1
|
Palmer LG. How Does Aldosterone Work? KIDNEY360 2023; 4:131-133. [PMID: 36821603 PMCID: PMC10103331 DOI: 10.34067/kid.0000000000000058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Lawrence G Palmer
- Department of Physiology and Biophysics, Weill-Cornell Medicine, New York, New York
- Correspondence: Dr. Lawrence G. Palmer, Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Ave., Room C-501 C. New York, NY 10065.
| |
Collapse
|
2
|
Ahmed T, Flores PC, Pan CC, Ortiz HR, Lee YS, Langlais PR, Mythreye K, Lee NY. EPDR1 is a noncanonical effector of insulin-mediated angiogenesis regulated by an endothelial-specific TGF-β receptor complex. J Biol Chem 2022; 298:102297. [PMID: 35872017 PMCID: PMC9396412 DOI: 10.1016/j.jbc.2022.102297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
Insulin signaling in blood vessels primarily functions to stimulate angiogenesis and maintain vascular homeostasis through the canonical PI3K and MAPK signaling pathways. However, angiogenesis is a complex process coordinated by multiple other signaling events. Here, we report a distinct crosstalk between the insulin receptor and endoglin/activin receptor-like kinase 1 (ALK1), an endothelial cell-specific TGF-β receptor complex essential for angiogenesis. While the endoglin-ALK1 complex normally binds to TGF-β or bone morphogenetic protein 9 (BMP9) to promote gene regulation via transcription factors Smad1/5, we show that insulin drives insulin receptor oligomerization with endoglin-ALK1 at the cell surface to trigger rapid Smad1/5 activation. Through quantitative proteomic analysis, we identify ependymin-related protein 1 (EPDR1) as a major Smad1/5 gene target induced by insulin but not by TGF-β or BMP9. We found endothelial EPDR1 expression is minimal at the basal state but is markedly enhanced upon prolonged insulin treatment to promote cell migration and formation of capillary tubules. Conversely, we demonstrate EPDR1 depletion strongly abrogates these angiogenic effects, indicating that EPDR1 is a crucial mediator of insulin-induced angiogenesis. Taken together, these results suggest important therapeutic implications for EPDR1 and the TGF-β pathways in pathologic angiogenesis during hyperinsulinemia and insulin resistance.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Christopher C. Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Hannah R. Ortiz
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Yeon S. Lee
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Paul R. Langlais
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA,For correspondence: Nam Y. Lee; Karthikeyan Mythreye
| | - Nam Y. Lee
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona, USA,Department of Pharmacology, University of Arizona, Tucson, Arizona, USA,Comprehensive Cancer Center, University of Arizona, Tucson, Arizona, USA,For correspondence: Nam Y. Lee; Karthikeyan Mythreye
| |
Collapse
|
3
|
Diakov A, Nesterov V, Dahlmann A, Korbmacher C. Two adjacent phosphorylation sites in the C-terminus of the channel's α-subunit have opposing effects on epithelial sodium channel (ENaC) activity. Pflugers Arch 2022; 474:681-697. [PMID: 35525869 PMCID: PMC9192390 DOI: 10.1007/s00424-022-02693-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
Abstract
How phosphorylation of the epithelial sodium channel (ENaC) contributes to its regulation is incompletely understood. Previously, we demonstrated that in outside-out patches ENaC activation by serum- and glucocorticoid-inducible kinase isoform 1 (SGK1) was abolished by mutating a serine residue in a putative SGK1 consensus motif RXRXX(S/T) in the channel’s α-subunit (S621 in rat). Interestingly, this serine residue is followed by a highly conserved proline residue rather than by a hydrophobic amino acid thought to be required for a functional SGK1 consensus motif according to invitro data. This suggests that this serine residue is a potential phosphorylation site for the dual-specificity tyrosine phosphorylated and regulated kinase 2 (DYRK2), a prototypical proline-directed kinase. Its phosphorylation may prime a highly conserved preceding serine residue (S617 in rat) to be phosphorylated by glycogen synthase kinase 3 β (GSK3β). Therefore, we investigated the effect of DYRK2 on ENaC activity in outside-out patches of Xenopus laevis oocytes heterologously expressing rat ENaC. DYRK2 included in the pipette solution significantly increased ENaC activity. In contrast, GSK3β had an inhibitory effect. Replacing S621 in αENaC with alanine (S621A) abolished the effects of both kinases. A S617A mutation reduced the inhibitory effect of GKS3β but did not prevent ENaC activation by DYRK2. Our findings suggest that phosphorylation of S621 activates ENaC and primes S617 for subsequent phosphorylation by GSK3β resulting in channel inhibition. In proof-of-concept experiments, we demonstrated that DYRK2 can also stimulate ENaC currents in microdissected mouse distal nephron, whereas GSK3β inhibits the currents.
Collapse
Affiliation(s)
- Alexei Diakov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr, 6, 91054, Erlangen, Germany
| | - Viatcheslav Nesterov
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr, 6, 91054, Erlangen, Germany
| | - Anke Dahlmann
- Medizinische Klinik 4 - Nephrologie und Hypertensiologie, Universitätsklinikum Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr, 6, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Bukhari AAS, Zhang X, Li M, Zhao A, Dong H, Liang X. Cofilin participates in regulating alpha-epithelial sodium channel by interaction with 14-3-3 isoforms. J Biomed Res 2020; 34:351-360. [PMID: 32981895 PMCID: PMC7540242 DOI: 10.7555/jbr.34.20190155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Renal epithelial sodium channel (ENaC) plays a crucial role in maintaining homeostasis and sodium absorption. While insulin participates in controlling sodium transport across the renal epithelium, the underlying molecular mechanism remain unclear. In this study, we found that insulin increased the expression and function of alpha-epithelial sodium channel (α-ENaC) as well as phosphorylation of cofilin, a family of actin-binding proteins which disassembles actin filaments, in mouse cortical collecting duct (mpkCCDc14) cells. The wild-type (WT) cofilin and its constitutively phosphorylated form (S3D), but not its constitutively non-phosphorylable form (S3A), contributed to the elevated expression on α-ENaC. Overexpression of 14-3-3ε, β, or γ increased the expression of α-ENaC and cofilin phosphorylation, which was blunted by knockdown of 14-3-3ε, β, or γ. Moreover, it was found that insulin increased the interaction between cofilin and 14-3-3 isoforms, which indicated relevance of 14-3-3 isoforms with cofilin. Furthermore, LIMK1/SSH1 pathway was involved in regulation of cofilin and α-ENaC expression by insulin. The results from this work indicate that cofilin participates in the regulation of α-ENaC by interaction with 14-3-3 isoforms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiubin Liang
- Department of Pathophysiology;Department of Nephrology, the Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
5
|
Henriques AFA, Matos P, Carvalho AS, Azkargorta M, Elortza F, Matthiesen R, Jordan P. WNK1 phosphorylation sites in TBC1D1 and TBC1D4 modulate cell surface expression of GLUT1. Arch Biochem Biophys 2019; 679:108223. [PMID: 31816312 DOI: 10.1016/j.abb.2019.108223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
Glucose uptake by mammalian cells is a key mechanism to maintain cell and tissue homeostasis and relies mostly on plasma membrane-localized glucose transporter proteins (GLUTs). Two main cellular mechanisms regulate GLUT proteins in the cell: first, expression of GLUT genes is under dynamic transcriptional control and is used by cancer cells to increase glucose availability. Second, GLUT proteins are regulated by membrane traffic from storage vesicles to the plasma membrane (PM). This latter process is triggered by signaling mechanisms and well-studied in the case of insulin-responsive cells, which activate protein kinase AKT to phosphorylate TBC1D4, a RAB-GTPase activating protein involved in membrane traffic regulation. Previously, we identified protein kinase WNK1 as another kinase able to phosphorylate TBC1D4 and regulate the surface expression of the constitutive glucose transporter GLUT1. Here we describe that downregulation of WNK1 through RNA interference in HEK293 cells led to a 2-fold decrease in PM GLUT1 expression, concomitant with a 60% decrease in glucose uptake. By mass spectrometry, we identified serine (S) 704 in TBC1D4 as a WNK1-regulated phosphorylation site, and also S565 in the paralogue TBC1D1. Transfection of the respective phosphomimetic or unphosphorylatable TBC1D mutants into cells revealed that both affected the cell surface abundance of GLUT1. The results reinforce a regulatory role for WNK1 in cell metabolism and have potential impact for the understanding of cancer cell metabolism and therapeutic options in type 2 diabetes.
Collapse
Affiliation(s)
- Andreia F A Henriques
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Sofia Carvalho
- CEDOC-Chronic Diseases Research Centre, Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Building 800, Science and Technology Park of Bizkaia, 48160, Derio, Spain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Building 800, Science and Technology Park of Bizkaia, 48160, Derio, Spain
| | - Rune Matthiesen
- CEDOC-Chronic Diseases Research Centre, Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisbon, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
6
|
Ware AW, Rasulov SR, Cheung TT, Lott JS, McDonald FJ. Membrane trafficking pathways regulating the epithelial Na + channel. Am J Physiol Renal Physiol 2019; 318:F1-F13. [PMID: 31657249 DOI: 10.1152/ajprenal.00277.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Renal Na+ reabsorption, facilitated by the epithelial Na+ channel (ENaC), is subject to multiple forms of control to ensure optimal body blood volume and pressure through altering both the ENaC population and activity at the cell surface. Here, the focus is on regulating the number of ENaCs present in the apical membrane domain through pathways of ENaC synthesis and targeting to the apical membrane as well as ENaC removal, recycling, and degradation. Finally, the mechanisms by which ENaC trafficking pathways are regulated are summarized.
Collapse
Affiliation(s)
- Adam W Ware
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sahib R Rasulov
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Zhang X, Ge Y, Bukhari AAS, Zhu Q, Shen Y, Li M, Sun H, Su D, Liang X. Estrogen negatively regulates the renal epithelial sodium channel (ENaC) by promoting Derlin-1 expression and AMPK activation. Exp Mol Med 2019; 51:1-12. [PMID: 31113930 PMCID: PMC6529463 DOI: 10.1038/s12276-019-0253-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
The main functions of the epithelial sodium channel (ENaC) in the kidney distal nephron are mediation of sodium and water balance and stabilization of blood pressure. Estrogen has important effects on sodium and water balance and on premenopausal blood pressure, but its role in the regulation of ENaC function is not fully understood. Female Sprague–Dawley rats were treated with 17β-estradiol for 6 weeks following bilateral ovariectomy. Plasma estrogen, aldosterone, creatinine, and electrolytes were analyzed, and α-ENaC and derlin-1 protein expression in the kidney was determined by immunohistochemistry and western blotting. The expression levels of α-ENaC, derlin-1, AMPK, and related molecules were also examined by western blotting and real-time PCR in cultured mouse renal collecting duct (mpkCCDc14) epithelial cells following estrogen treatment. Immunofluorescence and coimmunoprecipitation were performed to detect α-ENaC binding with derlin-1 and α-ENaC ubiquitination. The results demonstrated that the loss of estrogen elevated systolic blood pressure in ovariectomized (OVX) rats. OVX rat kidneys showed increased α-ENaC expression but decreased derlin-1 expression. In contrast, estrogen treatment decreased α-ENaC expression but increased derlin-1 expression in mpkCCDc14 cells. Moreover, estrogen induced α-ENaC ubiquitination by promoting the interaction of α-ENaC with derlin-1 and evoked phosphorylation of AMPK in mpkCCDc14 cells. Our study indicates that estrogen reduces ENaC expression and blood pressure in OVX rats through derlin-1 upregulation and AMPK activation. Estrogen treatment could prove valuable in tackling high blood pressure (hypertension) in postmenopausal women. Long-term healthy blood pressure is linked to the correct regulation of sodium and water levels in the kidneys. The renal epithelial sodium channel (ENaC) is a cellular membrane channel responsible for mediating sodium reabsorption and fluid balance. Liang and co-workers at Nanjing Medical University in Nanjing, China, conducted experiments on postmenopausal rat models, and found that loss of estrogen elevates systolic blood pressure (the pressure during heart muscle contraction), and that the rats had high levels of ENaC expression. Further investigations showed that estrogen treatment restored blood pressure to normal levels by promoting two key proteins involved in cellular membrane health and energy metabolism. This in turn reinstated normal levels of ENaC breakdown in the kidneys, limiting hypertension.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yamei Ge
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | | | - Qian Zhu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yachen Shen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Min Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hui Sun
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dongming Su
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu Province, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Cheung TT, Ismail NAS, Moir R, Arora N, McDonald FJ, Condliffe SB. Annexin II Light Chain p11 Interacts With ENaC to Increase Functional Activity at the Membrane. Front Physiol 2019; 10:7. [PMID: 30800070 PMCID: PMC6375906 DOI: 10.3389/fphys.2019.00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
The epithelial Na+ channel (ENaC) provides for Na+ absorption in various types of epithelia including the kidney, lung, and colon where ENaC is localized to the apical membrane to enable Na+ entry into the cell. The degree of Na+ entry via ENaC largely depends on the number of active channels localized to the cell membrane, and is tightly controlled by interactions with ubiquitin ligases, kinases, and G-proteins. While regulation of ENaC endocytosis has been well-studied, relatively little is understood of the proteins that govern ENaC exocytosis. We hypothesized that the annexin II light chain, p11, could participate in the transport of ENaC along the exocytic pathway. Our results demonstrate that all three ENaC channel subunits interacted with p11 in an in vitro binding assay. Furthermore, p11 was able to immunoprecipitate ENaC in epithelial cells. Quantitative mass spectrometry of affinity-purified ENaC-p11 complexes recovered several other trafficking proteins including HSP-90 and annexin A6. We also report that p11 exhibits a robust protein expression in cortical collecting duct epithelial cells. However, the expression of p11 in these cells was not influenced by either short-term or long-term exposure to aldosterone. To determine whether the p11 interaction affected ENaC function, we measured amiloride sensitive Na+ currents in Xenopus oocytes or mammalian epithelia co-expressing ENaC and p11 or a siRNA to p11. Results from these experiments showed that p11 significantly augmented ENaC current, whereas knockdown of p11 decreased current. Further, knockdown of p11 reduced ENaC cell surface population suggesting p11 promotes membrane insertion of ENaC. Overall, our findings reveal a novel protein interaction that controls the number of ENaC channels inserted at the membrane via the exocytic pathway.
Collapse
Affiliation(s)
- Tanya T Cheung
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Noor A S Ismail
- Department of Physiology, University of Otago, Dunedin, New Zealand.,Biochemistry Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rachel Moir
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Nikhil Arora
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
9
|
Han S, Jeong AL, Lee S, Park JS, Buyanravjikh S, Kang W, Choi S, Park C, Han J, Son WC, Yoo KH, Cheong JH, Oh GT, Lee WY, Kim J, Suh SH, Lee SH, Lim JS, Lee MS, Yang Y. C1q/TNF-α–Related Protein 1 (CTRP1) Maintains Blood Pressure Under Dehydration Conditions. Circ Res 2018; 123:e5-e19. [DOI: 10.1161/circresaha.118.312871] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sora Han
- From the Research Institute of Women’s Health (S.H.)
| | - Ae Lee Jeong
- Sookmyung Women’s University, Seoul, Korea; New Drug Development Center, Osong Medical Innovation Foundation, Korea (A.L.J.)
| | - Sunyi Lee
- Research and Development Center, CJ HealthCare, Icheon, Korea (S.L.)
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute (J.S.P.)
| | | | - Wonku Kang
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Seungmok Choi
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Changmin Park
- Yonsei University College of Medicine, Seoul, Korea; College of Pharmacy, Chung-Ang University, Seoul, Korea (W.K., S.C., C.P.)
| | - Jin Han
- Department of Physiology, National Research Laboratory for Mitochondrial Signaling, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea (J.H.)
| | - Woo-Chan Son
- Pathology Department, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea (W.-C.S.)
| | - Kyung Hyun Yoo
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, Korea (J.H.C.)
| | | | - Won-Young Lee
- Ewha Womans University, Seoul, Korea; Department of Endocrinology (W.-Y.L.)
- Department of Metabolism (W.-Y.L.)
| | - Jongwan Kim
- Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea; and Department of Laboratory Medicine, Dankook University School of Medicine, Cheonan, Korea (J.K.)
| | - Suk Hyo Suh
- Department of Physiology, Medical School (S.H.S.)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital (S.-H.L.)
| | - Jong-Seok Lim
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Myeong-Sok Lee
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| | - Young Yang
- Department of Biological Sciences (K.H.Y., S.B., J.-S.L., M.-S.L., Y.Y.)
| |
Collapse
|
10
|
Dissecting the genetic components of a quantitative trait locus for blood pressure and renal pathology on rat chromosome 3. J Hypertens 2017; 35:319-329. [PMID: 27755386 PMCID: PMC5214373 DOI: 10.1097/hjh.0000000000001155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have previously confirmed the importance of rat chromosome 3 (RNO3) genetic loci on blood pressure elevation, pulse pressure (PP) variability and renal pathology during salt challenge in the stroke-prone spontaneously hypertensive (SHRSP) rat. The aims of this study were to generate a panel of RNO3 congenic sub-strains to genetically dissect the implicated loci and identify positional candidate genes by microarray expression profiling and analysis of next-generation sequencing data. METHOD AND RESULTS A panel of congenic sub-strains were generated containing Wistar-Kyoto (WKY)-introgressed segments of varying size on the SHRSP genetic background, focused within the first 50 Mbp of RNO3. Haemodynamic profiling during salt challenge demonstrated significantly reduced systolic blood pressure, diastolic blood pressure and PP variability in SP.WKYGla3a, SP.WKYGla3c, SP.WKYGla3d and SP.WKYGla3e sub-strains. Only SBP and DBP were significantly reduced during salt challenge in SP.WKYGla3b and SP.WKYGla3f sub-strains, whereas SP.WKYGla3g rats did not differ in haemodynamic response to SHRSP. Those sub-strains demonstrating significantly reduced PP variability during salt challenge also demonstrated significantly reduced renal pathology and proteinuria. Microarray expression profiling prioritized two candidate genes for blood pressure regulation (Dnm1, Tor1b), localized within the common congenic interval shared by SP.WKYGla3d and SP.WKYGla3f strains, and one candidate gene for salt-induced PP variability and renal pathology (Rabgap1), located within the region unique to the SP.WKYGla3d strain. Comparison of next-generation sequencing data identified variants within additional positional genes that are likely to affect protein function. CONCLUSION This study has identified distinct intervals on RNO3-containing genes that may be important for blood pressure regulation and renal pathology during salt challenge.
Collapse
|
11
|
Ruhs S, Nolze A, Hübschmann R, Grossmann C. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. J Endocrinol 2017; 234:T107-T124. [PMID: 28348113 DOI: 10.1530/joe-16-0659] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid hormone receptor family and classically functions as a ligand-dependent transcription factor. It is involved in water-electrolyte homeostasis and blood pressure regulation but independent from these effects also furthers inflammation, fibrosis, hypertrophy and remodeling in cardiovascular tissues. Next to genomic effects, aldosterone elicits very rapid actions within minutes that do not require transcription or translation and that occur not only in classical MR epithelial target organs like kidney and colon but also in nonepithelial tissues like heart, vasculature and adipose tissue. Most of these effects can be mediated by classical MR and its crosstalk with different signaling cascades. Near the plasma membrane, the MR seems to be associated with caveolin and striatin as well as with receptor tyrosine kinases like EGFR, PDGFR and IGF1R and G protein-coupled receptors like AT1 and GPER1, which then mediate nongenomic aldosterone effects. GPER1 has also been named a putative novel MR. There is a close interaction and functional synergism between the genomic and the nongenomic signaling so that nongenomic signaling can lead to long-term effects and support genomic actions. Therefore, understanding nongenomic aldosterone/MR effects is of potential relevance for modulating genomic aldosterone effects and may provide additional targets for intervention.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Nolze
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Ralf Hübschmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
12
|
Farinha CM, Matos P. Rab GTPases regulate the trafficking of channels and transporters - a focus on cystic fibrosis. Small GTPases 2017; 9:136-144. [PMID: 28463591 DOI: 10.1080/21541248.2017.1317700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The amount of ion channels and transporters present at the plasma membrane is a crucial component of the overall regulation of ion transport. The number of channels present result from an intricate network of proteins that controls the late events of channel trafficking, such as endocytosis, recycling and targeting to lysosomal degradation. Small GTPases of the Rab family are key players in these processes thus contributing to regulation of fluid secretion and ion homeostasis. In epithelia, this involves mainly the balance between the chloride channel CFTR and the sodium channel ENaC, whose misfunction is a hallmark of cystic fibrosis - the commonest recessive disorder in Caucasians. Here, we review the role of GTPases in regulating trafficking of ion channels and transporters, comparing what is known for CFTR and ENaC with other types of channels. We also discuss how feasible would be to target the Rab machinery to handle a disorder such as CF.
Collapse
Affiliation(s)
- Carlos M Farinha
- a University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute , Campo Grande, Lisboa , Portugal
| | - Paulo Matos
- a University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute , Campo Grande, Lisboa , Portugal.,b Department of Human Genetics , National Health Institute 'Dr. Ricardo Jorge' , Av. Padre Cruz, Lisboa , Portugal
| |
Collapse
|
13
|
You H, Ge Y, Zhang J, Cao Y, Xing J, Su D, Huang Y, Li M, Qu S, Sun F, Liang X. Derlin-1 promotes ubiquitylation and degradation of the epithelial Na + channel, ENaC. J Cell Sci 2017; 130:1027-1036. [PMID: 28137758 DOI: 10.1242/jcs.198242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/24/2017] [Indexed: 11/20/2022] Open
Abstract
Ubiquitylation of the epithelial Na+ channel (ENaC) plays a critical role in cellular functions, including transmembrane transport of Na+, Na+ and water balance, and blood pressure stabilization. Published studies have suggested that ENaC subunits are targets of ER-related degradation (ERAD) in yeast systems. However, the molecular mechanism underlying proteasome-mediated degradation of ENaC subunits remains to be established. Derlin-1, an E3 ligase mediator, links recognized target proteins to ubiquitin-mediated proteasomal degradation in the cytosol. In the present study, we found that derlin-1 suppressed the expression of ENaC at the protein level and that the subunit α-ENaC (also known as SCNN1A) physically interacted with derlin-1 at the membrane-anchored domains or the loop regions, and that derlin-1 initiated α-ENaC retrotranslocation. In addition, HUWE1, an endoplasmic reticulum (ER)-resident E3 ubiquitin ligase, was recruited and promoted K11-linked polyubiquitylation of α-ENaC and, hence, formation of an α-ENaC ubiquitin-mediated degradation complex. These findings suggest that derlin-1 promotes ENaC ubiquitylation and enhances ENaC ubiquitin- mediated proteasome degradation. The derlin-1 pathway therefore may represent a significant early checkpoint in the recognition and degradation of ENaC in mammalian cells.
Collapse
Affiliation(s)
- Hui You
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.,Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, Shanghai, 200072, China
| | - Yamei Ge
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Jian Zhang
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Yizhi Cao
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Jing Xing
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Dongming Su
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Yujie Huang
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Min Li
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tong-Ji University, Shanghai, 200072, China
| | - Fei Sun
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Xiubin Liang
- Renal Division, Sir Run Run Hospital, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China
| |
Collapse
|
14
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
15
|
Gongpan P, Lu Y, Wang F, Xu Y, Xiong W. AS160 controls eukaryotic cell cycle and proliferation by regulating the CDK inhibitor p21. Cell Cycle 2016; 15:1733-41. [PMID: 27152871 DOI: 10.1080/15384101.2016.1183853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance.
Collapse
Affiliation(s)
- Pianchou Gongpan
- a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan , P.R. China.,b Graduate University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Yanting Lu
- a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan , P.R. China.,b Graduate University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Fang Wang
- a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan , P.R. China.,b Graduate University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Yuhui Xu
- a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan , P.R. China.,b Graduate University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Wenyong Xiong
- a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan , P.R. China
| |
Collapse
|
16
|
Frindt G, Gravotta D, Palmer LG. Regulation of ENaC trafficking in rat kidney. ACTA ACUST UNITED AC 2016; 147:217-27. [PMID: 26880754 PMCID: PMC4772376 DOI: 10.1085/jgp.201511533] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/11/2016] [Indexed: 12/16/2022]
Abstract
The epithelial Na channel (ENaC) forms a pathway for Na(+) reabsorption in the distal nephron, and regulation of these channels is essential for salt homeostasis. In the rat kidney, ENaC subunits reached the plasma membrane in both immature and fully processed forms, the latter defined by either endoglycosidase H-insensitive glycosylation or proteolytic cleavage. Animals adapted to a low-salt diet have increased ENaC surface expression that is specific for the mature forms of the subunit proteins and is similar (three- to fourfold) for α, β, and γENaC. Kidney membranes were fractionated using differential centrifugation, sucrose-gradient separation, and immunoabsorption. Endoplasmic reticulum membranes, isolated using an antibody against calnexin, expressed immature γENaC, and the content decreased with Na depletion. Golgi membranes, isolated with an antibody against the cis-Golgi protein GM130, expressed both immature and processed γENaC; Na depletion increased the content of processed γENaC in this fraction by 3.8-fold. An endosomal compartment isolated using an antibody against Rab11 contained both immature and processed γENaC; the content of processed subunit increased 2.4-fold with Na depletion. Finally, we assessed the content of γENaC in the late endocytic compartments indirectly using urinary exosomes. All of the γENaC in these exosomes was in the fully cleaved form, and its content increased by 4.5-fold with Na depletion. These results imply that stimulation of ENaC surface expression results at least in part from increased rates of formation of fully processed subunits in the Golgi and subsequent trafficking to the apical membrane.
Collapse
Affiliation(s)
- Gustavo Frindt
- Department of Physiology and Biophysics and Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Diego Gravotta
- Department of Physiology and Biophysics and Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| | - Lawrence G Palmer
- Department of Physiology and Biophysics and Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
17
|
Hargett SR, Walker NN, Keller SR. Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice. Am J Physiol Endocrinol Metab 2016; 310:E276-88. [PMID: 26625902 PMCID: PMC4888528 DOI: 10.1152/ajpendo.00342.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/29/2015] [Indexed: 11/22/2022]
Abstract
The related Rab GTPase-activating proteins (Rab GAPs) AS160 and Tbc1d1 regulate the trafficking of the glucose transporter GLUT4 that controls glucose uptake in muscle and fat cells and glucose homeostasis. AS160- and Tbc1d1-deficient mice exhibit different adipocyte- and skeletal muscle-specific defects in glucose uptake, GLUT4 expression and trafficking, and glucose homeostasis. A recent study analyzed male mice with simultaneous deletion of AS160 and Tbc1d1 (AS160(-/-)/Tbc1d1(-/-) mice). Herein, we describe abnormalities in male and female AS160(-/-)/Tbc1d1(-/-) mice on another strain background. We confirm the earlier observation that GLUT4 expression and glucose uptake defects of single-knockout mice join in AS160(-/-)/Tbc1d1(-/-) mice to affect all skeletal muscle and adipose tissues. In large mixed fiber-type skeletal muscles, changes in relative basal GLUT4 plasma membrane association in AS160(-/-) and Tbc1d1(-/-) mice also combine in AS160(-/-)/Tbc1d1(-/-) mice. However, we found different glucose uptake abnormalities in isolated skeletal muscles and adipocytes than reported previously, resulting in different interpretations of how AS160 and Tbc1d1 regulate GLUT4 translocation to the cell surface. In support of a larger role for AS160 in glucose homeostasis, in contrast with the previous study, we find similarly impaired glucose and insulin tolerance in AS160(-/-)/Tbc1d1(-/-) and AS160(-/-) mice. However, in vivo glucose uptake abnormalities in AS160(-/-)/Tbc1d1(-/-) skeletal muscles differ from those observed previously in AS160(-/-) mice, indicating additional defects due to Tbc1d1 deletion. Similar to AS160- and Tbc1d1-deficient mice, AS160(-/-)/Tbc1d1(-/-) mice show sex-specific abnormalities in glucose and energy homeostasis. In conclusion, our study supports nonredundant functions for AS160 and Tbc1d1.
Collapse
Affiliation(s)
- Stefan R Hargett
- Department of Medicine-Division of Endocrinology, University of Virginia, Charlottesville Virginia
| | - Natalie N Walker
- Department of Medicine-Division of Endocrinology, University of Virginia, Charlottesville Virginia
| | - Susanna R Keller
- Department of Medicine-Division of Endocrinology, University of Virginia, Charlottesville Virginia
| |
Collapse
|
18
|
Coffey S, Costacou T, Orchard T, Erkan E. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells. PLoS One 2015; 10:e0140417. [PMID: 26465605 PMCID: PMC4605734 DOI: 10.1371/journal.pone.0140417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/26/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) has become an epidemic, causing a significant decline in quality of life of individuals due to its multisystem involvement. Kidney is an important target organ in DM accounting for the majority of patients requiring renal replacement therapy at dialysis units. Microalbuminuria (MA) has been a valuable tool to predict end-organ damage in DM but its low sensitivity has driven research efforts to seek other alternatives. Albumin is taken up by albumin receptors, megalin and cubilin in the proximal tubule epithelial cells. We demonstrated that insulin at physiological concentrations induce albumin endocytosis through activation of protein kinase B (Akt) in proximal tubule epithelial cells. Inhibition of Akt by a phosphorylation deficient construct abrogated insulin induced albumin endocytosis suggesting a role for Akt in insulin-induced albumin endocytosis. Furthermore we demonstrated a novel interaction between Akt substrate 160kDa (AS160) and cytoplasmic tail of megalin. Mice with type 1 DM (T1D) displayed decreased Akt, megalin, cubilin and AS160 expression in their kidneys in association with urinary cubilin shedding preceding significant MA. Patients with T1D who have developed MA in the EDC (The Pittsburgh Epidemiology of Diabetes Complications) study demonstrated urinary cubilin shedding prior to development of MA. We hypothesize that perturbed insulin-Akt cascade in DM leads to alterations in trafficking of megalin and cubilin, which results in urinary cubilin shedding as a prelude to MA in early diabetic nephropathy. We propose that utilization of urinary cubilin shedding, as a urinary biomarker, will allow us to detect and intervene in diabetic nephropathy (DN) at an earlier stage.
Collapse
Affiliation(s)
- Sam Coffey
- Cincinnati Children’s Hospital Medical Center, Division of Nephrology, Cincinnati, OH, United States of America
| | - Tina Costacou
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, United States of America
| | - Trevor Orchard
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, United States of America
| | - Elif Erkan
- Cincinnati Children’s Hospital Medical Center, Division of Nephrology, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
19
|
Budi EH, Muthusamy BP, Derynck R. The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors. Sci Signal 2015; 8:ra96. [PMID: 26420907 DOI: 10.1126/scisignal.aaa9432] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased activity of transforming growth factor-β (TGF-β), which binds to and stimulates cell surface receptors, contributes to cancer progression and fibrosis by driving epithelial cells toward a migratory mesenchymal phenotype and increasing the abundance of extracellular matrix proteins. The abundance of TGF-β receptors at the cell surface determines cellular responsiveness to TGF-β, which is often produced by the same cells that have the receptors, and thus serves as an autocrine signal. We found that Akt-mediated phosphorylation of AS160, a RabGAP [guanosine triphosphatase (GTPase)-activating protein], promoted the translocation of TGF-β receptors from intracellular stores to the plasma membrane of mouse embryonic fibroblasts and NMuMG epithelial cells. Consequently, insulin, which is commonly used to treat hyperglycemia and activates Akt signaling, increased the amount of TGF-β receptors at the cell surface, thereby enhancing TGF-β responsiveness. This insulin-induced increase in autocrine TGF-β signaling contributed to insulin-induced gene expression responses, attenuated the epithelial phenotype, and promoted the migration of NMuMG cells. Furthermore, the enhanced delivery of TGF-β receptors at the cell surface enabled insulin to increase TGF-β-induced gene responses. The enhancement of TGF-β responsiveness in response to Akt activation may help to explain the biological effects of insulin, the progression of cancers in which Akt is activated, and the increased incidence of fibroses in diabetes.
Collapse
Affiliation(s)
- Erine H Budi
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143-0669, USA
| | - Baby-Periyanayaki Muthusamy
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143-0669, USA
| | - Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143-0669, USA.
| |
Collapse
|
20
|
Di Chiara M, Glaudemans B, Loffing-Cueni D, Odermatt A, Al-Hasani H, Devuyst O, Faresse N, Loffing J. Rab-GAP TBC1D4 (AS160) is dispensable for the renal control of sodium and water homeostasis but regulates GLUT4 in mouse kidney. Am J Physiol Renal Physiol 2015; 309:F779-90. [PMID: 26336159 DOI: 10.1152/ajprenal.00139.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022] Open
Abstract
The Rab GTPase-activating protein TBC1D4 (AS160) controls trafficking of the glucose transporter GLUT4 in adipocytes and skeletal muscle cells. TBC1D4 is also highly abundant in the renal distal tubule, although its role in this tubule is so far unknown. In vitro studies suggest that it is involved in the regulation of renal transporters and channels such as the epithelial sodium channel (ENaC), aquaporin-2 (AQP2), and the Na+-K+-ATPase. To assess the physiological role of TBC1D4 in the kidney, wild-type (TBC1D4+/+) and TBC1D4-deficient (TBC1D4-/-) mice were studied. Unexpectedly, neither under standard nor under challenging conditions (low Na+/high K+, water restriction) did TBC1D4-/- mice show any difference in urinary Na+ and K+ excretion, urine osmolarity, plasma ion and aldosterone levels, and blood pressure compared with TBC1D4+/+ mice. Also, immunoblotting did not reveal any change in the abundance of major renal sodium- and water-transporting proteins [Na-K-2Cl cotransporter (NKCC2) NKCC2, NaCl cotransporter (NCC), ENaC, AQP2, and the Na+-K+-ATPase]. However, the abundance of GLUT4, which colocalizes with TBC1D4 along the distal nephron of TBC1D4+/+ mice, was lower in whole kidney lysates of TBC1D4-/- mice than in TBC1D4+/+ mice. Likewise, primary thick ascending limb (TAL) cells isolated from TBC1D4-/- mice showed an increased basal glucose uptake and an abrogated insulin response compared with TAL cells from TBC1D4+/+ mice. Thus, TBC1D4 is dispensable for the regulation of renal Na+ and water transport, but may play a role for GLUT4-mediated basolateral glucose uptake in distal tubules. The latter may contribute to the known anaerobic glycolytic capacity of distal tubules during renal ischemia.
Collapse
Affiliation(s)
- Marianna Di Chiara
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Bob Glaudemans
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Pharmacenter, University of Basel, Basel, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University and German Center for Diabetes Research, Düsseldorf, Germany
| | - Olivier Devuyst
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Nourdine Faresse
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| |
Collapse
|
21
|
Shen Y, Xu W, You H, Su D, Xing J, Li M, Li L, Liang X. FoxO1 inhibits transcription and membrane trafficking of epithelial Na+ channel. J Cell Sci 2015; 128:3621-30. [PMID: 26272921 DOI: 10.1242/jcs.171876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/02/2015] [Indexed: 01/06/2023] Open
Abstract
The epithelial Na(+) channel (ENaC), regulated by insulin, is of fundamental importance in the control of Na(+) reabsorption in the distal nephron. The potential role of Forkhead box O1 (FoxO1), downstream of insulin signaling, in the regulation of ENaC remains to be investigated. Here, we found that the overexpression of a constitutively active form of FoxO1 (ADA-FoxO1) suppressed the mRNA level of the ENaC α subunit (α-ENaC; also known as SCCN1A) and the apical density of ENaC in mouse cortical collecting duct (mCCD) cells. Conversely, knockdown of FoxO1 increased the apical membrane levels of α-ENaC and Na(+) transport under basal conditions. Insulin elevated α-ENaC expression and induced FoxO1 phosphorylation; however, the increase in α-ENaC and phosphorylated FoxO1 expression observed with insulin treatment was blunted ∼ 60% in cells expressing ADA-FoxO1. Moreover, insulin induced the interaction between phosphorylated FoxO1 and 14-3-3ε, indicating that FoxO1 phosphorylation promotes ENaC membrane trafficking by binding to 14-3-3ε. FoxO1 also suppressed activity of the α-ENaC promoter, and the putative FoxO1 target site is located in the -500 to -200 nt region of the α-ENaC promoter. These findings indicate that FoxO1 is a key negative regulatory factor in the insulin-dependent control of ENaC expression and forward trafficking in mCCD epithelia.
Collapse
Affiliation(s)
- Yachen Shen
- Center of Metabolic Disease Research, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| | - Weifeng Xu
- Center of Metabolic Disease Research, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| | - Hui You
- Center of Metabolic Disease Research, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| | - Jing Xing
- Center of Metabolic Disease Research, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| | - Min Li
- Center of Metabolic Disease Research, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| | - Lei Li
- Center of Metabolic Disease Research, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| | - Xiubin Liang
- Center of Metabolic Disease Research, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 210029 Nanjing, Jiangsu Province, China
| |
Collapse
|
22
|
Quan C, Xie B, Wang HY, Chen S. PKB-Mediated Thr649 Phosphorylation of AS160/TBC1D4 Regulates the R-Wave Amplitude in the Heart. PLoS One 2015; 10:e0124491. [PMID: 25923736 PMCID: PMC4414484 DOI: 10.1371/journal.pone.0124491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/04/2015] [Indexed: 11/18/2022] Open
Abstract
The Rab GTPase activating protein (RabGAP), AS160/TBC1D4, is an important substrate of protein kinase B (PKB), and regulates insulin-stimulated trafficking of glucose transporter 4. Besides, AS160/TBC1D4 has also been shown to regulate trafficking of many other membrane proteins including FA translocase/CD36 in cardiomyocytes. However, it is not clear whether it plays any role in regulating heart functions in vivo. Here, we found that PKB-mediated phosphorylation of Thr649 on AS160/TBC1D4 represented one of the major PAS-binding signals in the heart in response to insulin. Mutation of Thr649 to a non-phosphorylatable alanine increased the R-wave amplitude in the AS160Thr649Ala knockin mice. However, this knockin mutation did not affect the heart functions under both normal and infarct conditions. Interestingly, myocardial infarction induced the expression of a related RabGAP, TBC1D1, in the infarct zone as well as in the border zone. Together, these data show that the Thr649 phosphorylation of AS160/TBC1D4 plays an important role in the heart’s electrical conduction system through regulating the R-wave amplitude.
Collapse
Affiliation(s)
- Chao Quan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | - Bingxian Xie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
| | - Hong Yu Wang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
- * E-mail: (HYW); ( (SC)
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061, China
- * E-mail: (HYW); ( (SC)
| |
Collapse
|
23
|
Alves DS, Thulin G, Loffing J, Kashgarian M, Caplan MJ. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia. J Am Soc Nephrol 2015; 26:2765-76. [PMID: 25788531 DOI: 10.1681/asn.2013101040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/06/2015] [Indexed: 01/26/2023] Open
Abstract
Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells.
Collapse
Affiliation(s)
| | - Gunilla Thulin
- Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | | | - Michael Kashgarian
- Pathology, Yale University School of Medicine, New Haven, Connecticut; and
| | | |
Collapse
|
24
|
Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids 2014; 91:54-60. [PMID: 25194457 PMCID: PMC4252580 DOI: 10.1016/j.steroids.2014.08.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/25/2014] [Accepted: 08/17/2014] [Indexed: 12/19/2022]
Abstract
Dr. Conn originally reported an increased risk of diabetes in patients with hyperaldosteronism in the 1950s, although the mechanism remains unclear. Aldosterone-induced hypokalemia was initially described to impair glucose tolerance by impairing insulin secretion. Correction of hypokalemia by potassium supplementation only partially restored insulin secretion and glucose tolerance, however. Aldosterone also impairs glucose-stimulated insulin secretion in isolated pancreatic islets via reactive oxygen species in a mineralocorticoid receptor-independent manner. Aldosterone-induced mineralocorticoid receptor activation also impairs insulin sensitivity in adipocytes and skeletal muscle. Aldosterone may produce insulin resistance secondarily by altering potassium, increasing inflammatory cytokines, and reducing beneficial adipokines such as adiponectin. Renin-angiotensin system antagonists reduce circulating aldosterone concentrations and also the risk of type 2 diabetes in clinical trials. These data suggest that primary and secondary hyperaldosteronism may contribute to worsening glucose tolerance by impairing insulin sensitivity or insulin secretion in humans. Future studies should define the effects of MR antagonists and aldosterone on insulin secretion and sensitivity in humans.
Collapse
Affiliation(s)
- James M Luther
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
25
|
de Baaij JHF, Groot Koerkamp MJ, Lavrijsen M, van Zeeland F, Meijer H, Holstege FCP, Bindels RJM, Hoenderop JGJ. Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg2+ handling. Am J Physiol Renal Physiol 2013; 305:F1563-73. [DOI: 10.1152/ajprenal.00322.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney plays a key role in the maintenance of Mg2+ homeostasis. Specifically, the distal convoluted tubule (DCT) is instrumental in the fine-tuning of renal Mg2+ handling. In recent years, hereditary Mg2+ transport disorders have helped to identify important players in DCT Mg2+ homeostasis. Nevertheless, several proteins involved in DCT-mediated Mg2+ reabsorption remain to be discovered, and a full expression profile of this complex nephron segment may facilitate the discovery of new Mg2+-related genes. Here, we report Mg2+-sensitive expression of the DCT transcriptome. To this end, transgenic mice expressing enhanced green fluorescent protein under a DCT-specific parvalbumin promoter were subjected to Mg2+-deficient or Mg2+-enriched diets. Subsequently, the Complex Object Parametric Analyzer and Sorter allowed, for the first time, isolation of enhanced green fluorescent protein-positive DCT cells. RNA extracts thereof were analyzed by DNA microarrays comparing high versus low Mg2+ to identify Mg2+ regulatory genes. Based on statistical significance and a fold change of at least 2, 46 genes showed differential expression. Several known magnesiotropic genes, such as transient receptor potential cation channel, subfamily M, member 6 ( Trpm6), and Parvalbumin, were upregulated under low dietary Mg2+. Moreover, new genes were identified that are potentially involved in renal Mg2+ handling. To confirm that the selected candidate genes were regulated by dietary Mg2+ availability, the expression levels of solute carrier family 41, member 3 ( Slc41a3), pterin-4 α-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor-1α ( Pcbd1), TBC1 domain family, member 4 ( Tbc1d4), and uromodulin ( Umod) were determined by RT-PCR analysis. Indeed, all four genes show significant upregulation in the DCT of mice fed a Mg2+-deficient diet. By elucidating the Mg2+-sensitive DCT transcriptome, new candidate genes in renal Mg2+ handling have been identified.
Collapse
Affiliation(s)
- Jeroen H. F. de Baaij
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | | | - Marla Lavrijsen
- Molecular Cancer Research, UMC Utrecht, Utrecht, The Netherlands
| | - Femke van Zeeland
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | - Hans Meijer
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | | | - René J. M. Bindels
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | - Joost G. J. Hoenderop
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| |
Collapse
|
26
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
27
|
Dooley R, Angibaud E, Yusef YR, Thomas W, Harvey BJ. Aldosterone-induced ENaC and basal Na+/K+-ATPase trafficking via protein kinase D1-phosphatidylinositol 4-kinaseIIIβ trans Golgi signalling in M1 cortical collecting duct cells. Mol Cell Endocrinol 2013; 372:86-95. [PMID: 23541637 DOI: 10.1016/j.mce.2013.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/11/2013] [Accepted: 03/15/2013] [Indexed: 01/06/2023]
Abstract
Aldosterone regulates Na(+) transport in the distal nephron through multiple mechanisms that include the transcriptional control of epithelial sodium channel (ENaC) and Na(+)/K(+)-ATPase subunits. Aldosterone also induces the rapid phosphorylation of Protein Kinase D1 (PKD1). PKD isoforms regulate protein trafficking, by the control of vesicle fission from the trans Golgi network (TGN) through activation of phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ). We report rapid ENaCγ translocation to the plasma membrane after 30 min aldosterone treatment in polarized M1 cortical collecting duct cells, which was significantly impaired in PKD1 shRNA-mediated knockdown cells. In PKD1-deficient cells, the ouabain-sensitive current was significantly reduced and Na(+)/K(+)-ATPase α and β subunits showed aberrant localization. PKD1 and PI4KIIIβ localize to the TGN, and aldosterone induced an interaction between PKD1 and PI4KIIIβ following aldosterone treatment. This study reveals a novel mechanism for rapid regulation of ENaC and the Na(+)/K(+)-ATPase, via directed trafficking through PKD1-PI4KIIIβ signalling at the level of the TGN.
Collapse
Affiliation(s)
- Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
28
|
Lang F, Shumilina E. Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J 2012; 27:3-12. [PMID: 23012321 DOI: 10.1096/fj.12-218230] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitously expressed serum- and glucocorticoid-inducible kinase-1 (SGK1) is genomically regulated by cell stress (including cell shrinkage) and several hormones (including gluco- and mineralocorticoids). SGK1 is activated by insulin and growth factors through PI3K and 3-phosphoinositide-dependent kinase PDK1. SGK1 activates a wide variety of ion channels (e.g., ENaC, SCN5A, TRPV4-6, ROMK, Kv1.3, Kv1.5, Kv4.3, KCNE1/KCNQ1, KCNQ4, ASIC1, GluR6, ClCKa/barttin, ClC2, CFTR, and Orai/STIM), which participate in the regulation of transport, hormone release, neuroexcitability, inflammation, cell proliferation, and apoptosis. SGK1-sensitive ion channels participate in the regulation of renal Na(+) retention and K(+) elimination, blood pressure, gastric acid secretion, cardiac action potential, hemostasis, and neuroexcitability. A common (∼3-5% prevalence in Caucasians and ∼10% in Africans) SGK1 gene variant is associated with increased blood pressure and body weight as well as increased prevalence of type II diabetes and stroke. SGK1 further contributes to the pathophysiology of allergy, peptic ulcer, fibrosing disease, ischemia, tumor growth, and neurodegeneration. The effect of SGK1 on channel activity is modest, and the channels do not require SGK1 for basic function. SGK1-dependent ion channel regulation may thus become pathophysiologically relevant primarily after excessive (pathological) expression. Therefore, SGK1 may be considered an attractive therapeutic target despite its broad range of functions.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, Gmelinstrasse 5, 72076 Tuebingen, Germany.
| | | |
Collapse
|
29
|
Lier N, Gresko N, Chiara M, Loffing-Cueni D, Loffing J. Immunofluorescent localization of the Rab-GAP protein TBC1D4 (AS160) in mouse kidney. Histochem Cell Biol 2012; 138:101-12. [DOI: 10.1007/s00418-012-0944-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
30
|
Dooley R, Harvey BJ, Thomas W. Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol 2012; 350:223-34. [PMID: 21801805 DOI: 10.1016/j.mce.2011.07.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid 'non-genomic' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.
Collapse
Affiliation(s)
- Ruth Dooley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
| | | | | |
Collapse
|
31
|
Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD. Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 2012; 53:709-17. [PMID: 22315395 DOI: 10.1194/jlr.m023424] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FA translocase cluster of differentiation 36 (CD36) facilitates FA uptake by the myocardium, and its surface recruitment in cardiomyocytes is induced by insulin, AMP-dependent protein kinase (AMPK), or contraction. Dysfunction of CD36 trafficking contributes to disordered cardiac FA utilization and promotes progression to disease. The Akt substrate 160 (AS160) Rab GTPase-activating protein (GAP) is a key regulator of vesicular trafficking, and its activity is modulated via phosphorylation. Our study documents that AS160 mediates insulin or AMPK-stimulated surface translocation of CD36 in cardiomyocytes. Knock-down of AS160 redistributes CD36 to the surface and abrogates its translocation by insulin or the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). Conversely, overexpression of a phosphorylation-deficient AS160 mutant (AS160 4P) suppresses the stimulated membrane recruitment of CD36. The AS160 substrate Rab8a GTPase is shown via overexpression and knock-down studies to be specifically involved in insulin/AICAR-induced CD36 membrane recruitment. Our findings directly demonstrate AS160 regulation of CD36 trafficking. In myocytes, the AS160 pathway also mediates the effect of insulin, AMPK, or contraction on surface recruitment of the glucose transporter GLUT4. Thus, AS160 constitutes a point of convergence for coordinating physiological regulation of CD36 and GLUT4 membrane recruitment.
Collapse
Affiliation(s)
- Dmitri Samovski
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
32
|
Liang X, Da Paula AC, Bozóky Z, Zhang H, Bertrand CA, Peters KW, Forman-Kay JD, Frizzell RA. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Mol Biol Cell 2012; 23:996-1009. [PMID: 22278744 PMCID: PMC3302758 DOI: 10.1091/mbc.e11-08-0662] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
cAMP/PKA stimulation elicited posttranslational increases in CFTR expression and the interaction of specific 14-3-3 proteins with phosphorylated sites within the R region. This improved the efficiency of nascent CFTR biogenesis and reduced its interaction with the COPI retrograde retrieval mechanism, making more CFTR available for anion secretion. Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)–regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.
Collapse
Affiliation(s)
- Xiubin Liang
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Smith AJ, Daut J, Schwappach B. Membrane proteins as 14-3-3 clients in functional regulation and intracellular transport. Physiology (Bethesda) 2011; 26:181-91. [PMID: 21670164 DOI: 10.1152/physiol.00042.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
14-3-3 proteins regulate the function and subcellular sorting of membrane proteins. Often, 14-3-3 binding to client proteins requires phosphorylation of the client, but the relevant kinase is unknown in most cases. We summarize current progress in identifying kinases that target membrane proteins with 14-3-3 binding sites and discuss the molecular mechanisms of 14-3-3 action. One of the kinases involved is Akt/PKB, which has recently been shown to activate the 14-3-3-dependent switch in a number of client membrane proteins.
Collapse
Affiliation(s)
- Andrew J Smith
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
34
|
Chandran S, Li H, Dong W, Krasinska K, Adams C, Alexandrova L, Chien A, Hallows KR, Bhalla V. Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J Biol Chem 2011; 286:37830-40. [PMID: 21900244 DOI: 10.1074/jbc.m111.293233] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of epithelial Na(+) channel (ENaC)-mediated transport in the distal nephron is a critical determinant of blood pressure in humans. Aldosterone via serum and glucocorticoid kinase 1 (SGK1) stimulates ENaC by phosphorylation of the E3 ubiquitin ligase Nedd4-2, which induces interaction with 14-3-3 proteins. However, the mechanisms of SGK1- and 14-3-3-mediated regulation of Nedd4-2 are unclear. There are three canonical SGK1 target sites on Nedd4-2 that overlap phosphorylation-dependent 14-3-3 interaction motifs. Two of these are termed "minor," and one is termed "major," based on weak or strong binding to 14-3-3 proteins, respectively. By mass spectrometry, we found that aldosterone significantly stimulates phosphorylation of a minor, relative to the major, 14-3-3 binding site on Nedd4-2. Phosphorylation-deficient minor site Nedd4-2 mutants bound less 14-3-3 than did wild-type (WT) Nedd4-2, and minor site Nedd4-2 mutations were sufficient to inhibit SGK1 stimulation of ENaC cell surface expression. As measured by pulse-chase and cycloheximide chase assays, a major binding site Nedd4-2 mutant had a shorter cellular half-life than WT Nedd4-2, but this property was not dependent on binding to 14-3-3. Additionally, a dimerization-deficient 14-3-3ε mutant failed to bind Nedd4-2. We conclude that whereas phosphorylation at the Nedd4-2 major site is important for interaction with 14-3-3 dimers, minor site phosphorylation by SGK1 may be the relevant molecular switch that stabilizes Nedd4-2 interaction with 14-3-3 and thus promotes ENaC cell surface expression. We also propose that major site phosphorylation promotes cellular Nedd4-2 protein stability, which potentially represents a novel form of regulation for turnover of E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Sindhu Chandran
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Current World Literature. Curr Opin Nephrol Hypertens 2011; 20:561-7. [DOI: 10.1097/mnh.0b013e32834a3de5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Kim HY, Choi HJ, Lim JS, Park EJ, Jung HJ, Lee YJ, Kim SY, Kwon TH. Emerging role of Akt substrate protein AS160 in the regulation of AQP2 translocation. Am J Physiol Renal Physiol 2011; 301:F151-61. [DOI: 10.1152/ajprenal.00519.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AS160, a novel Akt substrate of 160 kDa, contains a Rab GTPase-activating protein (GAP) domain. The present study examined the role of Akt and AS160 in aquaporin-2 (AQP2) trafficking. The main strategy was to examine the changes in AQP2 translocation in response to small interfering RNA (siRNA)-mediated AS160 knockdown in mouse cortical collecting duct cells (M-1 cells and mpkCCDc14 cells). Short-term dDAVP treatment in M-1 cells stimulated phosphorylation of Akt (S473) and AS160, which was also seen in mpkCCDc14 cells. Conversely, the phosphoinositide 3-kinase (PI3K) inhibitor LY 294002 diminished phosphorylation of Akt (S473) and AS160. Moreover, siRNA-mediated Akt1 knockdown was associated with unchanged total AS160 but decreased phospho-AS160 expression, indicating that phosphorylation of AS160 is dependent on PI3K/Akt pathways. siRNA-mediated AS160 knockdown significantly decreased total AS160 and phospho-AS160 expression. Immunocytochemistry revealed that AS160 knockdown in mpkCCDc14 cells was associated with increased AQP2 density in the plasma membrane [135 ± 3% of control mpkCCDc14 cells ( n = 65), P < 0.05, n = 64] despite the absence of dDAVP stimulation. Moreover, cell surface biotinylation assays of mpkCCDc14 cells with AS160 knockdown exhibited significantly higher AQP2 expression [150 ± 15% of control mpkCCDc14 cells ( n = 3), P < 0.05, n = 3]. Taken together, PI3K/Akt pathways mediate the dDAVP-induced AS160 phosphorylation, and AS160 knockdown is associated with higher AQP2 expression in the plasma membrane. Since AS160 contains a GAP domain leading to a decrease in the active GTP-bound form of AS160 target Rab proteins for vesicle trafficking, decreased expression of AS160 is likely to play a role in the translocation of AQP2 to the plasma membrane.
Collapse
Affiliation(s)
- Hyo-Young Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Jung-Suk Lim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyun Jun Jung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Yu-Jung Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Sang-Yeob Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
37
|
Cleavage of endogenous γENaC and elevated abundance of αENaC are associated with increased Na⁺ transport in response to apical fluid volume expansion in human H441 airway epithelial cells. Pflugers Arch 2011; 462:431-41. [PMID: 21667229 PMCID: PMC3155050 DOI: 10.1007/s00424-011-0982-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/31/2022]
Abstract
Using human H441 airway epithelial cells cultured at air-liquid interface (ALI), we have uniquely correlated the functional response to apical fluid volume expansion with the abundance and cleavage of endogenous α- and γENaC proteins in the apical membrane. Monolayers cultured at ALI rapidly elevated I (sc) when inserted into fluid-filled Ussing chambers. The increase in I (sc) was not significantly augmented by the apical addition of trypsin, and elevation was abolished by the protease inhibitor aprotinin and an inhibitor of the proprotein convertase, furin. These treatments also increased the IC₅₀ amiloride indicating that the effect was via inhibition of highly Na⁺-selective ENaC channels. Apical fluid, 5-500 μl for 1 h in culture, increased the spontaneous starting I (sc) in a dose-dependent manner, whilst maximal fluid-induced I (sc) in the Ussing chamber was unchanged. Apical fluid expansion increased the abundance of 63-65-kDa αENaC proteins in the apical membrane. However, this could not be attributed to increased cleavage as protease inhibitors had no effect on the ratio of cleaved to non-cleaved (90 kDa) αENaC proteins. Instead, fluid expansion increased αENaC abundance in the membrane. In contrast, function correlated well with γENaC cleavage at known sites by furin and extracellular proteases. Interestingly, cleavage of γENaC was associated with increased retrieval from the membrane via the proteosomal pathway. Thus, the response to apical fluid volume expansion in H441 airway epithelial cells involves cleavage of γENaC, and changes in α- and γENaC protein abundance at the apical membrane.
Collapse
|
38
|
Schild L. The epithelial sodium channel and the control of sodium balance. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1159-65. [PMID: 20600867 DOI: 10.1016/j.bbadis.2010.06.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 12/30/2022]
|
39
|
Mendes AI, Matos P, Moniz S, Jordan P. Protein kinase WNK1 promotes cell surface expression of glucose transporter GLUT1 by regulating a Tre-2/USP6-BUB2-Cdc16 domain family member 4 (TBC1D4)-Rab8A complex. J Biol Chem 2010; 285:39117-26. [PMID: 20937822 DOI: 10.1074/jbc.m110.159418] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One mechanism by which mammalian cells regulate the uptake of glucose is the number of glucose transporter proteins (GLUT) present at the plasma membrane. In insulin-responsive cells types, GLUT4 is released from intracellular stores through inactivation of the Rab GTPase activating protein Tre-2/USP6-BUB2-Cdc16 domain family member 4 (TBC1D4) (also known as AS160). Here we describe that TBC1D4 forms a protein complex with protein kinase WNK1 in human embryonic kidney (HEK293) cells. We show that WNK1 phosphorylates TBC1D4 in vitro and that the expression levels of WNK1 in these cells regulate surface expression of the constitutive glucose transporter GLUT1. WNK1 was found to increase the binding of TBC1D4 to regulatory 14-3-3 proteins while reducing its interaction with the exocytic small GTPase Rab8A. These effects were dependent on the catalytic activity because expression of a kinase-dead WNK1 mutant had no effect on binding of 14-3-3 and Rab8A, or on surface GLUT1 levels. Together, the data describe a pathway regulating constitutive glucose uptake via GLUT1, the expression level of which is related to several human diseases.
Collapse
Affiliation(s)
- Ana Isabel Mendes
- Department of Genetics, National Health Institute, Dr. Ricardo Jorge, Lisbon 1649-016, Portugal
| | | | | | | |
Collapse
|