1
|
Weiner E, Berryman E, González Solís A, Shi Y, Otegui MS. The green ESCRTs: Newly defined roles for ESCRT proteins in plants. J Biol Chem 2025; 301:108465. [PMID: 40157538 PMCID: PMC12051064 DOI: 10.1016/j.jbc.2025.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
Endocytosis and endosomal trafficking of plasma membrane proteins for degradation regulate cellular homeostasis and development. As part of these processes, ubiquitinated plasma membrane proteins (cargo) are recognized, clustered, and sorted into intraluminal vesicles of multivesicular endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. At endosomes, ESCRT proteins recognize ubiquitinated cargo and mediate the deformation of the endosomal membrane in a negative geometry, away from the cytosol. ESCRTs are organized in five major complexes that are sequentially recruited to the endosomal membrane where they mediate its vesiculation and cargo sequestration. ESCRTs also participate in other membrane remodeling events and are widely conserved across organisms, both eukaryotes and prokaryotes. Plants contain both conserved and unique ESCRT components and show a general trend toward gene family expansion. Plant endosomes show a wide range of membrane budding patterns with potential implications in cargo sequestration efficiency, plant development, and hormone signaling. Understanding the diversification and specialization of plant ESCRT proteins can provide valuable insights in the mechanisms of ESCRT-mediated membrane bending. In this review, we discuss the endosomal function of ESCRT proteins, their unique features in plants, and the potential connections to the modes of plant endosomal vesiculation.
Collapse
Affiliation(s)
- Ethan Weiner
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Yuchen Shi
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Herbet M, Widelski J, Ostrowska-Leśko M, Serefko A, Wojtanowski K, Kurek J, Piątkowska-Chmiel I. Exploring the Toxicity and Therapeutic Potential of A. dahurica and A. pubescens in Zebrafish Larvae: Insights into Anxiety Treatment Mechanisms. Int J Mol Sci 2025; 26:2884. [PMID: 40243462 PMCID: PMC11989099 DOI: 10.3390/ijms26072884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
This study assessed the toxicity and therapeutic potential of Angelica dahurica and Angelica pubescens using Danio rerio (zebrafish) larvae. Toxicity was evaluated through mortality, malformations, and gene expression changes related to stress and the HPA axis. A. dahurica demonstrated low toxicity (LD50 (50% lethal dose) >200 µg/mL), with no significant malformations at 15-30 µg/mL, although higher doses caused edemas and heart defects. A. pubescens exhibited higher toxicity, with 100% mortality at 200 µg/mL and severe malformations. Both species showed potential cardiotoxicity, slowing heart rates after prolonged exposure. Gene expression studies suggested A. dahurica had stress-protective effects, increasing nr3c1 expression, while A. pubescens had dose-dependent effects, with lower concentrations having anxiolytic properties and higher concentrations increasing stress. Interestingly, diazepam showed unexpected gene expression changes, highlighting the influence of environmental and dosage factors. In conclusion, both species show therapeutic potential for anxiety, with A. dahurica showing promising effects at lower concentrations. However, A. pubescens requires careful dosage management due to its higher toxicity risks. Further studies are needed to optimize therapeutic applications and fully understand mechanisms of action.
Collapse
Affiliation(s)
- Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.O.-L.); (J.K.); (I.P.-C.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (K.W.)
| | - Marta Ostrowska-Leśko
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.O.-L.); (J.K.); (I.P.-C.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Wojtanowski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (K.W.)
| | - Joanna Kurek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.O.-L.); (J.K.); (I.P.-C.)
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.O.-L.); (J.K.); (I.P.-C.)
| |
Collapse
|
3
|
Pan Q, Tao Y, Cai T, Veluchamy A, Hebert HL, Zhu P, Haque M, Dottorini T, Colvin LA, Smith BH, Meng W. A genome-wide association study identifies genetic variants associated with hip pain in the UK Biobank cohort (N = 221,127). Sci Rep 2025; 15:2812. [PMID: 39843573 PMCID: PMC11754597 DOI: 10.1038/s41598-025-85871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Hip pain is a common musculoskeletal complaint that leads many people to seek medical attention. We conducted a primary genome-wide association study (GWAS) on the hip pain phenotype within the UK Biobank cohort. Sex-stratified GWAS analysis approach was also performed to explore sex specific variants associated with hip pain. We found seven different loci associated with hip pain at GWAS significance level, with the most significant single nucleotide polymorphism (SNP) being rs77641763 within the EXD3 (p value = 2.20 × 10-13). We utilized summary statistics from the FinnGen cohort and a previous GWAS meta-analysis on hip osteoarthritis as replication cohorts. Four loci (rs509345, rs73581564, rs9597759, rs2018384) were replicated with a p value less than 0.05. Sex-stratified GWAS analyses revealed a unique locus within the CUL1 gene (rs4726995, p = 2.56 × 10-9) in males, and three unique loci in females: rs1651359966 on chromosome 7 (p = 1.15 × 10-8), rs552965738 on chromosome 9 (p = 2.72 × 10-8), and rs1978969 on chromosome 13 (p = 2.87 × 10-9). This study has identified seven genetic loci associated with hip pain. Sex-stratified analysis also revealed sex specific variants associated with hip pain in males and females. This study has provided a foundation for advancing research of hip pain and hip osteoarthritis.
Collapse
Affiliation(s)
- Qi Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yiwen Tao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Tengda Cai
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Abi Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Harry L Hebert
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Mainul Haque
- School of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Lesley A Colvin
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK
| | - Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF, UK.
- Center for Public Health, Faculty of Medicine, Health and Life Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT12 6BA, UK.
| |
Collapse
|
4
|
Weiner E, Berryman E, Frey F, Solís AG, Leier A, Lago TM, Šarić A, Otegui MS. Endosomal membrane budding patterns in plants. Proc Natl Acad Sci U S A 2024; 121:e2409407121. [PMID: 39441629 PMCID: PMC11536153 DOI: 10.1073/pnas.2409407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024] Open
Abstract
Multivesicular endosomes (MVEs) sequester membrane proteins destined for degradation within intralumenal vesicles (ILVs), a process mediated by the membrane-remodeling action of Endosomal Sorting Complex Required for Transport (ESCRT) proteins. In Arabidopsis, endosomal membrane constriction and scission are uncoupled, resulting in the formation of extensive concatenated ILV networks and enhancing cargo sequestration efficiency. Here, we used a combination of electron tomography, computer simulations, and mathematical modeling to address the questions of when concatenated ILV networks evolved in plants and what drives their formation. Through morphometric analyses of tomographic reconstructions of endosomes across yeast, algae, and various land plants, we have found that ILV concatenation is widespread within plant species, but only prevalent in seed plants, especially in flowering plants. Multiple budding sites that require the formation of pores in the limiting membrane were only identified in hornworts and seed plants, suggesting that this mechanism has evolved independently in both plant lineages. To identify the conditions under which these multiple budding sites can arise, we used particle-based molecular dynamics simulations and found that changes in ESCRT filament properties, such as filament curvature and membrane binding energy, can generate the membrane shapes observed in multiple budding sites. To understand the relationship between membrane budding activity and ILV network topology, we performed computational simulations and identified a set of membrane remodeling parameters that can recapitulate our tomographic datasets.
Collapse
Affiliation(s)
- Ethan Weiner
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Elizabeth Berryman
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Felix Frey
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Ariadna González Solís
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - André Leier
- Department of Genetics, School of Medicine, University of Alabama-Birmingham, Birmingham, AL35294-0024
| | - Tatiana Marquez Lago
- Department of Genetics, School of Medicine, University of Alabama-Birmingham, Birmingham, AL35294-0024
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Marisa S. Otegui
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
5
|
Murphy H, Huang Q, Jensen J, Weber N, Mendonça L, Ly H, Liang Y. Characterization of bi-segmented and tri-segmented recombinant Pichinde virus particles. J Virol 2024; 98:e0079924. [PMID: 39264155 PMCID: PMC11494906 DOI: 10.1128/jvi.00799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Mammarenaviruses include several highly virulent pathogens (e.g., Lassa virus) capable of causing severe hemorrhagic fever diseases for which there are no approved vaccines and limited treatment options. Mammarenaviruses are enveloped, bi-segmented ambisense RNA viruses. There is limited knowledge about cellular proteins incorporated into progeny virion particles and their potential biological roles in viral infection. Pichinde virus (PICV) is a prototypic arenavirus used to characterize mammarenavirus replication and pathogenesis. We have developed a recombinant PICV with a tri-segmented RNA genome as a viral vector platform. Whether the tri-segmented virion differs from the wild-type bi-segmented one in viral particle morphology and protein composition has not been addressed. In this study, recombinant PICV (rPICV) virions with a bi-segmented (rP18bi) and a tri-segmented (rP18tri) genome were purified by density-gradient ultracentrifugation and analyzed by cryo-electron microscopy and mass spectrometry. Both virion types are pleomorphic with spherical morphology and have no significant difference in size despite rP18tri having denser particles. Both virion types also contain similar sets of cellular proteins. Among the highly enriched virion-associated cellular proteins are components of the endosomal sorting complex required for transport pathway and vesicle trafficking, such as ALIX, Tsg101, VPS, CHMP, and Ras-associated binding proteins, which have known functions in virus assembly and budding. Other enriched cellular proteins include peripheral and transmembrane proteins, chaperone proteins, and ribosomal proteins; their biological roles in viral infection warrant further analysis. Our study provides important insights into mammarenavirus particle formation and aids in the future development of viral vectors and antiviral discovery.IMPORTANCEMammarenaviruses, such as Lassa virus, are enveloped RNA viruses that can cause severe hemorrhagic fever diseases (Lassa fever) with no approved vaccine and limited therapeutic options. Cellular proteins incorporated into progeny virion particles and their biological roles in mammarenavirus infection have not been well characterized. Pichinde virus (PICV) is a prototypic mammarenavirus used as a surrogate model for Lassa fever. We used cryo-electron microscopy and proteomic analysis to characterize the morphology and protein contents of the purified PICV particles that package either two (bi-segmented) or three (tri-segmented) genomic RNA segments. Our results demonstrate a similar virion morphology but different particle density for the bi- and tri-segmented viral particles and reveal major virion-associated cellular proteins. This study provides important insights into the virus-host interactions that can be used for antiviral development and optimizing arenavirus-based vaccine vectors.
Collapse
Affiliation(s)
- Hannah Murphy
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jacob Jensen
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Noah Weber
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Luiza Mendonça
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
6
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
7
|
Park J, Kim J, Park H, Kim T, Lee S. ESCRT-III: a versatile membrane remodeling machinery and its implications in cellular processes and diseases. Anim Cells Syst (Seoul) 2024; 28:367-380. [PMID: 39070887 PMCID: PMC11275535 DOI: 10.1080/19768354.2024.2380294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) machinery is an evolutionarily conserved cytosolic protein complex that plays a crucial role in membrane remodeling and scission events across eukaryotes. Initially discovered for its function in multivesicular body (MVB) formation, the ESCRT complex has since been implicated in a wide range of membrane-associated processes, including endocytosis, exocytosis, cytokinesis, and autophagy. Recent advances have elucidated the ESCRT assembly pathway and highlighted the distinct functions of the various ESCRT complexes and their associated partners. Among the ESCRT complexes, ESCRT-III stands out as a critical player in membrane remodeling, with its subunits assembled into higher-order multimers capable of bending and severing membranes. This review focuses on the ESCRT-III complex, exploring its diverse functions in cellular processes beyond MVB biogenesis. We delve into the molecular mechanisms underlying ESCRT-III-mediated membrane remodeling and highlight its emerging roles in processes such as viral budding, autophagosome closure, and cytokinetic abscission. We also discuss the implications of ESCRT-III dysregulation in neurodegenerative diseases. The versatile membrane remodeling capabilities of ESCRT-III across diverse cellular processes underscore its importance in maintaining proper cellular function. Furthermore, we highlight the promising potential of ESCRT-III as a therapeutic target for neurodegenerative diseases, offering insights into the treatments of the diseases and the technical applications in related research fields.
Collapse
Affiliation(s)
- Jisoo Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Jongyoon Kim
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Hyungsun Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Taewan Kim
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Seongju Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Department of Anatomy, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
8
|
Ashraf HN, Uversky VN. Intrinsic Disorder in the Host Proteins Entrapped in Rabies Virus Particles. Viruses 2024; 16:916. [PMID: 38932209 PMCID: PMC11209445 DOI: 10.3390/v16060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.
Collapse
Affiliation(s)
- Hafiza Nimra Ashraf
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Knyazeva A, Li S, Corkery DP, Shankar K, Herzog LK, Zhang X, Singh B, Niggemeyer G, Grill D, Gilthorpe JD, Gaetani M, Carlson LA, Waldmann H, Wu YW. A chemical inhibitor of IST1-CHMP1B interaction impairs endosomal recycling and induces noncanonical LC3 lipidation. Proc Natl Acad Sci U S A 2024; 121:e2317680121. [PMID: 38635626 PMCID: PMC11047075 DOI: 10.1073/pnas.2317680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery constitutes multisubunit protein complexes that play an essential role in membrane remodeling and trafficking. ESCRTs regulate a wide array of cellular processes, including cytokinetic abscission, cargo sorting into multivesicular bodies (MVBs), membrane repair, and autophagy. Given the versatile functionality of ESCRTs, and the intricate organizational structure of the ESCRT machinery, the targeted modulation of distinct ESCRT complexes is considerably challenging. This study presents a pseudonatural product targeting IST1-CHMP1B within the ESCRT-III complexes. The compound specifically disrupts the interaction between IST1 and CHMP1B, thereby inhibiting the formation of IST1-CHMP1B copolymers essential for normal-topology membrane scission events. While the compound has no impact on cytokinesis, MVB sorting, or biogenesis of extracellular vesicles, it rapidly inhibits transferrin receptor recycling in cells, resulting in the accumulation of transferrin in stalled sorting endosomes. Stalled endosomes become decorated by lipidated LC3, suggesting a link between noncanonical LC3 lipidation and inhibition of the IST1-CHMP1B complex.
Collapse
Affiliation(s)
- Anastasia Knyazeva
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| | - Shuang Li
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| | - Dale P. Corkery
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| | - Kasturika Shankar
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, 901 87Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, 901 87, Umeå, Sweden
| | - Laura K. Herzog
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| | - Xuepei Zhang
- Chemical Proteomics Core Facility, Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77Stockholm, Sweden
- Chemical Proteomics Unit, Science for Life Laboratory, 171 77Stockholm, Sweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry, 171 77Stockholm, Sweden
| | - Birendra Singh
- Department of Surgical and Perioperative Sciences, Unit of Anesthesiology and Intensive Care Medicine, Umeå University, 901 87Umeå, Sweden
| | - Georg Niggemeyer
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - David Grill
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | | | - Massimiliano Gaetani
- Chemical Proteomics Core Facility, Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77Stockholm, Sweden
- Chemical Proteomics Unit, Science for Life Laboratory, 171 77Stockholm, Sweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry, 171 77Stockholm, Sweden
| | - Lars-Anders Carlson
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, 901 87Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, 901 87, Umeå, Sweden
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, 44227, Dortmund, Germany
| | - Yao-Wen Wu
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| |
Collapse
|
10
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast DJ, Hanson PI. IST1 regulates select recycling pathways. Traffic 2024; 25:e12921. [PMID: 37926552 PMCID: PMC11027954 DOI: 10.1111/tra.12921] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/21/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
Affiliation(s)
- Amy K Clippinger
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wonjin Yoo
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast D, Hanson PI. IST1 regulates select endosomal recycling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551359. [PMID: 37577466 PMCID: PMC10418098 DOI: 10.1101/2023.07.31.551359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transport) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intralumenal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
|
12
|
Shen W, Liu C, Hu Y, Ding Q, Feng J, Liu Z, Kong X. Spastin is required for human immunodeficiency virus-1 efficient replication through cooperation with the endosomal sorting complex required for transport (ESCRT) protein. Virol Sin 2023:S1995-820X(23)00054-8. [PMID: 37172824 DOI: 10.1016/j.virs.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes simply 15 proteins and thus depends on multiple host cellular factors for virus reproduction. Spastin, a microtubule severing protein, is an identified HIV-1 dependency factor, but the mechanism regulating HIV-1 is unclear. Here, the study showed that knockdown of spastin inhibited the production of the intracellular HIV-1 Gag protein and new virions through enhancing Gag lysosomal degradation. Further investigation showed that increased sodium tolerance 1 (IST1), the subunit of endosomal sorting complex required for transport (ESCRT), could interact with the MIT domain of spastin to regulate the intracellular Gag production. In summary, spastin is required for HIV-1 replication, while spastin-IST1 interaction facilitates virus production by regulating HIV-1 Gag intracellular trafficking and degradation. Spastin may serve as new target for HIV-1 prophylactic and therapy.
Collapse
Affiliation(s)
- Wenyuan Shen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Department of Spine Surgery, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yue Hu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Qian Ding
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiabin Feng
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhou Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
13
|
Jiang X, Harker-Kirschneck L, Vanhille-Campos C, Pfitzner AK, Lominadze E, Roux A, Baum B, Šarić A. Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. PLoS Comput Biol 2022; 18:e1010586. [PMID: 36251703 PMCID: PMC9612822 DOI: 10.1371/journal.pcbi.1010586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/27/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
ESCRT-III filaments are composite cytoskeletal polymers that can constrict and cut cell membranes from the inside of the membrane neck. Membrane-bound ESCRT-III filaments undergo a series of dramatic composition and geometry changes in the presence of an ATP-consuming Vps4 enzyme, which causes stepwise changes in the membrane morphology. We set out to understand the physical mechanisms involved in translating the changes in ESCRT-III polymer composition into membrane deformation. We have built a coarse-grained model in which ESCRT-III polymers of different geometries and mechanical properties are allowed to copolymerise and bind to a deformable membrane. By modelling ATP-driven stepwise depolymerisation of specific polymers, we identify mechanical regimes in which changes in filament composition trigger the associated membrane transition from a flat to a buckled state, and then to a tubule state that eventually undergoes scission to release a small cargo-loaded vesicle. We then characterise how the location and kinetics of polymer loss affects the extent of membrane deformation and the efficiency of membrane neck scission. Our results identify the near-minimal mechanical conditions for the operation of shape-shifting composite polymers that sever membrane necks.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Lena Harker-Kirschneck
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Christian Vanhille-Campos
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Elene Lominadze
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
14
|
Journet A, Barette C, Aubry L, Soleilhac E, Fauvarque MO. Identification of chemicals breaking the USP8 interaction with its endocytic substrate CHMP1B. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:395-404. [PMID: 35995394 DOI: 10.1016/j.slasd.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitin-specific protease USP8 plays a major role in controlling the stability and intracellular trafficking of numerous cell surface proteins among which the EGF receptor that regulates cell growth and proliferation in many physio-pathological processes. The function of USP8 at the endocytic pathway level partly relies on binding to and deubiquitination of the Endosomal Sorting Complex Required for Transport (ESCRT) protein CHMP1B. In the aim of finding chemical inhibitors of the USP8::CHMP1B interaction, we performed a high-throughput screening campaign using an HTRF® assay to monitor the interaction directly in lysates of cells co-expressing both partners. The assay was carried out in an automated format to screen the academic Fr-PPIChem library (Bosc N et al., 2020), which includes 10,314 compounds dedicated to the targeting of protein-protein interactions (PPIs). Eleven confirmed hits inhibited the USP8::CHMP1B interaction within a range of 30% to 70% inhibition at 50 µM, while they were inactive on a set of other PPI interfaces demonstrating the feasibility of specifically disrupting this particular interface. In parallel, we adapted this HTRF® assay to compare the USP8 interacting capacity of CHMP1B variants. As anticipated from earlier studies, a deletion of the MIM (Microtubule Interacting and Trafficking domain Interacting Motif) domain or mutation of two conserved leucine residues, L192 and L195, in this domain respectively abolished or strongly impeded the USP8::CHMP1B interaction. By contrast, a CHMP1B mutant that displays a highly decreased ubiquitination level following mutation of four lysine residues in arginine interacted at a similar level as the wild-type form with USP8. Therefore, conserved leucine residues within the MIT domain rather than its ubiquitinated status triggers CHMP1B substrate recognition by USP8.
Collapse
Affiliation(s)
- Agnès Journet
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, F-38000 Grenoble, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, F-38000 Grenoble, France
| | - Laurence Aubry
- Univ. Grenoble Alpes, CNRS, CEA, Inserm, IRIG, BGE, F-38000 Grenoble, France
| | | | | |
Collapse
|
15
|
Wenzel DM, Mackay DR, Skalicky JJ, Paine EL, Miller MS, Ullman KS, Sundquist WI. Comprehensive analysis of the human ESCRT-III-MIT domain interactome reveals new cofactors for cytokinetic abscission. eLife 2022; 11:e77779. [PMID: 36107470 PMCID: PMC9477494 DOI: 10.7554/elife.77779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The 12 related human ESCRT-III proteins form filaments that constrict membranes and mediate fission, including during cytokinetic abscission. The C-terminal tails of polymerized ESCRT-III subunits also bind proteins that contain Microtubule-Interacting and Trafficking (MIT) domains. MIT domains can interact with ESCRT-III tails in many different ways to create a complex binding code that is used to recruit essential cofactors to sites of ESCRT activity. Here, we have comprehensively and quantitatively mapped the interactions between all known ESCRT-III tails and 19 recombinant human MIT domains. We measured 228 pairwise interactions, quantified 60 positive interactions, and discovered 18 previously unreported interactions. We also report the crystal structure of the SPASTIN MIT domain in complex with the IST1 C-terminal tail. Three MIT enzymes were studied in detail and shown to: (1) localize to cytokinetic midbody membrane bridges through interactions with their specific ESCRT-III binding partners (SPASTIN-IST1, KATNA1-CHMP3, and CAPN7-IST1), (2) function in abscission (SPASTIN, KATNA1, and CAPN7), and (3) function in the 'NoCut' abscission checkpoint (SPASTIN and CAPN7). Our studies define the human MIT-ESCRT-III interactome, identify new factors and activities required for cytokinetic abscission and its regulation, and provide a platform for analyzing ESCRT-III and MIT cofactor interactions in all ESCRT-mediated processes.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Douglas R Mackay
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Elliott L Paine
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Matthew S Miller
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
16
|
Sun L, Qian H, Wu M, Zhao W, Liu M, Wei Y, Zhu X, Li L, Lu J, Lin F, Liu X. A Subunit of ESCRT-III, MoIst1, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:845139. [PMID: 35463448 PMCID: PMC9021896 DOI: 10.3389/fpls.2022.845139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The culprit of rice blast, Magnaporthe oryzae, is a filamentous fungus that seriously affects the yield and quality of rice worldwide. MoIst1, a subunit of ESCRT-III, is involved in identified ubiquitinated proteins and transports them into the intraluminal vesicles of multivesicular bodies (MVBs) for degradation in lysosomes. Here, we identify and characterize MoIst1 in M. oryzae. Disruption of MoIst1 leads to a significant decrease in sporulation and formation of appressoria, defects in response to oxidative stress, cell wall stress, hyperosmotic stress, and reduced pathogenicity. Deletion of MoIst1 also caused the decreased Pmk1 phosphorylation levels, appressorium formation, the delayed translocation and degradation of lipid droplets and glycogen, resulting in a decreased appressorium turgor. In addition, deletion of MoIst1 leads to an abnormal autophagy. In summary, our results indicate that MoIst1 is involved in sporulation, appressorium development, plant penetration, pathogenicity, and autophagy in M. oryzae.
Collapse
Affiliation(s)
- Lixiao Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hui Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Minghua Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenhui Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunyun Wei
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Merigliano C, Burla R, La Torre M, Del Giudice S, Teo H, Liew CW, Chojnowski A, Goh WI, Olmos Y, Maccaroni K, Giubettini M, Chiolo I, Carlton JG, Raimondo D, Vernì F, Stewart CL, Rhodes D, Wright GD, Burke BE, Saggio I. AKTIP interacts with ESCRT I and is needed for the recruitment of ESCRT III subunits to the midbody. PLoS Genet 2021; 17:e1009757. [PMID: 34449766 PMCID: PMC8428793 DOI: 10.1371/journal.pgen.1009757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/09/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission. To complete cell division, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by a machinery named “endosomal sorting complex required for transport” (ESCRT). The dissection of this machinery is important in basic biology and for investigating diseases in which cell division is altered. AKTIP, a factor discovered to be needed for chromosome integrity, shares similarities with a component of the ESCRT machinery named TSG101. Here we present evidence that AKTIP is part of the ESCRT machinery, as TSG101. More specifically, we show that AKTIP physically interacts with members of the ESCRT machinery and forms a characteristic circular structure at the center of the bridge linking the daughter cells. We also show that the reduction of AKTIP levels causes defects in the assembly of the ESCRT machinery and in cell division. In future work, it will be interesting to investigate the association of AKTIP with cancer, because in tumorigenesis cell division is altered and since an implication in cancer has been described for TSG101 and other ESCRT factors.
Collapse
Affiliation(s)
| | - Romina Burla
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | | | - Hsiangling Teo
- Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Chong Wai Liew
- Institute of Structural Biology, Nanyang Technological University, Singapore
| | - Alexandre Chojnowski
- A*STAR, Developmental and Regenerative Biology, ASLR, Agency for Science, Technology and Research, Singapore
- A*STAR, Singapore Nuclear Dynamics and Architecture, ASLR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Wah Ing Goh
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore
| | - Yolanda Olmos
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Klizia Maccaroni
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | | | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Dept., Los Angeles, California, United States of America
| | - Jeremy G. Carlton
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Fiammetta Vernì
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
| | - Colin L. Stewart
- A*STAR, Developmental and Regenerative Biology, ASLR, Agency for Science, Technology and Research, Singapore
- Dept. of Physiology National University of Singapore, Singapore
| | - Daniela Rhodes
- Institute of Structural Biology, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Graham D. Wright
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research, Singapore
| | - Brian E. Burke
- A*STAR, Singapore Nuclear Dynamics and Architecture, ASLR Skin Research Labs, Agency for Science, Technology and Research, Singapore
| | - Isabella Saggio
- Sapienza University Dept. Biology and Biotechnology, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
18
|
Williams LK, Mackay DR, Whitney MA, Couldwell GC, Sundquist WI, Ullman KS. Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing. eLife 2021; 10:63743. [PMID: 34346309 PMCID: PMC8437436 DOI: 10.7554/elife.63743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission. When a cell divides, it must first carefully duplicate its genetic information and package these copies into compartments housed in the two new cells. Errors in this process lead to genetic mistakes that trigger cancer or other harmful biological events. Quality control checks exist to catch errors before it is too late. This includes a final ‘abscission’ checkpoint right before the end of division, when the two new cells are still connected by a thin membrane bridge. If cells fail to pass this ‘no cut’ checkpoint, they delay severing their connection until the mistake is fixed. A group of proteins called ESCRTs is responsible for splitting the two cells apart if nothing is amiss. The abscission checkpoint blocks this process by altering certain proteins in the ESCRT complex, but exactly how this works is not yet clear. To find out more, Strohacker et al. imaged ESCRT factors in a new experimental system in which the abscission checkpoint is active in many cells. This showed that, in this context, certain ESCRT components were rerouted from the thread of membrane between the daughter cells to previously unknown structures, which Strohacker et al. named abscission checkpoint bodies. These entities also sequestered other factors that participate in the abscission checkpoint and factors that contribute to gene expression. These results are key to better understand how cells regulate their division; in particular, they provide a new framework to explore when this process goes wrong and contributes to cancer.
Collapse
Affiliation(s)
- Lauren K Williams
- Biochemistry and Oncological Sciences, University of Utah, Salt Lake City, United States
| | - Douglas R Mackay
- Oncological Sciences, University of Utah, Salt Lake City, United States
| | | | | | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | | |
Collapse
|
19
|
Rivera Del Alamo MM, Katila T, Palviainen M, Reilas T. Effects of intrauterine devices on proteins in the uterine lavage fluid of mares. Theriogenology 2021; 165:1-9. [PMID: 33601088 DOI: 10.1016/j.theriogenology.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/26/2023]
Abstract
Intrauterine devices block luteolysis in cyclic mares, but the underlying mechanism is unknown. To clarify the mechanisms, the protein profile of the endometrial secretome was analyzed using two-dimensional difference gel electrophoresis (2D-DIGE). Twenty-seven mares were classified according to whether they were inseminated (AI) or had an intrauterine device (IUD), a water-filled plastic sphere, inserted into the uterus on Day 3 after ovulation. Uterine lavage fluids were collected on Day 15 from pregnant inseminated mares (AI-P; n = 8), non-pregnant inseminated mares (AI-N; n = 4), and mares with IUD (n = 15). The IUD group was further divided into prolonged (IUD-P; n = 7) and normal luteal phase (IUD-N; n = 8) groups on the basis of ultrasound examinations, serum levels of progesterone and PGFM on Days 14 and 15, and COX-2 results on Day 15. Four mares from each group were selected for the 2D-DIGE analyses. Ten proteins had significantly different abundance among the groups, nine of the proteins were identified. Malate dehydrogenase 1, increased sodium tolerance 1, aldehyde dehydrogenase 1A1, prostaglandin reductase 1, albumin and hemoglobin were highest in pregnant mares; T-complex protein 1 was highest in non-pregnant mares; and annexin A1 and 6-phosphogluconolactonase were highest in IUD mares. The results suggest that the mechanism behind the intrauterine devices is likely related to inflammation.
Collapse
Affiliation(s)
- M M Rivera Del Alamo
- Unit of Reproduction, Faculty of Veterinary Medicine, Travessera Dels Turons S/n Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - T Katila
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - M Palviainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - T Reilas
- Natural Resources Institute Finland (Luke), Jokioinen, Finland.
| |
Collapse
|
20
|
Rath PP, Gourinath S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins 2020; 88:1361-1375. [PMID: 32506560 DOI: 10.1002/prot.25955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Years of evolution have kept actin conserved throughout various clades of life. It is an essential protein starring in many cellular processes. In a primitive eukaryote named Entamoeba histolytica, actin directs the process of phagocytosis. A finely tuned coordination between various actin-binding proteins (ABPs) choreographs this process and forms one of the virulence factors for this protist pathogen. The ever-expanding world of ABPs always has space to accommodate new and varied types of proteins to the earlier existing repertoire. In this article, we report the identification of 390 ABPs from Entamoeba histolytica. These proteins are part of diverse families that have been known to regulate actin dynamics. Most of the proteins are primarily uncharacterized in this organism; however, this study aims to annotate the ABPs based on their domain arrangements. A unique characteristic about some of the ABPs found is the combination of domains present in them unlike any other reported till date. Calponin domain-containing proteins formed the largest group among all types with 38 proteins, followed by 29 proteins with the infamous BAR domain in them, and 23 proteins belonging to actin-related proteins. The other protein families had a lesser number of members. Presence of exclusive domain arrangements in these proteins could guide us to yet unknown actin regulatory mechanisms prevalent in nature. This article is the first step to unraveling them.
Collapse
|
21
|
Abstract
The endosomal sorting complexes required for transport (ESCRTs) I, -II and -III, and their associated factors are a collection of ∼20 proteins in yeast and ∼30 in mammals, responsible for severing membrane necks in processes that range from multivesicular body formation, HIV release and cytokinesis, to plasma and lysosomal membrane repair. ESCRTs are best known for 'reverse-topology' membrane scission, where they act on the inner surface of membrane necks, often when membranes are budded away from the cytosol. These events are driven by membrane-associated assemblies of dozens to hundreds of ESCRT molecules. ESCRT-III proteins form filaments with a variety of geometries and ESCRT-I has now been shown to also form helical structures. The complex nature of the system and the unusual topology of its action has made progress challenging, and led to controversies with regard to its underlying mechanism. This Review will focus on recent advances obtained by structural in vitro reconstitution and in silico mechanistic studies, and places them in their biological context. The field is converging towards a consensus on the broad outlines of a mechanism that is driven by a progressive ATP-dependent treadmilling exchange of ESCRT subunits, as well as compositional change and geometric transitions in ESCRT filaments.
Collapse
Affiliation(s)
- Mark Remec Pavlin
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Pfitzner AK, Mercier V, Jiang X, Moser von Filseck J, Baum B, Šarić A, Roux A. An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission. Cell 2020; 182:1140-1155.e18. [PMID: 32814015 PMCID: PMC7479521 DOI: 10.1016/j.cell.2020.07.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023]
Abstract
The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.
Collapse
Affiliation(s)
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Xiuyun Jiang
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Buzz Baum
- Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anđela Šarić
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
23
|
von Appen A, LaJoie D, Johnson IE, Trnka MJ, Pick SM, Burlingame AL, Ullman KS, Frost A. LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation. Nature 2020; 582:115-118. [PMID: 32494070 PMCID: PMC7321842 DOI: 10.1038/s41586-020-2232-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle1. The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor2-4. Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin5,6, while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline-arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins7,8, suggest that phase separation may contribute to other critical envelope functions, including interphase repair8-13 and chromatin organization14-17.
Collapse
Affiliation(s)
- Alexander von Appen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Dollie LaJoie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Isabel E Johnson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah M Pick
- Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Yagisawa F, Fujiwara T, Takemura T, Kobayashi Y, Sumiya N, Miyagishima SY, Nakamura S, Imoto Y, Misumi O, Tanaka K, Kuroiwa H, Kuroiwa T. ESCRT Machinery Mediates Cytokinetic Abscission in the Unicellular Red Alga Cyanidioschyzon merolae. Front Cell Dev Biol 2020; 8:169. [PMID: 32346536 PMCID: PMC7169423 DOI: 10.3389/fcell.2020.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/17/2022] Open
Abstract
In many eukaryotes, cytokinesis proceeds in two successive steps: first, ingression of the cleavage furrow and second, abscission of the intercellular bridge. In animal cells, the actomyosin contractile ring is involved in the first step, while the endosomal sorting complex required for transport (ESCRT), which participates in various membrane fusion/fission events, mediates the second step. Intriguingly, in archaea, ESCRT is involved in cytokinesis, raising the hypothesis that the function of ESCRT in eukaryotic cytokinesis descended from the archaeal ancestor. In eukaryotes other than in animals, the roles of ESCRT in cytokinesis are poorly understood. To explore the primordial core mechanisms for eukaryotic cytokinesis, we investigated ESCRT functions in the unicellular red alga Cyanidioschyzon merolae that diverged early in eukaryotic evolution. C. merolae provides an excellent experimental system. The cell has a simple organelle composition. The genome (16.5 Mb, 5335 genes) has been completely sequenced, transformation methods are established, and the cell cycle is synchronized by a light and dark cycle. Similar to animal and fungal cells, C. merolae cells divide by furrowing at the division site followed by abscission of the intercellular bridge. However, they lack an actomyosin contractile ring. The proteins that comprise ESCRT-I-IV, the four subcomplexes of ESCRT, are partially conserved in C. merolae. Immunofluorescence of native or tagged proteins localized the homologs of the five ESCRT-III components [charged multivesicular body protein (CHMP) 1, 2, and 4-6], apoptosis-linked gene-2-interacting protein X (ALIX), the ESCRT-III adapter, and the main ESCRT-IV player vacuolar protein sorting (VPS) 4, to the intercellular bridge. In addition, ALIX was enriched around the cleavage furrow early in cytokinesis. When the ESCRT function was perturbed by expressing dominant-negative VPS4, cells with an elongated intercellular bridge accumulated-a phenotype resulting from abscission failure. Our results show that ESCRT mediates cytokinetic abscission in C. merolae. The fact that ESCRT plays a role in cytokinesis in archaea, animals, and early diverged alga C. merolae supports the hypothesis that the function of ESCRT in cytokinesis descended from archaea to a common ancestor of eukaryotes.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa, Japan
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Saitama, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Shizuoka, Japan
| | - Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuko Sumiya
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- JST-Mirai Program, Japan Science and Technology Agency, Saitama, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Shizuoka, Japan
| | - Soichi Nakamura
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Japan Women’s University, Tokyo, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Japan Women’s University, Tokyo, Japan
| |
Collapse
|
25
|
Nguyen HC, Talledge N, McCullough J, Sharma A, Moss FR, Iwasa JH, Vershinin MD, Sundquist WI, Frost A. Membrane constriction and thinning by sequential ESCRT-III polymerization. Nat Struct Mol Biol 2020; 27:392-399. [PMID: 32251413 PMCID: PMC7343221 DOI: 10.1038/s41594-020-0404-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/05/2020] [Indexed: 01/04/2023]
Abstract
The endosomal sorting complexes required for transport (ESCRTs) mediate diverse membrane remodeling events. These typically require ESCRT-III proteins to stabilize negatively curved membranes; however, recent work has indicated that certain ESCRT-IIIs also participate in positive-curvature membrane-shaping reactions. ESCRT-IIIs polymerize into membrane-binding filaments, but the structural basis for negative versus positive membrane remodeling by these proteins remains poorly understood. To learn how certain ESCRT-IIIs shape positively curved membranes, we determined structures of human membrane-bound CHMP1B-only, membrane-bound CHMP1B + IST1, and IST1-only filaments by cryo-EM. Our structures show how CHMP1B first polymerizes into a single-stranded helical filament, shaping membranes into moderate-curvature tubules. Subsequently, IST1 assembles a second strand on CHMP1B, further constricting the membrane tube and reducing its diameter nearly to the fission point. Each step of constriction thins the underlying bilayer, lowering the barrier to membrane fission. Our structures reveal how a two-component, sequential polymerization mechanism drives membrane tubulation, constriction and bilayer thinning.
Collapse
Affiliation(s)
- Henry C Nguyen
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Nathaniel Talledge
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - John McCullough
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Abhimanyu Sharma
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Frank R Moss
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Janet H Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Michael D Vershinin
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Adam Frost
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
26
|
Allison R, Edgar JR, Reid E. Spastin MIT Domain Disease-Associated Mutations Disrupt Lysosomal Function. Front Neurosci 2019; 13:1179. [PMID: 31787869 PMCID: PMC6856053 DOI: 10.3389/fnins.2019.01179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
The hereditary spastic paraplegias (HSPs) are genetic motor neuron diseases characterized by progressive degeneration of corticospinal tract axons. Mutations in SPAST, encoding the microtubule-severing ATPase spastin, are the most common causes of HSP. The broad SPAST mutational spectrum indicates a haploinsufficiency pathogenic mechanism in most cases. Most missense mutations cluster in the ATPase domain, where they disrupt the protein's ability to sever microtubules. However, several putative missense mutations in the protein's microtubule interacting and trafficking (MIT) domain have also been described, but the pathogenicity of these mutations has not been verified with functional studies. Spastin promotes endosomal tubule fission, and defects in this lead to lysosomal enzyme mistrafficking and downstream lysosomal abnormalities. We investigated the function of three disease-associated spastin MIT mutants and found that none was able to promote normal endosomal tubule fission, lysosomal enzyme receptor trafficking, or lysosomal morphology. One of the mutations affected recruitment of spastin to endosomes, a property that requires the canonical function of the MIT domain in binding endosomal sorting complex required for transport (ESCRT)-III proteins. However, the other mutants did not affect spastin's endosomal recruitment, raising the possibility of pathologically important non-canonical roles for the MIT domain. In conclusion, we demonstrate that spastin MIT mutants cause functional abnormalities related to the pathogenesis of HSP. These mutations do not directly affect spastin's microtubule-severing capacity, and so we identify a new molecular pathological mechanism by which spastin mutations may cause disease.
Collapse
Affiliation(s)
- Rachel Allison
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Evan Reid
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Abstract
Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.
Collapse
|
28
|
Petsalaki E, Zachos G. Building bridges between chromosomes: novel insights into the abscission checkpoint. Cell Mol Life Sci 2019; 76:4291-4307. [PMID: 31302750 PMCID: PMC11105294 DOI: 10.1007/s00018-019-03224-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022]
Abstract
In the presence of chromatin bridges, mammalian cells delay completion of cytokinesis (abscission) to prevent chromatin breakage or tetraploidization by regression of the cleavage furrow. This abscission delay is called "the abscission checkpoint" and is dependent on Aurora B kinase. Furthermore, cells stabilize the narrow cytoplasmic canal between the two daughter cells until the DNA bridges are resolved. Impaired abscission checkpoint signaling or unstable intercellular canals can lead to accumulation of DNA damage, aneuploidy, or generation of polyploid cells which are associated with tumourigenesis. However, the molecular mechanisms involved have only recently started to emerge. In this review, we focus on the molecular pathways of the abscission checkpoint and describe newly identified triggers, Aurora B-regulators and effector proteins in abscission checkpoint signaling. We also describe mechanisms that control intercellular bridge stabilization, DNA bridge resolution, or abscission checkpoint silencing upon satisfaction, and discuss how abscission checkpoint proteins can be targeted to potentially improve cancer therapy.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece.
| |
Collapse
|
29
|
Feng Q, Luo Y, Zhang XN, Yang XF, Hong XY, Sun DS, Li XC, Hu Y, Li XG, Zhang JF, Li X, Yang Y, Wang Q, Liu GP, Wang JZ. MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration. Autophagy 2019; 16:641-658. [PMID: 31223056 DOI: 10.1080/15548627.2019.1633862] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Macroautophagy/autophagy deficit induces intracellular MAPT/tau accumulation, the hallmark pathology in Alzheimer disease (AD) and other tauopathies; however, the reverse role of MAPT accumulation in autophagy and neurodegeneration is not clear. Here, we found that overexpression of human wild-type full-length MAPT, which models MAPT pathologies as seen in sporadic AD patients, induced autophagy deficits via repression of autophagosome-lysosome fusion leading to significantly increased LC3 (microtubule-associated protein 1 light chain 3)-II and SQSTM1/p62 (sequestosome 1) protein levels with autophagosome accumulation. At the molecular level, intracellular MAPT aggregation inhibited expression of IST1 (IST1 factor associated with ESCRT-III), a positive modulator for the formation of ESCRT (the Endosomal Sorting Complex Required for Transport) complex that is required for autophagosome-lysosome fusion. Upregulating IST1 in human MAPT transgenic mice attenuated autophagy deficit with reduced MAPT aggregation and ameliorated synaptic plasticity and cognitive functions, while downregulating IST1 per se induced autophagy deficit with impaired synapse and cognitive function in naïve mice. IST1 can facilitate association of CHMP2B (charged multivesicular body protein 2B) and CHMP4B/SNF7-2 to form ESCRT-III complex, while lack of IST1 impeded the complex formation. Finally, we demonstrate that MAPT accumulation suppresses IST1 transcription with the mechanisms involving the ANP32A-regulated mask of histone acetylation. Our findings suggest that the AD-like MAPT accumulation can repress autophagosome-lysosome fusion by deregulating ANP32A-INHAT-IST1-ESCRT-III pathway, which also reveals a vicious cycle of MAPT accumulation and autophagy deficit in the chronic course of AD neurodegeneration.Abbreviations: AAV: adeno-associated virus; Aβ: β-amyloid; aCSF: artificial cerebrospinal fluid; AD: Alzheimer disease; ANP32A: acidic nuclear phosphoprotein 32 family member A; ATG: autophagy related; AVs: autophagic vacuoles; CEBPB: CCAAT enhancer binding protein beta; CHMP: charged multivesicular body protein; DMEM: Dulbecco's modified eagle's medium; EBSS: Earle's balanced salt solution; EGFR: epidermal growth factor receptor; ESCRT: endosomal sorting complex required for transport; fEPSPs: field excitatory postsynaptic potentials; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GSK3B: glycogen synthase kinase 3 beta; HAT: histone acetyl transferase; HDAC: histone deacetylase; INHAT: inhibitor of histone acetyl transferase; IST1: IST1 factor associated with ESCRT-III; LAMP2: lysosomal associated membrane protein 2; LTP: long-term potentiation; MAP1LC3: microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MVB: multivesicular bodies; MWM: Morris water maze; PBS: phosphate-buffered saline solution; RAB7: member RAS oncogene family; SNAREs: soluble N-ethylmaleimide-sensitive factor attachment protein receptors; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Qiong Feng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Luo
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao-Yue Hong
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Shen Sun
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Chun Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Fei Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
| |
Collapse
|
30
|
Banjade S, Tang S, Shah YH, Emr SD. Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly. eLife 2019; 8:e46207. [PMID: 31246173 PMCID: PMC6663469 DOI: 10.7554/elife.46207] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Self-assembly of ESCRT-III complex is a critical step in all ESCRT-dependent events. ESCRT-III hetero-polymers adopt variable architectures, but the mechanisms of inter-subunit recognition in these hetero-polymers to create flexible architectures remain unclear. We demonstrate in vivo and in vitro that the Saccharomyces cerevisiae ESCRT-III subunit Snf7 uses a conserved acidic helix to recruit its partner Vps24. Charge-inversion mutations in this helix inhibit Snf7-Vps24 lateral interactions in the polymer, while rebalancing the charges rescues the functional defects. These data suggest that Snf7-Vps24 assembly occurs through electrostatic interactions on one surface, rather than through residue-to-residue specificity. We propose a model in which these cooperative electrostatic interactions in the polymer propagate to allow for specific inter-subunit recognition, while sliding of laterally interacting polymers enable changes in architecture at distinct stages of vesicle biogenesis. Our data suggest a mechanism by which interaction specificity and polymer flexibility can be coupled in membrane-remodeling heteropolymeric assemblies.
Collapse
Affiliation(s)
- Sudeep Banjade
- Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaUnited States
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Shaogeng Tang
- Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaUnited States
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Yousuf H Shah
- Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaUnited States
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Scott D Emr
- Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaUnited States
- Department of Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| |
Collapse
|
31
|
Zhang X, Chen W, Yin N, Dong L, Fu M, Zhan Q, Tong T. Regulation of OLC1 protein expression by the anaphase-promoting complex. Oncol Lett 2019; 17:2639-2646. [PMID: 30854039 PMCID: PMC6366124 DOI: 10.3892/ol.2019.9881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/10/2017] [Indexed: 12/11/2022] Open
Abstract
Overexpressed in lung cancer 1 (OLC1) is a potential oncogene overexpressed in human lung cancer and in other types of malignant tumor. The elevated expression of OLC1 contributes to tumor genesis and progression. However, the mechanisms regulating the expression of OLC1 remain unclear. In the present study, using lung and esophageal cancer cell lines, it was demonstrated that OLC1 was a short-lived, cell cycle-dependent protein regulated through the anaphase-promoting complex/cyclosome (APC/c)-ubiquitin pathway by directly interacting with the APC2 subunit. Through the action of two co activator proteins, cadherin 1 (Cdh1) and cell-division cycle protein 20 (Cdc20), the OLC1 protein was ubiquitinated and degraded. Following treatment with a proteasome inhibitor, OLC1 protein levels were elevated. Inversely, the upregulation of Cdh1 and Cdc20 facilitated OLC1 degradation. By inducing point mutations of the assumed degradation motif of OLC1, it was revealed that an intact destruction (D)-box was necessary. As expected, the D-box-mutated OLC1 exhibited a higher capacity for promoting cell growth and clone formation. Collectively, these findings indicate that the expression of the candidate oncogene OLC1 is cell cycle-dependent and is regulated by an APC/c mediated ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Xiaojing Zhang
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China.,Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Wei Chen
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Ning Yin
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Lijia Dong
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| | - Tong Tong
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Institute and Cancer Hospital, Beijing 100021, P.R. China
| |
Collapse
|
32
|
Nonenvelopment Role for the ESCRT-III Complex during Human Cytomegalovirus Infection. J Virol 2018; 92:JVI.02096-17. [PMID: 29618648 DOI: 10.1128/jvi.02096-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Secondary envelopment of human cytomegalovirus (HCMV) occurs through a mechanism that is poorly understood. Many enveloped viruses utilize the endosomal sorting complexes required for transport (ESCRTs) for viral budding and envelopment. Although there are conflicting reports on the role of the ESCRT AAA ATPase protein VPS4 in HCMV infection, VPS4 may act in an envelopment role similar to its function during other viral infections. Because VPS4 is normally recruited by the ESCRT-III complex, we hypothesized that ESCRT-III subunits would also be required for HCMV infection. We investigated the role of ESCRT-III, the core ESCRT scission complex, during the late stages of infection. We show that inducible expression of dominant negative ESCRT-III subunits during infection blocks endogenous ESCRT function but does not inhibit virus production. We also show that HCMV forms enveloped intracellular and extracellular virions in the presence of dominant negative ESCRT-III subunits, suggesting that ESCRT-III is not involved in the envelopment of HCMV. We also found that as with ESCRT-III, inducible expression of a dominant negative form of VPS4A did not inhibit the envelopment of virions or reduce virus titers. Thus, HCMV does not require the ESCRTs for secondary envelopment. However, we found that ESCRT-III subunits are required for efficient virus spread. This suggests a role for ESCRT-III during the spread of HCMV that is independent of viral envelopment.IMPORTANCE Human cytomegalovirus (HCMV) is a prevalent opportunistic pathogen in the human population. For neonatal and immunocompromised patients, HCMV infection can cause severe and possibly life-threatening complications. It is important to define the mechanisms of the viral replication cycle in order to identify potential targets for new therapies. Secondary envelopment, or acquisition of the membrane envelope, of HCMV is a mechanism that needs further study. Using an inducible fibroblast system to carefully control for the toxicity associated with blocking ESCRT-III function, this study determines that the ESCRT proteins are not required for viral envelopment. However, the study does discover a nonenvelopment role for the ESCRT-III complex in the efficient spread of the virus. Thus, this study advances our understanding of an important process essential for the replication of HCMV.
Collapse
|
33
|
Caspi Y, Dekker C. Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery. Front Microbiol 2018; 9:174. [PMID: 29551994 PMCID: PMC5840170 DOI: 10.3389/fmicb.2018.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Cell division in most prokaryotes is mediated by the well-studied fts genes, with FtsZ as the principal player. In many archaeal species, however, division is orchestrated differently. The Crenarchaeota phylum of archaea features the action of the three proteins, CdvABC. This Cdv system is a unique and less-well-studied division mechanism that merits closer inspection. In vivo, the three Cdv proteins form a composite band that contracts concomitantly with the septum formation. Of the three Cdv proteins, CdvA is the first to be recruited to the division site, while CdvB and CdvC are thought to participate in the active part of the Cdv division machinery. Interestingly, CdvB shares homology with a family of proteins from the eukaryotic ESCRT-III complex, and CdvC is a homolog of the eukaryotic Vps4 complex. These two eukaryotic complexes are key factors in the endosomal sorting complex required for transport (ESCRT) pathway, which is responsible for various budding processes in eukaryotic cells and which participates in the final stages of division in Metazoa. There, ESCRT-III forms a contractile machinery that actively cuts the membrane, whereas Vps4, which is an ATPase, is necessary for the turnover of the ESCRT membrane-abscission polymers. In contrast to CdvB and CdvC, CdvA is unique to the archaeal Crenarchaeota and Thaumarchaeota phyla. The Crenarchaeota division mechanism has often been suggested to represent a simplified version of the ESCRT division machinery thus providing a model system to study the evolution and mechanism of cell division in higher organisms. However, there are still many open questions regarding this parallelism and the division mechanism of Crenarchaeota. Here, we review the existing data on the role of the Cdv proteins in the division process of Crenarchaeota as well as concisely review the ESCRT system in eukaryotes. We survey the similarities and differences between the division and abscission mechanisms in the two cases. We suggest that the Cdv system functions differently in archaea than ESCRT does in eukaryotes, and that, unlike the eukaryotic case, the Cdv system's main function may be related to surplus membrane invagination and cell-wall synthesis.
Collapse
Affiliation(s)
- Yaron Caspi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
34
|
Capping protein regulates actin dynamics during cytokinetic midbody maturation. Proc Natl Acad Sci U S A 2018; 115:2138-2143. [PMID: 29439200 DOI: 10.1073/pnas.1722281115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During cytokinesis, a cleavage furrow generated by actomyosin ring contraction is restructured into the midbody, a platform for the assembly of the abscission machinery that controls the final separation of daughter cells. The polymerization state of F-actin is important during assembly, ingression, disassembly, and closure of the contractile ring and for the cytoskeletal remodeling that accompanies midbody formation and progression to abscission. Actin filaments must be cleared from the abscission sites before the final cut can take place. Although many conserved proteins interact with and influence the polymerization state of actin filaments, it is poorly understood how they regulate cytokinesis in higher eukaryotes. We report here that the actin capping protein (CP), a barbed end actin binding protein, participates in the control of actin polymerization during later stages of cytokinesis in human cells. Cells depleted of CP furrow and form early midbodies, but they fail cytokinesis. Appropriate recruitment of the ESCRT-III abscission machinery to the midbody is impaired, preventing the cell from progressing to the abscission stage. To generate actin filaments of optimal length, different actin nucleators, such as formins, balance CP's activity. Loss of actin capping activity leads to excessive accumulation of formin-based linear actin filaments. Depletion of the formin FHOD1 results in partial rescue of CP-induced cytokinesis failure, suggesting that it can antagonize CP activity during midbody maturation. Our work suggests that the actin cytoskeleton is remodeled in a stepwise manner during cytokinesis, with different regulators at different stages required for successful progression to abscission.
Collapse
|
35
|
|
36
|
Frankel EB, Shankar R, Moresco JJ, Yates JR, Volkmann N, Audhya A. Ist1 regulates ESCRT-III assembly and function during multivesicular endosome biogenesis in Caenorhabditis elegans embryos. Nat Commun 2017; 8:1439. [PMID: 29129923 PMCID: PMC5682282 DOI: 10.1038/s41467-017-01636-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/03/2017] [Indexed: 12/23/2022] Open
Abstract
Degradation of most integral membrane proteins is directed by the endosomal sorting complex required for transport (ESCRT) machinery, which selectively targets ubiquitin-modified cargoes into intralumenal vesicles (ILVs) within multivesicular endosomes (MVEs). To better understand the mechanisms underlying ESCRT-mediated formation of ILVs, we exploited the rapid, de novo biogenesis of MVEs during the oocyte-to-embryo transition in C. elegans. In contrast to previous models suggesting that ILVs form individually, we demonstrate that they remain tethered to one another subsequent to internalization, arguing that they bud continuously from stable subdomains. In addition, we show that membrane bending and ILV formation are directed specifically by the ESCRT-III complex in vivo in a manner regulated by Ist1, which promotes ESCRT-III assembly and inhibits the incorporation of upstream ESCRT components into ILVs. Our findings underscore essential actions for ESCRT-III in membrane remodeling, cargo selection, and cargo retention, which act repetitively to maximize the rate of ILV formation.
Collapse
Affiliation(s)
- E B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI, 53706, USA
| | - Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI, 53706, USA
| | - James J Moresco
- The Scripps Research Institute, 10550 North Torrey Pines Rd., Department of Chemical Physiology, La Jolla, CA, 92037, USA
| | - John R Yates
- The Scripps Research Institute, 10550 North Torrey Pines Rd., Department of Chemical Physiology, La Jolla, CA, 92037, USA
| | - Niels Volkmann
- Bioinformatics and Structural Biology Program, Sanford-Burnham Medical Research Institute, 10901N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
37
|
Stoten CL, Carlton JG. ESCRT-dependent control of membrane remodelling during cell division. Semin Cell Dev Biol 2017; 74:50-65. [PMID: 28843980 PMCID: PMC6015221 DOI: 10.1016/j.semcdb.2017.08.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/07/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) proteins form an evolutionarily conserved membrane remodelling machinery. Identified originally for their role in cargo sorting and remodelling of endosomal membranes during yeast vacuolar sorting, an extensive body of work now implicates a sub-complex of this machinery (ESCRT-III), as a transplantable membrane fission machinery that is dispatched to various cellular locations to achieve a topologically unique membrane separation. Surprisingly, several ESCRT-III-regulated processes occur during cell division, when cells undergo a dramatic and co-ordinated remodelling of their membranes to allow the physical processes of division to occur. The ESCRT machinery functions in regeneration of the nuclear envelope during open mitosis and in the abscission phase of cytokinesis, where daughter cells are separated from each other in the last act of division. Roles for the ESCRT machinery in cell division are conserved as far back as Archaea, suggesting that the ancestral role of these proteins was as a membrane remodelling machinery that facilitated division and that was co-opted throughout evolution to perform a variety of other cell biological functions. Here, we will explore the function and regulation of the ESCRT machinery in cell division.
Collapse
|
38
|
Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans 2017; 45:613-634. [PMID: 28620025 DOI: 10.1042/bst20160479] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
Abstract
The vast expansion in recent years of the cellular processes promoted by the endosomal sorting complex required for transport (ESCRT) machinery has reinforced its identity as a modular system that uses multiple adaptors to recruit the core membrane remodelling activity at different intracellular sites and facilitate membrane scission. Functional connections to processes such as the aurora B-dependent abscission checkpoint also highlight the importance of the spatiotemporal regulation of the ESCRT machinery. Here, we summarise the role of ESCRTs in viral budding, and what we have learned about the ESCRT pathway from studying this process. These advances are discussed in the context of areas of cell biology that have been transformed by research in the ESCRT field, including cytokinetic abscission, nuclear envelope resealing and plasma membrane repair.
Collapse
|
39
|
LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells. Proc Natl Acad Sci U S A 2017; 114:E2166-E2175. [PMID: 28242692 PMCID: PMC5358359 DOI: 10.1073/pnas.1613916114] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanism for sealing newly formed nuclear envelopes was unclear until the recent discovery that endosomal sorting complexes required for transport III (ESCRT-III) proteins mediate this process. Cmp7p (CHMP7), in particular, was identified as an early acting factor that recruits other ESCRT-III proteins to the nuclear envelope. A fundamental aspect of the varied roles of ESCRT factors is their recruitment by site-specific adaptors, yet the central question of how the ESCRT machinery is targeted to nuclear membranes has remained outstanding. Our study identifies the inner nuclear membrane protein LEM2 as a key, conserved factor that recruits CHMP7 and downstream ESCRT-III proteins to breaches in the nuclear envelope. Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope.
Collapse
|
40
|
Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Trends Biochem Sci 2017; 42:42-56. [DOI: 10.1016/j.tibs.2016.08.016] [Citation(s) in RCA: 300] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
41
|
Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast. J Mol Biol 2016; 428:2392-2404. [DOI: 10.1016/j.jmb.2016.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 02/02/2023]
|
42
|
Tamkovich SN, Serdukov DS, Tutanov OS, Duzhak TG, Laktionov PP. [Protein Identification of Blood Nucleoprotein Complexes]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:686-95. [PMID: 27125022 DOI: 10.1134/s1068162015060163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating nucleoprotein complexes were isolated-from blood plasma by affinity chromatography using immobilized polyclonal anti-histone antibodies. It was found, that the main part of DNA from histone-contained nucleoprotein complexes have size 170-180 b.p., in blood of breast cancer patients DNA with size 170-180 b.p. and DNA more then 6 k.b.p. are presented in equal quantity. Proteins from circulating nucleoprotein complexes were identified using MALDI-TOF mass-spectrometry. It was shown that nucleoprotein complexes from blood of breast cancer patients contain tumor-specific proteins, such as LDOC1L, ADP/ATP translocase 3 and Lamellipodin. These data indicate, that a part of circulating extracellular DNA have tumor origin.
Collapse
|
43
|
Buono RA, Paez-Valencia J, Miller ND, Goodman K, Spitzer C, Spalding EP, Otegui MS. Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development. PLANT PHYSIOLOGY 2016; 171:251-64. [PMID: 26983994 PMCID: PMC4854716 DOI: 10.1104/pp.16.00240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/15/2016] [Indexed: 05/19/2023]
Abstract
SKD1 is a core component of the mechanism that degrades plasma membrane proteins via the Endosomal Sorting Complex Required for Transport (ESCRT) pathway. Its ATPase activity and endosomal recruitment are regulated by the ESCRT components LIP5 and IST1. How LIP5 and IST1 affect ESCRT-mediated endosomal trafficking and development in plants is not known. Here we use Arabidopsis mutants to demonstrate that LIP5 controls the constitutive degradation of plasma membrane proteins and the formation of endosomal intraluminal vesicles. Although lip5 mutants were able to polarize the auxin efflux facilitators PIN2 and PIN3, both proteins were mis-sorted to the tonoplast in lip5 root cells. In addition, lip5 root cells over-accumulated PIN2 at the plasma membrane. Consistently with the trafficking defects of PIN proteins, the lip5 roots showed abnormal gravitropism with an enhanced response within the first 4 h after gravistimulation. LIP5 physically interacts with IST1-LIKE1 (ISTL1), a protein predicted to be the Arabidopsis homolog of yeast IST1. However, we found that Arabidopsis contains 12 genes coding for predicted IST1-domain containing proteins (ISTL1-12). Within the ISTL1-6 group, ISTL1 showed the strongest interaction with LIP5, SKD1, and the ESCRT-III-related proteins CHMP1A in yeast two hybrid assays. Through the analysis of single and double mutants, we found that the synthetic interaction of LIP5 with ISTL1, but not with ISTL2, 3, or 6, is essential for normal plant growth, repression of spontaneous cell death, and post-embryonic lethality.
Collapse
Affiliation(s)
- Rafael Andrade Buono
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julio Paez-Valencia
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan D Miller
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kaija Goodman
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Christoph Spitzer
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Edgar P Spalding
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Department of Botany (R.A.B., J.P.-V., N.D.M., K.G., C.S., E.P.S., M.S.O.), R.M. Bock Laboratories of Cell and Molecular Biology (R.A.B, J.P.-V., K.G., M.S.O.), and Department of Genetics (M.S.O.), University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
44
|
Alonso Y Adell M, Migliano SM, Teis D. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. FEBS J 2016; 283:3288-302. [PMID: 26910595 DOI: 10.1111/febs.13688] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Complex molecular machineries bud, scission and repair cellular membranes. Components of the multi-subunit endosomal sorting complex required for transport (ESCRT) machinery are enlisted when multivesicular bodies are generated, extracellular vesicles are formed, the plasma membrane needs to be repaired, enveloped viruses bud out of host cells, defective nuclear pores have to be cleared, the nuclear envelope must be resealed after mitosis and for final midbody abscission during cytokinesis. While some ESCRT components are only required for specific processes, the assembly of ESCRT-III polymers on target membranes and the action of the AAA-ATPase Vps4 are mandatory for every process. In this review, we summarize the current knowledge of structural and functional features of ESCRT-III/Vps4 assemblies in the growing pantheon of ESCRT-dependent pathways. We describe specific recruitment processes for ESCRT-III to different membranes, which could be useful to selectively inhibit ESCRT function during specific processes, while not affecting other ESCRT-dependent processes. Finally, we speculate how ESCRT-III and Vps4 might function together and highlight how the characterization of their precise spatiotemporal organization will improve our understanding of ESCRT-mediated membrane budding and scission in vivo.
Collapse
Affiliation(s)
| | - Simona M Migliano
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria
| | - David Teis
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Austria.
| |
Collapse
|
45
|
Olmos Y, Carlton JG. The ESCRT machinery: new roles at new holes. Curr Opin Cell Biol 2016; 38:1-11. [PMID: 26775243 PMCID: PMC5023845 DOI: 10.1016/j.ceb.2015.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023]
Abstract
The ESCRT machinery drives a diverse collection of membrane remodeling events, including multivesicular body biogenesis, release of enveloped retroviruses and both reformation of the nuclear envelope and cytokinetic abscission during mitotic exit. These events share the requirement for a topologically equivalent membrane remodeling for their completion and the cells deployment of the ESCRT machinery in these different contexts highlights its functionality as a transposable membrane-fission machinery. Here, we will examine recent data describing ESCRT-III dependent membrane remodeling and explore new roles for the ESCRT-III complex at the nuclear envelope.
Collapse
Affiliation(s)
- Y Olmos
- Division of Cancer Studies, Section of Cell Biology and Imaging, King's College London, London SE1 1UL, United Kingdom
| | - J G Carlton
- Division of Cancer Studies, Section of Cell Biology and Imaging, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
46
|
Wi SM, Min Y, Lee KY. Charged MVB protein 5 is involved in T-cell receptor signaling. Exp Mol Med 2016; 48:e206. [PMID: 26821576 PMCID: PMC4892854 DOI: 10.1038/emm.2015.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/07/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022] Open
Abstract
Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)–mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5KD) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5KD Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5KD Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling.
Collapse
Affiliation(s)
- Sae Mi Wi
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yoon Min
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ki-Young Lee
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
47
|
Audsley MD, Marsh GA, Lieu KG, Tachedjian M, Joubert DA, Wang LF, Jans DA, Moseley GW. The immune evasion function of J and Beilong virus V proteins is distinct from that of other paramyxoviruses, consistent with their inclusion in the proposed genus Jeilongvirus. J Gen Virol 2015; 97:581-592. [PMID: 26703878 DOI: 10.1099/jgv.0.000388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IFN-antagonist function is a major determinant of pathogenicity and cross-species infection by viruses, but remains poorly defined for many potentially zoonotic viruses resident in animal species. The paramyxovirus family contains several zoonotic viruses, including highly pathogenic viruses such as Nipah virus and Hendra virus, and an increasing number of largely uncharacterized animal viruses. Here, we report the characterization of IFN antagonism by the rodent viruses J virus (JPV) and Beilong virus (BeiPV) of the proposed genus Jeilongvirus of the paramyxoviruses. Infection of cells by JPV and BeiPV was found to inhibit IFN-activated nuclear translocation of signal transducer and activator of transcription 1 (STAT1). However, in contrast to most other paramyxoviruses, the JPV and BeiPV V proteins did not interact with or inhibit signalling by STAT1 or STAT2, suggesting that JPV/BeiPV use an atypical V protein-independent strategy to target STATs, consistent with their inclusion in a separate genus. Nevertheless, the V proteins of both viruses interacted with melanoma differentiation-associated protein 5 (MDA5) and robustly inhibited MDA5-dependent activation of the IFN-β promoter. This supports a growing body of evidence that MDA5 is a universal target of paramyxovirus V proteins, such that the V-MDA5 interaction represents a potential target for broad-spectrum antiviral approaches.
Collapse
Affiliation(s)
- Michelle D Audsley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Glenn A Marsh
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory (AAHL), Geelong, Victoria 3220, Australia
| | - Kim G Lieu
- Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Mary Tachedjian
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory (AAHL), Geelong, Victoria 3220, Australia
| | - D Albert Joubert
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory (AAHL), Geelong, Victoria 3220, Australia
| | - Lin-Fa Wang
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory (AAHL), Geelong, Victoria 3220, Australia.,Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 169857Singapore
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Department of Biochemistry and Molecular Biology, BIO21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
48
|
Monroe N, Hill CP. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines. J Mol Biol 2015; 428:1897-911. [PMID: 26555750 DOI: 10.1016/j.jmb.2015.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
Meiotic clade AAA ATPases (ATPases associated with diverse cellular activities), which were initially grouped on the basis of phylogenetic classification of their AAA ATPase cassette, include four relatively well characterized family members, Vps4, spastin, katanin and fidgetin. These enzymes all function to disassemble specific polymeric protein structures, with Vps4 disassembling the ESCRT-III polymers that are central to the many membrane-remodeling activities of the ESCRT (endosomal sorting complexes required for transport) pathway and spastin, katanin p60 and fidgetin affecting multiple aspects of cellular dynamics by severing microtubules. They share a common domain architecture that features an N-terminal MIT (microtubule interacting and trafficking) domain followed by a single AAA ATPase cassette. Meiotic clade AAA ATPases function as hexamers that can cycle between the active assembly and inactive monomers/dimers in a regulated process, and they appear to disassemble their polymeric substrates by translocating subunits through the central pore of their hexameric ring. Recent studies with Vps4 have shown that nucleotide-induced asymmetry is a requirement for substrate binding to the pore loops and that recruitment to the protein lattice via MIT domains also relieves autoinhibition and primes the AAA ATPase cassettes for substrate binding. The most striking, unifying feature of meiotic clade AAA ATPases may be their MIT domain, which is a module that is found in a wide variety of proteins that localize to ESCRT-III polymers. Spastin also displays an adjacent microtubule binding sequence, and the presence of both ESCRT-III and microtubule binding elements may underlie the recent findings that the ESCRT-III disassembly function of Vps4 and the microtubule-severing function of spastin, as well as potentially katanin and fidgetin, are highly coordinated.
Collapse
Affiliation(s)
- Nicole Monroe
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| |
Collapse
|
49
|
Tan J, Davies BA, Payne JA, Benson LM, Katzmann DJ. Conformational Changes in the Endosomal Sorting Complex Required for the Transport III Subunit Ist1 Lead to Distinct Modes of ATPase Vps4 Regulation. J Biol Chem 2015; 290:30053-65. [PMID: 26515066 DOI: 10.1074/jbc.m115.665604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
Intralumenal vesicle formation of the multivesicular body is a critical step in the delivery of endocytic cargoes to the lysosome for degradation. Endosomal sorting complex required for transport III (ESCRT-III) subunits polymerize on endosomal membranes to facilitate membrane budding away from the cytoplasm to generate these intralumenal vesicles. The ATPase Vps4 remodels and disassembles ESCRT-III, but the manner in which Vps4 activity is coordinated with ESCRT-III function remains unclear. Ist1 is structurally homologous to ESCRT-III subunits and has been reported to inhibit Vps4 function despite the presence of a microtubule-interacting and trafficking domain-interacting motif (MIM) capable of stimulating Vps4 in the context of other ESCRT-III subunits. Here we report that Ist1 inhibition of Vps4 ATPase activity involves two elements in Ist1: the MIM itself and a surface containing a conserved ELYC sequence. In contrast, the MIM interaction, in concert with a more open conformation of the Ist1 core, resulted in stimulation of Vps4. Addition of the ESCRT-III subunit binding partner of Ist1, Did2, also converted Ist1 from an inhibitor to a stimulator of Vps4 ATPase activity. Finally, distinct regulation of Vps4 by Ist1 corresponded with altered ESCRT-III disassembly in vitro. Together, these data support a model in which Ist1-Did2 interactions during ESCRT-III polymerization coordinate Vps4 activity with the timing of ESCRT-III disassembly.
Collapse
Affiliation(s)
- Jason Tan
- From the Biochemistry and Molecular Biology Department, Mayo Graduate School, and
| | | | | | - Linda M Benson
- Mayo Medical Genome Facility Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
50
|
Evidence for a Nonendosomal Function of the Saccharomyces cerevisiae ESCRT-III-Like Protein Chm7. Genetics 2015; 201:1439-52. [PMID: 26510789 DOI: 10.1534/genetics.115.178939] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022] Open
Abstract
Endosomal sorting complex required for transport (ESCRT) proteins are involved in a number of cellular processes, such as endosomal protein sorting, HIV budding, cytokinesis, plasma membrane repair, and resealing of the nuclear envelope during mitosis. Here we explored the function of a noncanonical member of the ESCRT-III protein family, the Saccharomyces cerevisiae ortholog of human CHMP7. Very little is known about this protein. In silico analysis predicted that Chm7 (yeast ORF YJL049w) is a fusion of an ESCRT-II and ESCRT-III-like domain, which would suggest a role in endosomal protein sorting. However, our data argue against a role of Chm7 in endosomal protein sorting. The turnover of the endocytic cargo protein Ste6 and the vacuolar protein sorting of carboxypeptidase S (CPS) were not affected by CHM7 deletion, and Chm7 also responded very differently to a loss in Vps4 function compared to a canonical ESCRT-III protein. Our data indicate that the Chm7 function could be connected to the endoplasmic reticulum (ER). In line with a function at the ER, we observed a strong negative genetic interaction between the deletion of a gene function (APQ12) implicated in nuclear pore complex assembly and messenger RNA (mRNA) export and the CHM7 deletion. The patterns of genetic interactions between the APQ12 deletion and deletions of ESCRT-III genes, two-hybrid interactions, and the specific localization of mCherry fusion proteins are consistent with the notion that Chm7 performs a novel function at the ER as part of an alternative ESCRT-III complex.
Collapse
|