1
|
Tambrin HM, Liu Y, Zhu K, Teng X, Toyama Y, Miao Y, Ludwig A. ARHGAP12 suppresses F-actin assembly to control epithelial tight junction mechanics and paracellular leak pathway permeability. Cell Rep 2025; 44:115511. [PMID: 40198220 DOI: 10.1016/j.celrep.2025.115511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
Tight junctions (TJs) control the paracellular transport of ions, solutes, and macromolecules across epithelial barriers. There is evidence that claudin-based ion transport (the pore pathway) and the paracellular transport of macromolecules (the leak pathway) are controlled independently. However, how leak pathway flux is regulated is unclear. Here, we have identified the Cdc42/Rac GTPase-activating protein ARHGAP12 as a specific activator of the leak pathway. ARHGAP12 is recruited to TJs via an interaction between its Src homology (SH3) domain and the TJ protein ZO-2 to suppress N-WASP-mediated F-actin assembly. This dampens junctional tension and promotes the paracellular transport of macromolecules without affecting ion flux. Mechanistically, we demonstrate that the ARHGAP12 tandem WW domain interacts directly with PPxR motifs in the proline-rich domain of N-WASP and thereby attenuates SH3-domain-mediated N-WASP oligomerization and Arp2/3-driven F-actin assembly. Collectively, our data indicate that branched F-actin networks regulate junctional tension to fine-tune the TJ leak pathway.
Collapse
Affiliation(s)
- Hana Maldivita Tambrin
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Yun Liu
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Kexin Zhu
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, Singapore 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive, Singapore 117411, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
2
|
Zhang XQ, Li JM, Wang FQ, Ren YH, Wu SX, Wu Y, Tang Y. The clinical significance and biological function of tropomyosin 3 in ulcerative colitis. Tissue Cell 2025; 93:102770. [PMID: 39938429 DOI: 10.1016/j.tice.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a lifelong chronic inflammatory disease that is characterized by the absence of specific markers for diagnosis and prognosis. TPM3 is an integral component of the thin filament, responsible for the structural stability of actin filaments and modulation of cytoskeletal function. This study investigated the regulatory role of TPM3 in UC and its potential mechanisms. METHODS At the clinical level, TPM3 levels were assessed in serum and mucosal tissues of UC and other enteric disease. At the cellular level, the effects of TMP3 overexpressing lentivirus on Caco-2 cell phenotype and the barrier of IL-1β-induced UC model were explored. At the animal level, the effects of TMP3 overexpressing lentivirus on symptoms and colonic damage in a DSS-induced UC model were explored. RESULTS TPM3 expression in serum of UC patients was significantly lower than that of other enteric disease, and TPM3 levels in the intestinal mucosa showed a negative correlation with the Mayo score of UC patients. TPM3 overexpression alleviates IL-1β-induced apoptosis and inhibition of invasion and migration in UC model in vitro. In monolayer Caco-2 cells, TPM3 overexpression rescued the IL-1β-induced decrease in transepithelial electrical resistance and tight junction markers (ZO-1 and Occludin) and increase in permeability. In animal experiments, TPM3 overexpression increased body weight and colon length and decreased disease activity index in a DSS-induced UC model. In tissue staining, it alleviated pathological damage and upregulated Occuludin and TPM3 levels in the colon. CONCLUSION TPM3 levels correlated with UC disease course and TPM3 overexpression alleviated symptoms/phenotypes and barrier damage in UC models in vivo and in vitro. TPM3 may serve as a potential novel biomarker for UC diagnosis and prognosis.
Collapse
Affiliation(s)
- Xue-Qin Zhang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Jian-Mei Li
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Feng-Qian Wang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yan-Hui Ren
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Shi-Xian Wu
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yao Wu
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China
| | - Yuan Tang
- The First People's Hospital of Qujing, No. 1, Yuanlin Road, Qujing, Yunnan 655000, China.
| |
Collapse
|
3
|
Dodero VI, Herrera MG. Oligomerization of 33-mer Gliadin Peptides: Supramolecular Assemblies in Celiac Disease. ChemMedChem 2025; 20:e202400789. [PMID: 39635969 DOI: 10.1002/cmdc.202400789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
The 33-mer gliadin peptide and its deamidated derivative, known as 33-mer DGP, are proteolytically resistant peptides central to the pathomechanism of celiac disease (CeD), the autoimmune presentation of gluten-related disorders (GRD). Both peptides can form spontaneous oligomers in the nanomolar concentration, leading to the formation of nanostructures. In other protein-related diseases, oligomers and aggregates are central in their pathomechanism; therefore, it was hypothesized that the oligomerization of proteolytical-resistant 33-mer gliadin peptides could be an underrecognized disease trigger. This review focuses on the current understanding of 33-mer peptides and their oligomers in vitro and cellular experiments. We intend to give the necessary details that incentivize the chemistry community to get involved in the effort to understand the self-assembly of gliadin peptides and the role of their supramolecular structures in CeD and the other GRD. More research is needed to design effective and safe chemical and/or nutritional interventions beyond the gluten-free diet.
Collapse
Affiliation(s)
- Verónica I Dodero
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - María G Herrera
- Molecular Cell Biology, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
4
|
Maupérin M, Sun Y, Glandorf T, Oswald TA, Klatt N, Geil B, Mutero-Maeda A, Méan I, Jond L, Janshoff A, Yan J, Citi S. A feedback circuitry involving γ-actin, β-actin and nonmuscle myosin-2 A controls tight junction and apical cortex mechanics. Nat Commun 2025; 16:2514. [PMID: 40082413 PMCID: PMC11906862 DOI: 10.1038/s41467-025-57428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Cytoplasmic β- and γ-actin isoforms, along with non-muscle myosin 2 isoforms, are tightly regulated in epithelial cells and compose the actomyosin cytoskeleton at the apical junctional complex. However, their specific role in regulating the mechanics of the membrane cortex and the organization of junctions, and which biomechanical circuitries modulate their expression remain poorly understood. Here, we show that γ-actin depletion in MDCK and other epithelial cells results in increased expression and junctional accumulation of β-actin and increased tight junction membrane tortuosity, both dependent on nonmuscle myosin-2A upregulation. The knock-out of γ-actin also decreases apical membrane stiffness and increases dynamic exchange of the cytoplasmic tight junction proteins like ZO-1 and cingulin, without affecting tight junction organization and barrier function. In summary, our findings uncover a biomechanical circuitry linking γ-actin to β-actin expression through nonmuscle myosin-2A and reveal γ-actin as a key regulator of tight junction and apical membrane cortex mechanics, and the dynamics of cytoskeleton-associated tight junction proteins in epithelial cells.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Glandorf
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Tabea Anne Oswald
- Georg-August Universität, Institute for Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Niklas Klatt
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Burkhard Geil
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andreas Janshoff
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Naftaly S, Pery T, Mhajne R, Ashkar A, Davidovich-Pinhas M, Zinger A. Harnessing the Potential of Human Breast Milk to Boost Intestinal Permeability for Nanoparticles and Macromolecules. J Control Release 2025; 379:768-785. [PMID: 39842727 DOI: 10.1016/j.jconrel.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
The intricate interplay between human breast milk, nanoparticles, and macromolecules holds promise for innovative nutritional delivery strategies. Compared to bovine milk and infant formula, this study explores human breast milk's role in modulating intestinal permeability and its impact on nanoparticle and macromolecule transport. Comparative analysis with bovine milk and infant formula reveals significant elevations in permeability with human breast milk, accompanied by a decrease in transepithelial electrical resistance, suggesting enhanced paracellular transport. Mechanistically, human breast milk reduces Zonula occludens-1 levels, suggesting a regulatory role in intestinal barrier function. Through in vitro and ex vivo evaluations, we aim to understand better the mechanisms behind enhanced permeability and how human breast milk affects nanoparticle physicochemical properties, potentially modulating their behavior. Specifically, human breast milk improves the intestinal permeability of liposomes in a porcine intestinal model, with associated changes in the composition of milk proteins corona related to liposome charge. These findings underscore the unexploited potential of human breast milk in facilitating transport across the intestinal barrier, offering novel avenues for human nutritional delivery and therapeutic interventions.
Collapse
Affiliation(s)
- Si Naftaly
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Topaz Pery
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Rawan Mhajne
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Areen Ashkar
- Faculty of Biotechnology and Food Engineering, Technion, Israel
| | - Maya Davidovich-Pinhas
- Faculty of Biotechnology and Food Engineering, Technion, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Cardiovascular Sciences Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Neurosurgery Department, Houston Methodist Academic Institute, Houston, TX 77030, United States; Resnick Sustainability Center of Catalysis, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Bruce and Ruth Rappaport Cancer Research Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
6
|
Dong XQ, Zhang YH, Luo J, Li MJ, Ma LQ, Qi YT, Miao YL. Keratin 1 modulates intestinal barrier and immune response via kallikrein kinin system in ulcerative colitis. World J Gastroenterol 2025; 31:102070. [PMID: 39958441 PMCID: PMC11752705 DOI: 10.3748/wjg.v31.i6.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/10/2025] Open
Abstract
BACKGROUND External factors in ulcerative colitis (UC) exacerbate colonic epithelial permeability and inflammatory responses. Keratin 1 (KRT1) is crucial in regulating these alterations, but its specific role in the progression of UC remains to be fully elucidated. AIM To explore the role and mechanisms of KRT1 in the regulation of colonic epithelial permeability and inflammation in UC. METHODS A KRT1 antibody concentration gradient test, along with a dextran sulfate sodium (DSS)-induced animal model, was implemented to investigate the role of KRT1 in modulating the activation of the kallikrein kinin system (KKS) and the cleavage of bradykinin (BK)/high molecular weight kininogen (HK) in UC. RESULTS Treatment with KRT1 antibody in Caco-2 cells suppressed cell proliferation, induced apoptosis, reduced HK expression, and increased BK expression. It further downregulated intestinal barrier proteins, including occludin, zonula occludens-1, and claudin, and negatively impacted the coagulation factor XII. These changes led to enhanced activation of BK and HK cleavage, thereby intensifying KKS-mediated inflammation in UC. In the DSS-induced mouse model, administration of KRT1 antibody mitigated colonic injury, increased colon length, alleviated weight loss, and suppressed inflammatory cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor-α. It also facilitated repair of the intestinal barrier, reducing DSS-induced injury. CONCLUSION KRT1 inhibits BK expression, suppresses inflammatory cytokines, and enhances markers of intestinal barrier function, thus ameliorating colonic damage and maintaining barrier integrity. KRT1 is a viable therapeutic target for UC.
Collapse
Affiliation(s)
- Xiang-Qian Dong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Hui Zhang
- Department of Gastroenterology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Juan Luo
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Mao-Juan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Lan-Qing Ma
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ya-Ting Qi
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| | - Ying-Lei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming 650032, Yunnan Province, China
| |
Collapse
|
7
|
Hirano S, Aoki K, Ueno N. Dynamic behavior of cell-cell adhesion factors in collective cell migration. Cells Dev 2025:203995. [PMID: 39862903 DOI: 10.1016/j.cdev.2025.203995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Collective cell migration is a fundamental process underlying various biological phenomena, including embryonic development and cancer cell invasion. The cohesive yet flexible movement of cell collectives largely depends on the coordinated regulation of cell-cell and cell-substrate adhesions. In this review, we summarize the regulation of key cell-cell junction components, such as cadherins and zonula occludens proteins during collective cell migration, with a particular focus on the recently discovered multifaceted roles of ZO-1 in both cell-cell and cell-substrate interactions.
Collapse
Affiliation(s)
- Sayuki Hirano
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Japan; Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Japan; Quantitative and Imaging Biology, International Research Collaboration Center (IRCC), National Institutes of Natural Sciences (NINS), Japan.
| | - Kazuhiro Aoki
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Japan; Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Japan; Quantitative and Imaging Biology, International Research Collaboration Center (IRCC), National Institutes of Natural Sciences (NINS), Japan; Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University, Japan
| | - Naoto Ueno
- Quantitative and Imaging Biology, International Research Collaboration Center (IRCC), National Institutes of Natural Sciences (NINS), Japan; Trans-Scale Biology Center, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Japan.
| |
Collapse
|
8
|
Worakajit N, Satitsri S, Kitiyakara T, Muanprasat C. Myosin light chain kinase-mediated epithelial barrier dysfunction as a potential pathogenic mechanism of afatinib-induced diarrheas: A study in human colonoid model. Eur J Pharmacol 2025; 987:177174. [PMID: 39637932 DOI: 10.1016/j.ejphar.2024.177174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/22/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Diarrheas are an important adverse effect of afatinib, a tyrosine kinase inhibitor (TKI) anti-cancer drug, leading to mortality and morbidity in cancer patients with their pathophysiological mechanisms related to intestinal barrier dysfunctions being poorly understood. This study aimed to investigate the effect of afatinib on intestinal epithelial barrier integrity using a human colon-derived organoid model (colonoids). Afatinib (0.5 μM) significantly decreased the transepithelial electrical resistance (TEER) by ∼60% and increased apical-to-basolateral dextran flux by > 20 folds without causing apparent cytotoxicity in human colonoids. The delocalization of zonula occludens-1 (ZO-1) and a decrease in mRNA and protein expression of claudin-4 and ZO-1 were also observed in the afatinib-treated human colonoids. Afatinib induced nuclear translocation of nuclear factor kappa B (NF-κB) as well as mRNA and protein expression of NF-κB targets including tumor necrosis factor (TNF)-alpha, interleukin-8 (IL-8), and inducible nitric oxide synthase (iNOS) indicating the initiation of the NF-κB-mediated epithelial inflammatory responses. Interestingly, afatinib induced mRNA and protein expression of myosin light chain (MLC) kinase (MLCK) and MLC phosphorylation, a known inducer of intestinal epithelial barrier disruption. Treatment with iNOS inhibitor (1400W) or MLCK inhibitor (ML-7) reversed the effect of afatinib on mRNA expressions of ZO-1 and claudin-4, and TEER. Collectively, our results indicate that afatinib induces intestinal epithelial barrier dysfunction via mechanisms involving NF-κB-iNOS-MLCK pathways. This finding may pave the way for developing therapeutic strategies to reduce adverse effects and enhance efficacy of TKI in cancer patients.
Collapse
Affiliation(s)
- Nichakorn Worakajit
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand
| | - Taya Kitiyakara
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand.
| |
Collapse
|
9
|
Zhang M, Li H, Ma J, Yang C, Yang Y, Zhao B, Tie Y, Wang S. Effects of Zinc Combined with Metformin on Zinc Homeostasis, Blood-Epididymal Barrier, and Epididymal Absorption in Male Diabetic Mice. Biol Trace Elem Res 2025; 203:291-304. [PMID: 38589680 DOI: 10.1007/s12011-024-04171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Diabetes increases the likelihood of germ cell damage, hypogonadism, and male infertility. Diabetes leads to lower zinc (Zn) levels, an important micronutrient for maintaining male fertility, and zinc deficiency can lead to decreased male fertility through multiple mechanisms. The aim of this study was to investigate the effect of combined metformin and zinc administration on epididymis in diabetic mice; 10 of 50 male mice were randomly selected as the control group (group C), and the remaining 40 mice were randomly divided into untreated diabetes group (group D), diabetes + zinc group (group Z), diabetes + metformin group (group M), and diabetes + metformin + zinc group (group ZM) with 10 mice each. Diabetic mice in group Z received oral zinc (10 mg/kg) once daily for 4 weeks; diabetic mice in group M received oral metformin (200 mg/kg) once daily for 4 weeks; diabetic mice in group ZM received oral metformin and zinc once daily for 4 weeks; and groups C and D received the same amount of sterile water by gavage. Overnight fasted mice were sacrificed, and blood samples, mouse epididymides, and sperm were collected for further experiments. In group D, fasting blood glucose and insulin resistance index increased significantly, semen quality, serum insulin, and testosterone decreased, and epididymal structure was disordered. In group D, epididymal tissue zinc, free zinc ions in the caput, and cauda of epididymis and zinc transporter (ZnT2) decreased significantly, while ZIP12, metallothionein (MT), and metal transcription factor (MTF1) increased significantly. In addition, the expressions of blood-epididymal barrier (BEB)-related molecules (including ZO-1 β-catenin and N-cadherin) and aquaporins (AQPs, including AQP3, AQP9, and AQP11) in the epididymis of mice in group D were significantly decreased. In addition, compared with groups D, Z, and M, in the ZM group, the expression of BEB-related molecules (including ZO-1, β-catenin, and N-cadherin) and aquaporins (AQP3, AQP9, and AQP11) in epididymis tissue were significantly increased, and sperm motility and serum testosterone were significantly increased. It was concluded that male diabetic mice have a disturbed epididymal structure and decreased semen quality by causing an imbalance in epididymal zinc homeostasis, BEB, and impaired absorptive function. The combination of zinc and metformin is an effective and safe alternative treatment and provides additional benefits over metformin alone.
Collapse
Affiliation(s)
- Menghui Zhang
- Graduate School, North China University of Science and Technology, Tangshan, 063210, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Chaoju Yang
- Department of Laboratory, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China
| | - Yang Yang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Bangrong Zhao
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Yanqing Tie
- Graduate School, North China University of Science and Technology, Tangshan, 063210, China.
- Department of Laboratory, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China.
| |
Collapse
|
10
|
Nakazaki M, Yokoyama T, Lankford KL, Hirota R, Kocsis JD, Honmou O. Mesenchymal Stem Cells and Their Extracellular Vesicles: Therapeutic Mechanisms for Blood-Spinal Cord Barrier Repair Following Spinal Cord Injury. Int J Mol Sci 2024; 25:13460. [PMID: 39769223 PMCID: PMC11677717 DOI: 10.3390/ijms252413460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB) exacerbating damage by allowing harmful substances and immune cells to infiltrate spinal neural tissues from the vasculature. This leads to inflammation, oxidative stress, and impaired axonal regeneration. The BSCB, essential for maintaining spinal cord homeostasis, is structurally similar to the blood-brain barrier. Its restoration is a key therapeutic target for improving outcomes in SCI. Mesenchymal stromal/stem cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have gained attention for their regenerative, immunomodulatory, and anti-inflammatory properties in promoting BSCB repair. MSCs enhance BSCB integrity by improving endothelial-pericyte association, restoring tight junction proteins, and reducing inflammation. MSC-EVs, which deliver bioactive molecules, replicate many of MSCs' therapeutic effects, and offer a promising cell-free alternative. Preclinical studies have shown that both MSCs and MSC-EVs can reduce BSCB permeability, promote vascular stability, and support functional recovery. While MSC therapy is advancing in clinical trials, MSC-EV therapies require further optimization in terms of production, dosing, and delivery protocols. Despite these challenges, both therapeutic approaches represent significant potential for treating SCI by targeting BSCB repair and improving patient outcomes.
Collapse
Affiliation(s)
- Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Takahiro Yokoyama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
| | - Karen L. Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
11
|
Qi P, Xie R, Liu H, Zhang Z, Cheng Y, Ma J, Wan K, Xie X. Mechanisms of gut homeostasis regulating Th17/Treg cell balance in PMOP. Front Immunol 2024; 15:1497311. [PMID: 39735544 PMCID: PMC11671525 DOI: 10.3389/fimmu.2024.1497311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic bone disease driven by estrogen deficiency, primarily manifesting as reduced bone mass and heightened fracture risk. Its development is intricately linked to the balance between Th17 and Treg cells. Recent studies have highlighted the significant role of gut homeostasis in PMOP. The gut microbiota profoundly impacts bone health by modulating the host's immune system, metabolic pathways, and endocrine functions. In particular, the regulation of Th17 and Treg cell balance by gut homeostasis plays a pivotal role in the onset and progression of PMOP. Th17 cells secrete pro-inflammatory cytokines that stimulate osteoclast activity, accelerating bone resorption, while Treg cells counteract this process through anti-inflammatory mechanisms, preserving bone mass. The gut microbiota and its metabolites can influence Th17/Treg equilibrium, thereby modulating bone metabolism. Furthermore, the integrity of the gut barrier is critical for systemic immune stability, and its disruption can lead to immune dysregulation and metabolic imbalances. Thus, targeting gut homeostasis to restore Th17/Treg balance offers a novel therapeutic avenue for the prevention and treatment of PMOP.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | | | - Hao Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zixuan Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Cheng
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jilong Ma
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kangwei Wan
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - XingWen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
12
|
Mukenhirn M, Wang CH, Guyomar T, Bovyn MJ, Staddon MF, van der Veen RE, Maraspini R, Lu L, Martin-Lemaitre C, Sano M, Lehmann M, Hiraiwa T, Riveline D, Honigmann A. Tight junctions control lumen morphology via hydrostatic pressure and junctional tension. Dev Cell 2024; 59:2866-2881.e8. [PMID: 39137775 DOI: 10.1016/j.devcel.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/24/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
Formation of fluid-filled lumina by epithelial tissues is essential for organ development. How cells control the hydraulic and cortical forces to control lumen morphology is not well understood. Here, we quantified the mechanical role of tight junctions in lumen formation using MDCK-II cysts. We found that the paracellular ion barrier formed by claudin receptors is not required for the hydraulic inflation of a lumen. However, the depletion of the zonula occludens scaffold resulted in lumen collapse and folding of apical membranes. Combining quantitative measurements of hydrostatic lumen pressure and junctional tension with modeling enabled us to explain lumen morphologies from the pressure-tension force balance. Tight junctions promote lumen inflation by decreasing cortical tension via the inhibition of myosin. In addition, our results suggest that excess apical area contributes to lumen opening. Overall, we provide a mechanical understanding of how epithelial cells use tight junctions to modulate tissue and lumen shape.
Collapse
Affiliation(s)
- Markus Mukenhirn
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany
| | - Chen-Ho Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany
| | - Tristan Guyomar
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; Inserm, UMR-S 1258, 67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| | - Matthew J Bovyn
- Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael F Staddon
- Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | | | - Riccardo Maraspini
- Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany
| | - Linjie Lu
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; Inserm, UMR-S 1258, 67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
| | - Cecilie Martin-Lemaitre
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany
| | - Masaki Sano
- Institute of Natural Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Universal Biology Institute, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Daniel Riveline
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; Inserm, UMR-S 1258, 67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.
| | - Alf Honigmann
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01069 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01309 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
13
|
Cencer CS, Robinson KL, Tyska MJ. Loss of intermicrovillar adhesion factor CDHR2 impairs basolateral junctional complexes in transporting epithelia. Mol Biol Cell 2024; 35:br21. [PMID: 39292922 PMCID: PMC11617098 DOI: 10.1091/mbc.e24-03-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and thus maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. To begin to test this idea, we examined cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, reduced key components from tight and adherens junctions, impaired barrier function, and increased the motility of single cells within established monolayers. These results support the hypothesis that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to promote epithelial functions.
Collapse
Affiliation(s)
- Caroline S. Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kianna L. Robinson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
14
|
Ji J, Jansen K, Kessler V, Seisenbaeva G, Gerde P, Malmlöf M, Palmberg L, Upadhyay S. Cell line-based in vitro models of normal and chronic bronchitis-like airway mucosa to study the toxic potential of aerosolized palladium nanoparticles. Front Med (Lausanne) 2024; 11:1422792. [PMID: 39440037 PMCID: PMC11493715 DOI: 10.3389/fmed.2024.1422792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background Physiologically relevant cell line-based models of human airway mucosa are needed to assess nanoparticle-mediated pulmonary toxicity for any xenbiotics expsoure study. Palladium nanoparticles (Pd-NP) originating from catalytic converters in vehicles pose health risks. We aimed to develop in vitro airway models to assess the toxic potential of Pd-NP in normal (Non-CB) and chronic bronchitis-like (CB-like) mucosa models. Methods Bronchial mucosa models were developed using Epithelial cells (16HBE: apical side) co-cultured with fibroblast (basal side) at an air-liquid interface. Furthermore, both Non-CB and CB-like (IL-13 treatment) models with increased numbers of goblet cells were used. The models were exposed to 3 different doses of aerosolized Pd-NP (0.2, 0.3, and 6 μg/cm2) using XposeALI® and clean air as a control. After 24 h of incubation, the expression of inflammatory (IL6, CXCL8, TNFα, and NFKB), oxidative stress (HMOX1, SOD3, GPx, and GSTA1), and tissue injury/repair (MMP9/TIMP1) markers was assessed using qRT-PCR. The secretion of CXCL-8 and the expression of a tissue injury/repair marker (MMP-9) were measured via ELISA. Results Significantly (p < 0.05) increased expressions of CXCL8, IL6, and NFKB were observed at the highest dose of Pd-NP in CB-like models. However, in Non-CB mucosa models, a maximum effect on TNFα and NFKB expression was observed at a medium Pd-NP dose. In Non-CB mucosa models, SOD3 showed a clear dose-dependent response to Pd-NP exposure, while GSTA1 expression was significantly increased (p < 0.05) only at the lowest dose of Pd-NP. The secretion of CXCL-8 increased in a dose-dependent manner in the Non-CB mucosa models following exposure to Pd-NP. In CB-like models, exposure to high concentrations of Pd-NP significantly increased the release of MMP-9 compared to that in other exposure groups. Conclusion The combination of our Non-CB and CB-like mucosa models with the XposeALI® system for aerosolized nanoparticle exposure closely mimics in vivo lung environments and cell-particle interactions. Results from these models, utilizing accessible cell lines, will maximize the reliability of in vitro findings in human health risk assessment.
Collapse
Affiliation(s)
- Jie Ji
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katja Jansen
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vadim Kessler
- Inorganic Bionanotechnology Unit, Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Gulaim Seisenbaeva
- Inorganic Bionanotechnology Unit, Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Per Gerde
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Inhalation Sciences Sweden AB, Stockholm, Sweden
| | | | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble-SGEF-Dlg1 complex regulates E-cadherin and ZO-1 stability, turnover and transcription in epithelial cells. J Cell Sci 2024; 137:jcs262181. [PMID: 39350674 PMCID: PMC11529605 DOI: 10.1242/jcs.262181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
SGEF (also known as ARHGEF26), a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of both E-cadherin and ZO-1 (also known as TJP1) protein levels. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble-SGEF-Dlg1 complex. Our results show that the three members of the ternary complex are required to maintain the stability of the apical junctions, ZO-1 protein levels and tight junction (TJ) permeability. In contrast, only SGEF is necessary to regulate E-cadherin levels. The absence of SGEF destabilizes the E-cadherin-catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug (also known as SNAI2).
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
16
|
Rana S, Nasr L, Chang D, Axis J, Amsler K. Na-caprate-induced increase in MDCK II epithelial cell leak pathway permeability and opening number is associated with disruption of basal F-actin organization. Am J Physiol Cell Physiol 2024; 327:C913-C928. [PMID: 39159387 DOI: 10.1152/ajpcell.00534.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Confluent populations of the epithelial cell line, MDCK II, develop circumferential tight junctions joining adjacent cells to create a barrier to the paracellular movement of solutes and water. Treatment of MDCK II cell populations from the apical surface with 1 mM Na-caprate increased permeability to macromolecules (Leak Pathway) without increasing monolayer disruption or cell death. Graphical analysis of the apparent permeability versus solute Stokes radius for a size range of fluorescein-dextran species indicates apical 1 mM Na-caprate enhances Leak Pathway permeability by increasing the number of Leak Pathway openings without significantly affecting opening size. Na-caprate treatment did not alter the content of any tight junction protein examined. Treatment of MDCK II cell populations with apical 1 mM Na-caprate disrupted basal F-actin stress fibers and decreased the tortuosity of the tight junctions. Treatment of MDCK II cell populations with blebbistatin, a myosin ATPase inhibitor, alone had little effect on Leak Pathway permeability but synergistically increased Leak Pathway permeability when added with 1 mM Na-caprate. Na-caprate exhibited a similar ability to increase Leak Pathway permeability in wild-type MDCK II cell monolayers and ZO-1 knockdown MDCK II cell monolayers but an enhanced ability to increase Leak Pathway permeability in monolayers of TOCA-1 knockout MDCK II cells. These results demonstrate that Na-caprate increases MDCK II cell population Leak Pathway permeability by increasing the number of Leak Pathway openings. This action is likely mediated by alterations in F-actin organization, primarily involving disruption of basal F-actin stress fibers.NEW & NOTEWORTHY This study determines the underlying change in the openings in the epithelial tight junction permeability barrier structure that leads to a change in the paracellular permeability to macromolecules (the Leak Pathway) and connects this to disruption of specific F-actin structures within the cells. It provides important and novel insights into how tight junction permeability to macromolecules is modulated by specific changes to cellular and tight junction composition/organization.
Collapse
Affiliation(s)
- Shivani Rana
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Leyla Nasr
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Daniel Chang
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Josephine Axis
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Kurt Amsler
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| |
Collapse
|
17
|
Qi P, Chen X, Tian J, Zhong K, Qi Z, Li M, Xie X. The gut homeostasis-immune system axis: novel insights into rheumatoid arthritis pathogenesis and treatment. Front Immunol 2024; 15:1482214. [PMID: 39391302 PMCID: PMC11464316 DOI: 10.3389/fimmu.2024.1482214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis is a widely prevalent autoimmune bone disease that imposes a significant burden on global healthcare systems due to its increasing incidence. In recent years, attention has focused on the interaction between gut homeostasis and the immune system, particularly in relation to bone health. Dysbiosis, which refers to an imbalance in the composition and function of the gut microbiota, has been shown to drive immune dysregulation through mechanisms such as the release of pro-inflammatory metabolites, increased gut permeability, and impaired regulatory T cell function. These factors collectively contribute to immune system imbalance, promoting the onset and progression of Rheumatoid arthritis. Dysbiosis induces both local and systemic inflammatory responses, activating key pro-inflammatory cytokines such as tumor necrosis factor-alpha, Interleukin-6, and Interleukin-17, which exacerbate joint inflammation and damage. Investigating the complex interactions between gut homeostasis and immune regulation in the context of Rheumatoid arthritis pathogenesis holds promise for identifying new therapeutic targets, revealing novel mechanisms of disease progression, and offering innovative strategies for clinical treatment.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Chen
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kexin Zhong
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhonghua Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Menghan Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
18
|
Mucientes A, Lisbona-Montañez JM, Mena-Vázquez N, Ruiz-Limón P, Manrique-Arija S, García-Studer A, Ortiz-Márquez F, Fernández-Nebro A. Intestinal Dysbiosis, Tight Junction Proteins, and Inflammation in Rheumatoid Arthritis Patients: A Cross-Sectional Study. Int J Mol Sci 2024; 25:8649. [PMID: 39201334 PMCID: PMC11354395 DOI: 10.3390/ijms25168649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Recent studies point to intestinal permeability as an important factor in the establishment and development of rheumatoid arthritis (RA). Tight junctions (TJs) play a major role in intestinal homeostasis. The alteration of this homeostasis is related to RA. Furthermore, RA patients present dysbiosis and a lower microbiota diversity compared to healthy individuals. A cross-sectional study including RA patients and sex- and age-matched healthy controls was performed. The quantification of TJ proteins was carried out by ELISA. Gut microbiota was evaluated by NGS platform Ion Torrent S. The inflammatory variables included were DAS28, CRP, inflammatory cytokines (IL-6, IL-1, TNF-α) and oxidised LDL. Claudin-1 levels showed significant differences between groups. Results evidenced a correlation between claudin-1 values and age (r: -0.293; p < 0.05), IL6 (r: -0.290; p < 0.05) and CRP (r: -0.327; p < 0.05), and between zonulin values and both age (r: 0.267; p < 0.05) and TNFα (r: 0.266; p < 0.05). Moreover, claudin-1 and CRP levels are related in RA patients (β: -0.619; p: 0.045), and in patients with high inflammatory activity, the abundance of the genus Veillonella is positively associated with claudin-1 levels (β: 39.000; p: 0.004).
Collapse
Affiliation(s)
- Arkaitz Mucientes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - José Manuel Lisbona-Montañez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Patricia Ruiz-Limón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Sara Manrique-Arija
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Aimara García-Studer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Ortiz-Márquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio Fernández-Nebro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
19
|
Lu S, Xu Y, Zhang H, Liu Z, Xu J, Zheng B, Shi D, Qiu F. Glycyrol Relieves Ulcerative Colitis by Promoting the Fusion of ZO-1 with the Cell Membrane through the Enteric Glial Cells GDNF/RET Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14653-14662. [PMID: 38860840 DOI: 10.1021/acs.jafc.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The damage to the mechanical barrier of the intestinal mucosa is the initiating factor and the core link of the progression of ulcerative colitis (UC). Protecting the mechanical barrier of the intestinal mucosa is of great significance for improving the health status of UC patients. ZO-1 is a key scaffold protein of the mechanical barrier of the intestinal mucosa, and its fusion with the membrane of the intestinal epithelium is a necessary condition to maintain the integrity of the mechanical barrier of the intestinal mucosa. Enteric glial cells (EGCs) play an important role in the maintenance of intestinal homeostasis and have become a new target for regulating intestinal health in recent years. In this study, we found that glycyrol (GC), a representative coumarin compound isolated from Licorice (Glycyrrhiza uralensis Fisch, used for medicine and food), can alleviate UC by promoting the production of neurotrophic factor GDNF in mice EGCs. Specifically, we demonstrated that GC promotes the production of GDNF, then activates its receptor RET, promotes ZO-1 fusion with cell membranes, and protects the intestinal mucosal mechanical barrier. The results of this study can provide new ideas for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Shangyun Lu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| | - Yang Xu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Huixia Zhang
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Ziling Liu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jiali Xu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Bowen Zheng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Dongxing Shi
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| | - Fubin Qiu
- Nutritional and Food Science Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
20
|
Bergheim I, Moreno-Navarrete JM. The relevance of intestinal barrier dysfunction, antimicrobial proteins and bacterial endotoxin in metabolic dysfunction-associated steatotic liver disease. Eur J Clin Invest 2024; 54:e14224. [PMID: 38634717 DOI: 10.1111/eci.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of end-stage liver disease associated with increased mortality and cardiovascular disease. Obesity and diabetes are the most important risk factors of MASLD. It is well-established that obesity-associated insulin resistance leads to a situation of tissue lipotoxicity characterized by an accumulation of excess fat in non-fat tissues such as the liver, promoting the development of MASLD, and its progression into metabolic dysfunction-associated steatohepatitis. METHODS Here, we aimed to review the impact of disrupted intestinal permeability, antimicrobial proteins and bacterial endotoxin in the development and progression of MASLD. RESULTS AND CONCLUSION Recent studies demonstrated that obesity- and obesogenic diets-associated alterations of intestinal microbiota along with the disruption of intestinal barrier integrity, the alteration in antimicrobial proteins and, in consequence, an enhanced translocation of bacterial endotoxin into bloodstream might contribute to this pathological process through to impacting liver metabolism and inflammation.
Collapse
Affiliation(s)
- Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Institut d'Investigació Biomèdica de Girona (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
21
|
Sutlive J, Liu BS, Kwan SA, Pan JM, Gou K, Xu R, Ali AB, Khalil HA, Ackermann M, Chen Z, Mentzer SJ. Buckling forces and the wavy folds between pleural epithelial cells. Biosystems 2024; 240:105216. [PMID: 38692427 PMCID: PMC11139554 DOI: 10.1016/j.biosystems.2024.105216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Cell shapes in tissues are affected by the biophysical interaction between cells. Tissue forces can influence specific cell features such as cell geometry and cell surface area. Here, we examined the 2-dimensional shape, size, and perimeter of pleural epithelial cells at various lung volumes. We demonstrated a 1.53-fold increase in 2-dimensional cell surface area and a 1.43-fold increase in cell perimeter at total lung capacity compared to residual lung volume. Consistent with previous results, close inspection of the pleura demonstrated wavy folds between pleural epithelial cells at all lung volumes. To investigate a potential explanation for the wavy folds, we developed a physical simulacrum suggested by D'Arcy Thompson in On Growth and Form. The simulacrum suggested that the wavy folds were the result of redundant cell membranes unable to contract. To test this hypothesis, we developed a numerical simulation to evaluate the impact of an increase in 2-dimensional cell surface area and cell perimeter on the shape of the cell-cell interface. Our simulation demonstrated that an increase in cell perimeter, rather than an increase in 2-dimensional cell surface area, had the most direct impact on the presence of wavy folds. We conclude that wavy folds between pleural epithelial cells reflects buckling forces arising from the excess cell perimeter necessary to accommodate visceral organ expansion.
Collapse
Affiliation(s)
- Joseph Sutlive
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Betty S Liu
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stacey A Kwan
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer M Pan
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kun Gou
- Department of Computational, Engineering, and Mathematical Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Rongguang Xu
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali B Ali
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hassan A Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Zi Chen
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Herrera MG, Amundarain MJ, Dörfler PW, Dodero VI. The Celiac-Disease Superantigen Oligomerizes and Increases Permeability in an Enterocyte Cell Model. Angew Chem Int Ed Engl 2024; 63:e202317552. [PMID: 38497459 DOI: 10.1002/anie.202317552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor β-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.
Collapse
Affiliation(s)
- Maria G Herrera
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, C1428EG, Argentina
| | - Maria J Amundarain
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Philipp W Dörfler
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Veronica I Dodero
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
23
|
Riaz MA, Kary FL, Jensen A, Zeppernick F, Meinhold-Heerlein I, Konrad L. Long-Term Maintenance of Viable Human Endometrial Epithelial Cells to Analyze Estrogen and Progestin Effects. Cells 2024; 13:811. [PMID: 38786035 PMCID: PMC11120542 DOI: 10.3390/cells13100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
There are fewer investigations conducted on human primary endometrial epithelial cells (HPEECs) compared to human primary endometrial stromal cells (HPESCs). One of the main reasons is the scarcity of protocols enabling prolonged epithelial cell culture. Even though it is possible to culture HPEECs in 3D over a longer period of time, it is technically demanding. In this study, we successfully established a highly pure, stable, and long-term viable human conditionally reprogrammed endometrial epithelial cell line, designated as eCRC560. These cells stained positive for epithelial markers, estrogen and progesterone receptors, and epithelial cell-cell contacts but negative for stromal and endothelial cell markers. Estradiol (ES) reduced the abundance of ZO-1 in a time- and dose-dependent manner, in contrast to the dose-dependent increase with the progestin dienogest (DNG) when co-cultured with HPESCs. Moreover, ES significantly increased cell viability, cell migration, and invasion of the eCRC560 cells; all these effects were inhibited by pretreatment with DNG. DNG withdrawal led to a significantly disrupted monolayer of eCRC560 cells in co-culture with HPESCs, yet it markedly increased the adhesion of eCRC560 to the human mesothelial MeT-5A cells. The long-term viable eCRC560 cells are suitable for in vitro analysis of HPEECs to study the epithelial compartment of the human endometrium and endometrial pathologies.
Collapse
Affiliation(s)
- Muhammad Assad Riaz
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Franziska Louisa Kary
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Alexandra Jensen
- Institute of Radiooncology and Radiotherapy, Clinic Fulda, 36043 Fulda, Germany;
| | - Felix Zeppernick
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Lutz Konrad
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| |
Collapse
|
24
|
Zeng J, Liao Z, Yang H, Wang Q, Wu Z, Hua F, Zhou Z. T cell infiltration mediates neurodegeneration and cognitive decline in Alzheimer's disease. Neurobiol Dis 2024; 193:106461. [PMID: 38437992 DOI: 10.1016/j.nbd.2024.106461] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with pathological features of β-amyloid (Aβ) and hyperphosphorylated tau protein accumulation in the brain, often accompanied by cognitive decline. So far, our understanding of the extent and role of adaptive immune responses in AD has been quite limited. T cells, as essential members of the adaptive immune system, exhibit quantitative and functional abnormalities in the brains of AD patients. Dysfunction of the blood-brain barrier (BBB) in AD is considered one of the factors leading to T cell infiltration. Moreover, the degree of neuronal loss in AD is correlated with the quantity of T cells. We first describe the differentiation and subset functions of peripheral T cells in AD patients and provide an overview of the key findings related to BBB dysfunction and how T cells infiltrate the brain parenchyma through the BBB. Furthermore, we emphasize the risk factors associated with AD, including Aβ, Tau protein, microglial cells, apolipoprotein E (ApoE), and neuroinflammation. We discuss their regulation of T cell activation and proliferation, as well as the connection between T cells, neurodegeneration, and cognitive decline. Understanding the innate immune response is crucial for providing comprehensive personalized therapeutic strategies for AD.
Collapse
Affiliation(s)
- Junjian Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiqiang Liao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Hanqin Yang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Qiong Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Zhiyong Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| | - Zhidong Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Province, China.
| |
Collapse
|
25
|
Joutsen J, Pessa JC, Jokelainen O, Sironen R, Hartikainen JM, Sistonen L. Comprehensive analysis of human tissues reveals unique expression and localization patterns of HSF1 and HSF2. Cell Stress Chaperones 2024; 29:235-271. [PMID: 38458311 PMCID: PMC10963207 DOI: 10.1016/j.cstres.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the evolutionarily conserved heat shock response. Beyond cell stress, several studies have demonstrated that HSFs also contribute to a vast variety of human pathologies, ranging from metabolic diseases to cancer and neurodegeneration. Despite their evident role in mitigating cellular perturbations, the functions of HSF1 and HSF2 in physiological proteostasis have remained inconclusive. Here, we analyzed a comprehensive selection of paraffin-embedded human tissue samples with immunohistochemistry. We demonstrate that both HSF1 and HSF2 display distinct expression and subcellular localization patterns in benign tissues. HSF1 localizes to the nucleus in all epithelial cell types, whereas nuclear expression of HSF2 was limited to only a few cell types, especially the spermatogonia and the urothelial umbrella cells. We observed a consistent and robust cytoplasmic expression of HSF2 across all studied smooth muscle and endothelial cells, including the smooth muscle cells surrounding the vasculature and the high endothelial venules in lymph nodes. Outstandingly, HSF2 localized specifically at cell-cell adhesion sites in a broad selection of tissue types, such as the cardiac muscle, liver, and epididymis. To the best of our knowledge, this is the first study to systematically describe the expression and localization patterns of HSF1 and HSF2 in benign human tissues. Thus, our work expands the biological landscape of these factors and creates the foundation for the identification of specific roles of HSF1 and HSF2 in normal physiological processes.
Collapse
Affiliation(s)
- Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland.
| | - Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Otto Jokelainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
26
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble/SGEF/Dlg1 complex regulates the stability of apical junctions in epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586884. [PMID: 38585765 PMCID: PMC10996629 DOI: 10.1101/2024.03.26.586884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SGEF, a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of the expression of both E-cadherin and ZO-1. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble/SGEF/Dlg1 complex. Our results show that an intact ternary complex is required to maintain the stability of the apical junctions, the expression of ZO-1, and TJ permeability. In contrast, only SGEF is necessary to regulate E-cadherin expression. The absence of SGEF destabilizes the E-cadherin/catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug.
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
27
|
Cencer CS, Robinson KL, Tyska MJ. Loss of intermicrovillar adhesion impairs basolateral junctional complexes in transporting epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585733. [PMID: 38562895 PMCID: PMC10983982 DOI: 10.1101/2024.03.19.585733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into the luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and in turn maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. Here, we sought to test this idea using cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, led to loss of key components from tight and adherens junctions, and impaired barrier function and wound healing. These results indicate that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to support the physiological functions of transporting epithelia.
Collapse
|
28
|
Hai-Bing Y, Sivasankaran MS, Ottakandathil BR, Zhong-Luan W, Man-Ting S, Ho-Yu C(P, Kak-Yuen W(K, Kwong-Hang T(P, Chi-Hang L(V. Environmental Toxin Biliatresone-Induced Biliary Atresia-like Abnormal Cilia and Bile Duct Cell Development of Human Liver Organoids. Toxins (Basel) 2024; 16:144. [PMID: 38535810 PMCID: PMC10974618 DOI: 10.3390/toxins16030144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/25/2025] Open
Abstract
Biliary atresia (BA) is a poorly understood and devastating obstructive bile duct disease of newborns. Biliatresone, a plant toxin, causes BA-like syndrome in some animals, but its relevance in humans is unknown. To validate the hypothesis that biliatresone exposure is a plausible BA disease mechanism in humans, we treated normal human liver organoids with biliatresone and addressed its adverse effects on organoid development, functions and cellular organization. The control organoids (without biliatresone) were well expanded and much bigger than biliatresone-treated organoids. Expression of the cholangiocyte marker CK19 was reduced, while the hepatocyte marker HFN4A was significantly elevated in biliatresone-treated organoids. ZO-1 (a tight junction marker) immunoreactivity was localized at the apical intercellular junctions in control organoids, while it was markedly reduced in biliatresone-treated organoids. Cytoskeleton F-actin was localized at the apical surface of the control organoids, but it was ectopically expressed at the apical and basal sides in biliatresone-treated organoids. Cholangiocytes of control organoids possess primary cilia and elicit cilia mechanosensory function. The number of ciliated cholangiocytes was reduced, and cilia mechanosensory function was hampered in biliatresone-treated organoids. In conclusion, biliatresone induces morphological and developmental changes in human liver organoids resembling those of our previously reported BA organoids, suggesting that environmental toxins could contribute to BA pathogenesis.
Collapse
Affiliation(s)
- Yue Hai-Bing
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
| | - Menon Sudheer Sivasankaran
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
| | - Babu Rosana Ottakandathil
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
| | - Wu Zhong-Luan
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
| | - So Man-Ting
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
| | - Chung (Patrick) Ho-Yu
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Wong (Kenneth) Kak-Yuen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Tam (Paul) Kwong-Hang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Lui (Vincent) Chi-Hang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.H.-B.); (M.S.S.); (B.R.O.); (W.Z.-L.); (S.M.-T.); (C.H.-Y.); (W.K.-Y.); (T.K.-H.)
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Groh AC, Möller-Kerutt A, Gilhaus K, Höffken V, Nedvetsky P, Kleimann S, Behrens M, Ghosh S, Hansen U, Krahn MP, Ebnet K, Pavenstädt H, Ludwig A, Weide T. PALS1 is a key regulator of the lateral distribution of tight junction proteins in renal epithelial cells. J Cell Sci 2024; 137:jcs261303. [PMID: 38265145 DOI: 10.1242/jcs.261303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
The evolutionarily conserved apical Crumbs (CRB) complex, consisting of the core components CRB3a (an isoform of CRB3), PALS1 and PATJ, plays a key role in epithelial cell-cell contact formation and cell polarization. Recently, we observed that deletion of one Pals1 allele in mice results in functional haploinsufficiency characterized by renal cysts. Here, to address the role of PALS1 at the cellular level, we generated CRISPR/Cas9-mediated PALS1-knockout MDCKII cell lines. The loss of PALS1 resulted in increased paracellular permeability, indicating an epithelial barrier defect. This defect was associated with a redistribution of several tight junction-associated proteins from bicellular to tricellular contacts. PALS1-dependent localization of tight junction proteins at bicellular junctions required its interaction with PATJ. Importantly, reestablishment of the tight junction belt upon transient F-actin depolymerization or upon Ca2+ removal was strongly delayed in PALS1-deficient cells. Additionally, the cytoskeleton regulator RhoA was redistributed from junctions into the cytosol under PALS1 knockout. Together, our data uncover a critical role of PALS1 in the coupling of tight junction proteins to the F-actin cytoskeleton, which ensures their correct distribution along bicellular junctions and the formation of tight epithelial barrier.
Collapse
Affiliation(s)
- Ann-Christin Groh
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Department Molecular Nephrology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Annika Möller-Kerutt
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Department Molecular Nephrology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Kevin Gilhaus
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Department Molecular Nephrology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Verena Höffken
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Department Molecular Nephrology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Pavel Nedvetsky
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Medical Cell Biology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Simon Kleimann
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Department Molecular Nephrology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Malina Behrens
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Department Molecular Nephrology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Sujasha Ghosh
- School of Biological Sciences and NTU Institute of Structural Biology (NISB), Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore City, Singapore
| | - Uwe Hansen
- University Hospital of Münster, Institute of Musculoskeletal Medicine (IMM), Head Core Facility Electron Microscopy, Domagkstraße 3, 48149 Münster, Germany
| | - Michael P Krahn
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Medical Cell Biology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Straße 56, 48149 Münster, Germany
| | - Hermann Pavenstädt
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Department Molecular Nephrology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| | - Alexander Ludwig
- School of Biological Sciences and NTU Institute of Structural Biology (NISB), Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore City, Singapore
| | - Thomas Weide
- University Hospital of Münster (UKM), Internal Medicine D (MedD), Department Molecular Nephrology, Albert-Schweitzer-Campus 1 Building A14, 48149 Münster, Germany
| |
Collapse
|
30
|
Pinto-Dueñas DC, Hernández-Guzmán C, Marsch PM, Wadurkar AS, Martín-Tapia D, Alarcón L, Vázquez-Victorio G, Méndez-Méndez JV, Chanona-Pérez JJ, Nangia S, González-Mariscal L. The Role of ZO-2 in Modulating JAM-A and γ-Actin Junctional Recruitment, Apical Membrane and Tight Junction Tension, and Cell Response to Substrate Stiffness and Topography. Int J Mol Sci 2024; 25:2453. [PMID: 38473701 DOI: 10.3390/ijms25052453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography.
Collapse
Affiliation(s)
- Diana Cristina Pinto-Dueñas
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Christian Hernández-Guzmán
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Patrick Matthew Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Anand Sunil Wadurkar
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Genaro Vázquez-Victorio
- Physics Department, Science School, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | | | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| |
Collapse
|
31
|
Zhang H, Liu M, Song F, Zhu X, Lu Q, Liu R. Fermentation enhances the amelioration effect of bee pollen on Caco-2 monolayer epithelial barrier dysfunction based on NF-κB-mediated MLCK-MLC signaling pathway. Food Res Int 2024; 178:113938. [PMID: 38309866 DOI: 10.1016/j.foodres.2024.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Intestinal barrier integrity is essential for normal nutrient digestion and absorption and disease resistance. This study aims to investigate how fermentation affects the ameliorative effect of bee pollen on the intestinal barrier dysfunction stimulated by interferon-γ and tumor necrosis factor (IFN-γ/TNF-α) cytokines. The results indicated that fermentation enhances the alleviating effect of bee pollen on intestinal barrier dysfunction (including elevated trans epithelial electrical resistance and decreased paracellular permeability). In addition, fermented bee pollen (FBP) significantly decreased (p < 0.05) the secretion levels of interleukin (IL)-6, IL-8, and IL-1β and expression of cyclooxygenase (COX)-2 protein in intestinal barrier cells. Furthermore, fermentation improved the ability of bee pollen to up-regulate the expression of tight junction proteins including zonula occludens (ZO)-1, occluding, and claudin-1. Notably, FBP showed stronger ability to inhibit the expression of nuclear factor kappa-B (NF-κB) mediated myosin light chain kinase (MLCK) and myosin light chain (MLC) signaling pathway associated with phosphorylated proteins. Overall, our results indicated that fermentation enhances the protective effect of bee pollen on the intestinal barrier, and FBP has promising potential to be used as a novel functional food to protect the intestinal barrier.
Collapse
Affiliation(s)
- Huifang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
| | - Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China
| | - Fanfen Song
- Research Unit VEG-i-TEC, Faculty of BioscienceEngineering, Ghent University, Sint-Martens-Latemlaan2B, 8500 Kortrijk, Belgium
| | - Xiaoling Zhu
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan 430075, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| |
Collapse
|
32
|
Kim S, Chun SH, Cheon YH, Kim M, Kim HO, Lee H, Hong ST, Park SJ, Park MS, Suh YS, Lee SI. Peptoniphilus gorbachii alleviates collagen-induced arthritis in mice by improving intestinal homeostasis and immune regulation. Front Immunol 2024; 14:1286387. [PMID: 38239365 PMCID: PMC10794505 DOI: 10.3389/fimmu.2023.1286387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The intricate connection between gut microbiota and rheumatoid arthritis (RA) pathogenesis has gained prominence, although the specific microbial species contributing to RA development remain largely unknown. Recent studies have sought to comprehensively explore alterations in the human microbiome, focusing on identifying disease-related microbial species through blood analysis. Consequently, this study aimed to identify RA-associated microbial species using a serum microbial array system and to investigate the efficacy and underlying mechanisms of potential microbial species for RA treatment. Methods Serum immunoglobulin M levels against 384 intestinal microbial species were assessed using a microbial microarray in patients with RA and healthy individuals. We investigated the therapeutic potential of the identified microbial candidate regarding arthritis development, immune responses, gut barrier function, and gut microbiome using a collagen-induced arthritis (CIA) mouse model. Results Our findings revealed significant alterations in antibody levels against 36 microbial species in patients with RA compared to healthy individuals. Notably, the antibody levels against Peptoniphilus gorbachii (PG) were decreased in patients with RA and exhibited an inverse correlation with RA disease activity. In vitro experiments demonstrated that PG produced acetate and butyrate, while exhibiting anti-inflammatory properties. In CIA mice, PG administration suppressed arthritis symptoms, reduced the accumulation of inflammatory monocytes in the mesenteric lymph nodes, and downregulated gene expression of pro-inflammatory cytokines in the ileum. Additionally, PG supplementation restored intestinal barrier integrity and partially resolved gut microbial dysbiosis in CIA mice. The fecal microbiota in PG-treated mice corresponded to improved intestinal barrier integrity and reduced inflammatory responses. Conclusion This study highlights the potential of serum-based detection of anti-microbial antibodies to identify microbial targets at the species level for RA treatment. Moreover, our findings suggest that PG, identified through the microbial microarray analysis, holds therapeutic potential for RA by restoring intestinal barrier integrity and suppressing the immunologic response associated with RA.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Hyun-Ok Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hanna Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Myeong Soo Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Young Sun Suh
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| |
Collapse
|
33
|
Dunleavy KA, Raffals LE, Camilleri M. Intestinal Barrier Dysfunction in Inflammatory Bowel Disease: Underpinning Pathogenesis and Therapeutics. Dig Dis Sci 2023; 68:4306-4320. [PMID: 37773554 PMCID: PMC10798146 DOI: 10.1007/s10620-023-08122-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
The intestinal barrier is composed of several essential elements including luminal enzymes, bile acids, water layer, epithelial layer, and enterocyte layer. It acts as a dynamic interface between the luminal contents of food, commensal and pathogenic bacteria, and the gastrointestinal tract. The role of barrier dysfunction is of significant research interest in the development and targeted treatment of chronic inflammatory gastrointestinal conditions, such as inflammatory bowel disease. This review aims to examine the role of intestinal barrier dysfunction in the development of inflammatory bowel disease, the pathophysiology of increased barrier permeability in inflammatory bowel disease, and to explore potential treatment targets and clinical applications.
Collapse
Affiliation(s)
- Katie A Dunleavy
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55905, USA
| | - Laura E Raffals
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55905, USA.
| | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St. S.W., Rochester, MN, 55905, USA
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Güney Z, Kurgan Ş, Önder C, Serdar MA, Günhan Ö, Günhan M. Expression of tight junction proteins in smokers and non-smokers with generalized Stage III periodontitis. J Periodontal Res 2023; 58:1281-1289. [PMID: 37697913 DOI: 10.1111/jre.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE This study aims to evaluate the gingival crevicular fluid (GCF) levels of tumor necrosis factor-α (TNF-α), zonula occludens-1 (ZO-1), occludin (Occ), and tricellulin (Tric) in periodontitis, as well as their alterations due to smoking. BACKGROUND Tight junctions (TJ), which consist of transmembrane and cytoplasmic scaffolding proteins, connect the epithelial cells of the periodontium. Occ, claudins, junctional adhesion molecules, and Tric are transmembrane TJ proteins found at the cell membrane. The transmembrane TJ proteins and the intracellular cytoskeleton are directly linked by cytoplasmic scaffolding proteins such as ZO-1. Although the functions and locations of these molecules have been defined, their behavior in periodontal inflammation is unknown. METHODS The study included four groups: individuals with periodontal health without smoking (C; n = 31), individuals with generalized Stage III periodontitis without smoking (P; n = 28), individuals with periodontal health while smoking (CS; n = 22), and individuals with generalized Stage III periodontitis while smoking (PS; n = 18). Clinical periodontal parameters were recorded, and enzyme-linked immunosorbent assay (ELISA) was used to examine ZO-1, Occ, Tric, and TNF-α levels in GCF. RESULTS In the periodontitis groups, clinical parameters were significantly higher (p < .001). The site-specific levels of TNF-α, ZO-1, Tric, and Occ in the P group were statistically higher than those in the other groups (p < .05). TNF-α, probing pocket depth (PPD), and bleeding on probing (BOP) exhibited positive correlations with all TJ proteins (p < .005). CONCLUSIONS Smoking could potentially affect the levels of epithelial TJ proteins in the GCF, thereby potentially playing a significant role in the pathogenesis of the periodontal disease.
Collapse
Affiliation(s)
- Zeliha Güney
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Department of Periodontology, Faculty of Dentistry, Ankara Medipol University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Canan Önder
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| | - Ömer Günhan
- Department of Pathology, School of Medicine, TOBB ETÜ University, Ankara, Turkey
| | - Meral Günhan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| |
Collapse
|
35
|
Qin P, Ma S, Li C, Di Y, Liu Z, Wang H, Li Y, Jiang S, Yang W, Jiao N. Cysteine Attenuates the Impact of Bisphenol A-Induced Oxidative Damage on Growth Performance and Intestinal Function in Piglets. TOXICS 2023; 11:902. [PMID: 37999554 PMCID: PMC10675709 DOI: 10.3390/toxics11110902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Bisphenol A (BPA), a kind of environmental toxin, widely impacts daily life. Cysteine (Cys) is a nutritionally important amino acid for piglets. However, it remains unclear whether Cys can alleviate BPA-induced oxidative damage in piglets. The aim of the present study was to explore the protective effects of Cys in BPA-challenged piglets. A total of twenty-four piglets were divided into four groups that were further subdivided based on the type of exposure (with or without 0.1% BPA) in a basal or Cys diet for a 28 d feeding trial. The results showed that BPA exposure decreased the piglets' average daily weight gain by 14.9%, and decreased dry matter, crude protein and ether extract digestibility by 3.3%, 4.5% and 2.3%, respectively; these decreases were attenuated by Cys supplementation. Additionally, Cys supplementation restored BPA-induced decreases in superoxide dismutase (SOD) and glutathione (GSH), and increases in malondialdehyde (MDA) levels, in the serum and jejunum (p < 0.05). Moreover, BPA decreased the jejunal mRNA expression of antioxidant genes, which were restored by Cys supplementation (p < 0.05). Cys also restored BPA and increased serum D-lactate levels and diamine oxidase (DAO) activity, and BPA decreased jejunal disaccharidase activity (p < 0.05). Further investigations in this study showed that the protective effects of Cys were associated with restoring intestinal barrier integrity by improving the jejunal morphology and enhancing the mRNA expression of tight junction proteins (p < 0.05). Collectively, the results herein demonstrated that Cys supplementation attenuated the impact of BPA-induced oxidative damage on growth performance, nutrient digestibility and intestinal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Q.); (S.M.); (C.L.); (Y.D.); (Z.L.); (H.W.); (Y.L.); (S.J.); (W.Y.)
| |
Collapse
|
36
|
Vasic I, Libby ARG, Maslan A, Bulger EA, Zalazar D, Krakora Compagno MZ, Streets A, Tomoda K, Yamanaka S, McDevitt TC. Loss of TJP1 disrupts gastrulation patterning and increases differentiation toward the germ cell lineage in human pluripotent stem cells. Dev Cell 2023; 58:1477-1488.e5. [PMID: 37354899 PMCID: PMC10529434 DOI: 10.1016/j.devcel.2023.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/17/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Biological patterning events that occur early in development establish proper tissue morphogenesis. Identifying the mechanisms that guide these patterning events is necessary in order to understand the molecular drivers of development and disease and to build tissues in vitro. In this study, we use an in vitro model of gastrulation to study the role of tight junctions and apical/basolateral polarity in modulating bone morphogenic protein-4 (BMP4) signaling and gastrulation-associated patterning in colonies of human pluripotent stem cells (hPSCs). Disrupting tight junctions via knockdown (KD) of the scaffolding tight junction protein-1 (TJP1, also known as ZO1) allows BMP4 to robustly and ubiquitously activate pSMAD1/5 signaling over time, resulting in loss of the patterning phenotype and marked differentiation bias of pluripotent stem cells to primordial germ cell-like cells (PGCLCs). These findings give important insights into how signaling events are regulated and lead to spatial emergence of diverse cell types in vitro.
Collapse
Affiliation(s)
- Ivana Vasic
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
| | - Ashley RG Libby
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Developmental and Stem Cell Biology Ph.D. Program, University of California, San Francisco, San Francisco, CA, USA 94158
| | - Annie Maslan
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
- Department of Bioengineering, University of California, Berkeley, CA, USA 94720
- Center for Computational Biology, University of California, Berkeley, CA, USA 94720
| | - Emily A Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Developmental and Stem Cell Biology Ph.D. Program, University of California, San Francisco, San Francisco, CA, USA 94158
| | - David Zalazar
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
| | | | - Aaron Streets
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA 94158
- Department of Bioengineering, University of California, Berkeley, CA, USA 94720
- Center for Computational Biology, University of California, Berkeley, CA, USA 94720
- Chan Zuckerberg Biohub, San Francisco, CA, USA 94158
| | - Kiichiro Tomoda
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Center for iPS Cell Research and Application, Kyoto, Japan 606-8397
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Center for iPS Cell Research and Application, Kyoto, Japan 606-8397
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA 94158
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA 94158
| |
Collapse
|
37
|
Ávila-Flores A, Sánchez-Cabezón JJ, Ochoa-Echeverría A, Checa AI, Rosas-García J, Téllez-Araiza M, Casado S, Liébana R, Santos-Mendoza T, Mérida I. Identification of Host PDZ-Based Interactions with the SARS-CoV-2 E Protein in Human Monocytes. Int J Mol Sci 2023; 24:12793. [PMID: 37628973 PMCID: PMC10454406 DOI: 10.3390/ijms241612793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins containing PDZ (post-synaptic density, PSD-95/disc large, Dlg/zonula occludens, ZO-1) domains assemble signaling complexes that orchestrate cell responses. Viral pathogens target host PDZ proteins by coding proteins containing a PDZ-binding motif (PBM). The presence of a PBM in the SARS-CoV-2 E protein contributes to the virus's pathogenicity. SARS-CoV-2 infects epithelia, but also cells from the innate immune response, including monocytes and alveolar macrophages. This process is critical for alterations of the immune response that are related to the deaths caused by SARS-CoV-2. Identification of E-protein targets in immune cells might offer clues to understanding how SARS-CoV-2 alters the immune response. We analyzed the interactome of the SARS-CoV-2 E protein in human monocytes. The E protein was expressed fused to a GFP tag at the amino terminal in THP-1 monocytes, and associated proteins were identified using a proteomic approach. The E-protein interactome provided 372 partners; only 8 of these harbored PDZ domains, including the cell polarity protein ZO-2, the chemoattractant IL-16, and syntenin. We addressed the expression and localization of the identified PDZ proteins along the differentiation of primary and THP-1 monocytes towards macrophages and dendritic cells. Our data highlight the importance of identifying the functions of PDZ proteins in the maintenance of immune fitness and the viral alteration of inflammatory response.
Collapse
Affiliation(s)
- Antonia Ávila-Flores
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Juan José Sánchez-Cabezón
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Ana I. Checa
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Jorge Rosas-García
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Mariana Téllez-Araiza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Sara Casado
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Rosa Liébana
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.R.-G.); (M.T.-A.); (T.S.-M.)
| | - Isabel Mérida
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology, 28049 Madrid, Spain; (J.J.S.-C.); (A.O.-E.); (A.I.C.); (S.C.); (R.L.)
| |
Collapse
|
38
|
Maupérin M, Sassi A, Méan I, Feraille E, Citi S. Knock Out of CGN and CGNL1 in MDCK Cells Affects Claudin-2 but Has a Minor Impact on Tight Junction Barrier Function. Cells 2023; 12:2004. [PMID: 37566083 PMCID: PMC10417749 DOI: 10.3390/cells12152004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Cingulin (CGN) and paracingulin (CGNL1) are cytoplasmic proteins of tight junctions (TJs), where they play a role in tethering ZO-1 to the actomyosin and microtubule cytoskeletons. The role of CGN and CGNL1 in the barrier function of epithelia is not completely understood. Here, we analyzed the effect of the knock out (KO) of either CGN or CGNL1 or both on the paracellular permeability of monolayers of kidney epithelial (MDCK) cells. KO cells displayed a modest but significant increase in the transepithelial resistance (TER) of monolayers both in the steady state and during junction assembly by the calcium switch, whereas the permeability of the monolayers to 3 kDa dextran was not affected. The permeability to sodium was slightly but significantly decreased in KO cells. This phenotype correlated with slightly increased mRNA levels of claudin-2, slightly decreased protein levels of claudin-2, and reduced junctional accumulation of claudin-2, which was rescued by CGN or CGNL1 but not by ZO-1 overexpression. These results confirm previous observations indicating that CGN and CGNL1 are dispensable for the barrier function of epithelia and suggest that the increase in the TER in clonal lines of MDCK cells KO for CGN, CGNL1, or both is due to reduced protein expression and junctional accumulation of the sodium pore-forming claudin, claudin-2.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Ali Sassi
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Eric Feraille
- Department of Cellular and Metabolic Physiology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Citi
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
39
|
Yu S, He J, Xie K. Zonula Occludens Proteins Signaling in Inflammation and Tumorigenesis. Int J Biol Sci 2023; 19:3804-3815. [PMID: 37564207 PMCID: PMC10411466 DOI: 10.7150/ijbs.85765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Tight junction (TJ) is the barrier of epithelial and endothelial cells to maintain paracellular substrate transport and cell polarity. As one of the TJ cytoplasmic adaptor proteins adjacent to cell membrane, zonula occludens (ZO) proteins are responsible for connecting transmembrane TJ proteins and cytoplasmic cytoskeleton, providing a binding platform for transmembrane TJ proteins to maintain the barrier function. In addition to the basic structural function, ZO proteins play important roles in signal regulation such as cell proliferation and motility, the latter including cell migration, invasion and metastasis, to influence embryonic development, tissue homeostasis, damage repair, inflammation, tumorigenesis, and cancer progression. In this review, we will focus on the signal regulating function of ZO proteins in inflammation and tumorigenesis, and discuss the limitations of previous research and future challenges in ZO protein research.
Collapse
Affiliation(s)
- Sen Yu
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| |
Collapse
|
40
|
Jang HY, Cho CS, Shin YM, Kwak J, Sung YH, Kang BC, Kim JH. Isolation and Characterization of the Primary Marmoset ( Callithrix jacchus) Retinal Pigment Epithelial Cells. Cells 2023; 12:1644. [PMID: 37371114 DOI: 10.3390/cells12121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Marmosets have emerged as a valuable primate model in ophthalmic research due to their similarity to the human visual system and their potential for generating transgenic models to advance the development of therapies. In this study, we isolated and cultured primary retinal pigment epithelium (RPE) cells from marmosets to investigate the mechanisms underlying RPE dysfunction in aging and age-related macular degeneration (AMD). We confirmed that our culture conditions and materials supported the formation of RPE monolayers with functional tight junctions that closely resembled the in vivo RPE. Since serum has been shown to induce epithelial-mesenchymal transition (EMT) in RPE cells, we compared the effects of fetal bovine serum (FBS) with serum-free supplements B27 on transepithelial electrical resistance (TER), cell proliferation, and morphological characteristics. Additionally, we assessed the age-related morphological changes of in vivo and primary RPE cells. Our results indicate that primary marmoset RPE cells exhibit in vivo-like characteristics, while cells obtained from an older donor show evidence of aging, including a failure to form a polarized monolayer, low TER, and delayed cell cycle. In conclusion, our primary marmoset RPE cells provide a reliable in vitro model for developing novel therapeutics for visual-threatening disorders such as AMD, which can be used before animal experiments using marmosets.
Collapse
Affiliation(s)
- Ha Young Jang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Young Mi Shin
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Jina Kwak
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
41
|
Kobayashi K. Culture Models to Investigate Mechanisms of Milk Production and Blood-Milk Barrier in Mammary Epithelial Cells: a Review and a Protocol. J Mammary Gland Biol Neoplasia 2023; 28:8. [PMID: 37126158 PMCID: PMC10151314 DOI: 10.1007/s10911-023-09536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
Mammary epithelial cells (MECs) are the only cell type that produces milk during lactation. MECs also form less-permeable tight junctions (TJs) to prevent the leakage of milk and blood components through the paracellular pathway (blood-milk barrier). Multiple factors that include hormones, cytokines, nutrition, and temperature regulate milk production and TJ formation in MECs. Multiple intracellular signaling pathways that positively and negatively regulate milk production and TJ formation have been reported. However, their regulatory mechanisms have not been fully elucidated. In addition, unidentified components that regulate milk production in MECs likely exist in foods, for example plants. Culture models of functional MECs that recapitulate milk production and TJs are useful tools for their study. Such models enable the elimination of indirect effects via cells other than MECs and allows for more detailed experimental conditions. However, culture models of MECs with inappropriate functionality may result in unphysiological reactions that never occur in lactating mammary glands in vivo. Here, I briefly review the physiological functions of alveolar MECs during lactation in vivo and culture models of MECs that feature milk production and less-permeable TJs, together with a protocol for establishment of MEC culture with functional TJ barrier and milk production capability using cell culture inserts.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
42
|
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00766-3. [PMID: 37186118 PMCID: PMC10127193 DOI: 10.1038/s41575-023-00766-3] [Citation(s) in RCA: 264] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Arie Horowitz
- UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
43
|
Gong J, Yu J, Yin S, Ke J, Wu J, Liu C, Luo Z, Cheng WM, Xie Y, Chen Y, He Z, Lan P. Mesenteric Adipose Tissue-Derived Klebsiella variicola Disrupts Intestinal Barrier and Promotes Colitis by Type VI Secretion System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205272. [PMID: 36802200 PMCID: PMC10131791 DOI: 10.1002/advs.202205272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Mesenteric adipose tissue (MAT) in Crohn's disease (CD) is associated with transmural inflammation. Extended mesenteric excision can reduce surgical recurrence and improve long-term outcomes, indicating that MAT plays an important role in the pathogenesis of CD. Bacterial translocation has been reported to occur in the MAT of patients with CD (CD-MAT), but the mechanisms by which translocated bacteria lead to intestinal colitis remain unclear. Here it is shown that members of Enterobacteriaceae are highly enriched in CD-MAT compared with non-CD controls. Viable Klebsiella variicola in Enterobacteriaceae is isolated exclusively in CD-MAT and can induce a pro-inflammatory response in vitro and exacerbates colitis both in dextran sulfate sodium (DSS)-induced colitis mice model and IL-10-/- spontaneous colitis mice model. Mechanistically, active type VI secretion system (T6SS) is identified in the genome of K. variicola, which can impair the intestinal barrier by inhibiting the zonula occludens (ZO-1) expression. Dysfunction of T6SS by CRISPR interference system alleviates the inhibitory effect of K. variicola on ZO-1 expression and attenuated colitis in mice. Overall, these findings demonstrate that a novel colitis-promoting bacteria exist in the mesenteric adipose tissue of CD, opening a new therapeutic avenue for colitis management.
Collapse
Affiliation(s)
- Junli Gong
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Jing Yu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Shengmei Yin
- School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Jia Ke
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jinjie Wu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Chen Liu
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Wai Ming Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| | - Yaozu Xie
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Yuan Chen
- School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Zhen He
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Ping Lan
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
- Guangdong Institute of GastroenterologyGuangzhouGuangdong510655P. R. China
| |
Collapse
|
44
|
Haroun E, Kumar PA, Saba L, Kassab J, Ghimire K, Dutta D, Lim SH. Intestinal barrier functions in hematologic and oncologic diseases. J Transl Med 2023; 21:233. [PMID: 37004099 PMCID: PMC10064590 DOI: 10.1186/s12967-023-04091-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The intestinal barrier is a complex structure that not only regulates the influx of luminal contents into the systemic circulation but is also involved in immune, microbial, and metabolic homeostasis. Evidence implicating disruption in intestinal barrier functions in the development of many systemic diseases, ranging from non-alcoholic steatohepatitis to autism, or systemic complications of intestinal disorders has increased rapidly in recent years, raising the possibility of the intestinal barrier as a potential target for therapeutic intervention to alter the course and mitigate the complications associated with these diseases. In addition to the disease process being associated with a breach in the intestinal barrier functions, patients with hematologic and oncologic diseases are particularly at high risks for the development of increased intestinal permeability, due to the frequent use of broad-spectrum antibiotics and chemoradiation. They also face a distinct challenge of being intermittently severely neutropenic due to treatment of the underlying conditions. In this review, we will discuss how hematologic and oncologic diseases are associated with disruption in the intestinal barrier and highlight the complications associated with an increase in the intestinal permeability. We will explore methods to modulate the complication. To provide a background for our discussion, we will first examine the structure and appraise the methods of evaluation of the intestinal barrier.
Collapse
Affiliation(s)
- Elio Haroun
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Prashanth Ashok Kumar
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Ludovic Saba
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Kassab
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Krishna Ghimire
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA
| | - Dibyendu Dutta
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA.
| | - Seah H Lim
- Division of Hematology and Oncology, State University of New York Upstate Medical University, SUNY Upstate Medical University, 750 E Adams, Syracuse, NY, 13210, USA.
| |
Collapse
|
45
|
Chen YC, Chen KF, Andrew Lin KY, Su HP, Wu DN, Lin CH. Evaluation of toxicity of polystyrene microplastics under realistic exposure levels in human vascular endothelial EA.hy926 cells. CHEMOSPHERE 2023; 313:137582. [PMID: 36529175 DOI: 10.1016/j.chemosphere.2022.137582] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have emerged as a global concern, with a recent study being the first to detect them in the bloodstream of healthy people. However, precise information regarding the toxic effects of MPs on the human vascular system is currently lacking. In this study, we used human vascular endothelial EA. hy926 cells to examine the toxic potential of polystyrene MPs (PSMPs) under realistic blood concentrations. Our findings indicated that PSMPs can cause oxidative stress by reducing the expression of antioxidants, thereby leading to apoptotic cytotoxicity in EA. hy926 cells. Furthermore, the protective potential of heat shock proteins can be reduced by PSMPs. PSMP-induced apoptosis might also lower the expression of rho-associated protein kinase-1 and nuclear factor-κB expression, thus dampening LRR- and pyrin domain-containing protein 3 in EA. hy926 cells. Moreover, we observed that PSMPs induce vascular barrier dysfunction via the depletion of zonula occludens-1 protein. However, although protein expression of the nuclear hormone receptor 77 was inhibited, no significant increase in ectin-like oxidized low-density lipoprotein receptor-1 was noted in PSMP-treated EA. hy926 cells. These results demonstrate that exposure to PSMPs may not sufficiently increase the risk of developing atherosclerosis. Overall, our research signifies that exposure to realistic blood concentrations of PSMPs is associated with low atherosclerotic cardiovascular risk in humans.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan; Department of Science and Environment Studies, The Education University of Hong Kong, New Territories, Hong Kong
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, 54561, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Han-Pang Su
- Third Research Division, Taiwan Research Institute, New Taipei City, 251030, Taiwan
| | - Dong-Ni Wu
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan.
| |
Collapse
|
46
|
Acute Stress Regulates Sex-Related Molecular Responses in the Human Jejunal Mucosa: Implications for Irritable Bowel Syndrome. Cells 2023; 12:cells12030423. [PMID: 36766765 PMCID: PMC9913488 DOI: 10.3390/cells12030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent gastrointestinal disorder linked to intestinal barrier dysfunction and life stress. We have previously reported that female sex per se determines an increased susceptibility to intestinal barrier dysfunction after cold pain stress (CPS). We aimed to identify sex-related molecular differences in response to CPS in healthy subjects to understand the origin of sex bias predominance in IBS. In 13 healthy males and 21 females, two consecutive jejunal biopsies were obtained using Watson's capsule, at baseline, and ninety minutes after CPS. Total mucosal RNA and protein were isolated from jejunal biopsies. Expression of genes related to epithelial barrier (CLDN1, CLDN2, OCLN, ZO-1, and ZO-3), mast cell (MC) activation (TPSAB1, SERPINA1), and the glucocorticoid receptor (NR3C1) were analyzed using RT-qPCR. NR3C1, ZO-1 and OCLN protein expression were evaluated through immunohistochemistry and western blot, and mucosal inflammation through MC, lymphocyte, and eosinophil numbering. Autonomic, hormonal, and psychological responses to CPS were monitored. We found an increase in jejunal MCs, a reduced CLDN1 and OCLN expression, and an increased CLDN2 and SERPINA1 expression 90 min after CPS. We also found a significant decrease in ZO-1, OCLN, and NR3C1 gene expression, and a decrease in OCLN protein expression only in females, when compared to males. CPS induced a significant increase in blood pressure, plasma cortisol and ACTH, and subjective stress perception in all participants. Specific and independent sex-related molecular responses in epithelial barrier regulation are unraveled by acute stress in the jejunum of healthy subjects and may partially explain female predominance in IBS.
Collapse
|
47
|
Yang X, Xu C, Yao F, Ding Q, Liu H, Luo C, Wang D, Huang J, Li Z, Shen Y, Yang W, Li Z, Yu F, Fu Y, Wang L, Ma Q, Zhu J, Xu F, Cong X, Kong W. Targeting endothelial tight junctions to predict and protect thoracic aortic aneurysm and dissection. Eur Heart J 2023; 44:1248-1261. [PMID: 36638776 DOI: 10.1093/eurheartj/ehac823] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Whether changes in endothelial tight junctions (TJs) lead to the formation of thoracic aortic aneurysm and dissection (TAAD) and serve as an early indicator and therapeutic target remains elusive. METHODS AND RESULTS Single-cell RNA sequencing analysis showed aberrant endothelial TJ expressions in the thoracic aortas of patients with TAAD. In a β-aminopropionitrile (BAPN)-induced TAAD mouse model, endothelial TJ function was disrupted in the thoracic aortas at an early stage (5 and 10 days) as observed by a vascular permeability assay, while the intercellular distribution of crucial TJ components was significantly decreased by en face staining. For the non-invasive detection of endothelial TJ function, two dextrans of molecular weights 4 and 70 kDa were conjugated with the magnetic resonance imaging (MRI) contrast agent Gd-DOTA to synthesize FITC-dextran-DOTA-Gd and rhodamine B-dextran-DOTA-Gd. MRI images showed that both probes accumulated in the thoracic aortas of the BAPN-fed mice. Particularly, the mice with increased accumulated signals from 5 to 10 days developed TAAD at 14 days, whereas the mice with similar signals between the two time points did not. Furthermore, the protease-activated receptor 2 inhibitor AT-1001, which seals TJs, alleviated the BAPN-induced impairment of endothelial TJ function and expression and subsequently reduced TAAD incidence. Notably, endothelial-targeted ZO-1 conditional knockout increased TAAD incidence. Mechanistically, vascular inflammation and edema were observed in the thoracic aortas of the BAPN-fed mice, whereas these phenomena were attenuated by AT-1001. CONCLUSION The disruption of endothelial TJ function is an early event prior to TAAD formation, herein serving as a potential indicator and a promising target for TAAD.
Collapse
Affiliation(s)
- Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Chen Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Yao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.,Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Qianhui Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Congcong Luo
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Daidai Wang
- Department of Emergency, Peking University Third Hospital, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Weijie Yang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.,Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Qingbian Ma
- Department of Emergency, Peking University Third Hospital, Beijing 100191, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Fujian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| |
Collapse
|
48
|
Brunner N, Stein L, Amasheh S. Cellular Distribution Pattern of tjp1 (ZO-1) in Xenopus laevis Oocytes Heterologously Expressing Claudins. J Membr Biol 2023; 256:51-61. [PMID: 35737002 PMCID: PMC9884258 DOI: 10.1007/s00232-022-00251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Epithelial barriers constitute a fundamental requirement in every organism, as they allow the separation of different environments and set boundaries against noxious and other adverse effectors. In many inflammatory and degenerative diseases, epithelial barrier function is impaired because of a disturbance of the paracellular seal. Recently, the Xenopus laevis oocyte has been established as a heterologous expression model for the analysis of transmembrane tight junction protein interactions and is currently considered to be a suitable screening model for barrier effectors. A prerequisite for this application is a physiological anchoring of claudins to the cytoskeleton via the major scaffolding protein tjp1 (tight junction protein 1, ZO-1). We have analyzed the oocyte model with regard to the interaction of heterologously expressed claudins and tjp1. Our experiments have revealed endogenous tjp1 expression in protein and mRNA analyses of unfertilized Xenopus laevis oocytes expressing human claudin 1 (CLDN1) to claudin 5 (CLDN5). The amphibian cell model can therefore be used for the analysis of claudin interactions.
Collapse
Affiliation(s)
- Nora Brunner
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Laura Stein
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
49
|
Lyu S, Yang Q, Duan X, Liu X, Du Z, Shang X, Xu M, Liu J, Pan F, Zhang T. Protective effects and potential mechanisms of fermented egg-milk peptides on the damaged intestinal barrier. Front Nutr 2022; 9:1068877. [PMID: 36570170 PMCID: PMC9767966 DOI: 10.3389/fnut.2022.1068877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Fermented egg-milk peptides (FEMPs) could enhance the colon-intestinal barrier and upgrade the expression of zonula occludens-1 and mucin 2. Besides, the underlying biological mechanism and the targets FEMPs could regulate were analyzed in our study. Methods Herein, the immunofluorescence technique and western blot were utilized to evaluate the repair of the intestinal barrier. Network pharmacology analysis and bioinformatics methods were performed to investigate the targets and pathways affected by FEMPs. Results and discussion Animal experiments showed that FEMPs could restore intestinal damage and enhance the expression of two key proteins. The pharmacological results revealed that FEMPs could regulate targets related to kinase activity, such as AKT, CASP, RAF, and GSK. The above targets could interact with each other. GO analysis indicated that the targets regulated by FEMPs could participate in the kinase activity of the metabolic process. KEGG enrichment revealed that the core targets were enriched in pathways related to cell apoptosis and other important procedures. Molecular docking demonstrated that FEMPs could bind to the key target AKT via hydrogen bond interactions. Our study combined the experiment in vivo with the method in silico and investigated the interaction between peptides and targets in a pattern of multi-targets and multi-pathways, which offered a new perspective on the functional validation and potential application of bioactive peptides.
Collapse
Affiliation(s)
- Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuehui Duan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Menglei Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Fengguang Pan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China,Fengguang Pan
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun, China,*Correspondence: Ting Zhang
| |
Collapse
|
50
|
Huang J, Ge S, Luo D, Du R, Wang Y, Liu W, Wang G, Yin T. The endothelium permeability after bioresorbable scaffolds implantation caused by the heterogeneous expression of tight junction proteins. Mater Today Bio 2022; 16:100410. [PMID: 36090609 PMCID: PMC9450163 DOI: 10.1016/j.mtbio.2022.100410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
As one of the main functions of vascular endothelial cells, Vascular permeability is determined by four tight junction proteins (TJPs): Zonula Occludens-1 (ZO-1), Claudin-5, Occludin and Tricellulin. The barrier function of blood vessels will be reconstructed after they are damaged by endothelial mechanical injuries caused by vascular interventions. In this study, the effects of balloon expansion (transient mechanical injury) on four TJPs and vascular permeability were compared with those of poly-l-lactic acid bioresorbable scaffolds (BRSs) implantation (continuous mechanical stimulation). We found that BRSs do not affect vascular permeability, while the recovery of vascular barrier function was found to be only related to the mechanical injuries and repair of endothelium. Mechanical stimulation affects and accelerates the recovery process of vascular permeability with the heterogeneous expression levels of TJPs induced after BRSs implantation. Different TJPs have different sensitivity to different loyal mechanical stimuli. ZO-1 is more sensitive to shear stress and tension than to static pressure. Occludin is sensitive to static pressure and shear stress. Tricellulin is more sensitive to tension stretching. Compared with the other three TJPs, Claudin-5 can respond to mechanical stimulation, with relatively low sensitivity, though. This difference in sensitivity determines the heterogeneous expression of TJPs. Mechanical stimulation of different kinds and strengths can also cause different cell morphological changes and inflammatory reactions. As an important element affecting endothelial function, the mechanical factors emerging after BRSs implantation are worthy of more attention. The repair of vascular permeability is directly related to the type of vascular injuries, while BRSs implantation has little effect on vascular permeability. Transient and persistent mechanical stimulation is the main reason to influence the expression of TJPs. Heterogeneous expression of TJPs caused by their different sensitivity to the form of mechanical stimuli.
Collapse
|