1
|
Turner LA, Vjestica A, Willet AH, Oliferenko S, Gould KL. Characterization and comparison of Schizosaccharomyces pombe cdc15 temperature-sensitive mutants. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001515. [PMID: 40114852 PMCID: PMC11923602 DOI: 10.17912/micropub.biology.001515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
The F-BAR protein Cdc15 is essential for cytokinesis in the fission yeast Schizosaccharomyces pombe , playing a key scaffolding role and connecting the actomyosin-based cytokinetic ring to the plasma membrane. Here, we compared cdc15 temperature-sensitive mutants isolated in multiple genetic screens. We determined the mutations within each cdc15 mutant allele and analyzed their growth at different temperatures. Additionally, we report a new cdc15 allele that highlights the requirement for Cdc15 in the recruitment of the early secretory pathway to the cellular division site. The new mutants described here expand the toolkit for studying cytokinesis in S. pombe .
Collapse
Affiliation(s)
- Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Aleksandar Vjestica
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Current address: Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Snezhana Oliferenko
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Current address: Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London, SE1 1UL, UK
- Current address: The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| |
Collapse
|
2
|
Ye Y, Osmani AH, Liu ZR, Kern A, Wu JQ. Fission yeast GPI inositol deacylase Bst1 regulates ER-Golgi transport and functions in late stages of cytokinesis. Mol Biol Cell 2025; 36:ar27. [PMID: 39813093 PMCID: PMC11974966 DOI: 10.1091/mbc.e24-08-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of ync13 mutants, which can suppress the colony-formation defects and lysis phenotype of ync13 mutant cells, are isolated and characterized. One of the suppressor mutants, bst1-s27, shows defects in the cytokinetic contractile ring constriction, septation, and daughter cell separation, similar to bst1Δ mutant. Bst1, a predicted GPI inositol deacylase, was an uncharacterized protein in fission yeast. It localizes to ER and puncta structures in the cytoplasm. The Bst1 puncta overlaps frequently with Anp1, which is a marker of endoplasmic reticulum (ER)-Golgi transport, but rarely with trans-Golgi marker Sec72. The nuclear ER signal of Anp1 increases in bst1Δ mutant, whereas Sec72 localization shows no obvious changes. In addition, more cytoplasmic puncta structures of COPII subunits, Sec13 and Sec24, are observed in bst1Δ mutant, and acid phosphatase secretion is compromised without Bst1. Consistently, the division site targeting of the β-glucanase Eng1 and α-glucanase Agn1 is reduced in bst1Δ and bst1Δ ync13Δ mutant. Taken together, our results suggest that Bst1 regulates ER-Golgi transport and is involved in cytokinesis through regulating the secretion of glucanases.
Collapse
Affiliation(s)
- Yanfang Ye
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aysha H. Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Zhen-Ru Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Addie Kern
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
3
|
Willet AH, Turner LA, Park JS, Ren L, Snider CE, Gould KL. Characterization of Pik1 function in fission yeast reveals its conserved role in lipid synthesis and not cytokinesis. J Cell Sci 2023; 136:jcs261415. [PMID: 37815455 PMCID: PMC10629694 DOI: 10.1242/jcs.261415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Phosphatidylinositol (PI)-4-phosphate (PI4P) is a lipid found at the plasma membrane (PM) and Golgi in cells from yeast to humans. PI4P is generated from PI by PI4-kinases and can be converted into PI-4,5-bisphosphate [PI(4,5)P2]. Schizosaccharomyces pombe have two essential PI4-kinases - Stt4 and Pik1. Stt4 localizes to the PM, and its loss from the PM results in a decrease of PM PI4P and PI(4,5)P2. As a result, cells divide non-medially due to disrupted cytokinetic ring-PM anchoring. However, the localization and function of S. pombe Pik1 has not been thoroughly examined. Here, we found that Pik1 localizes exclusively to the trans-Golgi and is required for Golgi PI4P production. We determined that Ncs1 regulates Pik1, but unlike in other organisms, it is not required for Pik1 Golgi localization. When Pik1 function was disrupted, PM PI4P but not PI(4,5)P2 levels were reduced, a major difference compared with Stt4. We conclude that Stt4 is the chief enzyme responsible for producing the PI4P that generates PI(4,5)P2. Also, that cells with disrupted Pik1 do not divide asymmetrically highlights the specific importance of PM PI(4,5)P2 for cytokinetic ring-PM anchoring.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Joshua S. Park
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Igarashi MG, Bhattacharjee R, Willet AH, Gould KL. Polarity kinases that phosphorylate F-BAR protein Cdc15 have unique localization patterns during cytokinesis and contributions to preventing tip septation in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000965. [PMID: 37746062 PMCID: PMC10517346 DOI: 10.17912/micropub.biology.000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
The Schizosaccharomyces pombe F-BAR protein, Cdc15, facilitates the linkage between the cytokinetic ring and the plasma membrane. Cdc15 is phosphorylated on many sites by four polarity kinases and this antagonizes membrane interaction. Dephosphorylation of Cdc15 during mitosis induces its phase separation, allowing oligomerization, membrane association, and protein partner binding. Here, using live cell imaging we examined whether spatial separation of Cdc15 from its four identified kinases potentially explains their diverse effects on tip septation and the mitotic Cdc15 phosphorylation state. We identified a correlation between kinase localization and their ability to antagonize Cdc15 cytokinetic ring and membrane localization.
Collapse
Affiliation(s)
- Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
- Current address: Biophysical Sciences, University of Chicago, Chicago, IL, US
| | - Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
- Current address: Twist Bioscience, Quincy, MA, US
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| |
Collapse
|
5
|
Willet AH, Turner LA, Park JS, Ren L, Snider CE, Gould KL. Characterization of Pik1 function in fission yeast reveals its conserved role in lipid synthesis and not cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550375. [PMID: 37546978 PMCID: PMC10402101 DOI: 10.1101/2023.07.24.550375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Phosphatidylinositol (PI)-4-phosphate (PI4P) is a lipid found at the plasma membrane (PM) and Golgi in cells from yeast to humans. PI4P is generated from PI by PI4-kinases and can be converted to PI-4,5-bisphosphate [PI(4,5)P 2 ]. Schizosaccharomyces pombe have 2 essential PI4-kinases: Stt4 and Pik1. Stt4 localizes to the PM and its loss from the PM results in a decrease of PM PI4P and PI(4,5)P 2 . As a result, cells divide non-medially due to disrupted cytokinetic ring-PM anchoring. However, the localization and function of S. pombe Pik1 has not been thoroughly examined. Here, we found that Pik1 localizes exclusively to the trans-Golgi and is required for Golgi PI4P production. We determined that Ncs1 regulates Pik1, but unlike in other organisms, it is not required for Pik1 Golgi localization. When Pik1 function was disrupted, PM PI4P but not PI(4,5)P 2 levels were reduced, a major difference with Stt4. We conclude that Stt4 is the chief enzyme responsible for producing the PI4P that generates PI(4,5)P 2 . Also, that cells with disrupted Pik1 do not divide asymmetrically highlights the specific importance of PM PI(4,5)P 2 for cytokinetic ring-PM anchoring. Summary statement Fission yeast Pik1 localizes exclusively to the trans-Golgi independently of Ncs1, where it contributes to PI4P but not PI(4,5)P 2 synthesis. Pik1 does not affect cytokinesis.
Collapse
|
6
|
Onwubiko UN, Kalathil D, Koory E, Pokharel S, Roberts H, Mitoubsi A, Das M. Cdc42 prevents precocious Rho1 activation during cytokinesis in a Pak1-dependent manner. J Cell Sci 2023; 136:jcs261160. [PMID: 37039135 PMCID: PMC10163358 DOI: 10.1242/jcs.261160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
During cytokinesis, a series of coordinated events partition a dividing cell. Accurate regulation of cytokinesis is essential for proliferation and genome integrity. In fission yeast, these coordinated events ensure that the actomyosin ring and septum start ingressing only after chromosome segregation. How cytokinetic events are coordinated remains unclear. The GTPase Cdc42 promotes recruitment of certain cell wall-building enzymes whereas the GTPase Rho1 activates these enzymes. We show that Cdc42 prevents early Rho1 activation during fission yeast cytokinesis. Using an active Rho probe, we find that although the Rho1 activators Rgf1 and Rgf3 localize to the division site in early anaphase, Rho1 is not activated until late anaphase, just before the onset of ring constriction. We find that loss of Cdc42 activation enables precocious Rho1 activation in early anaphase. Furthermore, we provide functional and genetic evidence that Cdc42-dependent Rho1 inhibition is mediated by the Cdc42 target Pak1 kinase. Our work proposes a mechanism of Rho1 regulation by active Cdc42 to coordinate timely septum formation and cytokinesis fidelity.
Collapse
Affiliation(s)
- Udo N. Onwubiko
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Dhanya Kalathil
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Emma Koory
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sahara Pokharel
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hayden Roberts
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Ahmad Mitoubsi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maitreyi Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
7
|
Roncero C, Celador R, Sánchez N, García P, Sánchez Y. The Role of the Cell Integrity Pathway in Septum Assembly in Yeast. J Fungi (Basel) 2021; 7:jof7090729. [PMID: 34575767 PMCID: PMC8471060 DOI: 10.3390/jof7090729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Cytokinesis divides a mother cell into two daughter cells at the end of each cell cycle and proceeds via the assembly and constriction of a contractile actomyosin ring (CAR). Ring constriction promotes division furrow ingression, after sister chromatids are segregated to opposing sides of the cleavage plane. Cytokinesis contributes to genome integrity because the cells that fail to complete cytokinesis often reduplicate their chromosomes. While in animal cells, the last steps of cytokinesis involve extracellular matrix remodelling and mid-body abscission, in yeast, CAR constriction is coupled to the synthesis of a polysaccharide septum. To preserve cell integrity during cytokinesis, fungal cells remodel their cell wall through signalling pathways that connect receptors to downstream effectors, initiating a cascade of biological signals. One of the best-studied signalling pathways is the cell wall integrity pathway (CWI) of the budding yeast Saccharomyces cerevisiae and its counterpart in the fission yeast Schizosaccharomyces pombe, the cell integrity pathway (CIP). Both are signal transduction pathways relying upon a cascade of MAP kinases. However, despite strong similarities in the assembly of the septa in both yeasts, there are significant mechanistic differences, including the relationship of this process with the cell integrity signalling pathways.
Collapse
|
8
|
Bhattacharjee R, Mangione MC, Wos M, Chen JS, Snider CE, Roberts-Galbraith RH, McDonald NA, Presti LL, Martin SG, Gould KL. DYRK kinase Pom1 drives F-BAR protein Cdc15 from the membrane to promote medial division. Mol Biol Cell 2020; 31:917-929. [PMID: 32101481 PMCID: PMC7185970 DOI: 10.1091/mbc.e20-01-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
In many organisms, positive and negative signals cooperate to position the division site for cytokinesis. In the rod-shaped fission yeast Schizosaccharomyces pombe, symmetric division is achieved through anillin/Mid1-dependent positive cues released from the central nucleus and negative signals from the DYRK-family polarity kinase Pom1 at cell tips. Here we establish that Pom1's kinase activity prevents septation at cell tips even if Mid1 is absent or mislocalized. We also find that Pom1 phosphorylation of F-BAR protein Cdc15, a major scaffold of the division apparatus, disrupts Cdc15's ability to bind membranes and paxillin, Pxl1, thereby inhibiting Cdc15's function in cytokinesis. A Cdc15 mutant carrying phosphomimetic versions of Pom1 sites or deletion of Cdc15 binding partners suppresses division at cell tips in cells lacking both Mid1 and Pom1 signals. Thus, inhibition of Cdc15-scaffolded septum formation at cell poles is a key Pom1 mechanism that ensures medial division.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Marcin Wos
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | | | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37205
| |
Collapse
|
9
|
Makarova M, Peter M, Balogh G, Glatz A, MacRae JI, Lopez Mora N, Booth P, Makeyev E, Vigh L, Oliferenko S. Delineating the Rules for Structural Adaptation of Membrane-Associated Proteins to Evolutionary Changes in Membrane Lipidome. Curr Biol 2020; 30:367-380.e8. [PMID: 31956022 PMCID: PMC6997885 DOI: 10.1016/j.cub.2019.11.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Membrane function is fundamental to life. Each species explores membrane lipid diversity within a genetically predefined range of possibilities. How membrane lipid composition in turn defines the functional space available for evolution of membrane-centered processes remains largely unknown. We address this fundamental question using related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus. We show that, unlike S. pombe that generates membranes where both glycerophospholipid acyl tails are predominantly 16-18 carbons long, S. japonicus synthesizes unusual "asymmetrical" glycerophospholipids where the tails differ in length by 6-8 carbons. This results in stiffer bilayers with distinct lipid packing properties. Retroengineered S. pombe synthesizing the S.-japonicus-type phospholipids exhibits unfolded protein response and downregulates secretion. Importantly, our protein sequence comparisons and domain swap experiments support the hypothesis that transmembrane helices co-evolve with membranes, suggesting that, on the evolutionary scale, changes in membrane lipid composition may necessitate extensive adaptation of the membrane-associated proteome.
Collapse
Affiliation(s)
- Maria Makarova
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Maria Peter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nestor Lopez Mora
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Paula Booth
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK
| | - Eugene Makeyev
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
10
|
Mangione MC, Snider CE, Gould KL. The intrinsically disordered region of the cytokinetic F-BAR protein Cdc15 performs a unique essential function in maintenance of cytokinetic ring integrity. Mol Biol Cell 2019; 30:2790-2801. [PMID: 31509478 PMCID: PMC6789166 DOI: 10.1091/mbc.e19-06-0314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
Successful separation of two daughter cells (i.e., cytokinesis) is essential for life. Many eukaryotic cells divide using a contractile apparatus called the cytokinetic ring (CR) that associates dynamically with the plasma membrane (PM) and generates force that contributes to PM ingression between daughter cells. In Schizosaccharomyces pombe, important membrane-CR scaffolds include the paralogous F-BAR proteins Cdc15 and Imp2. Their conserved protein structure consists of the archetypal F-BAR domain linked to an SH3 domain by an intrinsically disordered region (IDR). Functions have been assigned to the F-BAR and SH3 domains. In this study we probed the function of the central IDR. We found that the IDR of Cdc15 is essential for viability and cannot be replaced by that of Imp2, whereas the F-BAR domain of Cdc15 can be swapped with several different F-BAR domains, including that of Imp2. Deleting part of the IDR results in CR defects and abolishes calcineurin phosphatase localization to the CR. Together these results indicate that Cdc15's IDR has a nonredundant essential function that coordinates regulation of CR architecture.
Collapse
Affiliation(s)
- MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
11
|
Ramos M, Cortés JCG, Sato M, Rincón SA, Moreno MB, Clemente-Ramos JÁ, Osumi M, Pérez P, Ribas JC. Two S. pombe septation phases differ in ingression rate, septum structure, and response to F-actin loss. J Cell Biol 2019; 218:4171-4194. [PMID: 31597680 PMCID: PMC6891078 DOI: 10.1083/jcb.201808163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/19/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Ramos et al. establish that fission yeast septation proceeds in two phases. Initially, the septum is immature and, upon F-actin depolymerization, loses the Bgs1 glucan synthase and fails to ingress. During a second phase, the mature septum can maintain Bgs1 and ingression without F-actin, and ingression becomes Cdc42 and exocyst dependent. In fission yeast, cytokinesis requires a contractile actomyosin ring (CR) coupled to membrane and septum ingression. Septation proceeds in two phases. In anaphase B, the septum ingresses slowly. During telophase, the ingression rate increases, and the CR becomes dispensable. Here, we explore the relationship between the CR and septation by analyzing septum ultrastructure, ingression, and septation proteins in cells lacking F-actin. We show that the two phases of septation correlate with septum maturation and the response of cells to F-actin removal. During the first phase, the septum is immature and, following F-actin removal, rapidly loses the Bgs1 glucan synthase from the membrane edge and fails to ingress. During the second phase, the rapidly ingressing mature septum can maintain a Bgs1 ring and septum ingression without F-actin, but ingression becomes Cdc42 and exocyst dependent. Our results provide new insights into fungal cytokinesis and reveal the dual function of CR as an essential landmark for the concentration of Bgs1 and a contractile structure that maintains septum shape and synthesis.
Collapse
Affiliation(s)
- Mariona Ramos
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Juan Carlos G Cortés
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy/Bio-imaging Center, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Sergio A Rincón
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - M Belén Moreno
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - José Ángel Clemente-Ramos
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Masako Osumi
- Laboratory of Electron Microscopy/Bio-imaging Center, Japan Women's University, Bunkyo-ku, Tokyo, Japan.,Integrated Imaging Research Support, Chiyoda-ku, Tokyo, Japan
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Juan Carlos Ribas
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
12
|
Brito C, Mesquita FS, Bleck CKE, Sellers JR, Cabanes D, Sousa S. Perfringolysin O-Induced Plasma Membrane Pores Trigger Actomyosin Remodeling and Endoplasmic Reticulum Redistribution. Toxins (Basel) 2019; 11:toxins11070419. [PMID: 31319618 PMCID: PMC6669444 DOI: 10.3390/toxins11070419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/28/2023] Open
Abstract
Clostridium perfringens produces an arsenal of toxins that act together to cause severe infections in humans and livestock animals. Perfringolysin O (PFO) is a cholesterol-dependent pore-forming toxin encoded in the chromosome of virtually all C. perfringens strains and acts in synergy with other toxins to determine the outcome of the infection. However, its individual contribution to the disease is poorly understood. Here, we intoxicated human epithelial and endothelial cells with purified PFO to evaluate the host cytoskeletal responses to PFO-induced damage. We found that, at sub-lytic concentrations, PFO induces a profound reorganization of the actomyosin cytoskeleton culminating into the assembly of well-defined cortical actomyosin structures at sites of plasma membrane (PM) remodeling. The assembly of such structures occurs concomitantly with the loss of the PM integrity and requires pore-formation, calcium influx, and myosin II activity. The recovery from the PM damage occurs simultaneously with the disassembly of cortical structures. PFO also targets the endoplasmic reticulum (ER) by inducing its disruption and vacuolation. ER-enriched vacuoles were detected at the cell cortex within the PFO-induced actomyosin structures. These cellular events suggest the targeting of the endothelium integrity at early stages of C. perfringens infection, in which secreted PFO is at sub-lytic concentrations.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4099-002 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel, Salazar, Universidade do Porto, 4099-002 Porto, Portugal
| | - Francisco S Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4099-002 Porto, Portugal
| | - Christopher K E Bleck
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4099-002 Porto, Portugal
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, 4099-002 Porto, Portugal.
| |
Collapse
|
13
|
Onwubiko UN, Mlynarczyk PJ, Wei B, Habiyaremye J, Clack A, Abel SM, Das ME. A Cdc42 GEF, Gef1, through endocytosis organizes F-BAR Cdc15 along the actomyosin ring and promotes concentric furrowing. J Cell Sci 2019; 132:jcs223776. [PMID: 30709916 PMCID: PMC6432710 DOI: 10.1242/jcs.223776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/21/2019] [Indexed: 01/17/2023] Open
Abstract
During cytokinesis, fission yeast coordinates actomyosin ring constriction with septum ingression, resulting in concentric furrow formation by a poorly defined mechanism. We report that Schizosaccharomyces pombe cells lacking the Cdc42 activator Gef1, combined with an activated allele of the formin, Cdc12, display non-concentric furrowing. Non-concentrically furrowing cells display uneven distribution of the scaffold Cdc15 along the ring. This suggests that, after ring assembly, uniform Cdc15 distribution along the ring enables proper furrow formation. We find that, after assembly, Cdc15 is recruited to the ring in an Arp2/3 complex-dependent manner and is decreased in the activated cdc12 mutant. Cdc15 at cortical endocytic patches shows increased levels and extended lifetimes in gef1 and activated cdc12 mutants. We hypothesize endocytosis helps recruit Cdc15 to assembled rings; uneven Cdc15 distribution at the ring occurs when endocytic patches contain increased Cdc15 levels and the patch-association rate is slow. Based on this, we developed a mathematical model that captures experimentally observed Cdc15 distributions along the ring. We propose that, at the ring, Gef1 and endocytic events promote uniform Cdc15 organization to enable proper septum ingression and concentric furrow formation.
Collapse
Affiliation(s)
- Udo N Onwubiko
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Paul J Mlynarczyk
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Bin Wei
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Julius Habiyaremye
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amanda Clack
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Maitreyi E Das
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
14
|
Wang N, Lee IJ, Rask G, Wu JQ. Roles of the TRAPP-II Complex and the Exocyst in Membrane Deposition during Fission Yeast Cytokinesis. PLoS Biol 2016; 14:e1002437. [PMID: 27082518 PMCID: PMC4833314 DOI: 10.1371/journal.pbio.1002437] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis. Two putative vesicle tethers—the exocyst and TRAPP-II complexes—localize differently at the division plane to ensure efficient plasma-membrane deposition along the whole cleavage furrow during cytokinesis in the fission yeast Schizosaccharomyces pombe. Cytokinesis partitions a mother cell into two daughter cells at the end of each cell-division cycle. A significant amount of new plasma membrane is needed at the cleavage furrow during cytokinesis in many cell types. Membrane expansion is achieved through the balance of exocytosis and endocytosis. It is poorly understood where and when the membrane is deposited and retrieved during cytokinesis. By tracking individual vesicles with high spatiotemporal resolution and using electron microscopy, we found that new membrane is deposited relatively evenly along the cleavage furrow in fission yeast, while the rim of the division plane is the predominant site for endocytosis. The secretory vesicles/compartments carrying new membrane are mainly delivered along formin-nucleated actin cables by myosin-V motors. Surprisingly, we find that both exocytosis and endocytosis at the division site are ramped up before contractile-ring constriction and last until daughter-cell separation. We discovered that two putative vesicle tethers, the exocyst and TRAPP-II complexes, localize to different sites at the cleavage furrow to promote tethering of different, yet overlapping, classes of secretory vesicles/compartments for exocytosis and new membrane deposition.
Collapse
Affiliation(s)
- Ning Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - I-Ju Lee
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Galen Rask
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Nguyen TTT, Lim YJ, Fan MHM, Jackson RA, Lim KK, Ang WH, Ban KHK, Chen ES. Calcium modulation of doxorubicin cytotoxicity in yeast and human cells. Genes Cells 2016; 21:226-40. [DOI: 10.1111/gtc.12346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/29/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Thi Thuy Trang Nguyen
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Ying Jun Lim
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Melanie Hui Min Fan
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Rebecca A. Jackson
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Kim Kiat Lim
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Wee Han Ang
- Department of Chemistry; Faculty of Science; National University of Singapore; Singapore
| | - Kenneth Hon Kim Ban
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
| | - Ee Sin Chen
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- National University Health System; Singapore
- NUS Graduate School of Science & Engineering; National University of Singapore; Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; Singapore
| |
Collapse
|
16
|
Ullal P, McDonald NA, Chen JS, Lo Presti L, Roberts-Galbraith RH, Gould KL, Martin SG. The DYRK-family kinase Pom1 phosphorylates the F-BAR protein Cdc15 to prevent division at cell poles. J Cell Biol 2015; 211:653-68. [PMID: 26553932 PMCID: PMC4639868 DOI: 10.1083/jcb.201504073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation.
Collapse
Affiliation(s)
- Pranav Ullal
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Libera Lo Presti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Arasada R, Pollard TD. A role for F-BAR protein Rga7p during cytokinesis in S. pombe. J Cell Sci 2015; 128:2259-68. [PMID: 25977474 DOI: 10.1242/jcs.162974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 05/07/2015] [Indexed: 12/22/2022] Open
Abstract
F-BAR proteins are known to participate in cytokinesis, but their mechanisms are not well understood. Here we investigated Rga7p, an Schizosaccharomyces pombe F-BAR protein with a RhoGAP domain. Localization of Rga7p to the cytokinetic cleavage furrow depends on its F-BAR domain, actin filaments, the formins Cdc12p and For3p, and the presence of a contractile ring. Rga7p is not required for the constriction of the contractile ring but does participate in the transport of a β-glucan synthetase (Bgs4p) from the late Golgi compartments to plasma membrane that is adjacent to the contractile ring. Cells without Rga7p moved Bgs4p normally from the poles to the Golgi complex near to the cell center, but Bgs4p then moved slowly from the late Golgi compartments to the cleavage site. The late arrival and lower than normal numbers of Bgs4p result in septal defects late in cytokinesis, and in the lysis of separating cells, similar to that in cells with mutations in the cwg1(+) gene (which encodes Bgs4p).
Collapse
Affiliation(s)
- Rajesh Arasada
- Department of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA Department of Cell Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| |
Collapse
|
18
|
Willet AH, McDonald NA, Bohnert KA, Baird MA, Allen JR, Davidson MW, Gould KL. The F-BAR Cdc15 promotes contractile ring formation through the direct recruitment of the formin Cdc12. ACTA ACUST UNITED AC 2015; 208:391-9. [PMID: 25688133 PMCID: PMC4332253 DOI: 10.1083/jcb.201411097] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cdc15 contributes to contractile ring formation and cytokinesis by recruiting the formin Cdc12, which defines a novel cytokinetic function for an F-BAR domain. In Schizosaccharomyces pombe, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring (CR). Nucleation of F-actin for the CR requires a single formin, Cdc12, that localizes to the cell middle at mitotic onset. Although genetic requirements for formin Cdc12 recruitment have been determined, the molecular mechanisms dictating its targeting to the medial cortex during cytokinesis are unknown. In this paper, we define a short motif within the N terminus of Cdc12 that binds directly to the F-BAR domain of the scaffolding protein Cdc15. Mutations preventing the Cdc12–Cdc15 interaction resulted in reduced Cdc12, F-actin, and actin-binding proteins at the CR, which in turn led to a delay in CR formation and sensitivity to other perturbations of CR assembly. We conclude that Cdc15 contributes to CR formation and cytokinesis via formin Cdc12 recruitment, defining a novel cytokinetic function for an F-BAR domain.
Collapse
Affiliation(s)
- Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - K Adam Bohnert
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Michelle A Baird
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32306 National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32306
| | - John R Allen
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32306 National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32306
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32306 National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, FL 32306
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
19
|
Raychaudhuri S, Espenshade PJ. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity. J Biol Chem 2015; 290:14430-40. [PMID: 25918164 DOI: 10.1074/jbc.m114.630863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Indexed: 01/23/2023] Open
Abstract
Layers of quality control ensure proper protein folding and complex formation prior to exit from the endoplasmic reticulum. The fission yeast Dsc E3 ligase is a Golgi-localized complex required for sterol regulatory element-binding protein (SREBP) transcription factor activation that shows architectural similarity to endoplasmic reticulum-associated degradation E3 ligases. The Dsc E3 ligase consists of five integral membrane proteins (Dsc1-Dsc5) and functionally interacts with the conserved AAA-ATPase Cdc48. Utilizing an in vitro ubiquitination assay, we demonstrated that Dsc1 has ubiquitin E3 ligase activity that requires the E2 ubiquitin-conjugating enzyme Ubc4. Mutations that specifically block Dsc1-Ubc4 interaction prevent SREBP cleavage, indicating that SREBP activation requires Dsc E3 ligase activity. Surprisingly, Golgi localization of the Dsc E3 ligase complex also requires Dsc1 E3 ligase activity. Analysis of Dsc E3 ligase complex formation, glycosylation, and localization indicated that Dsc1 E3 ligase activity is specifically required for endoplasmic reticulum exit of the complex. These results define enzyme activity-dependent sorting as an autoregulatory mechanism for protein trafficking.
Collapse
Affiliation(s)
- Sumana Raychaudhuri
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Peter J Espenshade
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
20
|
Ren L, Willet AH, Roberts-Galbraith RH, McDonald NA, Feoktistova A, Chen JS, Huang H, Guillen R, Boone C, Sidhu SS, Beckley JR, Gould KL. The Cdc15 and Imp2 SH3 domains cooperatively scaffold a network of proteins that redundantly ensure efficient cell division in fission yeast. Mol Biol Cell 2014; 26:256-69. [PMID: 25428987 PMCID: PMC4294673 DOI: 10.1091/mbc.e14-10-1451] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fission yeast F-BAR proteins Cdc15 and Imp2 and their combined SH3-domain partners appear to act as “molecular glue” to stabilize the interaction between the plasma membrane and a complex network of proteins at the division site that mediates cell division. Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in numerous biological processes, including cytokinesis, typically by bridging the plasma membrane via their F-BAR domains to the actin cytoskeleton. Two SH3 domain–containing PCH family members, Cdc15 and Imp2, play critical roles in S. pombe cytokinesis. Although both proteins localize to the contractile ring, with Cdc15 preceding Imp2, only cdc15 is an essential gene. Despite these distinct roles, the SH3 domains of Cdc15 and Imp2 cooperate in the essential process of recruiting other proteins to stabilize the contractile ring. To better understand the connectivity of this SH3 domain–based protein network at the CR and its function, we used a biochemical approach coupled to proteomics to identify additional proteins (Rgf3, Art1, Spa2, and Pos1) that are integrated into this network. Cell biological and genetic analyses of these SH3 partners implicate them in a range of activities that ensure the fidelity of cell division, including promoting cell wall metabolism and influencing cell morphogenesis.
Collapse
Affiliation(s)
- Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Haiming Huang
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Rodrigo Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Charles Boone
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Sachdev S Sidhu
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
21
|
Arasada R, Pollard TD. Contractile ring stability in S. pombe depends on F-BAR protein Cdc15p and Bgs1p transport from the Golgi complex. Cell Rep 2014; 8:1533-44. [PMID: 25159149 DOI: 10.1016/j.celrep.2014.07.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/22/2014] [Accepted: 07/25/2014] [Indexed: 11/17/2022] Open
Abstract
Cdc15p is known to contribute to cytokinesis in fission yeast; however, the protein is not required to assemble the contractile ring of actin and myosin, but it helps to anchor the ring to the plasma membrane. Cdc15p has a lipid-binding F-BAR domain, suggesting that it provides a physical link between the plasma membrane and contractile ring proteins. However, we find that a more important function of Cdc15p during cytokinesis is to help deliver a transmembrane enzyme, Bgs1p (also called Cps1p), from the Golgi apparatus to the plasma membrane, where it appears to anchor the contractile ring. Bgs1p synthesizes the cell wall in the cleavage furrow, but its enzyme activity is not required to anchor the contractile ring. We estimate that ∼ 2,000 Bgs1p molecules are required to anchor the ring. Without Bgs1p anchors, contractile rings slide along the plasma membrane, a phenomenon that depends on an unconventional type II myosin called Myp2p.
Collapse
Affiliation(s)
- Rajesh Arasada
- Department of Molecular Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103 USA
| | - Thomas D Pollard
- Department of Molecular Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103 USA; Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520-8103 USA; Department of Cell Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103 USA.
| |
Collapse
|
22
|
Young E, Zheng ZY, Wilkins AD, Jeong HT, Li M, Lichtarge O, Chang EC. Regulation of Ras localization and cell transformation by evolutionarily conserved palmitoyltransferases. Mol Cell Biol 2014; 34:374-85. [PMID: 24248599 PMCID: PMC3911504 DOI: 10.1128/mcb.01248-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/16/2013] [Accepted: 11/09/2013] [Indexed: 01/06/2023] Open
Abstract
Ras can act on the plasma membrane (PM) to mediate extracellular signaling and tumorigenesis. To identify key components controlling Ras PM localization, we performed an unbiased screen to seek Schizosaccharomyces pombe mutants with reduced PM Ras. Five mutants were found with mutations affecting the same gene, S. pombe erf2 (sp-erf2), encoding sp-Erf2, a palmitoyltransferase, with various activities. sp-Erf2 localizes to the trans-Golgi compartment, a process which is mediated by its third transmembrane domain and the Erf4 cofactor. In fission yeast, the human ortholog zDHHC9 rescues the phenotypes of sp-erf2 null cells. In contrast, expressing zDHHC14, another sp-Erf2-like human protein, did not rescue Ras1 mislocalization in these cells. Importantly, ZDHHC9 is widely overexpressed in cancers. Overexpressing ZDHHC9 promotes, while repressing it diminishes, Ras PM localization and transformation of mammalian cells. These data strongly demonstrate that sp-Erf2/zDHHC9 palmitoylates Ras proteins in a highly selective manner in the trans-Golgi compartment to facilitate PM targeting via the trans-Golgi network, a role that is most certainly critical for Ras-driven tumorigenesis.
Collapse
Affiliation(s)
- Evelin Young
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ze-Yi Zheng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Angela D. Wilkins
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- CIBR Center for Computational and Integrative Biomedical Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hee-Tae Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Min Li
- Department of Oncology, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- CIBR Center for Computational and Integrative Biomedical Research, Baylor College of Medicine, Houston, Texas, USA
| | - Eric C. Chang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
23
|
Sun LL, Li M, Suo F, Liu XM, Shen EZ, Yang B, Dong MQ, He WZ, Du LL. Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet 2013; 9:e1003715. [PMID: 23950735 PMCID: PMC3738441 DOI: 10.1371/journal.pgen.1003715] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/25/2013] [Indexed: 01/20/2023] Open
Abstract
Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12–Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy. Autophagy is a eukaryotic cellular process that transports cytoplasmic contents into lysosomes/vacuoles for degradation. It has been linked to multiple human diseases, including cancer and neurodegenerative disorders. The molecular machinery of autophagy was first identified and has been best characterized in the budding yeast Saccharomyces cerevisiae, but little is known about the autophagy machinery in another important unicellular model organism, the fission yeast Schizosaccharomyces pombe. In this study, we performed an unbiased and comprehensive screening of the fission yeast autophagy genes by profiling the mating phenotypes of nearly 3000 deletion strains. Following up on the screening results, we systematically characterized both previously known and newly identified fission yeast autophagy factors by examining their localization and the phenotype of their mutants. Our analysis increased the number of experimentally defined fission yeast autophagy factors from 14 to 23, including two novel factors that act in ways different from all previously known autophagy proteins. Together, our data reveal unexpected evolutionary divergence of autophagy mechanisms and establish a new model system for unraveling the molecular details of the autophagy process.
Collapse
Affiliation(s)
- Ling-Ling Sun
- National Institute of Biological Sciences, Beijing, China
| | - Ming Li
- National Institute of Biological Sciences, Beijing, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Man Liu
- National Institute of Biological Sciences, Beijing, China
| | - En-Zhi Shen
- National Institute of Biological Sciences, Beijing, China
| | - Bing Yang
- National Institute of Biological Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Wan-Zhong He
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Cadou A, Couturier A, Le Goff C, Xie L, Paulson JR, Le Goff X. The Kin1 kinase and the calcineurin phosphatase cooperate to link actin ring assembly and septum synthesis in fission yeast. Biol Cell 2013; 105:129-48. [PMID: 23294323 DOI: 10.1111/boc.201200042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION The Kin1 protein kinase of fission yeast, which regulates cell surface cohesiveness during interphase cell growth, is also present at the cell division site during mitosis; however, its function in cell division has remained elusive. RESULTS In FK506-mediated calcineurin deficient cells, mitosis is extended and ring formation is transiently compromised but septation remains normal. Here, we show that Kin1 inhibition in these cells leads to polyseptation and defects in membrane closure. Actomyosin ring disassembly is prevented and ultimately the daughter cells fail to separate. We show that the Pmk1 MAP kinase pathway and the type V myosin Myo4 act downstream of the cytokinetic function of Kin1. Kin1 inhibition also promotes polyseptation in myo3Δ, a type II myosin heavy-chain mutant defective in ring assembly. In contrast, Kin1 inactivation rescues septation in a myosin light-chain cdc4-8 thermosensitive mutant. A structure/function analysis of the Kin1 protein sequence identified a novel motif outside the kinase domain that is important for its polarised localisation and its catalytic activity. This motif is remarkably conserved in all fungal Kin1 homologues but is absent in related kinases of metazoans. CONCLUSIONS We conclude that calcineurin and Kin1 activities must be tightly coordinated to link actomyosin ring assembly with septum synthesis and membrane closure and to ensure separation of the daughter cells.
Collapse
Affiliation(s)
- Angela Cadou
- CNRS UMR6290 Institut de Génétique et Développement de Rennes, France
| | | | | | | | | | | |
Collapse
|
26
|
Suda Y, Nakano A. The Yeast Golgi Apparatus. Traffic 2011; 13:505-10. [DOI: 10.1111/j.1600-0854.2011.01316.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuyuki Suda
- Molecular Membrane Biology Laboratory; RIKEN Advanced Science Institute; Wako; Saitama; 351-0198; Japan
| | | |
Collapse
|
27
|
Stewart EV, Nwosu CC, Tong Z, Roguev A, Cummins TD, Kim DU, Hayles J, Park HO, Hoe KL, Powell DW, Krogan NJ, Espenshade PJ. Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex. Mol Cell 2011; 42:160-71. [PMID: 21504829 PMCID: PMC3083633 DOI: 10.1016/j.molcel.2011.02.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/29/2010] [Accepted: 02/22/2011] [Indexed: 12/25/2022]
Abstract
Mammalian lipid homeostasis requires proteolytic activation of membrane-bound sterol regulatory element binding protein (SREBP) transcription factors through sequential action of the Golgi Site-1 and Site-2 proteases. Here we report that while SREBP function is conserved in fungi, fission yeast employs a different mechanism for SREBP cleavage. Using genetics and biochemistry, we identified four genes defective for SREBP cleavage, dsc1-4, encoding components of a transmembrane Golgi E3 ligase complex with structural homology to the Hrd1 E3 ligase complex involved in endoplasmic reticulum-associated degradation. The Dsc complex binds SREBP and cleavage requires components of the ubiquitin-proteasome pathway: the E2-conjugating enzyme Ubc4, the Dsc1 RING E3 ligase, and the proteasome. dsc mutants display conserved aggravating genetic interactions with components of the multivesicular body pathway in fission yeast and budding yeast, which lacks SREBP. Together, these data suggest that the Golgi Dsc E3 ligase complex functions in a post-ER pathway for protein degradation.
Collapse
Affiliation(s)
- Emerson V. Stewart
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christine C. Nwosu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zongtian Tong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Timothy D. Cummins
- Departments of Medicine and Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dong-Uk Kim
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
| | - Jacqueline Hayles
- Cancer Research UK, The London Research Institute, London WC2A 3PX, UK
| | - Han-Oh Park
- Bioneer Corporation, Daedeok, Daejeon 306-220, Republic of Korea
| | - Kwang-Lae Hoe
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
| | - David W. Powell
- Departments of Medicine and Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Peter J. Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Nakano K, Toya M, Yoneda A, Asami Y, Yamashita A, Kamasawa N, Osumi M, Yamamoto M. Pob1 ensures cylindrical cell shape by coupling two distinct rho signaling events during secretory vesicle targeting. Traffic 2011; 12:726-39. [PMID: 21401840 DOI: 10.1111/j.1600-0854.2011.01190.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proper cell morphogenesis requires the co-ordination of cell polarity, cytoskeletal organization and vesicle trafficking. The Schizosaccharomyces pombe mutant pob1-664 has a curious lemon-like shape, the basis of which is not understood. Here, we found abundant vesicle accumulation in these cells, suggesting that Pob1 plays a role in vesicle trafficking. We identified Rho3 as a multicopy suppressor of this phenotype. Because Rho3 function is related to For3, an actin-polymerizing protein, and Sec8, a component of the exocyst complex, we analyzed their functional relationship with Pob1. Pob1 was essential for the formation of actin cables (by interacting with For3) and for the polarized localization of Sec8. Although neither For3 nor Sec8 is essential for polarized growth, their simultaneous disruption prevented tip growth and yielded a lemon-like cell morphology similar to pob1-664. Thus, Pob1 may ensure cylindrical cell shape of S. pombe by coupling actin-mediated vesicle transport and exocyst-mediated vesicle tethering during secretory vesicle targeting.
Collapse
Affiliation(s)
- Kentaro Nakano
- Department of Structural Biosciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kouranti I, McLean JR, Feoktistova A, Liang P, Johnson AE, Roberts-Galbraith RH, Gould KL. A global census of fission yeast deubiquitinating enzyme localization and interaction networks reveals distinct compartmentalization profiles and overlapping functions in endocytosis and polarity. PLoS Biol 2010; 8. [PMID: 20838651 PMCID: PMC2935449 DOI: 10.1371/journal.pbio.1000471] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022] Open
Abstract
Proteomic, localization, and enzymatic activity screens in fission yeast reveal how deubiquitinating enzyme localization and function are tuned. Ubiquitination and deubiquitination are reciprocal processes that tune protein stability, function, and/or localization. The removal of ubiquitin and remodeling of ubiquitin chains is catalyzed by deubiquitinating enzymes (DUBs), which are cysteine proteases or metalloproteases. Although ubiquitination has been extensively studied for decades, the complexity of cellular roles for deubiquitinating enzymes has only recently been explored, and there are still several gaps in our understanding of when, where, and how these enzymes function to modulate the fate of polypeptides. To address these questions we performed a systematic analysis of the 20 Schizosaccharomyces pombe DUBs using confocal microscopy, proteomics, and enzymatic activity assays. Our results reveal that S. pombe DUBs are present in almost all cell compartments, and the majority are part of stable protein complexes essential for their function. Interestingly, DUB partners identified by our study include the homolog of a putative tumor suppressor gene not previously linked to the ubiquitin pathway, and two conserved tryptophan-aspartate (WD) repeat proteins that regulate Ubp9, a DUB that we show participates in endocytosis, actin dynamics, and cell polarity. In order to understand how DUB activity affects these processes we constructed multiple DUB mutants and find that a quintuple deletion of ubp4 ubp5 ubp9 ubp15 sst2/amsh displays severe growth, polarity, and endocytosis defects. This mutant allowed the identification of two common substrates for five cytoplasmic DUBs. Through these studies, a common regulatory theme emerged in which DUB localization and/or activity is modulated by interacting partners. Despite apparently distinct cytoplasmic localization patterns, several DUBs cooperate in regulating endocytosis and cell polarity. These studies provide a framework for dissecting DUB signaling pathways in S. pombe and may shed light on DUB functions in metazoans. The post-translational modification of proteins by conjugation of monomers or chains of ubiquitin is a regulatory mechanism for tuning protein stability, localization and function. Given these vital functions, ubiquitination has to be highly regulated so that protein degradation and cell signaling are controlled in space and time. Although the ubiquitin-conjugation machinery has been thoroughly studied, there are still several gaps in our understanding of when, where and how ubiquitin is removed by deubiquitinating enzymes (DUBs). To address these questions we performed a systematic analysis of the 20 DUBs in the fission yeast Schizosaccharomyces pombe using confocal microscopy, proteomics and enzymatic activity assays. We first showed that S. pombe DUBs are present in almost all cell compartments and that the majority are part of stable protein complexes essential for their function. Then, we constructed strains mutant for a number of the DUBs involved in the newly identified protein complexes and showed that five cytoplasmic DUBs have redundant roles in controlling endocytosis and cell polarity. We postulate that regulatory networks identified in our study might be conserved and hence shed light on DUB function in metazoans.
Collapse
Affiliation(s)
- Ilektra Kouranti
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Janel R. McLean
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ping Liang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alyssa E. Johnson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rachel H. Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zhang D, Vjestica A, Oliferenko S. The Cortical ER Network Limits the Permissive Zone for Actomyosin Ring Assembly. Curr Biol 2010; 20:1029-34. [DOI: 10.1016/j.cub.2010.04.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 03/24/2010] [Accepted: 04/07/2010] [Indexed: 11/25/2022]
|
31
|
Roncero C, Sánchez Y. Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 2010; 27:521-30. [DOI: 10.1002/yea.1779] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
32
|
Polevoy G, Wei HC, Wong R, Szentpetery Z, Kim YJ, Goldbach P, Steinbach SK, Balla T, Brill JA. Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis. ACTA ACUST UNITED AC 2010; 187:847-58. [PMID: 19995935 PMCID: PMC2806325 DOI: 10.1083/jcb.200908107] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Successful completion of cytokinesis relies on addition of new membrane, and requires the recycling endosome regulator Rab11, which localizes to the midzone. Despite the critical role of Rab11 in this process, little is known about the formation and composition of Rab11-containing organelles. Here, we identify the phosphatidylinositol (PI) 4-kinase III beta four wheel drive (Fwd) as a key regulator of Rab11 during cytokinesis in Drosophila melanogaster spermatocytes. We show Fwd is required for synthesis of PI 4-phosphate (PI4P) on Golgi membranes and for formation of PI4P-containing secretory organelles that localize to the midzone. Fwd binds and colocalizes with Rab11 on Golgi membranes, and is required for localization of Rab11 in dividing cells. A kinase-dead version of Fwd also binds Rab11 and partially restores cytokinesis to fwd mutant flies. Moreover, activated Rab11 partially suppresses loss of fwd. Our data suggest Fwd plays catalytic and noncatalytic roles in regulating Rab11 during cytokinesis.
Collapse
Affiliation(s)
- Gordon Polevoy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Papanikou E, Glick BS. The yeast Golgi apparatus: insights and mysteries. FEBS Lett 2009; 583:3746-51. [PMID: 19879270 DOI: 10.1016/j.febslet.2009.10.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 11/28/2022]
Abstract
The Golgi apparatus is known to modify and sort newly synthesized secretory proteins. However, fundamental mysteries remain about the structure, operation, and dynamics of this organelle. Important insights have emerged from studying the Golgi in yeasts. For example, yeasts have provided direct evidence for Golgi cisternal maturation, a mechanism that is likely to be broadly conserved. Here, we highlight features of the yeast Golgi as well as challenges that lie ahead.
Collapse
Affiliation(s)
- Effrosyni Papanikou
- The University of Chicago, Molecular Genetics and Cell Biology, 920 East 58th St., Chicago, IL 60637, USA
| | | |
Collapse
|
34
|
Park JS, Steinbach SK, Desautels M, Hemmingsen SM. Essential role for Schizosaccharomyces pombe pik1 in septation. PLoS One 2009; 4:e6179. [PMID: 19587793 PMCID: PMC2704394 DOI: 10.1371/journal.pone.0006179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/24/2009] [Indexed: 11/29/2022] Open
Abstract
Background Schizosaccharomyces pombe pik1 encodes a phosphatidylinositol 4-kinase, reported to bind Cdc4, but not Cdc4G107S. Principal Findings Gene deletion revealed that pik1 is essential. In cells with pik1 deleted, ectopic expression of a loss-of-function allele, created by fusion to a temperature-sensitive dihydrofolate reductase, allowed normal cell proliferation at 25°C. At 36°C, cells arrested with abnormally thick, misplaced or supernumerary septa, indicating a defect late in septation. In addition to being Golgi associated, ectopically expressed GFP-tagged Pik1 was observed at the medial cell plane late in cytokinesis. New alleles, created by site-directed mutagenesis, were expressed ectopically. Lipid kinase and Cdc4-binding activity assays were performed. Pik1D709A was kinase-dead, but bound Cdc4. Pik1R838A did not bind Cdc4, but was an active kinase. Genomic integration of these substitutions in S. pombe and complementation studies in Saccharomyces cerevisiae pik1-101 cells revealed that D709 is essential in both cases while R838 is dispensable. In S. pombe, ectopic expression of pik1 was dominantly lethal; while, pik1D709A,R838A was innocuous, pik1R838A was almost innocuous, and pik1D709A produced partial lethality and septation defects. The pik1 ectopic expression lethal phenotype was suppressed in cdc4G107S. Thus, D709 is essential for kinase activity and septation. Conclusions Pik1 kinase activity is required for septation. The Pik1 R838 residue is required for important protein-protein interactions, possibly with Cdc4.
Collapse
Affiliation(s)
- Jae-Sook Park
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
35
|
Jourdain I, Spielewoy N, Thompson J, Dhut S, Yates JR, Toda T. Identification of a conserved F-box protein 6 interactor essential for endocytosis and cytokinesis in fission yeast. Biochem J 2009; 420:169-77. [PMID: 19243310 PMCID: PMC2950653 DOI: 10.1042/bj20081659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The F-box domain is a degenerated motif consisting of approximately 40 amino acid residues that specifically bind Skp1, a core component of the SCF (Skp1-Cdc53/Cullin 1-F-box protein) ubiquitin ligase. Recent work, mainly performed in budding yeast, indicates that certain F-box proteins form non-SCF complexes together with Skp1 in the absence of cullins and play various roles in cell cycle and signalling pathways. However, it is not established whether these non-SCF complexes are unique to budding yeast or common in other eukaryotes. In the present paper, using TAP (tandem affinity purification) coupled to MudPIT (Multidimensional Protein Identification Technology) analysis, we have identified a novel conserved protein, Sip1, in fission yeast, as an interacting partner of an essential F-box protein Pof6. Sip1 is a large HEAT (huntingtin, elongation factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase Tor)-repeats containing protein (217 kDa) and forms a complex with Pof6 and Skp1. This complex does not contain cullins, indicating that it is a novel non-SCF complex. Like Pof6 and Skp1, Sip1 is essential for cell viability and temperature-sensitive sip1 mutants display cell division arrest as binucleate cells with septa. Sip1 localizes to the nucleus and dynamic cytoplasmic dots, which are shown in the present study to be endocytic vesicles. Consistent with this, sip1 mutants are defective in endocytosis. Furthermore, towards the end of cytokinesis, constriction of the actomyosin ring and dissociation of type II myosin and septum materials are substantially delayed in the absence of functional Sip1. These results indicate that the conserved Sip1 protein comprises a novel non-SCF F-box complex that plays an essential role in endocytosis, cytokinesis and cell division.
Collapse
Affiliation(s)
- Isabelle Jourdain
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - Nathalie Spielewoy
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - James Thompson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Susheela Dhut
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
36
|
Codlin S, Mole SE. S. pombe btn1, the orthologue of the Batten disease gene CLN3, is required for vacuole protein sorting of Cpy1p and Golgi exit of Vps10p. J Cell Sci 2009; 122:1163-73. [PMID: 19299465 DOI: 10.1242/jcs.038323] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Batten disease is characterised by lysosomal dysfunction. The most common type of the disease is caused by mutations in the membrane protein CLN3, whose function is unknown. We show that the fission yeast orthologue Btn1p, previously implicated in vacuole function, is required for correct sorting of the vacuole hydrolase carboxypeptidase Y (Cpy1p). This is, in part, due to a defect in trafficking of Vps10p, the sorting receptor for Cpy1p, from the Golgi to the trans-Golgi network in btn1Delta cells. Our data also implicate btn1 in other Vps10-independent Cpy1-sorting pathways. Furthermore, btn1 affects the number, intracellular location and structure of Golgi compartments. We show that the prevacuole location of Btn1p is at the Golgi, because Btn1p colocalises predominantly with the Golgi marker Gms1p in compartments that are sensitive to Brefeldin A. Btn1p function might be linked to that of Vps34p, a phosphatidylinositol 3-kinase, because Btn1p acts as a multicopy suppressor of the severe Cpy1p vacuole protein-sorting defect of vps34Delta cells. Together, these results indicate an important role for Btn1p in the Golgi complex, which affects Golgi homeostasis and vacuole protein sorting. We propose a similar role for CLN3 in mammalian cells.
Collapse
Affiliation(s)
- Sandra Codlin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
37
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|