoding TBC domain proteins with predicted function as Rab GTPase activators. We show that TBC1D24 is expressed early in mouse brain and that TBC1D24 protein is a potent modulator of primary axonal arborization and specification in neuronal cells, consistent with the phenotypic abnormality described.
Collapse
Affiliation(s)
- Mark A Corbett
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Esk C, Chen CY, Johannes L, Brodsky FM. The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. ACTA ACUST UNITED AC 2010; 188:131-44. [PMID: 20065094 PMCID: PMC2812854 DOI: 10.1083/jcb.200908057] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clathrin heavy chain 22 (CHC22) is an isoform of the well-characterized CHC17 clathrin heavy chain, a coat component of vesicles that mediate endocytosis and organelle biogenesis. CHC22 has a distinct role from CHC17 in trafficking glucose transporter 4 (GLUT4) in skeletal muscle and fat, though its transfection into HEK293 cells suggests functional redundancy. Here, we show that CHC22 is eightfold less abundant than CHC17 in muscle, other cell types have variably lower amounts of CHC22, and endogenous CHC22 and CHC17 function independently in nonmuscle and muscle cells. CHC22 was required for retrograde trafficking of certain cargo molecules from endosomes to the trans-Golgi network (TGN), defining a novel endosomal-sorting step distinguishable from that mediated by CHC17 and retromer. In muscle cells, depletion of syntaxin 10 as well as CHC22 affected GLUT4 targeting, establishing retrograde endosome-TGN transport as critical for GLUT4 trafficking. Like CHC22, syntaxin 10 is not expressed in mice but is present in humans and other vertebrates, implicating two species-restricted endosomal traffic proteins in GLUT4 transport.
Collapse
Affiliation(s)
- Christopher Esk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
38
|
Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A 2010; 107 Suppl 1:1765-71. [PMID: 20080665 DOI: 10.1073/pnas.0906222107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events.
Collapse
|
39
|
Stahl PD, Wainszelbaum MJ. Human-specific genes may offer a unique window into human cell signaling. Sci Signal 2009; 2:pe59. [PMID: 19797272 DOI: 10.1126/scisignal.289pe59] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The identification and characterization of human-specific genes and the cellular processes that the encoded proteins control have the potential to help us understand at the molecular level what makes humans different from other species. The sequencing of the human genome and the genomes of closely related primates has revealed the presence of a small number of human- or human-lineage-specific genes that have no orthologs in lower species. Human-specific and human-lineage-specific genes are likely to function as regulators of cell signaling events, and by fine-tuning pathways, the encoded proteins may contribute to human-specific characteristics and behaviors. In addition, human-specific genes may represent biomarkers for examining human-specific characteristics of various diseases. Investigation of the gene encoding TBC1D3 is one example of a search that may lead to understanding the evolution and the function of human-specific genes, because it is absent in lower species and present in high copy number in the human genome.
Collapse
Affiliation(s)
- Philip D Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
40
|
Donaldson JG, Porat-Shliom N, Cohen LA. Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signal 2009; 21:1-6. [PMID: 18647649 PMCID: PMC2754696 DOI: 10.1016/j.cellsig.2008.06.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/23/2008] [Indexed: 01/08/2023]
Abstract
There is increasing interest in endocytosis that occurs independently of clathrin coats and the fates of membrane proteins internalized by this mechanism. The appearance of clathrin-independent endocytic and membrane recycling pathways seems to vary with different cell types and cargo molecules. In this review we focus on studies that have been performed using HeLa and COS cells as model systems for understanding this membrane trafficking system. These endosomal membranes contain signaling molecules including H-Ras, Rac1, Arf6 and Rab proteins, and a lipid environment rich in cholesterol and PIP(2) providing a unique platform for cell signaling. Furthermore, activation of some of these signaling molecules (H-Ras, Rac and Arf6) can switch the constitutive form of clathrin-independent endocytosis into a stimulated one, associated with PM ruffling and macropinocytosis.
Collapse
Affiliation(s)
- Julie G Donaldson
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
41
|
Ishibashi K, Kanno E, Itoh T, Fukuda M. Identification and characterization of a novel Tre-2/Bub2/Cdc16 (TBC) protein that possesses Rab3A-GAP activity. Genes Cells 2008; 14:41-52. [PMID: 19077034 DOI: 10.1111/j.1365-2443.2008.01251.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Tre-2/Bub2/Cdc16 (TBC) domain is a conserved protein motif that consists of approximately 200 amino acids and is thought to function as a specific Rab-GAP domain. Although more than 40 distinct TBC domain-containing proteins have been identified in humans, the GAP activity and specificity of most TBC proteins have never been determined. In this study we developed a novel method of screening for Rab3A-GAP and identified two TBC proteins (FLJ13130 and RN-tre) whose expression in PC12 cells was associated with exclusion of endogenous Rab3A molecules from dense-core vesicles. As expression of RN-tre caused fragmentation of the Golgi, which presumably resulted in the loss of dense-core vesicles themselves, we further characterized FLJ13130 as a candidate Rab3A-GAP. The results showed that expression of FLJ13130, but not of its catalytically inactive R134K mutant, greatly reduced the amount of GTP-Rab3A in living cells and promoted the GTPase activity of Rab3A in vitro. Unexpectedly, however, FLJ13130 also promoted the GTPase activity of Rab22A, Rab27A, and Rab35, but not of Rab2A or Rab6A. Based on these results, we propose that FLJ13130 is a novel type of Rab-GAP that exhibits broad GAP specificity and inactivates several distinct Rab isoforms, including Rab3A, just near the plasma membrane.
Collapse
Affiliation(s)
- Koutaro Ishibashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | |
Collapse
|
42
|
Cortese K, Sahores M, Madsen CD, Tacchetti C, Blasi F. Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR. PLoS One 2008; 3:e3730. [PMID: 19008962 PMCID: PMC2579578 DOI: 10.1371/journal.pone.0003730] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/24/2008] [Indexed: 01/02/2023] Open
Abstract
Background The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism coupled with rapid recycling to the cell surface.
Collapse
Affiliation(s)
- Katia Cortese
- Centro di Ricerca MicroSCoBio/IFOM, FIRC Institute of Molecular Oncology, Dipartimento di Medicina Sperimentale, Sezione di Anatomia Umana, Università di Genova, Genova, Italy
| | - Macarena Sahores
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Chris D. Madsen
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| | - Carlo Tacchetti
- Centro di Ricerca MicroSCoBio/IFOM, FIRC Institute of Molecular Oncology, Dipartimento di Medicina Sperimentale, Sezione di Anatomia Umana, Università di Genova, Genova, Italy
- * E-mail: Francesco.Blasi@ hsr.it (FB); (CT)
| | - Francesco Blasi
- Molecular Genetics Unit, Università Vita Salute San Raffaele and IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
- * E-mail: Francesco.Blasi@ hsr.it (FB); (CT)
| |
Collapse
|
43
|
Wainszelbaum MJ, Charron AJ, Kong C, Kirkpatrick DS, Srikanth P, Barbieri MA, Gygi SP, Stahl PD. The hominoid-specific oncogene TBC1D3 activates Ras and modulates epidermal growth factor receptor signaling and trafficking. J Biol Chem 2008; 283:13233-42. [PMID: 18319245 PMCID: PMC2442359 DOI: 10.1074/jbc.m800234200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/12/2008] [Indexed: 11/06/2022] Open
Abstract
Hominoid- and human-specific genes may have evolved to modulate signaling pathways of a higher order of complexity. TBC1D3 is a hominoid-specific oncogene encoded by a cluster of eight paralogs on chromosome 17. Initial work indicates that TBC1D3 is widely expressed in human tissues ( Hodzic, D., Kong, C., Wainszelbaum, M. J., Charron, A. J., Su, X., and Stahl, P. D. (2006) Genomics 88, 731-736 ). In this study, we show that TBC1D3 expression has a powerful effect on cell proliferation that is further enhanced by epidermal growth factor (EGF) in both human and mouse cell lines. EGF activation of the Erk and protein kinase B/Akt pathways is enhanced, both in amplitude and duration, by TBC1D3 expression, whereas RNA interference silencing of TBC1D3 suppresses the activation. Light microscopy and Western blot experiments demonstrate that increased signaling in response to EGF is coupled with a significant delay in EGF receptor (EGFR) trafficking and degradation, which significantly extends the life span of EGFR. Moreover, TBC1D3 suppresses polyubiquitination of the EGFR and the recruitment of c-Cbl. Using the Ras binding domain of Raf1 to monitor GTP-Ras we show that TBC1D3 expression enhances Ras activation in quiescent cells, which is further increased by EGF treatment. We speculate that TBC1D3 may alter Ras GTP loading. We conclude that the expression of TBC1D3 generates a delay in EGFR degradation, a decrease in ubiquitination, and a failure to recruit adapter proteins that ultimately dysregulate EGFR signal transduction and enhance cell proliferation. Altered growth factor receptor trafficking and GTP-Ras turnover may be sites where recently evolved genes such as TBC1D3 selectively modulate signaling in hominoids and humans.
Collapse
Affiliation(s)
- Marisa J. Wainszelbaum
- Department of Cell Biology and
Physiology, Washington University School of Medicine, St. Louis, Missouri
63110 and the Department of Cell
Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Audra J. Charron
- Department of Cell Biology and
Physiology, Washington University School of Medicine, St. Louis, Missouri
63110 and the Department of Cell
Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Chen Kong
- Department of Cell Biology and
Physiology, Washington University School of Medicine, St. Louis, Missouri
63110 and the Department of Cell
Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Donald S. Kirkpatrick
- Department of Cell Biology and
Physiology, Washington University School of Medicine, St. Louis, Missouri
63110 and the Department of Cell
Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Priya Srikanth
- Department of Cell Biology and
Physiology, Washington University School of Medicine, St. Louis, Missouri
63110 and the Department of Cell
Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - M. Alejandro Barbieri
- Department of Cell Biology and
Physiology, Washington University School of Medicine, St. Louis, Missouri
63110 and the Department of Cell
Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Steven P. Gygi
- Department of Cell Biology and
Physiology, Washington University School of Medicine, St. Louis, Missouri
63110 and the Department of Cell
Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Philip D. Stahl
- Department of Cell Biology and
Physiology, Washington University School of Medicine, St. Louis, Missouri
63110 and the Department of Cell
Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|