1
|
Jagielnicki M, Kucharska I, Bennett BC, Harris AL, Yeager M. Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures. BIOLOGY 2024; 13:298. [PMID: 38785780 PMCID: PMC11117596 DOI: 10.3390/biology13050298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
Connexins (Cxs) are a family of integral membrane proteins, which function as both hexameric hemichannels (HCs) and dodecameric gap junction channels (GJCs), behaving as conduits for the electrical and molecular communication between cells and between cells and the extracellular environment, respectively. Their proper functioning is crucial for many processes, including development, physiology, and response to disease and trauma. Abnormal GJC and HC communication can lead to numerous pathological states including inflammation, skin diseases, deafness, nervous system disorders, and cardiac arrhythmias. Over the last 15 years, high-resolution X-ray and electron cryomicroscopy (cryoEM) structures for seven Cx isoforms have revealed conservation in the four-helix transmembrane (TM) bundle of each subunit; an αβ fold in the disulfide-bonded extracellular loops and inter-subunit hydrogen bonding across the extracellular gap that mediates end-to-end docking to form a tight seal between hexamers in the GJC. Tissue injury is associated with cellular Ca2+ overload. Surprisingly, the binding of 12 Ca2+ ions in the Cx26 GJC results in a novel electrostatic gating mechanism that blocks cation permeation. In contrast, acidic pH during tissue injury elicits association of the N-terminal (NT) domains that sterically blocks the pore in a "ball-and-chain" fashion. The NT domains under physiologic conditions display multiple conformational states, stabilized by protein-protein and protein-lipid interactions, which may relate to gating mechanisms. The cryoEM maps also revealed putative lipid densities within the pore, intercalated among transmembrane α-helices and between protomers, the functions of which are unknown. For the future, time-resolved cryoEM of isolated Cx channels as well as cryotomography of GJCs and HCs in cells and tissues will yield a deeper insight into the mechanisms for channel regulation. The cytoplasmic loop (CL) and C-terminal (CT) domains are divergent in sequence and length, are likely involved in channel regulation, but are not visualized in the high-resolution X-ray and cryoEM maps presumably due to conformational flexibility. We expect that the integrated use of synergistic physicochemical, spectroscopic, biophysical, and computational methods will reveal conformational dynamics relevant to functional states. We anticipate that such a wealth of results under different pathologic conditions will accelerate drug discovery related to Cx channel modulation.
Collapse
Affiliation(s)
- Maciej Jagielnicki
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
| | - Iga Kucharska
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
| | - Brad C. Bennett
- Department of Biological and Environmental Sciences, Howard College of Arts and Sciences, Samford University, Birmingham, AL 35229, USA;
| | - Andrew L. Harris
- Rutgers New Jersey Medical School, Department of Pharmacology, Physiology and Neuroscience, Newark, NJ 07103, USA;
| | - Mark Yeager
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Chemistry, University of Miami, 1201 Memorial Drive, Miami, FL 33146, USA; (M.J.); (I.K.)
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33146, USA
| |
Collapse
|
2
|
Cetin-Ferra S, Francis SC, Cooper AT, Neikirk K, Marshall AG, Hinton A, Murray SA. Mitochondrial Connexins and Mitochondrial Contact Sites with Gap Junction Structure. Int J Mol Sci 2023; 24:ijms24109036. [PMID: 37240383 DOI: 10.3390/ijms24109036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria contain connexins, a family of proteins that is known to form gap junction channels. Connexins are synthesized in the endoplasmic reticulum and oligomerized in the Golgi to form hemichannels. Hemichannels from adjacent cells dock with one another to form gap junction channels that aggregate into plaques and allow cell-cell communication. Cell-cell communication was once thought to be the only function of connexins and their gap junction channels. In the mitochondria, however, connexins have been identified as monomers and assembled into hemichannels, thus questioning their role solely as cell-cell communication channels. Accordingly, mitochondrial connexins have been suggested to play critical roles in the regulation of mitochondrial functions, including potassium fluxes and respiration. However, while much is known about plasma membrane gap junction channel connexins, the presence and function of mitochondrial connexins remain poorly understood. In this review, the presence and role of mitochondrial connexins and mitochondrial/connexin-containing structure contact sites will be discussed. An understanding of the significance of mitochondrial connexins and their connexin contact sites is essential to our knowledge of connexins' functions in normal and pathological conditions, and this information may aid in the development of therapeutic interventions in diseases linked to mitochondria.
Collapse
Affiliation(s)
- Selma Cetin-Ferra
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sharon C Francis
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Anthonya T Cooper
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biology, University of Hawaii, Hilo, HI 96720, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
4
|
Pun R, Kim MH, North BJ. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front Cardiovasc Med 2023; 9:1080131. [PMID: 36712244 PMCID: PMC9877470 DOI: 10.3389/fcvm.2022.1080131] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication mediated by gap junction channels and hemichannels composed of Connexin 43 (Cx43) is vital for the propagation of electrical impulses through cardiomyocytes. The carboxyl terminal tail of Cx43 undergoes various post-translational modifications including phosphorylation of its Serine-368 (S368) residue. Protein Kinase C isozymes directly phosphorylate S368 to alter Cx43 function and stability through inducing conformational changes affecting channel permeability or promoting internalization and degradation to reduce intercellular communication between cardiomyocytes. Recent studies have implicated this PKC/Cx43-pS368 circuit in several cardiac-associated diseases. In this review, we describe the molecular and cellular basis of PKC-mediated Cx43 phosphorylation and discuss the implications of Cx43 S368 phosphorylation in the context of various cardiac diseases, such as cardiomyopathy, as well as the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Renju Pun
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Michael H. Kim
- CHI Health Heart Institute, School of Medicine, Creighton University, Omaha, NE, United States
| | - Brian J. North
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States,*Correspondence: Brian J. North,
| |
Collapse
|
5
|
Yuan J, Huang X, Zhao Y, Gu J, Yuan Y, Liu Z, Zou H, Bian J. Rat Hepatocytes Mitigate Cadmium Toxicity by Forming Annular Gap Junctions and Degrading Them via Endosome-Lysosome Pathway. Int J Mol Sci 2022; 23:ijms232415607. [PMID: 36555247 PMCID: PMC9778680 DOI: 10.3390/ijms232415607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gap junction protein connexin 43 (Cx43) plays a critical role in gap junction communication in rat hepatocytes. However, those located between hepatocytes are easily internalized following exposure to poisons. Herein, we investigated the potential of buffalo rat liver 3A (BRL 3A) cells to generate annular gap junctions (AGJs) proficient at alleviating cadmium (Cd) cytotoxic injury through degradation via an endosome-lysosome pathway. Our results showed that Cd-induced damage of liver microtubules promoted Cx43 internalization and increased Cx43 phosphorylation at Ser373 site. Furthermore, we established that Cd induced AGJs generation in BRL 3A cells, and AGJs were subsequently degraded through the endosome-lysosome pathway. Overall, our results suggested that Cx43 internalization and the generation of AGJs were cellular protective mechanisms to alleviate Cd toxicity in rat hepatocytes.
Collapse
Affiliation(s)
- Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoqian Huang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yumeng Zhao
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.Z.); (J.B.)
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.Z.); (J.B.)
| |
Collapse
|
6
|
Wang X, Blumenfeld R, Feng XQ, Weitz DA. 'Phase transitions' in bacteria - From structural transitions in free living bacteria to phenotypic transitions in bacteria within biofilms. Phys Life Rev 2022; 43:98-138. [PMID: 36252408 DOI: 10.1016/j.plrev.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
Phase transitions are common in inanimate systems and have been studied extensively in natural sciences. Less explored are the rich transitions that take place at the micro- and nano-scales in biological systems. In conventional phase transitions, large-scale properties of the media change discontinuously in response to continuous changes in external conditions. Such changes play a significant role in the dynamic behaviours of organisms. In this review, we focus on some transitions in both free-living and biofilms of bacteria. Particular attention is paid to the transitions in the flagellar motors and filaments of free-living bacteria, in cellular gene expression during the biofilm growth, in the biofilm morphology transitions during biofilm expansion, and in the cell motion pattern transitions during the biofilm formation. We analyse the dynamic characteristics and biophysical mechanisms of these phase transition phenomena and point out the parallels between these transitions and conventional phase transitions. We also discuss the applications of some theoretical and numerical methods, established for conventional phase transitions in inanimate systems, in bacterial biofilms.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA.
| | - Raphael Blumenfeld
- Gonville & Caius College, University of Cambridge, Trinity St., Cambridge CB2 1TA, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA; Department of Physics, Harvard University, 9 Oxford St, Cambridge, MA, 02138, USA
| |
Collapse
|
7
|
Structural, functional, and mechanistic insights uncover the fundamental role of orphan connexin-62 in platelets. Blood 2021; 137:830-843. [PMID: 32822477 DOI: 10.1182/blood.2019004575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Connexins oligomerise to form hexameric hemichannels in the plasma membrane that can further dock together on adjacent cells to form gap junctions and facilitate intercellular trafficking of molecules. In this study, we report the expression and function of an orphan connexin, connexin-62 (Cx62), in human and mouse (Cx57, mouse homolog) platelets. A novel mimetic peptide (62Gap27) was developed to target the second extracellular loop of Cx62, and 3-dimensional structural models predicted its interference with gap junction and hemichannel function. The ability of 62Gap27 to regulate both gap junction and hemichannel-mediated intercellular communication was observed using fluorescence recovery after photobleaching analysis and flow cytometry. Cx62 inhibition by 62Gap27 suppressed a range of agonist-stimulated platelet functions and impaired thrombosis and hemostasis. This was associated with elevated protein kinase A-dependent signaling in a cyclic adenosine monophosphate-independent manner and was not observed in Cx57-deficient mouse platelets (in which the selectivity of 62Gap27 for this connexin was also confirmed). Notably, Cx62 hemichannels were observed to function independently of Cx37 and Cx40 hemichannels. Together, our data reveal a fundamental role for a hitherto uncharacterized connexin in regulating the function of circulating cells.
Collapse
|
8
|
Natha CM, Vemulapalli V, Fiori MC, Chang CWT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Connexins are membrane proteins involved directly in cell-to-cell communication through the formation of gap-junctional channels. These channels result from the head-to-head docking of two hemichannels, one from each of two adjacent cells. Undocked hemichannels are also present at the plasma membrane where they mediate the efflux of molecules that participate in autocrine and paracrine signaling, but abnormal increase in hemichannel activity can lead to cell damage in disorders such as cardiac infarct, stroke, deafness, cataracts, and skin diseases. For this reason, connexin hemichannels have emerged as a valid therapeutic target. Know small molecule hemichannel inhibitors are not ideal leads for the development of better drugs for clinical use because they are not specific and/or have toxic effects. Newer inhibitors are more selective and include connexin mimetic peptides, anti-connexin antibodies and drugs that reduce connexin expression such as antisense oligonucleotides. Re-purposed drugs and their derivatives are also promising because of the significant experience with their clinical use. Among these, aminoglycoside antibiotics have been identified as inhibitors of connexin hemichannels that do not inhibit gap-junctional channels. In this review, we discuss connexin hemichannels and their inhibitors, with a focus on aminoglycoside antibiotics and derivatives of kanamycin A that inhibit connexin hemichannels, but do not have antibiotic effect.
Collapse
Affiliation(s)
- Cristina M Natha
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Varun Vemulapalli
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
9
|
Norris RP, Terasaki M. Gap junction internalization and processing in vivo: a 3D immuno-electron microscopy study. J Cell Sci 2021; 134:jcs252726. [PMID: 33277382 DOI: 10.1242/jcs.252726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Gap junctions have well-established roles in cell-cell communication by way of forming permeable intercellular channels. Less is understood about their internalization, which forms double membrane vesicles containing cytosol and membranes from another cell called connexosomes or annular gap junctions. Here, we systematically investigated the fate of connexosomes in intact ovarian follicles. High-pressure frozen, serial-sectioned tissue was immunogold labeled for connexin 43 (Cx43, also known as GJA1). Within a volume corresponding to ∼35 cells, every labeled structure was categorized and had its surface area measured. Measurements support the concept that multiple connexosomes form from larger invaginated gap junctions. Subsequently, the inner and outer membranes separate, Cx43 immunogenicity is lost from the outer membrane, and the inner membrane appears to undergo fission. One pathway for processing involves lysosomes, based on localization of cathepsin B to some processed connexosomes. In summary, this study demonstrates new technology for high-resolution analyses of gap junction processing.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachael P Norris
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| |
Collapse
|
10
|
McCutcheon S, Stout RF, Spray DC. The dynamic Nexus: gap junctions control protein localization and mobility in distinct and surprising ways. Sci Rep 2020; 10:17011. [PMID: 33046777 PMCID: PMC7550573 DOI: 10.1038/s41598-020-73892-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Gap junction (GJ) channels permit molecules, such as ions, metabolites and second messengers, to transfer between cells. Their function is critical for numerous cellular interactions, providing exchange of metabolites, signaling molecules, and ionic currents. GJ channels are composed of Connexin (Cx) hexamers paired across extracellular space and typically form large rafts of clustered channels, called plaques, at cell appositions. Cxs together with molecules that interact with GJ channels make up a supramolecular structure known as the GJ Nexus. While the stability of connexin localization in GJ plaques has been studied, mobility of other Nexus components has yet to be addressed. Colocalization analysis of several nexus components and other membrane proteins reveal that certain molecules are excluded from the GJ plaque (Aquaporin 4, EAAT2b), while others are quite penetrant (lipophilic molecules, Cx30, ZO-1, Occludin). Fluorescence recovery after photobleaching of tagged Nexus-associated proteins showed that mobility in plaque domains is affected by mobility of the Cx proteins. These novel findings indicate that the GJ Nexus is a dynamic membrane organelle, with cytoplasmic and membrane-embedded proteins binding and diffusing according to distinct parameters.
Collapse
Affiliation(s)
- Sean McCutcheon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, 10461, USA.
| | - Randy F Stout
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, 10461, USA.,Department of Biomedical Sciences, The New York Institute of Technology College of Osteopathic Medicine, 101 Northern Blvd., Old Westbury, NY, 11586, USA
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY, 10461, USA
| |
Collapse
|
11
|
Kiani S, Kutob L, Schneider F, Higgins KA, Lloyd MS. Histopathologic and Ultrastructural Findings in Human Myocardium After Stereotactic Body Radiation Therapy for Recalcitrant Ventricular Tachycardia. Circ Arrhythm Electrophysiol 2020; 13:e008753. [PMID: 33031001 DOI: 10.1161/circep.120.008753] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Stereotactic body radiation therapy (SBRT) is a novel treatment for refractory ventricular tachycardia (VT). While outcomes have been described in small studies, histological findings after SBRT for VT are unknown. METHODS We identified 4 explanted hearts in the context of transplant that received prior SBRT as part of an 11-patient compassionate use series at our institution. Clinical VTs and computed tomography-defined target volume areas of SBRT were correlated to the anatomic specimens. Gross pathological, histological, and ultrastructural examination of tissue in the target area of SBRT was performed. RESULTS All 4 patients had nonischemic cardiomyopathy, and 3 had left ventricular assist devices. In all cases, patients had recurrent sustained VT and had failed multiple antiarrhythmics and radiofrequency ablations. Four patients underwent 5 total SBRT therapy sessions with 25-Gy single-fraction dose delivered to the area of culprit scar. The time from SBRT to explant ranged from 12 to 250 days. Histopathologic features following radiation were comparable in all patients and were characterized by areas of subendocardial necrosis surrounded by a rim of fibrosis. In 1 patient, the surrounding myocardium showed cytoplasmic vacuolization in myocytes and in another patchy interstitial fibrosis. Vascular changes consisted of myointimal thickening with prominence of endothelial cells. Electron microscopy of myocardium showed irregular, convoluted intercalated disc regions, loss of contractile elements with disrupted and haphazardly arranged myofibrils, and edematous mitochondria with loss of cisternae. CONCLUSIONS Here, we report the first series of findings in human tissue in 4 patients after SBRT. Histopathologic features were consistent across all 4 patients and were indicative of cell injury, death, and to a lesser extent, fibrosis. Electron microscopy demonstrated features consistent with acute injury. These specimens provide radiobiological mechanisms of acute cellular injury during SBRT for VT, which may have an antiarrhythmic effect before the onset of fibrosis.
Collapse
Affiliation(s)
- Soroosh Kiani
- Department of Medicine, Division of Cardiology, Section of Electrophysiology and Pacing (S.K., M.S.L.), Emory University School of Medicine, Atlanta, GA
| | - Leila Kutob
- Department of Pathology and Laboratory Medicine (L.K., F.S.), Emory University School of Medicine, Atlanta, GA
| | - Frank Schneider
- Department of Pathology and Laboratory Medicine (L.K., F.S.), Emory University School of Medicine, Atlanta, GA
| | - Kristin A Higgins
- Department of Radiation Oncology (K.A.H.), Emory University School of Medicine, Atlanta, GA
| | - Michael S Lloyd
- Department of Medicine, Division of Cardiology, Section of Electrophysiology and Pacing (S.K., M.S.L.), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
12
|
Zheng L, Trease AJ, Katsurada K, Spagnol G, Li H, Shi W, Duan B, Patel KP, Sorgen PL. Inhibition of Pyk2 and Src activity improves Cx43 gap junction intercellular communication. J Mol Cell Cardiol 2020; 149:27-40. [PMID: 32956670 DOI: 10.1016/j.yjmcc.2020.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
Identification of proteins that interact with Cx43 has been instrumental in the understanding of gap junction (GJ) regulation. An in vitro phosphorylation screen identified that Protein tyrosine kinase 2 beta (Pyk2) phosphorylated purified Cx43CT and this led us to characterize the impact of this phosphorylation on Cx43 function. Mass spectrometry identified Pyk2 phosphorylates Cx43 residues Y247, Y265, Y267, and Y313. Western blot and immunofluorescence staining using HeLaCx43 cells, HEK 293 T cells, and neonatal rat ventricular myocytes (NRVMs) revealed Pyk2 can be activated by Src and active Pyk2 interacts with Cx43 at the plasma membrane. Overexpression of Pyk2 increases Cx43 phosphorylation and knock-down of Pyk2 decreases Cx43 phosphorylation, without affecting the level of active Src. In HeLaCx43 cells treated with PMA to activate Pyk2, a decrease in Cx43 GJ intercellular communication (GJIC) was observed when assayed by dye transfer. Moreover, PMA activation of Pyk2 could be inhibited by the small molecule PF4618433. This partially restored GJIC, and when paired with a Src inhibitor, returned GJIC to the no PMA control-level. The ability of Pyk2 and Src inhibitors to restore Cx43 function in the presence of PMA was also observed in NRVMs. Additionally, an animal model of myocardial infarction induced heart failure showed a higher level of active Pyk2 activity and increased interaction with Cx43 in ventricular myocytes. Src inhibitors have been used to reverse Cx43 remodeling and improve heart function after myocardial infarction; however, they alone could not fully restore proper Cx43 function. Our data suggest that Pyk2 may need to be inhibited, in addition to Src, to further (if not completely) reverse Cx43 remodeling and improve intercellular communication.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wen Shi
- Division of Cardiology, Department of Internal Medicine/Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Division of Cardiology, Department of Internal Medicine/Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
13
|
Kotova A, Timonina K, Zoidl GR. Endocytosis of Connexin 36 is Mediated by Interaction with Caveolin-1. Int J Mol Sci 2020; 21:E5401. [PMID: 32751343 PMCID: PMC7432810 DOI: 10.3390/ijms21155401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
The gap junctional protein connexin 36 (Cx36) has been co-purified with the lipid raft protein caveolin-1 (Cav-1). The relevance of an interaction between the two proteins is unknown. In this study, we explored the significance of Cav-1 interaction in the context of intracellular and membrane transport of Cx36. Coimmunoprecipitation assays and Förster resonance energy transfer analysis (FRET) were used to confirm the interaction between the two proteins in the Neuro 2a cell line. We found that the Cx36 and Cav-1 interaction was dependent on the intracellular calcium levels. By employing different microscopy techniques, we demonstrated that Cav-1 enhances the vesicular transport of Cx36. Pharmacological interventions coupled with cell surface biotinylation assays and FRET analysis revealed that Cav-1 regulates membrane localization of Cx36. Our data indicate that the interaction between Cx36 and Cav-1 plays a role in the internalization of Cx36 by a caveolin-dependent pathway.
Collapse
Affiliation(s)
- Anna Kotova
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
| | - Ksenia Timonina
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (A.K.); (K.T.)
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
14
|
Deubiquitinating Enzymes Related to Autophagy: New Therapeutic Opportunities? Cells 2018; 7:cells7080112. [PMID: 30126257 PMCID: PMC6116007 DOI: 10.3390/cells7080112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionary conserved catabolic process that allows for the degradation of intracellular components by lysosomes. This process can be triggered by nutrient deprivation, microbial infections or other challenges to promote cell survival under these stressed conditions. However, basal levels of autophagy are also crucial for the maintenance of proper cellular homeostasis by ensuring the selective removal of protein aggregates and dysfunctional organelles. A tight regulation of this process is essential for cellular survival and organismal health. Indeed, deregulation of autophagy is associated with a broad range of pathologies such as neuronal degeneration, inflammatory diseases, and cancer progression. Ubiquitination and deubiquitination of autophagy substrates, as well as components of the autophagic machinery, are critical regulatory mechanisms of autophagy. Here, we review the main evidence implicating deubiquitinating enzymes (DUBs) in the regulation of autophagy. We also discuss how they may constitute new therapeutic opportunities in the treatment of pathologies such as cancers, neurodegenerative diseases or infections.
Collapse
|
15
|
Kells-Andrews RM, Margraf RA, Fisher CG, Falk MM. Connexin-43 K63-polyubiquitylation on lysines 264 and 303 regulates gap junction internalization. J Cell Sci 2018; 131:jcs.204321. [PMID: 30054380 DOI: 10.1242/jcs.204321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Gap junctions (GJs) assembled from connexin (Cx) proteins allow direct cell-cell communication. While phosphorylation is known to regulate multiple GJ functions, much less is known about the role of ubiquitin in these processes. Using ubiquitylation-type-specific antibodies and Cx43 lysine-to-arginine mutants we show that ∼8% of a GJ, localized in central plaque domains, is K63-polyubiquitylated on K264 and K303. Levels and localization of ubiquitylation correlated well with: (1) the short turnover rate of Cxs and GJs; (2) removal of older channels from the plaque center; and (3) the fact that not all Cxs in an internalizing GJ channel need to be ubiquitylated. Connexins mutated at these two sites assembled significantly larger GJs, exhibited much longer protein half-lives and were internalization impaired. Interestingly, these ubiquitin-deficient Cx43 mutants accumulated as hyper-phosphorylated polypeptides in the plasma membrane, suggesting that K63-polyubiquitylation is triggered by phosphorylation. Phospho-specific anti-Cx43 antibodies revealed that upregulated phosphorylation affected serines 368, 279/282 and 255, which are well-known regulatory PKC and MAPK sites. Together, these novel findings suggest that the internalizing portion of channels in a GJ is K63-polyubiquitylated, ubiquitylation is critical for GJ internalization and that phosphorylation induces Cx K63-polyubiquitylation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachael M Kells-Andrews
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Rachel A Margraf
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Charles G Fisher
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| |
Collapse
|
16
|
Plasma membrane insertion of KCa2.3 (SK3) is dependent upon the SNARE proteins, syntaxin-4 and SNAP23. PLoS One 2018; 13:e0196717. [PMID: 29768434 PMCID: PMC5955555 DOI: 10.1371/journal.pone.0196717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/18/2018] [Indexed: 02/03/2023] Open
Abstract
We previously demonstrated endocytosis of KCa2.3 is caveolin-1-, dynamin II- and Rab5-dependent. KCa2.3 then enters Rab35/EPI64C- and RME-1-containing recycling endosomes and is returned to the plasma membrane (PM). Herein, we report on the mechanism by which KCa2.3 is inserted into the PM during recycling and following exit from the Golgi. We demonstrate KCa2.3 colocalizes with SNAP-23 and Syntaxin-4 in the PM of HEK and endothelial cells by confocal immunofluorescence microscopy. We further show KCa2.3 can be co-immunoprecipitated with SNAP-23 and Syntaxin-4. Overexpression of either Syntaxin-4 or SNAP-23 increased PM expression of KCa2.3, whereas shRNA-mediated knockdown of these SNARE proteins significantly decreased PM KCa2.3 expression, as assessed by cell surface biotinylation. Whole-cell patch clamp studies confirmed knockdown of SNAP-23 significantly decreased the apamin sensitive, KCa2.3 current. Using standard biotinylation/stripping methods, we demonstrate shRNA mediated knockdown of SNAP-23 inhibits recycling of KCa2.3 following endocytosis, whereas scrambled shRNA had no effect. Finally, using biotin ligase acceptor peptide (BLAP)-tagged KCa2.3, coupled with ER-resident biotin ligase (BirA), channels could be biotinylated in the ER after which we evaluated their rate of insertion into the PM following Golgi exit. We demonstrate knockdown of SNAP-23 significantly slows the rate of Golgi to PM delivery of KCa2.3. The inhibition of both recycling and PM delivery of newly synthesized KCa2.3 channels likely accounts for the decreased PM expression observed following knockdown of these SNARE proteins. In total, our results suggest insertion of KCa2.3 into the PM depends upon the SNARE proteins, Syntaxin-4 and SNAP-23.
Collapse
|
17
|
Sun J, Hu Q, Peng H, Peng C, Zhou L, Lu J, Huang C. The ubiquitin-specific protease USP8 deubiquitinates and stabilizes Cx43. J Biol Chem 2018; 293:8275-8284. [PMID: 29626091 DOI: 10.1074/jbc.ra117.001315] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/26/2018] [Indexed: 11/06/2022] Open
Abstract
Connexin-43 (Cx43, also known as GJA1) is the most ubiquitously expressed connexin isoform in mammalian tissues. It forms intercellular gap junction (GJ) channels, enabling adjacent cells to communicate both electrically and metabolically. Cx43 is a short-lived protein which can be quickly degraded by the ubiquitin-dependent proteasomal, endolysosomal, and autophagosomal pathways. Here, we report that the ubiquitin-specific peptidase 8 (USP8) interacts with and deubiquitinates Cx43. USP8 reduces both multiple monoubiquitination and polyubiquitination of Cx43 to prevent autophagy-mediated degradation. Consistently, knockdown of USP8 results in decreased Cx43 protein levels in cultured cells and suppresses intercellular communication, revealed by the dye transfer assay. In human breast cancer specimens, the expression levels of USP8 and Cx43 proteins are positively correlated. Taken together, these results identified USP8 as a crucial and bona fide deubiquitinating enzyme involved in autophagy-mediated degradation of Cx43.
Collapse
Affiliation(s)
- Jian Sun
- Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Qianwen Hu
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Peng
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cheng Peng
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025.
| | - Chuanxin Huang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
18
|
Ray A, Katoch P, Jain N, Mehta PP. Dileucine-like motifs in the C-terminal tail of connexin32 control its endocytosis and assembly into gap junctions. J Cell Sci 2018; 131:jcs207340. [PMID: 29361528 PMCID: PMC5897717 DOI: 10.1242/jcs.207340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Defects in assembly of gap junction-forming proteins, called connexins (Cxs), are observed in a variety of cancers. Connexin32 (Cx32; also known as GJB1) is expressed by the polarized cells in epithelia. We discovered two dileucine-based motifs, which govern the intracellular sorting and endocytosis of transmembrane proteins, in the C-terminal tail of Cx32 and explored their role in regulating its endocytosis and gap junction-forming abilities in pancreatic and prostate cancer cells. One motif, designated as LI, was located near the juxtamembrane domain, whereas the other, designated as LL, was located distally. We also discovered a non-canonical motif, designated as LR, in the C-terminal tail. Our results showed that rendering these motifs non-functional had no effect on the intracellular sorting of Cx32. However, rendering the LL or LR motif nonfunctional enhanced the formation of gap junctions by inhibiting Cx32 endocytosis by the clathrin-mediated pathway. Rendering the LI motif nonfunctional inhibited gap junction formation by augmenting the endocytosis of Cx32 via the LL and LR motifs. Our studies have defined distinct roles of these motifs in regulating the endocytosis of Cx32 and its gap junction-forming ability.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Abstract
Purpose of Review Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Recent Findings Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. Summary This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Neha Bhatt
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Antonin Bourdieu
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Karen K Hirschi
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| |
Collapse
|
20
|
Thévenin AF, Margraf RA, Fisher CG, Kells-Andrews RM, Falk MM. Phosphorylation regulates connexin43/ZO-1 binding and release, an important step in gap junction turnover. Mol Biol Cell 2017; 28:3595-3608. [PMID: 29021339 PMCID: PMC5706988 DOI: 10.1091/mbc.e16-07-0496] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
To investigate whether connexin phosphorylation regulates the known role of zonula occludens-1 protein (ZO-1) in gap junction (GJ) function, we generated and analyzed a series of phosphomimetic and phosphorylation-dead mutants by mutating known conserved regulatory serine (S) residues 255, 279/282, 365, 368, and 373 located in the C-terminal domain of connexin43 (Cx43) into glutamic acid (E) or alanine (A) residues. All connexin mutants were translated into stable, full-length proteins and assembled into GJs when expressed in HeLa or Madin-Darby canine kidney epithelial cells. However, mutants with S residues exchanged at positions 365, 368, and 373 exhibited a significantly altered ZO-1 interaction profile, while mutants with S residues exchanged at 255 and 279/282 did not. Unlike wild-type Cx43, in which ZO-1 binding is restricted to the periphery of GJ plaques, S365A, S365E, S368A, S368E, and S373A mutants bound ZO-1 throughout the GJ plaques, while the S373E mutant did not bind ZO-1 at all. Inability to disengage from ZO-1 correlated with increased GJ plaque size and increased connexin protein half-life, while maintaining GJ channels in an open, functional state. Quantitative clathrin-binding analyses revealed no significant alterations in clathrin-binding efficiency, suggesting that the inability to disengage from ZO-1 prevented maturation of functional into nonfunctional/endocytic channels, rather than ZO-1 interfering with GJ endocytosis directly. Collectively, our results indicate that ZO-1 binding regulates channel accrual, while disengagement from ZO-1 is critical for GJ channel closure and transitioning GJ channels for endocytosis. Intriguingly, these transitional ZO-1 binding/release and channel-aging steps are mediated by a series of hierarchical phosphorylation/dephosphorylation events at S373, S365, and S368, well-known Cx43 Akt, protein kinase A, and protein kinase C phosphorylation sites located in the vicinity of the ZO-1 binding site.
Collapse
Affiliation(s)
| | - Rachel A Margraf
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Charles G Fisher
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
21
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
22
|
Stout RF, Spray DC. Cysteine residues in the cytoplasmic carboxy terminus of connexins dictate gap junction plaque stability. Mol Biol Cell 2017; 28:2757-2764. [PMID: 28835376 PMCID: PMC5638580 DOI: 10.1091/mbc.e17-03-0206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
Cysteine residues within the cytoplasmic carboxyl-terminus of gap junction–forming proteins are required to stabilize gap junction plaque organization. The stability of gap junction plaque organization can be modified. Gap junction stability may provide a stable supramolecular platform for modulation of gap junction functions. Gap junctions are cellular contact sites composed of clustered connexin transmembrane proteins that act in dual capacities as channels for direct intercellular exchange of small molecules and as structural adhesion complexes known as gap junction nexuses. Depending on the connexin isoform, the cluster of channels (the gap junction plaque) can be stably or fluidly arranged. Here we used confocal microscopy and mutational analysis to identify the residues within the connexin proteins that determine gap junction plaque stability. We found that stability is altered by changing redox balance using a reducing agent—indicating gap junction nexus stability is modifiable. Stability of the arrangement of connexins is thought to regulate intercellular communication by establishing an ordered supramolecular platform. By identifying the residues that establish plaque stability, these studies lay the groundwork for exploration of mechanisms by which gap junction nexus stability modulates intercellular communication.
Collapse
Affiliation(s)
- Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568-8000 .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
23
|
Gehne N, Lamik A, Lehmann M, Haseloff RF, Andjelkovic AV, Blasig IE. Cross-over endocytosis of claudins is mediated by interactions via their extracellular loops. PLoS One 2017; 12:e0182106. [PMID: 28813441 PMCID: PMC5557494 DOI: 10.1371/journal.pone.0182106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Claudins (Cldns) are transmembrane tight junction (TJ) proteins that paracellularly seal endo- and epithelial barriers by their interactions within the TJs. However, the mechanisms allowing TJ remodeling while maintaining barrier integrity are largely unknown. Cldns and occludin are heterophilically and homophilically cross-over endocytosed into neighboring cells in large, double membrane vesicles. Super-resolution microscopy confirmed the presence of Cldns in these vesicles and revealed a distinct separation of Cldns derived from opposing cells within cross-over endocytosed vesicles. Colocalization of cross-over endocytosed Cldn with the autophagosome markers as well as inhibition of autophagosome biogenesis verified involvement of the autophagosomal pathway. Accordingly, cross-over endocytosed Cldns underwent lysosomal degradation as indicated by lysosome markers. Cross-over endocytosis of Cldn5 depended on clathrin and caveolin pathways but not on dynamin. Cross-over endocytosis also depended on Cldn-Cldn-interactions. Amino acid substitutions in the second extracellular loop of Cldn5 (F147A, Q156E) caused impaired cis- and trans-interaction, as well as diminished cross-over endocytosis. Moreover, F147A exhibited an increased mobility in the membrane, while Q156E was not as mobile but enhanced the paracellular permeability. In conclusion, the endocytosis of TJ proteins depends on their ability to interact strongly with each other in cis and trans, and the mobility of Cldns in the membrane is not necessarily an indicator of barrier permeability. TJ-remodeling via cross-over endocytosis represents a general mechanism for the degradation of transmembrane proteins in cell-cell contacts and directly links junctional membrane turnover to autophagy.
Collapse
Affiliation(s)
- Nora Gehne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Agathe Lamik
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Epifantseva I, Shaw RM. Intracellular trafficking pathways of Cx43 gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:40-47. [PMID: 28576298 DOI: 10.1016/j.bbamem.2017.05.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Irina Epifantseva
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.; Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA..
| |
Collapse
|
25
|
Evaluation of Connexin 43 Redistribution and Endocytosis in Astrocytes Subjected to Ischemia/Reperfusion or Oxygen-Glucose Deprivation and Reoxygenation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5064683. [PMID: 28424784 PMCID: PMC5382357 DOI: 10.1155/2017/5064683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 01/08/2023]
Abstract
Connexin 43 (Cx43) is the major component protein in astrocytic gap junction communication. Recent studies have shown the cellular processes of gap junction internalization and degradation, but many details remain unknown. This study investigated the distribution of Cx43 and its mechanism after ischemic insult. Astrocyte culture system and a model of ischemia/reperfusion (IR) or oxygen-glucose deprivation and reoxygenation (OGDR) were established. Cx43 distribution was observed by laser scanning confocal microscopy under different cultivation conditions. Western blot and RT-PCR assays were applied to quantify Cx43 and MAPRE1 (microtubule-associated protein RP/EB family member 1) expression at different time points. The total number of Cx43 was unchanged in the normal and IR/OGDR groups, but Cx43 particles in the cytoplasm of the IR/OGDR group were significantly greater than that of the normal group. Particles in the cytoplasm were significantly fewer after endocytosis was blocked by dynasore. There was no difference among the groups at each time point regarding protein or gene expression of MAPRE1. We concluded that internalization of Cx43 into the cytoplasm occurred during ischemia, which was partially mediated through endocytosis, not by the change of Cx43 quantity. Moreover, internalization was not related to microtubule transport.
Collapse
|
26
|
Fykerud TA, Knudsen LM, Totland MZ, Sørensen V, Dahal-Koirala S, Lothe RA, Brech A, Leithe E. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding. Cell Cycle 2016; 15:2943-2957. [PMID: 27625181 PMCID: PMC5105929 DOI: 10.1080/15384101.2016.1231280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed “mitotic nanotubes,” were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding.
Collapse
Affiliation(s)
- Tone A Fykerud
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Lars M Knudsen
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Max Z Totland
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Vigdis Sørensen
- b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,e Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,f Department of Core Facilities , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Shiva Dahal-Koirala
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway
| | - Ragnhild A Lothe
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| | - Andreas Brech
- b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,c Institute for Biosciences, University of Oslo , Oslo , Norway.,e Department of Molecular Cell Biology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,f Department of Core Facilities , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway
| | - Edward Leithe
- a Department of Molecular Oncology , Institute for Cancer Research, Oslo University Hospital , Oslo , Norway.,b Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo , Oslo , Norway.,d K.G. Jebsen Colorectal Cancer Research Center, Oslo University Hospital , Oslo , Norway
| |
Collapse
|
27
|
Iyyathurai J, Decuypere JP, Leybaert L, D'hondt C, Bultynck G. Connexins: substrates and regulators of autophagy. BMC Cell Biol 2016; 17 Suppl 1:20. [PMID: 27229147 PMCID: PMC4896244 DOI: 10.1186/s12860-016-0093-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Connexins mediate intercellular communication by assembling into hexameric channel complexes that act as hemichannels and gap junction channels. Most connexins are characterized by a very rapid turn-over in a variety of cell systems. The regulation of connexin turn-over by phosphorylation and ubiquitination events has been well documented. Moreover, different pathways have been implicated in connexin degradation, including proteasomal and lysosomal-based pathways. Only recently, autophagy emerged as an important connexin-degradation pathway for different connexin isoforms. As such, conditions well known to induce autophagy have an immediate impact on the connexin-expression levels. This is not only limited to experimental conditions but also several pathophysiological conditions associated with autophagy (dys)function affect connexin levels and their presence at the cell surface as gap junctions. Finally, connexins are not only substrates of autophagy but also emerge as regulators of the autophagy process. In particular, several connexin isoforms appear to recruit pre-autophagosomal autophagy-related proteins, including Atg16 and PI3K-complex components, to the plasma membrane, thereby limiting their availability and capacity for regulating autophagy.
Collapse
Affiliation(s)
- Jegan Iyyathurai
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium
| | - Jean-Paul Decuypere
- KU Leuven, Laboratory for Membrane Trafficking, Department of Human Genetics, and VIB-Center for the Biology of Disease, Campus Gasthuisberg, O/N-IV, 7.159, Herestraat 49, 3000, Leuven, Belgium
| | - Luc Leybaert
- Ghent University, Physiology Group, Department of Basic Medical Sciences, 9000, Ghent, Belgium
| | - Catheleyne D'hondt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
28
|
Falk MM, Bell CL, Kells Andrews RM, Murray SA. Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions. BMC Cell Biol 2016; 17 Suppl 1:22. [PMID: 27230503 PMCID: PMC4896261 DOI: 10.1186/s12860-016-0087-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.
Collapse
Affiliation(s)
- Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18049, USA.
| | - Cheryl L Bell
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, l5261, USA
| | | | - Sandra A Murray
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, l5261, USA.
| |
Collapse
|
29
|
Arnoldussen YJ, Anmarkrud KH, Skaug V, Apte RN, Haugen A, Zienolddiny S. Effects of carbon nanotubes on intercellular communication and involvement of IL-1 genes. J Cell Commun Signal 2016; 10:153-62. [PMID: 27101311 PMCID: PMC4882305 DOI: 10.1007/s12079-016-0323-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/16/2016] [Indexed: 01/01/2023] Open
Abstract
An increasing amount of products containing engineered nanoparticles is emerging. Among these particles are carbon nanotubes (CNTs) which are of interest for a wide range of industrial and biomedical applications. There have been raised concerns over the effects of CNTs on human health. Some types of CNTs are classified as group 2B carcinogens by the International Agency for Research on Cancer. CNTs may also induce pulmonary inflammatory and fibrotic effects. By utilizing CNTs of different lengths, we investigated the role of the proinflammatory cytokine, interleukin-1 (IL-1) on gap junctional intercellular communication (GJIC) by using IL-1 wild-type (IL1-WT) and IL-1 knock-out (IL1-KO) cells. GJIC decreased equally in both cell types after CNT exposure. Immunofluorescence staining showed Gja1 and Gjb2 in gap junctions and hemichannels for both cell types. Gjb1 and Gjb2 expression was low in IL1-KO cells, which was confirmed by protein analysis. Gja1 was upregulated with both CNTs, whereas Gjb1 was down-regulated by CNT-2 in IL1-WT cells. Connexin mRNA expression was regulated differently by the CNTs. CNT-1 affected Gja1 and Gjb2, whereas CNT-2 had an effect on Gjb1. CNTs negatively affect GJIC through gap junctions independently of the length of CNT and IL-1 status. Furthermore, connexin gene expression was affected by IL-1 at transcriptional and translational levels. As both CNTs used in this study are cytotoxic to the cells and reduce cell survival, we suggest that CNT-induced reduction in GJIC may be important for inhibiting transfer of cell survival signals between cells.
Collapse
Affiliation(s)
- Yke Jildouw Arnoldussen
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Kristine Haugen Anmarkrud
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Vidar Skaug
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, The Faculty of Health Sciences, Ben Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Aage Haugen
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway
| | - Shanbeh Zienolddiny
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Pb 8149 Dep, N-0033, Oslo, Norway.
| |
Collapse
|
30
|
Leithe E. Regulation of connexins by the ubiquitin system: Implications for intercellular communication and cancer. Biochim Biophys Acta Rev Cancer 2016; 1865:133-46. [DOI: 10.1016/j.bbcan.2016.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
|
31
|
Wang X, Koehler SA, Wilking JN, Sinha NN, Cabeen MT, Srinivasan S, Seminara A, Rubinstein S, Sun Q, Brenner MP, Weitz DA. Probing phenotypic growth in expanding Bacillus subtilis biofilms. Appl Microbiol Biotechnol 2016; 100:4607-15. [PMID: 27003268 DOI: 10.1007/s00253-016-7461-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/26/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
Abstract
We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert's law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and phenotype distribution of biofilms which are either exposed to different conditions such as biocides, nutrient depletion, dehydration, or waste accumulation.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China. .,School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Stephan A Koehler
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - James N Wilking
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717-3920, USA
| | - Naveen N Sinha
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Matthew T Cabeen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Siddarth Srinivasan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Agnese Seminara
- CNRS, LPMC UMR 7336, Université Nice Sophia Antipolis, Parc Valrose, 06108, Nice, France
| | - Shmuel Rubinstein
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Qingping Sun
- Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA. .,Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
32
|
Wang HY, Lin YP, Mitchell CK, Ram S, O'Brien J. Two-color fluorescent analysis of connexin 36 turnover: relationship to functional plasticity. J Cell Sci 2015; 128:3888-97. [PMID: 26359298 PMCID: PMC4647165 DOI: 10.1242/jcs.162586] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/04/2015] [Indexed: 01/14/2023] Open
Abstract
Gap junctions formed of connexin 36 (Cx36, also known as Gjd2) show tremendous functional plasticity on several time scales. Changes in connexin phosphorylation modify coupling in minutes through an order of magnitude, but recent studies also imply involvement of connexin turnover in regulating cell-cell communication. We utilized Cx36 with an internal HaloTag to study Cx36 turnover and trafficking in cultured cells. Irreversible, covalent pulse-chase labeling with fluorescent HaloTag ligands allowed clear discrimination of newly formed and pre-existing Cx36. Cx36 in junctional plaques turned over with a half-life of 3.1 h, and the turnover rate was unchanged by manipulations of protein kinase A (PKA) activity. In contrast, changes in PKA activity altered coupling within 20 min. New Cx36 in cargo vesicles was added directly to existing gap junctions and newly made Cx36 was not confined to points of addition, but diffused throughout existing gap junctions. Existing connexins also diffused into photobleached areas with a half-time of less than 2 s. In conclusion, studies of Cx36-HaloTag revealed novel features of connexin trafficking and demonstrated that phosphorylation-based changes in coupling occur on a different time scale than turnover.
Collapse
Affiliation(s)
- Helen Yanran Wang
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cheryl K Mitchell
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sripad Ram
- Carl Zeiss Microscopy LLC, Thornwood, NY 10594, USA
| | - John O'Brien
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
33
|
Stout RF, Snapp EL, Spray DC. Connexin Type and Fluorescent Protein Fusion Tag Determine Structural Stability of Gap Junction Plaques. J Biol Chem 2015; 290:23497-514. [PMID: 26265468 DOI: 10.1074/jbc.m115.659979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJs) are made up of plaques of laterally clustered intercellular channels and the membranes in which the channels are embedded. Arrangement of channels within a plaque determines subcellular distribution of connexin binding partners and sites of intercellular signaling. Here, we report the discovery that some connexin types form plaque structures with strikingly different degrees of fluidity in the arrangement of the GJ channel subcomponents of the GJ plaque. We uncovered this property of GJs by applying fluorescence recovery after photobleaching to GJs formed from connexins fused with fluorescent protein tags. We found that connexin 26 (Cx26) and Cx30 GJs readily diffuse within the plaque structures, whereas Cx43 GJs remain persistently immobile for more than 2 min after bleaching. The cytoplasmic C terminus of Cx43 was required for stability of Cx43 plaque arrangement. We provide evidence that these qualitative differences in GJ arrangement stability reflect endogenous characteristics, with the caveat that the sizes of the GJs examined were necessarily large for these measurements. We also uncovered an unrecognized effect of non-monomerized fluorescent protein on the dynamically arranged GJs and the organization of plaques composed of multiple connexin types. Together, these findings redefine our understanding of the GJ plaque structure and should be considered in future studies using fluorescent protein tags to probe dynamics of highly ordered protein complexes.
Collapse
Affiliation(s)
- Randy F Stout
- From the Dominick P. Purpura Department of Neuroscience and
| | - Erik Lee Snapp
- the Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David C Spray
- From the Dominick P. Purpura Department of Neuroscience and
| |
Collapse
|
34
|
Xie HY, Cui Y, Deng F, Feng JC. Connexin: a potential novel target for protecting the central nervous system? Neural Regen Res 2015; 10:659-66. [PMID: 26170830 PMCID: PMC4424762 DOI: 10.4103/1673-5374.155444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2014] [Indexed: 01/11/2023] Open
Abstract
Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer's disease, Parkinson's disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.
Collapse
Affiliation(s)
- Hong-Yan Xie
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu Cui
- Department of Neurosurgery, the First People's Hospital of Xianyang, Xianyang, Shaanxi Province, China
| | - Fang Deng
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jia-Chun Feng
- Departmet of Neurology, the First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
35
|
Uno SN, Tiwari DK, Kamiya M, Arai Y, Nagai T, Urano Y. A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxf) 2015; 64:263-77. [PMID: 26152215 DOI: 10.1093/jmicro/dfv037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022] Open
Abstract
Recent advances in nanoscopy, which breaks the diffraction barrier and can visualize structures smaller than the diffraction limit in cells, have encouraged biologists to investigate cellular processes at molecular resolution. Since nanoscopy depends not only on special optics but also on 'smart' photophysical properties of photocontrollable fluorescent probes, including photoactivatability, photoswitchability and repeated blinking, it is important for biologists to understand the advantages and disadvantages of fluorescent probes and to choose appropriate ones for their specific requirements. Here, we summarize the characteristics of currently available fluorescent probes based on both proteins and synthetic compounds applicable to nanoscopy and provide a guideline for selecting optimal probes for specific applications.
Collapse
Affiliation(s)
- Shin-Nosuke Uno
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dhermendra K Tiwari
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshiyuki Arai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Nimlamool W, Andrews RMK, Falk MM. Connexin43 phosphorylation by PKC and MAPK signals VEGF-mediated gap junction internalization. Mol Biol Cell 2015; 26:2755-68. [PMID: 26063728 PMCID: PMC4571336 DOI: 10.1091/mbc.e14-06-1105] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/05/2015] [Indexed: 11/16/2022] Open
Abstract
Phosphorylation on well-recognized, regulatory connexin43 amino acid residues by a series of kinases serves as an early molecular signal that triggers not only inhibition of gap junction (GJ)–mediated cell-to-cell communication but also GJ internalization. The findings contribute to the newly evolving dynamic picture of GJs. Gap junctions (GJs) exhibit a complex modus of assembly and degradation to maintain balanced intercellular communication (GJIC). Several growth factors, including vascular endothelial growth factor (VEGF), have been reported to disrupt cell–cell junctions and abolish GJIC. VEGF directly stimulates VEGF-receptor tyrosine kinases on endothelial cell surfaces. Exposing primary porcine pulmonary artery endothelial cells (PAECs) to VEGF for 15 min resulted in a rapid and almost complete loss of connexin43 (Cx43) GJs at cell–cell appositions and a concomitant increase in cytoplasmic, vesicular Cx43. After prolonged incubation periods (60 min), Cx43 GJs reformed and intracellular Cx43 were restored to levels observed before treatment. GJ internalization correlated with efficient inhibition of GJIC, up to 2.8-fold increased phosphorylation of Cx43 serine residues 255, 262, 279/282, and 368, and appeared to be clathrin driven. Phosphorylation of serines 255, 262, and 279/282 was mediated by MAPK, whereas serine 368 phosphorylation was mediated by PKC. Pharmacological inhibition of both signaling pathways significantly reduced Cx43 phosphorylation and GJ internalization. Together, our results indicate that growth factors such as VEGF activate a hierarchical kinase program—including PKC and MAPK—that induces GJ internalization via phosphorylation of well-known regulatory amino acid residues located in the Cx43 C-terminal tail.
Collapse
Affiliation(s)
- Wutigri Nimlamool
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
37
|
Zhong WQ, Chen G, Zhang W, Xiong XP, Ren JG, Zhao Y, Liu B, Zhao YF. Down-regulation of connexin43 and connexin32 in keratocystic odontogenic tumours: potential association with clinical features. Histopathology 2015; 66:798-807. [PMID: 25270527 DOI: 10.1111/his.12569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/26/2014] [Indexed: 01/08/2023]
Abstract
AIMS The objective of this study was to explore the potential involvement of connexin43 (Cx43) and connexin32 (Cx32), two vital members of the connexin families, in the pathogenesis of keratocystic odontogenic tumours (KCOT). METHODS AND RESULTS The expression levels of Cx43 and Cx32 in human KCOT and normal oral mucosa (OM) tissues were measured using immunohistochemistry and real-time quantitative polymerase chain reaction (qPCR). The relationship between Cx43 and Cx32 expression and markers of proliferation [proliferating cell nuclear antigen (PCNA), cyclin D1], anti-apoptosis [B cell lymphoma 2 (Bcl-2)] and autophagy [light chain 3 (LC3), Sequestosome 1 p62 (p62)] was then investigated in the KCOT samples. The results showed that Cx43 and Cx32 expression was down-regulated significantly in KCOT samples relative to OM samples. Meanwhile, the expression levels of Cx43 and Cx32 were correlated negatively with the expression levels of PCNA, cyclin D1, Bcl-2, LC3 and p62, as confirmed further by double-labelling immunofluorescence analyses. CONCLUSIONS This study reveals for the first time that Cx43 and Cx32 are down-regulated in KCOT and suggests an association with growth regulation, anti-apoptosis and autophagy in KCOT.
Collapse
Affiliation(s)
- Wen-Qun Zhong
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kelly JJ, Shao Q, Jagger DJ, Laird DW. Cx30 exhibits unique characteristics including a long half-life when assembled into gap junctions. J Cell Sci 2015; 128:3947-60. [DOI: 10.1242/jcs.174698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023] Open
Abstract
In the present study we investigated the life-cycle, trafficking, assembly and cell surface dynamics of a poorly characterized connexin family member, connexin 30 (Cx30), which plays a critical role in skin health and hearing. Unexpectedly, Cx30 localization at the cell surface and gap junctional intercellular communication was not affected by prolonged treatments with the ER-Golgi transport inhibitor brefeldin-A or the protein synthesis inhibitor cycloheximide, whereas Cx43 was rapidly cleared. Fluorescent recovery after photobleaching revealed that Cx30 plaques were rebuilt from the outer edges in keeping with older channels residing in the inner core of the plaque. Expression of a dominant-negative form of Sar1 GTPase led to the accumulation of Cx30 within the ER in contrast to a report that Cx30 traffics via a Golgi-independent pathway. Co-expression of Cx30 with Cx43 revealed that these connexins segregate into distinct domains within common gap junction plaques suggesting their assembly is governed by different mechanisms. In summary, Cx30 was found to be an unusually stable, long-lived connexin (half-life >12 hrs), which may underlie its specific role in the epidermis and cochlea.
Collapse
Affiliation(s)
- John J. Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
39
|
Zhang SS, Shaw RM. Trafficking highways to the intercalated disc: new insights unlocking the specificity of connexin 43 localization. ACTA ACUST UNITED AC 2014; 21:43-54. [PMID: 24460200 DOI: 10.3109/15419061.2013.876014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With each heartbeat, billions of cardiomyocytes work in concert to propagate the electrical excitation needed to effectively circulate blood. Regulated expression and timely delivery of connexin proteins to form gap junctions at the specialized cell-cell contact region, known as the intercalated disc, is essential to ventricular cardiomyocyte coupling. We focus this review on several regulatory mechanisms that have been recently found to govern the lifecycle of connexin 43 (Cx43), the short-lived and most abundantly expressed connexin in cardiac ventricular muscle. The Cx43 lifecycle begins with gene expression, followed by oligomerization into hexameric channels, and then cytoskeletal-based transport toward the disc region. Once delivered, hemichannels interact with resident disc proteins and are organized to effect intercellular coupling. We highlight recent studies exploring regulation of Cx43 localization to the intercalated disc, with emphasis on alternatively translated Cx43 isoforms and cytoskeletal transport machinery that together regulate Cx43 gap junction coupling between cardiomyocytes.
Collapse
|
40
|
Fong JT, Nimlamool W, Falk MM. EGF induces efficient Cx43 gap junction endocytosis in mouse embryonic stem cell colonies via phosphorylation of Ser262, Ser279/282, and Ser368. FEBS Lett 2014; 588:836-44. [PMID: 24492000 DOI: 10.1016/j.febslet.2014.01.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 11/28/2022]
Abstract
Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular communication by passive diffusion of signaling molecules. We have shown previously that cells endocytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic stem cell colonies - endogenously expressing the GJ protein connexin43 (Cx43) - with epidermal growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.
Collapse
Affiliation(s)
- John T Fong
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Wutigri Nimlamool
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, USA.
| |
Collapse
|
41
|
Falk MM, Kells RM, Berthoud VM. Degradation of connexins and gap junctions. FEBS Lett 2014; 588:1221-9. [PMID: 24486527 DOI: 10.1016/j.febslet.2014.01.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
Connexin proteins are short-lived within the cell, whether present in the secretory pathway or in gap junction plaques. Their levels can be modulated by their rate of degradation. Connexins, at different stages of assembly, are degraded through the proteasomal, endo-/lysosomal, and phago-/lysosomal pathways. In this review, we summarize the current knowledge about connexin and gap junction degradation including the signals and protein-protein interactions that participate in their targeting for degradation.
Collapse
Affiliation(s)
- Matthias M Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, D-218, Bethlehem, PA 18015, USA.
| | - Rachael M Kells
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Iacocca Hall, D-218, Bethlehem, PA 18015, USA
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, 900 East 57th St., KCBD, Room 5150, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Connexins: mechanisms regulating protein levels and intercellular communication. FEBS Lett 2014; 588:1212-20. [PMID: 24457202 DOI: 10.1016/j.febslet.2014.01.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/21/2022]
Abstract
Intercellular communication can occur through gap junction channels, which are comprised of connexin proteins. Therefore, levels of connexins can directly correlate with gap junctional intercellular communication. Because gap junctions have a critical role in maintaining cellular homeostasis, the regulation of connexin protein levels is important. In the connexin life cycle, connexin protein levels can be modified through differential gene transcription or altered through trafficking and degradation mechanisms. More recently, significant attention has been directed to the pathways that cells utilize to increase or decrease connexin levels and thus indirectly, gap junctional communication. Here, we review the studies revealing the mechanisms that affect connexin protein levels and gap junctional intercellular communication.
Collapse
|
43
|
Thévenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda) 2014; 28:93-116. [PMID: 23455769 DOI: 10.1152/physiol.00038.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gap junctions (GJs) are the only known cellular structures that allow a direct cell-to-cell transfer of signaling molecules by forming densely packed arrays or "plaques" of hydrophilic channels that bridge the apposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for all aspects of multicellular life, including coordination of development, tissue function, and cell homeostasis, has been well documented. Assembly and degradation of these membrane channels is a complex process that includes biosynthesis of the connexin (Cx) subunit proteins (innexins in invertebrates) on endoplasmic reticulum (ER) membranes, oligomerization of compatible subunits into hexameric hemichannels (connexons), delivery of the connexons to the plasma membrane (PM), head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic spatially and temporally organized GJ channel plaques, as well as internalization of GJs into the cytoplasm followed by their degradation. Clearly, precise modulation of GJIC, biosynthesis, and degradation are crucial for accurate function, and much research currently addresses how these fundamental processes are regulated. Here, we review posttranslational protein modifications (e.g., phosphorylation and ubiquitination) and the binding of protein partners (e.g., the scaffolding protein ZO-1) known to regulate GJ biosynthesis, internalization, and degradation. We also look closely at the atomic resolution structure of a GJ channel, since the structure harbors vital cues relevant to GJ biosynthesis and turnover.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
44
|
Nowotschin S, Hadjantonakis AK. Live imaging mouse embryonic development: seeing is believing and revealing. Methods Mol Biol 2014; 1092:405-20. [PMID: 24318833 DOI: 10.1007/978-1-60327-292-6_24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of genetically encoded fluorescent proteins has revolutionized the fields of cell and developmental biology and redefined our understanding of the dynamic morphogenetic processes that work to shape the embryo. Fluorescent proteins are routinely used as vital reporters to label tissues, cells, cellular organelles, or proteins of interest and in doing so provide contrasting agents enabling the acquisition of high-resolution quantitative image data. With the advent of more accessible and sophisticated imaging technologies and abundance of fluorescent proteins with different spectral characteristics, the dynamic processes taking place in situ in living embryos can now be probed. Here, we provide an overview of some recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY, USA
| | | |
Collapse
|
45
|
Fast structural responses of gap junction membrane domains to AB5 toxins. Proc Natl Acad Sci U S A 2013; 110:E4125-33. [PMID: 24133139 DOI: 10.1073/pnas.1315850110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gap junctions (GJs) represent connexin-rich membrane domains that connect interiors of adjoining cells in mammalian tissues. How fast GJs can respond to bacterial pathogens has not been known previously. Using Bessel beam plane illumination and confocal spinning disk microscopy, we found fast (~500 ms) formation of connexin-depleted regions (CDRs) inside GJ plaques between cells exposed to AB5 toxins. CDR formation appears as a fast redistribution of connexin channels within GJ plaques with minor changes in outline or geometry. CDR formation does not depend on membrane trafficking or submembrane cytoskeleton and has no effect on GJ conductance. However, CDR responses depend on membrane lipids, can be modified by cholesterol-clustering agents and extracellular K(+) ion concentration, and influence cAMP signaling. The CDR response of GJ plaques to bacterial toxins is a phenomenon observed for all tested connexin isoforms. Through signaling, the CDR response may enable cells to sense exposure to AB5 toxins. CDR formation may reflect lipid-phase separation events in the biological membrane of the GJ plaque, leading to increased connexin packing and lipid reorganization. Our data demonstrate very fast dynamics (in the millisecond-to-second range) within GJ plaques, which previously were considered to be relatively stable, long-lived structures.
Collapse
|
46
|
Disruption in connexin-based communication is associated with intracellular Ca²⁺ signal alterations in astrocytes from Niemann-Pick type C mice. PLoS One 2013; 8:e71361. [PMID: 23977027 PMCID: PMC3744576 DOI: 10.1371/journal.pone.0071361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/27/2013] [Indexed: 01/12/2023] Open
Abstract
Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1−/−) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1−/− hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1−/− astrocytes also showed more intracellular Ca2+ signal oscillations mediated by functional connexin 43 hemichannels and P2Y1 receptors. Therefore, Npc1−/− astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.
Collapse
|
47
|
Fong JT, Kells RM, Falk MM. Two tyrosine-based sorting signals in the Cx43 C-terminus cooperate to mediate gap junction endocytosis. Mol Biol Cell 2013; 24:2834-48. [PMID: 23885125 PMCID: PMC3771946 DOI: 10.1091/mbc.e13-02-0111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three tyrosine-based sorting signals in the gap junction protein connexin 43 were identified, two of which function cooperatively as adaptor protein complex-2 binding sites. The analyses provide a molecular model for clathrin to efficiently internalize large plasma membrane structures and suggest a mechanism for regulating constitutive versus acute gap junction internalization. Gap junction (GJ) channels that electrically and chemically couple neighboring cells are formed when two hemichannels (connexons) of apposed cells dock head-on in the extracellular space. Remarkably, docked connexons are inseparable under physiological conditions, and we and others have shown that GJs are internalized in whole, utilizing the endocytic clathrin machinery. Endocytosis generates double-membrane vesicles (annular GJs or connexosomes) in the cytoplasm of one of the apposed cells that are degraded by autophagosomal and, potentially, endo/lysosomal pathways. In this study, we investigated the structural motifs that mediate Cx43 GJ endocytosis. We identified three canonical tyrosine-based sorting signals of the type “YXXΦ” in the Cx43 C-terminus, two of which function cooperatively as AP-2 binding sites. We generated a set of green fluorescent protein–tagged and untagged Cx43 mutants that targeted these two sites either individually or together. Mutating both sites completely abolished Cx43-AP-2/Dab2/clathrin interaction and resulted in increased GJ plaque size, longer Cx43 protein half-lives, and impaired GJ internalization. Interestingly, Dab2, an accessory clathrin adaptor found earlier to be important for GJ endocytosis, interacts indirectly with Cx43 via AP-2, permitting the recruitment of up to four clathrin complexes per Cx43 protein. Our analyses provide a mechanistic model for clathrin's efficient internalization of large plasma membrane structures, such as GJs.
Collapse
Affiliation(s)
- John T Fong
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | | |
Collapse
|
48
|
Tiwari DK, Nagai T. Smart fluorescent proteins: Innovation for barrier-free superresolution imaging in living cells. Dev Growth Differ 2013; 55:491-507. [DOI: 10.1111/dgd.12064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/06/2013] [Accepted: 03/22/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Dhermendra K. Tiwari
- The Institute of Scientific and Industrial Research; Osaka University; Mihogaoka 8-1; Ibaraki; Osaka; 567-0047; Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research; Osaka University; Mihogaoka 8-1; Ibaraki; Osaka; 567-0047; Japan
| |
Collapse
|
49
|
Jásik J, Boggetti B, Baluška F, Volkmann D, Gensch T, Rutten T, Altmann T, Schmelzer E. PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2. PLoS One 2013; 8:e61403. [PMID: 23637828 PMCID: PMC3630207 DOI: 10.1371/journal.pone.0061403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
The steady state level of integral membrane proteins is dependent on a strictly controlled delivery and removal. Here we show that Dendra2, a green-to-red photoconvertible fluorescent protein, is a suitable tool to study protein turnover in plants. We characterized the fluorescence properties of Dendra2 expressed either as a free protein or as a tag in Arabidopsis thaliana roots and optimized photoconversion settings to study protein turnover. Dendra2 was fused to the PIN2 protein, an auxin transporter in the root tip, and by time-lapse imaging and assessment of red and green signal intensities in the membrane after photoconversion we quantified directly and simultaneously the rate of PIN2 delivery of the newly synthesized protein into the plasma membrane as well as the disappearance of the protein from the plasma membrane due to degradation. Additionally we have verified several factors which are expected to affect PIN2 protein turnover and therefore potentially regulate root growth.
Collapse
Affiliation(s)
- Ján Jásik
- Max Planck Institute for Plant Breeding Research, Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cochrane K, Su V, Lau AF. The connexin43-interacting protein, CIP85, mediates the internalization of connexin43 from the plasma membrane. ACTA ACUST UNITED AC 2013; 20:53-66. [PMID: 23586710 DOI: 10.3109/15419061.2013.784745] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CIP85 was previously identified as a connexin43 (Cx43)-interacting protein that is ubiquitously expressed in multiple mammalian tissues and cell types. The interaction between the SH3 domain of CIP85 and a proline-rich region of Cx43 has previously been associated with an increased rate of Cx43 turnover through lysosomal mechanisms. This report presents biochemical and immunofluorescence evidence that overexpression of CIP85 reduced the presence of Cx43 in gap junction plaques at the plasma membrane. Furthermore, this effect was dependent upon the interaction of CIP85 with Cx43 at the plasma membrane. These results indicate that CIP85 increases Cx43 turnover by accelerating the internalization of Cx43 from the plasma membrane. CIP85 was also observed to interact with clathrin, which suggested a role for CIP85 in the clathrin-mediated internalization of Cx43.
Collapse
Affiliation(s)
- Kimberly Cochrane
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | |
Collapse
|