1
|
Shin JH, Kim MJ, Kim JY, Choi B, Kang Y, Kim SH, Lee HJ, Kwon D, Cho YB, Kim KK, Chun E, Lee KY. USP21-EGFR signaling axis is functionally implicated in metastatic colorectal cancer. Cell Death Discov 2024; 10:492. [PMID: 39695128 DOI: 10.1038/s41420-024-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
The emerging role of ubiquitin-specific peptidase 21 (USP21) in stabilizing Fra-1 (FOSL1) highlights its involvement in promoting colorectal cancer (CRC) metastasis. Additionally, a reciprocal link between EGFR signaling and Fra-1 activation has been identified, mediated through matrix metalloproteinases (MMPs). However, the functional implications of the USP21-EGFR signaling axis in metastatic CRC (mCRC) are not fully understood. To investigate the clinical correlation between USP21 and EGFR expression, RNA-Seq data from tumor tissues (n = 27) and matched normal tissues (n = 27) of 27 mCRC patients were analyzed. Functional studies were performed, including the use of CRISPR/Cas9 to generate USP21-knockout (USP21-KO) CRC cells, in vitro assays for cancer progression and tumor formation, in vivo xenograft assays in NSG mice. Additionally, the therapeutic effect of the USP21 inhibitor, BAY-805, was evaluated. We found that elevated levels of USP21 and EGFR expression in mCRC patients were associated with poorer survival outcomes. Mechanistically, USP21 was found to enhance EGFR stability by deubiquitinating EGFR, leading to reduced EGFR degradation. USP21-KO colon cancer cells exhibited significantly reduced proliferation, migration, colony formation, and 3D tumor spheroid formation in response to EGF. Furthermore, the tumorigenic activity in vivo was markedly diminished in NSG mice xenografted with USP21-KO colon cancer cells. Importantly, BAY-805 demonstrated a notable inhibitory effect on the formation of 3D tumor spheroids in colorectal cancer cells stimulated with EGF. These findings suggest that USP21 could be a valuable therapeutic target and predictive biomarker for managing mCRC driven by EGF.
Collapse
Affiliation(s)
- Ji Hye Shin
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Mi-Jeong Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ji Young Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Bongkum Choi
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Bioanalysis Center, GenNBio Inc., Seongnam, Republic of Korea
| | - Yeeun Kang
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seo Hyun Kim
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ha-Jeong Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dohee Kwon
- Bioanalysis Center, GenNBio Inc., Seongnam, Republic of Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong Kyu Kim
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunyoung Chun
- Research and Development Center, CHA Vaccine Institute, Seongnam, Republic of Korea.
| | - Ki-Young Lee
- Department of Immunology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Samsung Medical Center, Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Metabiohealth, Sungkyun Convergence Institute, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
2
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
3
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
4
|
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers (Basel) 2020; 12:E1579. [PMID: 32549302 PMCID: PMC7352412 DOI: 10.3390/cancers12061579] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
5
|
The Ubiquitin-Specific Protease 18 Promotes Hepatitis C Virus Production by Increasing Viral Infectivity. Mediators Inflamm 2019; 2019:3124745. [PMID: 31871427 PMCID: PMC6906844 DOI: 10.1155/2019/3124745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background and Aims Ubiquitin-specific protease 18 (USP18) is involved in immunoregulation and response to interferon- (IFN-) based treatment in patients chronically infected with hepatitis C virus (HCV). We investigated whether and how its upregulation alters HCV infection. Methods Overexpression of wild-type (USP18 WT) or catalytically inactive mutant (USP18 C64S) USP18 was examined for effects on HCV replication in the absence and presence of IFNα or IFNλ using both the HCV-infective model and replicon cells. The IFN signaling pathway was assessed via STAT1 phosphorylation (western blot) and downstream ISG expression (real-time PCR). Mechanistic roles were sought by quantifying microRNA-122 levels and J6/JFH1 infectivity of Huh7.5 cells. Results We found that overexpression of either USP18 WT or USP18 C64S stimulated HCV production and blunted the anti-HCV effect of IFNα and IFNλ in the infective model but not in the replicon system. Overexpressed USP18 showed no effect on Jak/STAT signaling nor on microRNA-122 expression. However, USP18 upregulation markedly increased J6/JFH1 infectivity and promoted the expression of the key HCV entry factor CD81 on Huh7.5 cells. Conclusions USP18 stimulates HCV production and blunts the effect of both type I and III IFNs by fostering a cellular environment characterized by upregulation of CD81, promoting virus entry and infectivity.
Collapse
|
6
|
Tan Y, Zhou G, Wang X, Chen W, Gao H. USP18 promotes breast cancer growth by upregulating EGFR and activating the AKT/Skp2 pathway. Int J Oncol 2018; 53:371-383. [PMID: 29749454 DOI: 10.3892/ijo.2018.4387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that ubiquitin-specific peptidase (USP)18 may act as an oncogene in various types of cancer. Although the role of USP18 in breast cancer cell lines has been elucidated, the underlying mechanisms and clinical role of USP18 in breast cancer are currently not well understood. The bioinformatics analysis and experimental results of the present study demonstrated that aberrant promoter methylation led to increased expression of USP18 in breast cancer. In addition, correlation analysis suggested that a negative correlation between methylation and USP18 mRNA expression was observed in The Cancer Genome Atlas database. USP18 promoted cell proliferation, colony formation and cell cycle progression in vitro. Furthermore, the Gene Set Enrichment Analysis results demonstrated that USP18 may be negatively associated with apoptosis in patients with breast cancer. Bioinformatics analysis results indicated that USP18 was also revealed to be associated with the protein kinase B (AKT) signaling pathway and mammary tumorigenesis in vivo. In addition, the results indicated that USP18 may promote the epidermal growth factor (EGF)-mediated EGF receptor (EGFR)/AKT/S‑phase kinase-associated protein 2 (Skp2) pathway by upregulating EGFR and Skp2 in a AKT/forkhead box O3-dependent manner in breast cancer. The results of bioinformatics analysis revealed that increased USP18 expression was associated with a higher TNM stage and unfavorable prognosis in clinical patients. USP18 was also significantly enhanced in patients with human epidermal growth factor receptor 2-positive breast cancer; furthermore, Kaplan‑Meier curve demonstrated that combining USP18 and Skp2 expression improved prognostic capability in breast cancer. Taken together, these results suggested that USP18 may serve a key role in breast cancer development by upregulating EGFR and subsequently activating the AKT/Skp2 feedback loop pathway. The role of USP18 in breast cancer provides a novel insight into the clinical application of the USP18/AKT/Skp2 pathway.
Collapse
Affiliation(s)
- Yawen Tan
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Guanglin Zhou
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xianming Wang
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Weicai Chen
- Department of Breast and Thyroid Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Haidong Gao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
7
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
8
|
Abstract
Although growing numbers of oncoproteins and pro-metastatic proteins have been extensively characterized, many of these tumor-promoting proteins are not good drug targets, which represent a major barrier to curing breast cancer and other cancers. There is a need, therefore, for alternative therapeutic approaches to destroying cancer-promoting proteins. The human genome encodes approximately 100 deubiquitinating enzymes (DUBs, also called deubiquitinases), which are amenable to pharmacologic inhibition by small molecules. By removing monoubiquitin or polyubiquitin chains from the target protein, DUBs can modulate the degradation, localization, activity, trafficking, and recycling of the substrate, thereby contributing substantially to the regulation of cancer proteins and pathways. Targeting certain DUBs may lead to destabilization or functional inactivation of some key oncoproteins or pro-metastatic proteins, including non-druggable ones, which will provide therapeutic benefits to cancer patients. In breast cancer, growing numbers of DUBs are found to be aberrantly expressed. Depending on their substrates, specific DUBs can either promote or suppress mammary tumors. In this article, we review the role and mechanisms of action of DUBs in breast cancer and discuss the potential of targeting DUBs for cancer treatment.
Collapse
|
9
|
Cai J, Liu T, Jiang X, Guo C, Liu A, Xiao X. Downregulation of USP18 inhibits growth and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma cells by suppressing BCL2L1. Exp Cell Res 2017; 358:315-322. [PMID: 28709980 DOI: 10.1016/j.yexcr.2017.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 02/04/2023]
Abstract
Ubiquitin-specific peptidase 18 (USP18) is closely related with hepatitis B virus (HBV), which has been involved in tumourigenesis. However, there has been little research into the role of USP18 on the progression of hepatocellular carcinoma (HCC), especially in HBV-related HCC. In present study, we found that USP18 expression was aberrantly elevated in HCC tissues than adjacent non-tumour tissues. Importantly, USP18 expression was higher in HBV-related HCC cell lines (HepG2.2.15 and Hep3B) than HBV-unrelated HCC cell lines. Furthermore, knockdown of USP18 significantly suppressed tumour cell proliferation in vitro and tumour growth in vivo, whereas overexpression of USP18 promoted HCC cells growth. Moreover, our experimental data revealed that USP18 silencing obviously blocked cell cycle at G1 phase and increased cell apoptosis. Finally, BCL2L1, a member of BCL2 family protein, was identified as a downstream gene of USP18. Mechanistically, we found that USP18 directly bind to BCL2L1 and positively regulated its expression in HCC cells. Overall, our results suggested that USP18 has a crucial role in regulating diverse aspects of the pathogenesis of HCC, indicating that it might be a potential therapeutic target.
Collapse
Affiliation(s)
- Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Tiande Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Xiaoliu Jiang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Changkuo Guo
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China.
| | - Xinlan Xiao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
10
|
Abstract
Deubiquitinases are deubiquitinating enzymes (DUBs), which remove ubiquitin from proteins, thus regulating their proteasomal degradation, localization and activity. Here, we discuss DUBs as anti-cancer drug targets.
Collapse
|
11
|
Savio MG, Wollscheid N, Cavallaro E, Algisi V, Di Fiore PP, Sigismund S, Maspero E, Polo S. USP9X Controls EGFR Fate by Deubiquitinating the Endocytic Adaptor Eps15. Curr Biol 2016; 26:173-183. [PMID: 26748853 DOI: 10.1016/j.cub.2015.11.050] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/16/2015] [Accepted: 11/20/2015] [Indexed: 01/16/2023]
Abstract
Following activation by its cognate ligand(s), the epidermal growth factor receptor (EGFR) is rapidly routed to the lysosome for degradation in a ubiquitination-dependent fashion. This pathway represents the major mechanism of long-term attenuation of EGFR signaling, and its deregulation is a significant feature in different types of cancers. Here we demonstrate, through a systematic RNAi-based approach, that several deubiquitinating (DUB) enzymes extend or decrease EGFR half-life upon EGF stimulation. We focus on USP9X, whose depletion severely affects EGFR turnover, interfering with its internalization and trafficking. We identify the endocytic protein Eps15 as one of the critical substrates of USP9X, and we map the Eps15 ubiquitination sites. We found that Eps15 monoubiquitination occurs already at minimal dose of EGF stimulation and is essential for EGFR internalization. Overall, our findings identify USP9X as a novel regulator of EGFR endocytosis and suggest a model whereby cycles of ubiquitination and deubiquitination events on endocytic accessory proteins may regulate the internalization and trafficking of the EGFR toward the lysosomes.
Collapse
Affiliation(s)
- Michol Giovanna Savio
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; DIPO, Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy
| | - Nadine Wollscheid
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Elena Cavallaro
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Veronica Algisi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; DIPO, Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy; IEO, Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; DIPO, Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Via di Rudinì 8, 20122 Milan, Italy.
| |
Collapse
|
12
|
Chinyengetere F, Sekula DJ, Lu Y, Giustini AJ, Sanglikar A, Kawakami M, Ma T, Burkett SS, Eisenberg BL, Wells WA, Hoopes PJ, Demicco EG, Lazar AJ, Torres KE, Memoli V, Freemantle SJ, Dmitrovsky E. Mice null for the deubiquitinase USP18 spontaneously develop leiomyosarcomas. BMC Cancer 2015; 15:886. [PMID: 26555296 PMCID: PMC4640382 DOI: 10.1186/s12885-015-1883-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022] Open
Abstract
Background USP18 (ubiquitin-specific protease 18) removes ubiquitin-like modifier interferon stimulated gene 15 (ISG15) from conjugated proteins. USP18 null mice in a FVB/N background develop tumors as early as 2 months of age. These tumors are leiomyosarcomas and thus represent a new murine model for this disease. Methods Heterozygous USP18 +/− FVB/N mice were bred to generate wild-type, heterozygous and homozygous cohorts. Tumors were characterized immunohistochemically and two cell lines were derived from independent tumors. Cell lines were karyotyped and their responses to restoration of USP18 activity assessed. Drug testing and tumorigenic assays were also performed. USP18 immunohistochemical staining in a large series of human leiomyosacomas was examined. Results USP18 −/− FVB/N mice spontaneously develop tumors predominantly on the back of the neck with most tumors evident between 6–12 months (80 % penetrance). Immunohistochemical characterization of the tumors confirmed they were leiomyosarcomas, which originate from smooth muscle. Restoration of USP18 activity in sarcoma-derived cell lines did not reduce anchorage dependent or independent growth or xenograft tumor formation demonstrating that these cells no longer require USP18 suppression for tumorigenesis. Karyotyping revealed that both tumor-derived cell lines were aneuploid with extra copies of chromosomes 3 and 15. Chromosome 15 contains the Myc locus and MYC is also amplified in human leiomyosarcomas. MYC protein levels were elevated in both murine leiomyosarcoma cell lines. Stabilized P53 protein was detected in a subset of these murine tumors, another feature of human leiomyosarcomas. Immunohistochemical analyses of USP18 in human leiomyosarcomas revealed a range of staining intensities with the highest USP18 expression in normal vascular smooth muscle. USP18 tissue array analysis of primary leiomyosarcomas from 89 patients with a clinical database revealed cases with reduced USP18 levels had a significantly decreased time to metastasis (P = 0.0441). Conclusions USP18 null mice develop leiomyosarcoma recapitulating key features of clinical leiomyosarcomas and patients with reduced-USP18 tumor levels have an unfavorable outcome. USP18 null mice and the derived cell lines represent clinically-relevant models of leiomyosarcoma and can provide insights into both leiomyosarcoma biology and therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1883-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fadzai Chinyengetere
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - David J Sekula
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Yun Lu
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Andrew J Giustini
- Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA. .,Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | | | - Masanori Kawakami
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Tian Ma
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Sandra S Burkett
- Comparative Molecular Cytogenetics Core, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | - Burton L Eisenberg
- Department of Surgery, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Wendy A Wells
- Department of Pathology, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Paul J Hoopes
- Department of Surgery, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA. .,Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | | | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Keila E Torres
- Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vincent Memoli
- Department of Pathology, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Sarah J Freemantle
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Department of Medicine, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA. .,Present address: MD Anderson Cancer Center, Houston, TX, 77030-4009, USA.
| |
Collapse
|
13
|
Haura EB, Beg AA, Rix U, Antonia S. Charting Immune Signaling Proteomes En Route to New Therapeutic Strategies. Cancer Immunol Res 2015; 3:714-20. [PMID: 26081226 DOI: 10.1158/2326-6066.cir-15-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/01/2015] [Indexed: 01/12/2023]
Abstract
The activation state of an antitumor effector T cell in a tumor depends on the sum of all stimulatory signals and inhibitory signals that it receives in the tumor microenvironment. Accumulating data address the increasing complexity of these signals produced by a myriad of immune checkpoint molecules, cytokines, and metabolites. While reductionist experiments have identified key molecules and their importance in signaling, less clear is the integration of all these signals that allows T cells to guide their responses in health and in disease. Mass spectrometry-based proteomics is well poised to offer such insights, including monitoring emergence of resistance mechanisms to immunotherapeutics during treatments. A major application of this technology is in the discovery and characterization of small-molecule agents capable of enhancing the response to immunotherapeutic agents. Such an approach would reinvigorate small-molecule drug development aimed not at tumor cells but rather at tumor-resident T cells capable of producing dramatic and durable antitumor responses.
Collapse
Affiliation(s)
- Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Scott Antonia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
14
|
USP18 Sensitivity of Peptide Transporters PEPT1 and PEPT2. PLoS One 2015; 10:e0129365. [PMID: 26046984 PMCID: PMC4457862 DOI: 10.1371/journal.pone.0129365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/07/2015] [Indexed: 11/20/2022] Open
Abstract
USP18 (Ubiquitin-like specific protease 18) is an enzyme cleaving ubiquitin from target proteins. USP18 plays a pivotal role in antiviral and antibacterial immune responses. On the other hand, ubiquitination participates in the regulation of several ion channels and transporters. USP18 sensitivity of transporters has, however, never been reported. The present study thus explored, whether USP18 modifies the activity of the peptide transporters PEPT1 and PEPT2, and whether the peptide transporters are sensitive to the ubiquitin ligase Nedd4-2. To this end, cRNA encoding PEPT1 or PEPT2 was injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding USP18. Electrogenic peptide (glycine-glycine) transport was determined by dual electrode voltage clamp. As a result, in Xenopus laevis oocytes injected with cRNA encoding PEPT1 or PEPT2, but not in oocytes injected with water or with USP18 alone, application of the dipeptide gly-gly (2 mM) was followed by the appearance of an inward current (Igly-gly). Coexpression of USP18 significantly increased Igly-gly in both PEPT1 and PEPT2 expressing oocytes. Kinetic analysis revealed that coexpression of USP18 increased maximal Igly-gly. Conversely, overexpression of the ubiquitin ligase Nedd4-2 decreased Igly-gly. Coexpression of USP30 similarly increased Igly-gly in PEPT1 expressing oocytes. In conclusion, USP18 sensitive cellular functions include activity of the peptide transporters PEPT1 and PEPT2.
Collapse
|
15
|
Gaziova I, Davey RA, Elferink LA. Identification of factors regulating MET receptor endocytosis by high-throughput siRNA screening. Methods Mol Biol 2015; 1270:381-394. [PMID: 25702130 DOI: 10.1007/978-1-4939-2309-0_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The tyrosine kinase MET, a receptor for hepatocyte growth factor, is a key regulator for normal development and organ renewal via stem cell maintenance. Dysregulated MET signaling contributes to tumor progression and metastasis and is considered a potent therapeutic target for a growing number of malignancies. Toward that goal it is critical to develop high-throughput assays to identify candidate regulators for the termination of MET signaling. We describe here a rapid and efficient method for identifying cellular factors required for MET ubiquitination, which utilizes high-throughput RNA interference screening (HT-siRNA) with a receptor internalization assay and an In-Cell ELISA in a 96-well format. The assay is amenable to a large array of cell surface proteins as well as genome-wide siRNA libraries, with high signal-to-background ratio and low well-to-well variability.
Collapse
Affiliation(s)
- Ivana Gaziova
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-0620, USA,
| | | | | |
Collapse
|
16
|
Cell death and deubiquitinases: perspectives in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:435197. [PMID: 25121098 PMCID: PMC4119901 DOI: 10.1155/2014/435197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
Abstract
The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes.
Collapse
|
17
|
Lung cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Jiang AP, Zhou DH, Meng XL, Zhang AP, Zhang C, Li XT, Feng Q. Down-regulation of epidermal growth factor receptor by curcumin-induced UBE1L in human bronchial epithelial cells. J Nutr Biochem 2013; 25:241-9. [PMID: 24445050 DOI: 10.1016/j.jnutbio.2013.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/17/2013] [Accepted: 11/01/2013] [Indexed: 01/06/2023]
Abstract
UBE1L, ubiquitin-activating enzyme E1-like, is the activating enzyme of ISG15ylation (ISG15, interferon stimulated gene 15). Loss of UBE1L and activation of epidermal growth factor receptor (EGFR) signaling are common events in lung carcinogenesis. Curcumin, a well-studied chemopreventive agent, is known to down-regulate EGFR. The present study demonstrated that curcumin decreased EGFR expression in human bronchial epithelial (HBE) Beas-2B cells and lung cancer A549 cells. For the first time, UBE1L was found to be induced by curcumin in HBE cells. Interestingly, overexpression of UBE1L reduced EGFR at posttranslational level in HBE cells. UBE1L triggered EGFR membrane internalization and promoted complex formation between ISG15 and EGFR. Curcumin decreased EGFR downstream signaling pAKT and nuclear factor κB (NF-κB). Overexpression or knockdown of UBE1L also resulted in down-regulation or up-regulation of phosphoinositide 3-kinase/AKT/NF-κB correspondently. In human samples, there was an inverse relationship between UBE1L and EGFR/AKT/NF-κB in non-small cell lung cancer tissues and adjacent tissues. These results uncover a novel chemopreventive mechanism of curcumin in inducing UBE1L and down-regulating EGFR signaling in HBE cells.
Collapse
Affiliation(s)
- A-Pei Jiang
- Department of Nutrition and Food Safety, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dong-Hu Zhou
- Department of Nutrition and Food Safety, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu-Lian Meng
- Department of Nutrition and Food Safety, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ai-Ping Zhang
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University Affiliated Hospital, Nanjing, Jiangsu 210001, China
| | - Cui Zhang
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University Affiliated Hospital, Nanjing, Jiangsu 210001, China
| | - Xiao-Ting Li
- Department of Nutrition and Food Safety, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qing Feng
- Department of Nutrition and Food Safety, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
19
|
Shahidul Makki M, Cristy Ruteshouser E, Huff V. Ubiquitin specific protease 18 (Usp18) is a WT1 transcriptional target. Exp Cell Res 2013; 319:612-22. [PMID: 23291318 DOI: 10.1016/j.yexcr.2012.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/21/2012] [Accepted: 12/14/2012] [Indexed: 02/08/2023]
Abstract
Wilms tumor gene WT1 encodes a zinc finger-containing transcription factor which is required for renal development. Mutations in WT1 are observed in 20% of Wilms tumors (a pediatric kidney cancer), but the in vivo WT1 targets and associated molecular pathways involved in the etiology of Wilms tumor are still elusive. To identify WT1 targets we performed genome-wide comprehensive expression profiling using Affymetrix Gene Chip Mouse Genome 430 2.0 Arrays, comparing E13.5 mouse kidneys in which Wt1 had been somatically ablated with littermate controls. We identified Usp18 as the most differentially expressed gene in mutant kidney. Using tetracycline inducible cells we demonstrated a repressive effect of WT1 on USP18 expression. Conversely, knockdown of WT1 led to the upregulation of Usp18. Furthermore, direct binding of WT1 to the Usp18 promoter was demonstrated by ChIP assay. Overexpression of USP18 in murine and human cell lines resulted in cell proliferation. Additionally, Usp18 upregulation was observed in a mouse model of Wilms tumor. Taken together our data demonstrate that Usp18 is a transcriptional target of WT1 and suggest that increased expression of USP18 following WT1 loss contributes to Wilms tumorigenesis.
Collapse
Affiliation(s)
- Mohammad Shahidul Makki
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA
| | | | | |
Collapse
|
20
|
Sgorbissa A, Brancolini C. IFNs, ISGylation and cancer: Cui prodest? Cytokine Growth Factor Rev 2012; 23:307-14. [PMID: 22906767 DOI: 10.1016/j.cytogfr.2012.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 12/26/2022]
Abstract
IFNs are cytokines that segregate viral infections, modulate the immune responses and influence tumor cells survival. These options are under the control of ISGs (Interferon Stimulated Genes) which expression is propelled by IFNs. To the ISGs family belong all the components of the molecular machinery that modifies proteins by the addition of the ubiquitin-like protein ISG15, in a process known as ISGylation. Despite alterations in the components of this machinery are frequently observed in cancer, the contribution of ISG15 and of ISGylation to tumor growth and resistance to chemotherapy is unclear and debated. With the aim of elucidating this point, in this review we have discussed about recent data pointing to a dysregulation of the IFN signaling and the ISGylation system in cancer.
Collapse
Affiliation(s)
- Andrea Sgorbissa
- Dipartimento di Scienze Mediche e Biologiche and MATI Center of Excellence, Università degli Studi di Udine, Udine, Italy
| | | |
Collapse
|
21
|
Abstract
Once stimulated, the epidermal growth factor receptor (EGFR) undergoes self-phosphorylation, which, on the one hand, instigates signaling cascades, and on the other hand, recruits CBL ubiquitin ligases, which mark EGFRs for degradation. Using RNA interference screens, we identified a deubiquitinating enzyme, Cezanne-1, that opposes receptor degradation and enhances EGFR signaling. These functions require the catalytic and ubiquitin-binding domains of Cezanne-1, and they involve physical interactions and trans-phosphorylaton of Cezanne-1 by EGFR. In line with the ability of Cezanne-1 to augment EGF-induced growth and migration signals, the enzyme is overexpressed in breast cancer. Congruently, the corresponding gene is amplified in approximately one third of mammary tumors, and high transcript levels predict an aggressive disease course. In conclusion, deubiquitination by Cezanne-1 curtails degradation of growth factor receptors, thereby promotes oncogenic growth signals.
Collapse
|
22
|
Burkart C, Fan JB, Zhang DE. Two independent mechanisms promote expression of an N-terminal truncated USP18 isoform with higher DeISGylation activity in the nucleus. J Biol Chem 2011; 287:4883-93. [PMID: 22170061 DOI: 10.1074/jbc.m111.255570] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expression of the ISG15 specific protease USP18 is highly induced by type I interferons. The two main functions of USP18, i.e. its enzymatic activity and down-regulation of type I interferon signaling, are well characterized. However, to date all functional studies focused on full-length USP18. Here, we report that translation of human USP18 is initiated by a rare start codon (CUG). Usage of this non-canonical initiation site with its weak translation initiation efficiency promotes expression of an N-terminal truncated isoform (USP18-sf). In addition, an internal ribosome entry site (IRES) located in the 5'-coding region of USP18 also contributes to translation of USP18-sf. Functionally, both isoforms exhibit enzymatic activity and interfere with type I interferon signaling. However, USP18-sf shows different subcellular distribution compared with the full-length protein and enhanced deISGylation activity in the nucleus. Taken together, we report the existence of an N-terminal truncated isoform of USP18, whose expression is controlled on translational level by two independent mechanisms providing translational flexibility as well as cell type-specific resistance to inhibition of cap-dependent translation.
Collapse
Affiliation(s)
- Christoph Burkart
- Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
23
|
Abstract
Lung cancer is a heterogeneous disease clinically, biologically, histologically, and molecularly. Understanding the molecular causes of this heterogeneity, which might reflect changes occurring in different classes of epithelial cells or different molecular changes occurring in the same target lung epithelial cells, is the focus of current research. Identifying the genes and pathways involved, determining how they relate to the biological behavior of lung cancer, and their utility as diagnostic and therapeutic targets are important basic and translational research issues. This article reviews current information on the key molecular steps in lung cancer pathogenesis, their timing, and clinical implications.
Collapse
Affiliation(s)
- Jill E Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, 6000 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | |
Collapse
|
24
|
Patel V, Marsh CA, Dorsam RT, Mikelis CM, Masedunskas A, Amornphimoltham P, Nathan CAO, Nathan CA, Singh B, Weigert R, Molinolo AA, Gutkind JS. Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res 2011; 71:7103-12. [PMID: 21975930 DOI: 10.1158/0008-5472.can-10-3192] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite our improved understanding of cancer, the 5-year survival rate for head and neck squamous cell carcinomas (HNSCC) patients remains relatively unchanged at 50% for the past three decades. HNSCCs often metastasize to locoregional lymph nodes, and lymph node involvement represents one of the most important prognostic factors of poor clinical outcome. Among the multiple dysregulated molecular mechanism in HNSCCs, emerging basic, preclinical, and clinical findings support the importance of the mTOR signaling route in HNSCC progression. Indeed, we observed here that the activation of mTOR is a widespread event in clinical specimens of HNSCCs invading locoregional lymph nodes. We developed an orthotopic model of HNSCC consisting of the implantation of HNSCC cells into the tongues of immunocompromised mice. These orthotopic tumors spontaneously metastasize to the cervical lymph nodes, where the presence of HNSCC cells can be revealed by histologic and immunohistochemical evaluation. Both primary and metastatic experimental HNSCC lesions exhibited elevated mTOR activity. The ability to monitor and quantitate lymph node invasion in this model system enabled us to explore whether the blockade of mTOR could impact HNSCC metastasis. We found that inhibition of mTOR with rapamycin and the rapalog RAD001 diminished lymphangiogenesis in the primary tumors and prevented the dissemination of HNSCC cancer cells to the cervical lymph nodes, thereby prolonging animal survival. These findings may provide a rationale for the future clinical evaluation of mTOR inhibitors, including rapamycin and its analogues, as part of a molecular-targeted metastasis preventive strategy for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental Research, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
26
|
François-Newton V, Magno de Freitas Almeida G, Payelle-Brogard B, Monneron D, Pichard-Garcia L, Piehler J, Pellegrini S, Uzé G. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response. PLoS One 2011; 6:e22200. [PMID: 21779393 PMCID: PMC3136508 DOI: 10.1371/journal.pone.0022200] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/16/2011] [Indexed: 02/07/2023] Open
Abstract
Type I interferons (IFN) are cytokines that are rapidly secreted upon microbial infections and regulate all aspects of the immune response. In humans 15 type I IFN subtypes exist, of which IFN α2 and IFN β are used in the clinic for treatment of different pathologies. IFN α2 and IFN β are non redundant in their expression and in their potency to exert specific bioactivities. The more recently identified type III IFNs (3 IFN λ or IL-28/IL-29) bind an unrelated cell-type restricted receptor. Downstream of these two receptor complexes is a shared Jak/Stat pathway. Several mechanisms that contribute to the shut down of the IFN-induced signaling have been described at the molecular level. In particular, it has long been known that type I IFN induces the establishment of a desensitized state. In this work we asked how the IFN-induced desensitization integrates into the network built by the multiple type I IFN subtypes and type III IFNs. We show that priming of cells with either type I IFN or type III IFN interferes with the cell's ability to further respond to all IFN α subtypes. Importantly, primed cells are differentially desensitized in that they retain sensitivity to IFN β. We show that USP18 is necessary and sufficient to induce differential desensitization, by impairing the formation of functional binding sites for IFN α2. Our data highlight a new type of differential between IFNs α and IFN β and underline a cross-talk between type I and type III IFN. This cross-talk could shed light on the reported genetic variation in the IFN λ loci, which has been associated with persistence of hepatitis C virus and patient's response to IFN α2 therapy.
Collapse
Affiliation(s)
- Véronique François-Newton
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1961, Paris, France
| | | | - Béatrice Payelle-Brogard
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1961, Paris, France
| | - Danièle Monneron
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5235, University of Montpellier II, Montpellier, France
| | - Lydiane Pichard-Garcia
- Institut National de la Santé Et de la Recherche Médicale, Unité 1040, Université Montpellier I, Institut de Recherche en Biothérapie, Hôpital Saint Eloi, Montpellier, France
| | - Jacob Piehler
- Division of Biophysics, University of Osnabrück, Osnabrück, Germany
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1961, Paris, France
| | - Gilles Uzé
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5235, University of Montpellier II, Montpellier, France
| |
Collapse
|
27
|
Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells. Colloids Surf B Biointerfaces 2011; 85:131-7. [DOI: 10.1016/j.colsurfb.2011.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/25/2011] [Accepted: 02/01/2011] [Indexed: 11/22/2022]
|
28
|
Duex JE, Comeau L, Sorkin A, Purow B, Kefas B. Usp18 regulates epidermal growth factor (EGF) receptor expression and cancer cell survival via microRNA-7. J Biol Chem 2011; 286:25377-86. [PMID: 21592959 DOI: 10.1074/jbc.m111.222760] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is involved in development and progression of many human cancers. We have previously demonstrated that the ubiquitin-specific peptidase Usp18 (Ubp43) is a potent regulator of EGFR protein expression. Here we report that the 3'-untranslated region (3'-UTR) of the EGFR message modulates RNA translation following cell treatment with Usp18 siRNA, suggesting microRNA as a possible mediator. Given earlier evidence of EGFR regulation by the microRNA miR-7, we assessed whether miR-7 mediates Usp18 siRNA effects. We found that Usp18 depletion elevates miR-7 levels in several cancer cell lines because of a transcriptional activation and/or mRNA stabilization of miR-7 host genes and that miR-7 acts downstream of Usp18 to regulate EGFR mRNA translation via the 3'-UTR. Also, depletion of Usp18 led to a decrease in protein levels of other known oncogenic targets of miR-7, reduced cell proliferation and soft agar colony formation, and increased apoptosis. Notably, all of these phenotypes were reversed by a specific inhibitor of miR-7. Thus, our findings support a model in which Usp18 inhibition promotes up-regulation of miR-7, which in turn inhibits EGFR expression and the tumorigenic activity of cancer cells.
Collapse
Affiliation(s)
- Jason E Duex
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
29
|
Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 2011; 32:3340-50. [DOI: 10.1016/j.biomaterials.2011.01.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 01/18/2011] [Indexed: 01/09/2023]
|
30
|
Cai J, Zhao XL, Liu AW, Nian H, Zhang SH. Apigenin inhibits hepatoma cell growth through alteration of gene expression patterns. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:366-373. [PMID: 20850954 DOI: 10.1016/j.phymed.2010.08.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
Apigenin, a common plant flavonoid, has been shown to possess anti-tumor properties; however, the underlying molecular mechanisms are still not completely understood. In the present study, we investigated the effects of apigenin on human hepatoma Huh7 cell proliferation, cell cycle distribution, apoptosis, and colony formation in vitro, as well as on the tumorigenicity of Huh7 cells in vivo. To get more insight into the mechanism of apigenin action, we performed genome-wide expression profiling of apigenin-treated Huh7 cells using cDNA microarrays (Agilent Whole Human Genome Oligo Microarray) that contain 41,000 genes. Ten of the most differentially expressed genes (≧5-fold changes) were selected for further evaluation by quantitative RT-PCR (qPCR) and Western blot analyses. Notably, apigenin (5-20 μg/ml) remarkably inhibited Huh7 cell proliferation and colony formation as compared to the vehicle control, which was in a dose-dependent manner. Accompanying with the decreased growth, apigenin-treated cells showed a cell cycle arrest at G2/M phase and an increased rate of apoptosis. Moreover, the xenografts derived from Huh7 cells were significantly (p<0.05) retarded by the delivery of apigenin (50 μg/mouse/day) relative to the control counterparts. Gene expression profile analysis revealed that 1336 genes were up-regulated and 428 genes were down-regulated by apigenin. The down-regulation of interleukin-4 receptor and ubiquitin specific protease 18 and the up-regulation of SLC27A3 and chemokine (C-C motif) receptor 2 were further confirmed by the qPCR and Western blot results. In conclusion, apigenin exhibits inhibitory effects on hepatoma cell growth, which is likely mediated through alteration of gene expression profiles.
Collapse
Affiliation(s)
- Jing Cai
- Department of Oncology, Second Affiliated Hospital, Nanchang University, Nanchang, China
| | | | | | | | | |
Collapse
|
31
|
Duex JE, Mullins MR, Sorkin A. Recruitment of Uev1B to Hrs-containing endosomes and its effect on endosomal trafficking. Exp Cell Res 2010; 316:2136-51. [PMID: 20420830 PMCID: PMC2900420 DOI: 10.1016/j.yexcr.2010.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/09/2010] [Accepted: 04/19/2010] [Indexed: 11/28/2022]
Abstract
Endocytosis of signaling receptors, such as epidermal growth factor receptor (EGFR), tightly controls the signal transduction process triggered by ligand activation of these receptors. To identify new regulators of the endocytic trafficking of EGFR an RNA interference screen was performed for genes involved in ubiquitin conjugation and down-regulation of EGFR. The screen revealed that small interfering RNAs (siRNAs) that target the conserved ubiquitin-binding domain Uev1 increased down-regulation of EGFR. Since these siRNAs simultaneously targeted multiple genes containing a Uev1 domain, we analyzed the role of these gene products by overexpressing individual Uev1-related proteins. This analysis revealed that overexpression of Uev1A (UBE2V1) has no effect on the degradation of EGFR:EGF complexes. In contrast, overexpression of Uev1B (TMEM189-UBE2V1 isoform 2) slowed the degradation of EGF:receptor complexes. The Uev1B protein was found to strongly colocalize and associate with ubiquitin and Hrs in endosomes. Moreover, overexpression of Uev1B abrogated the ability of Hrs to colocalize with EGFR. The B-domain of Uev1B, and not the UEV-domain, was mainly responsible for the observed phenotypes suggesting the presence of a novel endosomal targeting sequence within the B-domain. Together, the data show that elevated levels of Uev1B protein in cells lead to decreased efficiency of endosomal sorting by associating with ubiquitinated proteins and Hrs.
Collapse
Affiliation(s)
- Jason E Duex
- Department of Pharmacology, University of Colorado Denver Medical School, Aurora, Colorado, USA
| | | | | |
Collapse
|
32
|
Sgorbissa A, Potu H, Brancolini C. Isopeptidases in anticancer therapy: looking for inhibitors. Am J Transl Res 2010; 2:235-247. [PMID: 20589164 PMCID: PMC2892408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/06/2010] [Indexed: 05/29/2023]
Abstract
Addition of polypeptides belonging to the ubiquitin family to selected lysines residues is a widespread post-translation modification (PTM) that controls many fundamental aspects of cell's life. Specific alterations in the normal turnover of this PTM are frequently observed in tumors. The conjugation/deconjugation cycle of ubiquitin (Ub) or ubiquitin-like (Ubl) proteins influences the activities of oncogenes and tumor suppressor genes. Two families of enzymes work in antagonizing manner to add or remove Ub and Ubl-proteins on target proteins: the E3 ligases and the isopeptidases. These enzymes are the subjects of fervent research with the ambition to comprehend their regulation, their mechanisms of action, their involvement in human diseases, and to develop specific inhibitors for therapeutic intervention. Here we will discuss of isopeptidases, the deconjugating enzymes, with particular emphasis on the proapoptotic activities of the relative inhibitors identified so far.
Collapse
Affiliation(s)
- Andrea Sgorbissa
- Department of Biomedical Sciences and Technologies (DSTB), University of Udine P.le Kolbe 4 3100 Udine, Italy
| | | | | |
Collapse
|
33
|
Abstract
Kinases and proteases are responsible for two fundamental regulatory mechanisms--phosphorylation and proteolysis--that orchestrate the rhythms of life and death in all organisms. Recent studies have highlighted the elaborate interplay between both post-translational regulatory systems. Many intracellular or pericellular proteases are regulated by phosphorylation, whereas multiple kinases are activated or inactivated by proteolytic cleavage. The functional consequences of this regulatory crosstalk are especially relevant in the different stages of cancer progression. What are the clinical implications derived from the fertile dialogue between kinases and proteases in cancer?
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | |
Collapse
|
34
|
Sorkin A, Duex JE. Quantitative analysis of endocytosis and turnover of epidermal growth factor (EGF) and EGF receptor. CURRENT PROTOCOLS IN CELL BIOLOGY 2010; Chapter 15:Unit 15.14. [PMID: 20235100 PMCID: PMC2878126 DOI: 10.1002/0471143030.cb1514s46] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Binding of epidermal growth factor (EGF) to the EGF receptor (EGFR) initiates signal transduction, ultimately leading to altered gene expression. Ligand-activated EGFR is also rapidly internalized and then targeted to lysosomes for degradation or recycled back to the plasma membrane. Endocytosis is a major regulator of EGFR signaling. Therefore, elucidation of the mechanisms of EGFR endocytosis is essential for a better understanding of EGFR biology. In order to achieve a comprehensive analysis of these mechanisms, reliable methods for measuring the rates of EGFR protein turnover and the rate parameters for individual steps of EGFR endocytic trafficking must be employed. The protocols in this unit describe methodologies to measure the rates of EGFR synthesis and degradation, to monitor EGF-induced down-regulation of surface EGFR, to measure the kinetic rate parameters of internalization, recycling, and degradation of radiolabeled EGF, and to perform radioiodination of EGF by the chloramine T method.
Collapse
Affiliation(s)
- Alexander Sorkin
- Department of Pharmacology, University of Colorado Denver Medical School, Aurora, Colorado, USA
| | | |
Collapse
|
35
|
Cai J, Liu AW, Zhao XL, Zhang SH. Apigenin inhibits cell growth and alters expression of multiple genes in human hepatoma cell line Huh-7. Shijie Huaren Xiaohua Zazhi 2010; 18:542-549. [DOI: 10.11569/wcjd.v18.i6.542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the effects of apigenin on cell growth and gene expression in human hepatoma cell line Huh-7.
METHODS: After Huh-7 cells was cultured and treated with different concentrations of apigenin, cell proliferation was measured by colorimetric methyl thiazolyl tetrazolium (MTT) assay; cell clonogenicity was detected by colony-forming assay; and cell cycle distribution and apoptosis were examined by flow cytometry. The impact of apigenin on the tumorigenicity of Huh-7 cells in nude mice was also detected. The differential gene expression between cells treated and untreated with apigenin was detected by cDNA microarray and verified by quantitative real-time reverse transcription-polymerase chain reaction and Western blot.
RESULTS: Compared with untreated cells, cells treated with apigenin exhibited a marked growth inhibition. The half maximal inhibitory concentration (IC50) of apigenin on cell growth was approximately 10.5 mg/L ± 0.3 mg/L. Apigenin treatment could cause a cell cycle block at G2/M phase, decrease the percentage of cells at G0/G1 phase, promote apoptosis, and inhibit the tumorigenicity of Huh-7 cells in vivo. Apigenin treatment could also dramatically alter the expression of 1 764 functionally related genes in Huh-7 cells. Of these differentially expressed genes, the majority are involved in nucleic acid binding and transport, enzyme catalytic activity regulation, transcriptional regulation, cytoskeletal structure and/or adhesion, signal transduction, metabolism, apoptosis or the immune response. Of note, apigenin could significantly downregulate the expression of interleukin-4 receptor and ubiquitin-specific protease 18.
CONCLUSION: Apigenin partially inhibits Huh-7 cell growth in vitro and in vivo by blocking cell cycle at G2/M phase and promoting apoptosis. Apigenin treatment alters the expression of multiple genes in Huh-7 cells.
Collapse
|
36
|
Sacco JJ, Coulson JM, Clague MJ, Urbé S. Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 2010; 62:140-57. [PMID: 20073038 PMCID: PMC7165618 DOI: 10.1002/iub.300] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 12/05/2009] [Indexed: 01/11/2023]
Abstract
Deubiquitinases (DUBs) are emerging as important regulators of many pathways germane to cancer. They may regulate the stability of key oncogenes, exemplified by USP28 stabilisation of c-Myc. Alternatively they can negatively regulate ubiquitin-dependent signalling cascades such as the NF-kappaB activation pathway. We review the current literature that associates DUBs with cancer and discuss their suitability as drug targets of the future.
Collapse
Affiliation(s)
- Joseph J. Sacco
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Judy M. Coulson
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Michael J. Clague
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Sylvie Urbé
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
37
|
Potu H, Sgorbissa A, Brancolini C. Identification of USP18 as an important regulator of the susceptibility to IFN-alpha and drug-induced apoptosis. Cancer Res 2010; 70:655-65. [PMID: 20068173 DOI: 10.1158/0008-5472.can-09-1942] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene products that modify the apoptotic susceptibility of cancer cells may offer novel drug response markers or therapeutic targets. In this study, we probed the contribution of 53 different isopeptidases to apoptosis triggered by bortezomib and etoposide. USP18, a type I IFN-induced protein that deconjugates the ubiquitin-like modifier ISG15 from target proteins, was found to limit apoptotic susceptibility to IFN-alpha or bortezomib. Ablating USP18 in cells treated with IFN-alpha increased tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) production; upregulated expression of transcription factors IFN-regulatory factor (IRF)-1, IRF-7, and IRF-9; and promoted the extrinsic pathway of apoptosis. The proapoptotic effects of ablating USP18 were abrogated by FLIP overexpression or TRAIL silencing. However, in bortezomib-treated cells, weak spontaneous signaling from type I IFNs was implicated in the proapoptotic effect of USP18 ablation. Ectopic USP18 repressed apoptotic signaling by IFN-alpha, TRAIL, or bortezomib. Similar effects were produced by a catalytically inactive USP18 mutant, indicating that the antiapoptotic function of USP18 is independent of its catalytic activity. These findings suggest that USP18 may significantly limit operation of the extrinsic apoptotic pathway triggered by type I IFN and drugs.
Collapse
Affiliation(s)
- Harish Potu
- Dipartimento di Scienze e Tecnologie Biomediche, Universita' di Udine, 33100 Udine, Italy
| | | | | |
Collapse
|
38
|
Chen L, Sun J, Meng L, Heathcote J, Edwards AM, McGilvray ID. ISG15, a ubiquitin-like interferon-stimulated gene, promotes hepatitis C virus production in vitro: implications for chronic infection and response to treatment. J Gen Virol 2009; 91:382-8. [PMID: 19846672 DOI: 10.1099/vir.0.015388-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Upregulation of interferon (IFN)-stimulated genes (ISGs), including IFN-stimulated gene 15 (ISG15) and other members of the ISG15 pathway, in pre-treatment liver tissue of patients chronically infected with hepatitis C virus (HCV) is associated with subsequent treatment failure (pegylated IFN-alpha/ribavirin). This study assessed the effect of ISG15 on HCV production in vitro. The levels of ISG15 and of its conjugation to target proteins (ISGylation) were increased by plasmid transfection, but ISGylation was inhibited by small interfering RNA directed against the E1 activating enzyme, Ube1L, in Huh7.5 cells. Cells were infected with HCV FL-J6/JFH virus, and HCV RNA and viral titres were determined. Levels of both HCV RNA and virus increased when levels of ISG15 and ISGylation were increased, and decreased when ISGylation was inhibited. The effects of ISGylation on HCV were independent of upstream IFN signalling: IFN-alpha-induced ISG expression was not altered by Ube1L knockdown. Thus, although ISG15 has antiviral activity against most viruses, ISG15 promotes HCV production. HCV might exploit ISG15 as a host immune evasion mechanism, and this may in part explain how increased expression of ISGs, especially ISG15, correlates with subsequent IFN-based treatment failure.
Collapse
Affiliation(s)
- Limin Chen
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Much contemporary biology consists of identifying the molecular components that associate to perform biological functions, then discovering how these functions are controlled. The concept of control is key to biological understanding, at least of the physiological kind; identifying regulators of processes underpins ideas of causality and allows complicated, multicomponent systems to be summarized in relatively simple diagrams and models. Unfortunately, as this article demonstrates by drawing on published articles, there is a growing tendency for authors to claim that a molecule is a 'regulator' of something on evidence that cannot support the conclusion. In particular, gene knockout experiments, which can demonstrate only that a molecule is necessary for a process, are all too frequently being misinterpreted as revealing regulation. This logical error threatens to blur the important distinction between regulation and mere necessity and therefore to weaken one of our strongest tools for comprehending how organisms work.
Collapse
Affiliation(s)
- Jamie Davies
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square EH89XB, UK.
| |
Collapse
|