1
|
Adams S, Pires-daSilva A. Non-Mendelian transmission of X chromosomes: mechanisms and impact on sex ratios and population dynamics in different breeding systems. Biochem Soc Trans 2024; 52:1777-1784. [PMID: 39149984 PMCID: PMC11668290 DOI: 10.1042/bst20231411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The non-Mendelian transmission of sex chromosomes during gametogenesis carries significant implications, influencing sex ratios and shaping evolutionary dynamics. Here we focus on known mechanisms that drive non-Mendelian inheritance of X chromosomes during spermatogenesis and their impact on population dynamics in species with different breeding systems. In Drosophila and mice, X-linked drivers targeting Y-bearing sperm for elimination or limiting their fitness, tend to confer unfavourable effects, prompting the evolution of suppressors to mitigate their impact. This leads to a complex ongoing evolutionary arms race to maintain an equal balance of males and females. However, in certain insects and nematodes with XX/X0 sex determination, the preferential production of X-bearing sperm through atypical meiosis yields wild-type populations with highly skewed sex ratios, suggesting non-Mendelian transmission of the X may offer selective advantages in these species. Indeed, models suggest X-meiotic drivers could bolster population size and persistence under certain conditions, challenging the conventional view of their detrimental effects. Furthering our understanding of the diverse mechanisms and evolutionary consequences of non-Mendelian transmission of X chromosomes will provide insights into genetic inheritance, sex determination, and population dynamics, with implications for fundamental research and practical applications.
Collapse
Affiliation(s)
- Sally Adams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | | |
Collapse
|
2
|
Bypassing Mendel's First Law: Transmission Ratio Distortion in Mammals. Int J Mol Sci 2023; 24:ijms24021600. [PMID: 36675116 PMCID: PMC9863905 DOI: 10.3390/ijms24021600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Mendel's law of segregation states that the two alleles at a diploid locus should be transmitted equally to the progeny. A genetic segregation distortion, also referred to as transmission ratio distortion (TRD), is a statistically significant deviation from this rule. TRD has been observed in several mammal species and may be due to different biological mechanisms occurring at diverse time points ranging from gamete formation to lethality at post-natal stages. In this review, we describe examples of TRD and their possible mechanisms in mammals based on current knowledge. We first focus on the differences between TRD in male and female gametogenesis in the house mouse, in which some of the most well studied TRD systems have been characterized. We then describe known TRD in other mammals, with a special focus on the farmed species and in the peculiar common shrew species. Finally, we discuss TRD in human diseases. Thus far, to our knowledge, this is the first time that such description is proposed. This review will help better comprehend the processes involved in TRD. A better understanding of these molecular mechanisms will imply a better comprehension of their impact on fertility and on genome evolution. In turn, this should allow for better genetic counseling and lead to better care for human families.
Collapse
|
3
|
Holmlund H, Yamauchi Y, Durango G, Fujii W, Ward MA. Two acquired mouse Y chromosome-linked genes, Prssly and Teyorf1, are dispensable for male fertility‡. Biol Reprod 2022; 107:752-764. [PMID: 35485405 PMCID: PMC9476217 DOI: 10.1093/biolre/ioac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Prssly (Protease, serine-like, Chr Y) and Teyorf1 (Testis expressed, chromosome Y open reading frame 1) are two acquired single-copy genes located on the distal tip of the non-pairing short arm of the mouse Y chromosome adjacent to telomeric sequence. Both genes lack X chromosome-linked homologues and are expressed in testicular germ cells. We first performed analysis of Prssly and Teyorf1 genomic sequences and demonstrated that previously reported Prssly sequence is erroneous and the true Prssly sequence is longer and encodes a larger protein than previously estimated. We also confirmed that both genes encode pseudogenes that are not expressed in testes. Next, using CRISPR/Cas9 genome targeting, we generated Prssly and Teyorf1 knockout (KO) mice and characterized their phenotype. To create Prssly KO mice, we targeted the conserved exon 5 encoding a trypsin domain typical for serine proteases. The targeting was successful and resulted in a frame shift mutation that introduced a premature stop codon, with the Prssly KO males retaining only residual transcript expression in testes. The Teyorf1 targeting removed the entire open reading frame of the gene, which resulted in no transcript expression in KO males. Both Prssly KO and Teyorf1 KO males were fertile and had normal testis size and normal sperm number, motility, and morphology. Our findings show that Prssly and Teyorf1 transcripts with potential to encode proteins are dispensable for male fertility.
Collapse
Affiliation(s)
- Hayden Holmlund
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Gerald Durango
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Wataru Fujii
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
4
|
van Son M, Våge DI, Skaugen M, Tremoen NH, Gaustad AH, Zeremichael TT, Myromslien FD, Grindflek E. Protein profiling of testicular tissue from boars with different levels of hyperactive sperm motility. Acta Vet Scand 2022; 64:21. [PMID: 36064611 PMCID: PMC9446748 DOI: 10.1186/s13028-022-00642-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperactive sperm motility is important for successful fertilization. In the present study, a proteome profiling approach was performed to identify the differences between Landrace boars with different levels of hyperactive sperm motility in liquid extended semen. Two contrasts were studied: (i) high versus low levels of sperm hyperactivity at semen collection day and (ii) high versus low change in levels of sperm hyperactivity after 96 h semen storage. Testicular samples were analyzed on a Q Exactive mass spectrometer and more than 6000 proteins were identified in the 13 samples. The most significant differentially expressed proteins were mediator complex subunit 28 (MED28), cell division cycle 37 like 1 (CDC37L1), ubiquitin specific peptidase 10 (USP10), zinc finger FYVE-type containing 26 (ZFYVE26), protein kinase C delta (PRKCD), actinin alpha 4 (ACTN4), N(alpha)-acetyltransferase 30 (NAA30), C1q domain-containing (LOC110258309) and uncharacterized LOC100512926. Of the differentially expressed proteins, 11 have previously been identified as differentially expressed at the corresponding mRNA transcript level using the same samples and contrasts. These include sphingosine kinase 1 isoform 2 (SPHK1), serine and arginine rich splicing factor 1 (SRSF1), and tubulin gamma-1 (TUBG1) which are involved in the acrosome reaction and sperm motility. A mass spectrometry approach was applied to investigate the protein profiles of boars with different levels of hyperactive sperm motility. This study identified several proteins previously shown to be involved in sperm motility and quality, but also proteins with no known function for sperm motility. Candidates that are differentially expressed on both mRNA and protein levels are especially relevant as biological markers of semen quality.
Collapse
Affiliation(s)
| | - Dag Inge Våge
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Nina Hårdnes Tremoen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1432, Ås, Norway.,Department of Biotechnology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | - Ann Helen Gaustad
- Norsvin, Storhamargata 44, 2317, Hamar, Norway.,Department of Biotechnology, Inland Norway University of Applied Sciences, 2318, Hamar, Norway
| | | | | | | |
Collapse
|
5
|
Arora UP, Dumont BL. Meiotic drive in house mice: mechanisms, consequences, and insights for human biology. Chromosome Res 2022; 30:165-186. [PMID: 35829972 PMCID: PMC9509409 DOI: 10.1007/s10577-022-09697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Meiotic drive occurs when one allele at a heterozygous site cheats its way into a disproportionate share of functional gametes, violating Mendel's law of equal segregation. This genetic conflict typically imposes a fitness cost to individuals, often by disrupting the process of gametogenesis. The evolutionary impact of meiotic drive is substantial, and the phenomenon has been associated with infertility and reproductive isolation in a wide range of organisms. However, cases of meiotic drive in humans remain elusive, a finding that likely reflects the inherent challenges of detecting drive in our species rather than unique features of human genome biology. Here, we make the case that house mice (Mus musculus) present a powerful model system to investigate the mechanisms and consequences of meiotic drive and facilitate translational inferences about the scope and potential mechanisms of drive in humans. We first detail how different house mouse resources have been harnessed to identify cases of meiotic drive and the underlying mechanisms utilized to override Mendel's rules of inheritance. We then summarize the current state of knowledge of meiotic drive in the mouse genome. We profile known mechanisms leading to transmission bias at several established drive elements. We discuss how a detailed understanding of meiotic drive in mice can steer the search for drive elements in our own species. Lastly, we conclude with a prospective look into how new technologies and molecular tools can help resolve lingering mysteries about the prevalence and mechanisms of selfish DNA transmission in mammals.
Collapse
Affiliation(s)
- Uma P Arora
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
6
|
Hughes JF, Skaletsky H, Nicholls PK, Drake A, Pyntikova T, Cho TJ, Bellott DW, Page DC. A gene deriving from the ancestral sex chromosomes was lost from the X and retained on the Y chromosome in eutherian mammals. BMC Biol 2022; 20:133. [PMID: 35676717 PMCID: PMC9178871 DOI: 10.1186/s12915-022-01338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
Background The mammalian X and Y chromosomes originated from a pair of ordinary autosomes. Over the past ~180 million years, the X and Y have become highly differentiated and now only recombine with each other within a short pseudoautosomal region. While the X chromosome broadly preserved its gene content, the Y chromosome lost ~92% of the genes it once shared with the X chromosome. PRSSLY is a Y-linked gene identified in only a few mammalian species that was thought to be acquired, not ancestral. However, PRSSLY’s presence in widely divergent species—bull and mouse—led us to further investigate its evolutionary history. Results We discovered that PRSSLY is broadly conserved across eutherians and has ancient origins. PRSSLY homologs are found in syntenic regions on the X chromosome in marsupials and on autosomes in more distant animals, including lizards, indicating that PRSSLY was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals. We found that across eutheria, PRSSLY’s expression is testis-specific, and, in mouse, it is most robustly expressed in post-meiotic germ cells. The closest paralog to PRSSLY is the autosomal gene PRSS55, which is expressed exclusively in testes, involved in sperm differentiation and migration, and essential for male fertility in mice. Outside of eutheria, in species where PRSSLY orthologs are not Y-linked, we find expression in a broader range of somatic tissues, suggesting that PRSSLY has adopted a germ-cell-specific function in eutherians. Finally, we generated Prssly mutant mice and found that they are fully fertile but produce offspring with a modest female-biased sex ratio compared to controls. Conclusions PRSSLY appears to be the first example of a gene that derives from the mammalian ancestral sex chromosomes that was lost from the X and retained on the Y. Although the function of PRSSLY remains to be determined, it may influence the sex ratio by promoting the survival or propagation of Y-bearing sperm. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01338-8.
Collapse
Affiliation(s)
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA, 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, 02142, USA
| | - Peter K Nicholls
- Whitehead Institute, Cambridge, MA, 02142, USA.,Present Address: Faculty of Life Sciences, University of Bradford, BD71DP, Bradford, UK
| | | | | | | | | | - David C Page
- Whitehead Institute, Cambridge, MA, 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| |
Collapse
|
7
|
Deletion in the Y chromosome of B10.BR-Ydel mice alters transcription from MSYq genes and has moderate effect on DNA methylation. Reprod Biol 2022; 22:100614. [DOI: 10.1016/j.repbio.2022.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
|
8
|
Nwia SM, Li XC, Leite APDO, Hassan R, Zhuo JL. The Na +/H + Exchanger 3 in the Intestines and the Proximal Tubule of the Kidney: Localization, Physiological Function, and Key Roles in Angiotensin II-Induced Hypertension. Front Physiol 2022; 13:861659. [PMID: 35514347 PMCID: PMC9062697 DOI: 10.3389/fphys.2022.861659] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 01/29/2023] Open
Abstract
The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) is one of the most important Na+/H+ antiporters in the small intestines of the gastrointestinal tract and the proximal tubules of the kidney. The roles of NHE3 in the regulation of intracellular pH and acid-base balance have been well established in cellular physiology using in vitro techniques. Localized primarily on the apical membranes in small intestines and proximal tubules, the key action of NHE3 is to facilitate the entry of luminal Na+ and the extrusion of intracellular H+ from intestinal and proximal tubule tubular epithelial cells. NHE3 is, directly and indirectly, responsible for absorbing the majority of ingested Na+ from small and large intestines and reabsorbing >50% of filtered Na+ in the proximal tubules of the kidney. However, the roles of NHE3 in the regulation of proximal tubular Na+ transport in the integrative physiological settings and its contributions to the basal blood pressure regulation and angiotensin II (Ang II)-induced hypertension have not been well studied previously due to the lack of suitable animal models. Recently, novel genetically modified mouse models with whole-body, kidney-specific, or proximal tubule-specific deletion of NHE3 have been generated by us and others to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal body salt and fluid balance, blood pressure homeostasis, and the development of Ang II-induced hypertension at the whole-body, kidney, or proximal tubule levels. The objective of this invited article is to review, update, and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)-dependent hypertension.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula de Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States,*Correspondence: Jia Long Zhuo,
| |
Collapse
|
9
|
Larson EL, Kopania EEK, Hunnicutt KE, Vanderpool D, Keeble S, Good JM. Stage-specific disruption of X chromosome expression during spermatogenesis in sterile house mouse hybrids. G3 (BETHESDA, MD.) 2022; 12:jkab407. [PMID: 34864964 PMCID: PMC9210296 DOI: 10.1093/g3journal/jkab407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023]
Abstract
Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of meiotic sex chromosome inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X- and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes await further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.
Collapse
Affiliation(s)
- Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Kelsie E Hunnicutt
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
10
|
Haines BA, Barradale F, Dumont BL. Patterns and mechanisms of sex ratio distortion in the Collaborative Cross mouse mapping population. Genetics 2021; 219:iyab136. [PMID: 34740238 PMCID: PMC8570777 DOI: 10.1093/genetics/iyab136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022] Open
Abstract
In species with single-locus, chromosome-based mechanisms of sex determination, the laws of segregation predict an equal ratio of females to males at birth. Here, we show that departures from this Mendelian expectation are commonplace in the 8-way recombinant inbred Collaborative Cross (CC) mouse population. More than one-third of CC strains exhibit significant sex ratio distortion (SRD) at wean, with twice as many male-biased than female-biased strains. We show that these pervasive sex biases persist across multiple breeding environments, are stable over time, and are not mediated by random maternal effects. SRD exhibits a heritable component, but QTL mapping analyses fail to nominate any large effect loci. These findings, combined with the reported absence of sex ratio biases in the CC founder strains, suggest that SRD manifests from multilocus combinations of alleles only uncovered in recombined CC genomes. We explore several potential complex genetic mechanisms for SRD, including allelic interactions leading to sex-biased lethality, genetic sex reversal, chromosome drive mediated by sex-linked selfish elements, and incompatibilities between specific maternal and paternal genotypes. We show that no one mechanism offers a singular explanation for this population-wide SRD. Instead, our data present preliminary evidence for the action of distinct mechanisms of SRD at play in different strains. Taken together, our work exposes the pervasiveness of SRD in the CC population and nominates the CC as a powerful resource for investigating diverse genetic causes of biased sex chromosome transmission.
Collapse
Affiliation(s)
| | | | - Beth L Dumont
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
11
|
Subrini J, Turner J. Y chromosome functions in mammalian spermatogenesis. eLife 2021; 10:67345. [PMID: 34606444 PMCID: PMC8489898 DOI: 10.7554/elife.67345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian Y chromosome is critical for male sex determination and spermatogenesis. However, linking each Y gene to specific aspects of male reproduction has been challenging. As the Y chromosome is notoriously hard to sequence and target, functional studies have mostly relied on transgene-rescue approaches using mouse models with large multi-gene deletions. These experimental limitations have oriented the field toward the search for a minimum set of Y genes necessary for male reproduction. Here, considering Y-chromosome evolutionary history and decades of discoveries, we review the current state of research on its function in spermatogenesis and reassess the view that many Y genes are disposable for male reproduction.
Collapse
Affiliation(s)
- Jeremie Subrini
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - James Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
12
|
Hong SH, Han G, Lee SJ, Cocquet J, Cho C. Testicular germ cell-specific lncRNA, Teshl, is required for complete expression of Y chromosome genes and a normal offspring sex ratio. SCIENCE ADVANCES 2021; 7:7/24/eabg5177. [PMID: 34108217 PMCID: PMC8189594 DOI: 10.1126/sciadv.abg5177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 05/09/2023]
Abstract
Heat shock factor 2 (HSF2) regulates the transcription of the male-specific region of the mouse Y chromosome long arm (MSYq) multicopy genes only in testes, but the molecular mechanism underlying this tissue specificity remains largely unknown. Here, we report that the testicular germ cell-specific long noncoding RNA (lncRNA), NR_038002, displays a characteristic spatiotemporal expression pattern in the nuclei of round and elongating spermatids. NR_038002-knockout male mice produced sperm with abnormal head morphology and exhibited reduced fertility accompanied by a female-biased sex ratio in offspring. Molecular analyses revealed that NR_038002 interacts with HSF2 and thereby activates expression of the MSYq genes. We designate NR_038002 as testicular germ cell-specific HSF2-interacting lncRNA (Teshl). Together, our study is the first to demonstrate that the testis specificity of HSF2 activity is regulated by the lncRNA Teshl and establishes a Teshl-HSF2-MSYq molecular axis for normal Y-bearing sperm qualities and consequent balanced offspring sex ratio.
Collapse
Affiliation(s)
- Seong Hyeon Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gwidong Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Julie Cocquet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, F-75014 Paris, France
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Moretti C, Blanco M, Ialy-Radio C, Serrentino ME, Gobé C, Friedman R, Battail C, Leduc M, Ward MA, Vaiman D, Tores F, Cocquet J. Battle of the Sex Chromosomes: Competition between X and Y Chromosome-Encoded Proteins for Partner Interaction and Chromatin Occupancy Drives Multicopy Gene Expression and Evolution in Muroid Rodents. Mol Biol Evol 2021; 37:3453-3468. [PMID: 32658962 PMCID: PMC7743899 DOI: 10.1093/molbev/msaa175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transmission distorters (TDs) are genetic elements that favor their own transmission to the detriments of others. Slx/Slxl1 (Sycp3-like-X-linked and Slx-like1) and Sly (Sycp3-like-Y-linked) are TDs, which have been coamplified on the X and Y chromosomes of Mus species. They are involved in an intragenomic conflict in which each favors its own transmission, resulting in sex ratio distortion of the progeny when Slx/Slxl1 versus Sly copy number is unbalanced. They are specifically expressed in male postmeiotic gametes (spermatids) and have opposite effects on gene expression: Sly knockdown leads to the upregulation of hundreds of spermatid-expressed genes, whereas Slx/Slxl1-deficiency downregulates them. When both Slx/Slxl1 and Sly are knocked down, sex ratio distortion and gene deregulation are corrected. Slx/Slxl1 and Sly are, therefore, in competition but the molecular mechanism remains unknown. By comparing their chromatin-binding profiles and protein partners, we show that SLX/SLXL1 and SLY proteins compete for interaction with H3K4me3-reader SSTY1 (Spermiogenesis-specific-transcript-on-the-Y1) at the promoter of thousands of genes to drive their expression, and that the opposite effect they have on gene expression is mediated by different abilities to recruit SMRT/N-Cor transcriptional complex. Their target genes are predominantly spermatid-specific multicopy genes encoded by the sex chromosomes and the autosomal Speer/Takusan. Many of them have coamplified with not only Slx/Slxl1/Sly but also Ssty during muroid rodent evolution. Overall, we identify Ssty as a key element of the X versus Y intragenomic conflict, which may have influenced gene content and hybrid sterility beyond Mus lineage since Ssty amplification on the Y predated that of Slx/Slxl1/Sly.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Mélina Blanco
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Côme Ialy-Radio
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | | | - Clara Gobé
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | | | - Christophe Battail
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biology of Cancer and Infection UMR_S 1036, 38000 Grenoble, France
| | - Marjorie Leduc
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.,Plateforme Protéomique 3P5, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Daniel Vaiman
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Frederic Tores
- Plateforme de Bio-informatique, Institut Imagine, Université de Paris, Paris, France
| | - Julie Cocquet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| |
Collapse
|
14
|
Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021; 120:28-47. [PMID: 33171144 PMCID: PMC7855816 DOI: 10.1016/j.neubiorev.2020.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Humans show reproducible sex-differences in cognition and psychopathology that may be contributed to by influences of gonadal sex-steroids and/or sex-chromosomes on regional brain development. Gonadal sex-steroids are well known to play a major role in sexual differentiation of the vertebrate brain, but far less is known regarding the role of sex-chromosomes. Our review focuses on this latter issue by bridging together two literatures that have to date been largely disconnected. We first consider "bottom-up" genetic and molecular studies focused on sex-chromosome gene content and regulation. This literature nominates specific sex-chromosome genes that could drive developmental sex-differences by virtue of their sex-biased expression and their functions within the brain. We then consider the complementary "top down" view, from magnetic resonance imaging studies that map sex- and sex chromosome effects on regional brain anatomy, and link these maps to regional gene-expression within the brain. By connecting these top-down and bottom-up approaches, we emphasize the potential role of X-linked genes in driving sex-biased brain development and outline key goals for future work in this field.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, 20892, USA.
| | - Christine M Disteche
- Department of Pathology and Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Genomic Structure, Evolutionary Origins, and Reproductive Function of a Large Amplified Intrinsically Disordered Protein-Coding Gene on the X Chromosome ( Laidx) in Mice. G3-GENES GENOMES GENETICS 2020; 10:1997-2005. [PMID: 32253194 PMCID: PMC7263670 DOI: 10.1534/g3.120.401221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mouse sex chromosomes are enriched for co-amplified gene families, present in tens to hundreds of copies. Co-amplification of Slx/Slxl1 on the X chromosome and Sly on the Y chromosome are involved in dose-dependent meiotic drive, however the role of other co-amplified genes remains poorly understood. Here we demonstrate that the co-amplified gene family on the X chromosome, Srsx, along with two additional partial gene annotations, is actually part of a larger transcription unit, which we name Laidx. Laidx is harbored in a 229 kb amplicon that represents the ancestral state as compared to a 525 kb Y-amplicon containing the rearranged Laidy. Laidx contains a 25,011 nucleotide open reading frame, predominantly expressed in round spermatids, predicted to encode an 871 kD protein. Laidx has orthologous copies with the rat and also the 825-MY diverged parasitic Chinese liver fluke, Clonorchis sinensis, the likely result of a horizontal gene transfer of rodent Laidx to an ancestor of the liver fluke. To assess the male reproductive functions of Laidx, we generated mice carrying a multi-megabase deletion of the Laidx-ampliconic region. Laidx-deficient male mice do not show detectable reproductive defects in fertility, fecundity, testis histology, and offspring sex ratio. We speculate that Laidx and Laidy represent a now inactive X vs. Y chromosome conflict that occurred in an ancestor of present day mice.
Collapse
|
16
|
Bircsak KM, Copes LT, King S, Prantner AM, Hwang WT, Gerton GL. The aryl hydrocarbon receptor mediates sex ratio distortion in the embryos sired by TCDD-exposed male mice. Reprod Toxicol 2020; 94:75-83. [PMID: 32335222 DOI: 10.1016/j.reprotox.2020.04.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Many reports describe an association between preconceptional paternal exposure to environmental chemicals, including the persistent organic pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with an increased number of female offspring. We chronically treated wild-type C57BL/6 male mice with TCDD to investigate a role for the aryl hydrocarbon receptor (AHR) transcription factor. These mice had a 14 % lower male:female sex ratio than control mice, which was not observed in TCDD-treated Ahr knock out mice. AHR target genes Cyp1a1 and Ahrr were upregulated in the liver and testis of WT mice and Ahr expression was higher in the epididymis (2-fold) and liver (18-fold) than in whole testis tissue. The AHR protein was localized to round spermatids, elongating spermatids, and Leydig cells in the testis of WT mice. These studies demonstrate AHR involvement in the sex ratio distortion of TCDD-exposed males and the need for evaluating the molecular and genetic mechanism of this process.
Collapse
Affiliation(s)
- Kristin M Bircsak
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Latresa T Copes
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara King
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew M Prantner
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George L Gerton
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
17
|
Courret C, Chang CH, Wei KHC, Montchamp-Moreau C, Larracuente AM. Meiotic drive mechanisms: lessons from Drosophila. Proc Biol Sci 2019; 286:20191430. [PMID: 31640520 DOI: 10.1098/rspb.2019.1430] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Meiotic drivers are selfish genetic elements that bias their transmission into gametes, often to the detriment of the rest of the genome. The resulting intragenomic conflicts triggered by meiotic drive create evolutionary arms races and shape genome evolution. The phenomenon of meiotic drive is widespread across taxa but is particularly prominent in the Drosophila genus. Recent studies in Drosophila have provided insights into the genetic origins of drivers and their molecular mechanisms. Here, we review the current literature on mechanisms of drive with an emphasis on sperm killers in Drosophila species. In these systems, meiotic drivers often evolve from gene duplications and targets are generally linked to heterochromatin. While dense in repetitive elements and difficult to study using traditional genetic and genomic approaches, recent work in Drosophila has made progress on the heterochromatic compartment of the genome. Although we still understand little about precise drive mechanisms, studies of male drive systems are converging on common themes such as heterochromatin regulation, small RNA pathways, and nuclear transport pathways. Meiotic drive systems are therefore promising models for discovering fundamental features of gametogenesis.
Collapse
Affiliation(s)
- Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California, Berkley, CA, USA
| | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | | |
Collapse
|
18
|
Rathje CC, Johnson EEP, Drage D, Patinioti C, Silvestri G, Affara NA, Ialy-Radio C, Cocquet J, Skinner BM, Ellis PJI. Differential Sperm Motility Mediates the Sex Ratio Drive Shaping Mouse Sex Chromosome Evolution. Curr Biol 2019; 29:3692-3698.e4. [PMID: 31630954 PMCID: PMC6839398 DOI: 10.1016/j.cub.2019.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023]
Abstract
The mouse sex chromosomes exhibit an extraordinary level of copy number amplification of postmeiotically expressed genes [1, 2], driven by an “arms race” (genomic conflict) between the X and Y chromosomes over the control of offspring sex ratio. The sex-linked ampliconic transcriptional regulators Slx and Sly [3, 4, 5, 6, 7] have opposing effects on global transcription levels of the sex chromosomes in haploid spermatids via regulation of postmeiotic sex chromatin (PMSC) [8, 9, 10, 11] and opposing effects on offspring sex ratio. Partial deletions of the Y chromosome (Yq) that reduce Sly copy number lead to global overexpression of sex-linked genes in spermatids and either a distorted sex ratio in favor of females (smaller deletions) or sterility (larger deletions) [12, 13, 14, 15, 16]. Despite a large body of work studying the role of the sex chromosomes in regulating spermatogenesis (recent reviews [17, 18, 19, 20]), most studies do not address differential fertility effects on X- and Y-bearing cells. Hence, in this study, we concentrate on identifying physiological differences between X- and Y-bearing sperm from Yq-deleted males that affect their relative fertilizing ability and consequently lead to sex ratio skewing. We show that X- and Y-bearing sperm in these males have differential motility and morphology but are equally able to penetrate the cumulus and fertilize the egg once at the site of fertilization. The altered motility is thus deduced to be the proximate cause of the skew. This represents the first demonstration of a specific difference in sperm function associated with sex ratio skewing. The sex ratio skew in the offspring of Yq-deleted male mice is abolished by IVF In Yqdel males, Y sperm are more severely morphologically distorted than X sperm Similarly, Y sperm in these males have relatively impaired motility This motility difference explains the sex ratio skew in offspring of these males
Collapse
Affiliation(s)
| | | | - Deborah Drage
- University Biomedical Services, University of Cambridge, Cambridge CB2 2SP, UK
| | | | | | - Nabeel Ahmed Affara
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Côme Ialy-Radio
- Department of Development, Reproduction and Cancer, INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Julie Cocquet
- Department of Development, Reproduction and Cancer, INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Benjamin Matthew Skinner
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | |
Collapse
|
19
|
Kruger AN, Brogley MA, Huizinga JL, Kidd JM, de Rooij DG, Hu YC, Mueller JL. A Neofunctionalized X-Linked Ampliconic Gene Family Is Essential for Male Fertility and Equal Sex Ratio in Mice. Curr Biol 2019; 29:3699-3706.e5. [PMID: 31630956 DOI: 10.1016/j.cub.2019.08.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
The mammalian sex chromosomes harbor an abundance of newly acquired ampliconic genes, although their functions require elucidation [1-9]. Here, we demonstrate that the X-linked Slx and Slxl1 ampliconic gene families represent mouse-specific neofunctionalized copies of a meiotic synaptonemal complex protein, Sycp3. In contrast to the meiotic role of Sycp3, CRISPR-loxP-mediated multi-megabase deletions of the Slx (5 Mb) and Slxl1 (2.3Mb) ampliconic regions result in post-meiotic defects, abnormal sperm, and male infertility. Males carrying Slxl1 deletions sire more male offspring, whereas males carrying Slx and Slxl1 duplications sire more female offspring, which directly correlates with Slxl1 gene dosage and gene expression levels. SLX and SLXL1 proteins interact with spindlin protein family members (SPIN1 and SSTY1/2) and males carrying Slxl1 deletions downregulate a sex chromatin modifier, Scml2, leading us to speculate that Slx and Slxl1 function in chromatin regulation. Our study demonstrates how newly acquired X-linked genes can rapidly evolve new and essential functions and how gene amplification can increase sex chromosome transmission.
Collapse
Affiliation(s)
- Alyssa N Kruger
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | - Michele A Brogley
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | - Jamie L Huizinga
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Milenkovic A, Schmied D, Tanimoto N, Seeliger MW, Sparrow JR, Weber BHF. The Y227N mutation affects bestrophin-1 protein stability and impairs sperm function in a mouse model of Best vitelliform macular dystrophy. Biol Open 2019; 8:bio.041335. [PMID: 31201163 PMCID: PMC6679414 DOI: 10.1242/bio.041335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human bestrophin-1 (BEST1) is an integral membrane protein known to function as a Ca2+-activated and volume-regulated chloride channel. The majority of disease-associated mutations in BEST1 constitute missense mutations and were shown in vitro to lead to a reduction in mutant protein half-life causing Best disease (BD), a rare autosomal dominant macular dystrophy. To further delineate BEST1-associated pathology in vivo and to provide an animal model useful to explore experimental treatment efficacies, we have generated a knock-in mouse line (Best1Y227N). Heterozygous and homozygous mutants revealed no significant ocular abnormalities up to 2 years of age. In contrast, knock-in animals demonstrated a severe phenotype in the male reproductive tract. In heterozygous Best1Y227N males, Best1 protein was significantly reduced in testis and almost absent in homozygous mutant mice, although mRNA transcription of wild-type and knock-in allele is present and similar in quantity. Degradation of mutant Best1 protein in testis was associated with adverse effects on sperm motility and the capability to fertilize eggs. Based on these results, we conclude that mice carrying the Best1 Y227N mutation reveal a reproducible pathologic phenotype and thus provide a valuable in vivo tool to evaluate efficacy of drug therapies aimed at restoring Best1 protein stability and function.
Collapse
Affiliation(s)
- Andrea Milenkovic
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Denise Schmied
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, 72076 Tübingen, Germany.,Department of Ophthalmology, University of Kiel, 24105 Kiel, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, 72076 Tübingen, Germany
| | - Janet R Sparrow
- Department of Ophthalmology, Harkness Eye Institute, Columbia University Medical Center, 10032 New York, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
21
|
Martincová I, Ďureje Ľ, Kreisinger J, Macholán M, Piálek J. Phenotypic effects of the Y chromosome are variable and structured in hybrids among house mouse recombinant lines. Ecol Evol 2019; 9:6124-6137. [PMID: 31161024 PMCID: PMC6540687 DOI: 10.1002/ece3.5196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022] Open
Abstract
Hybrid zones between divergent populations sieve genomes into blocks that introgress across the zone, and blocks that do not, depending on selection between interacting genes. Consistent with Haldane's rule, the Y chromosome has been considered counterselected and hence not to introgress across the European house mouse hybrid zone. However, recent studies detected massive invasion of M. m. musculus Y chromosomes into M. m. domesticus territory. To understand mechanisms facilitating Y spread, we created 31 recombinant lines from eight wild-derived strains representing four localities within the two mouse subspecies. These lines were reciprocally crossed and resulting F1 hybrid males scored for five phenotypic traits associated with male fitness. Molecular analyses of 51 Y-linked SNPs attributed ~50% of genetic variation to differences between the subspecies and 8% to differentiation within both taxa. A striking proportion, 21% (frequencies of sperm head abnormalities) and 42% (frequencies of sperm tail dissociations), of phenotypic variation was explained by geographic Y chromosome variants. Our crossing design allowed this explanatory power to be examined across a hierarchical scale from subspecific to local intrastrain effects. We found that divergence and variation were expressed diversely in different phenotypic traits and varied across the whole hierarchical scale. This finding adds another dimension of complexity to studies of Y introgression not only across the house mouse hybrid zone but potentially also in other contact zones.
Collapse
Affiliation(s)
- Iva Martincová
- Research Facility Studenec, Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Ľudovít Ďureje
- Research Facility Studenec, Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of ScienceCharles University in PraguePragueCzech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
22
|
Lu Y, Liao S, Tu W, Yang B, Liu S, Pei X, Tao D, Lu Y, Ma Y, Yang Y, Liu Y. DNA demethylation facilitates the specific transcription of the mouse X-linked Tsga8 gene in round spermatids†. Biol Reprod 2019; 100:994-1007. [PMID: 30541061 DOI: 10.1093/biolre/ioy255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
Some X-linked genes necessary for spermiogenesis are specifically activated in the postmeiotic germ cells. However, the regulatory mechanism about this activation is not clearly understood. Here, we examined the potential mechanism controlling the transcriptional activation of the mouse testis specific gene A8 (Tsga8) gene in round spermatids. We observed that the Tsga8 expression was negatively correlated with the methylation level of the CpG sites in its core promoter. During spermatogenesis, the Tsga8 promoter was methylated in spermatogonia, and then demethylated in spermatocytes. The demethylation status of Tsga8 promoter was maintained through the postmeiotic germ cells, providing a potentially active chromatin for Tsga8 transcription. In vitro investigation showed that the E12 and Spz1 transcription factors can enhance the Tsga8 promoter activity by binding to the unmethylated E-box motif within the Tsga8 promoter. Additionally, the core Tsga8 promoter drove green fluorescent protein (GFP) expression in the germ cells of Tsga8-GFP transgenic mice, and the GFP expression pattern was similar to that of endogenous Tsga8. Moreover, the DNA methylation profile of the Tsga8-promoter-driven transgene was consistent with that of the endogenous Tsga8 promoter, indicating the existence of a similar epigenetic modification for the Tsga8 promoter to ensure its spatiotemporal expression in vivo. Taken together, this study reports the details of a regulatory mechanism that includes DNA methylation and transcription factors to mediate the postmeiotic expression of an X-linked gene.
Collapse
Affiliation(s)
- Yongjie Lu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Shunyao Liao
- Diabetic Center and Institute of Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wenling Tu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shasha Liu
- Diabetic Center and Institute of Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xue Pei
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Dachang Tao
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yilu Lu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yongxin Ma
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Yang
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Yunqiang Liu
- Department of Medical Genetics and Division of Human Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
Hirota T, Blakeley P, Sangrithi MN, Mahadevaiah SK, Encheva V, Snijders AP, ElInati E, Ojarikre OA, de Rooij DG, Niakan KK, Turner JMA. SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Dev Cell 2018; 47:645-659.e6. [PMID: 30393076 PMCID: PMC6286383 DOI: 10.1016/j.devcel.2018.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Meiotic synapsis and recombination ensure correct homologous segregation and genetic diversity. Asynapsed homologs are transcriptionally inactivated by meiotic silencing, which serves a surveillance function and in males drives meiotic sex chromosome inactivation. Silencing depends on the DNA damage response (DDR) network, but how DDR proteins engage repressive chromatin marks is unknown. We identify the histone H3-lysine-9 methyltransferase SETDB1 as the bridge linking the DDR to silencing in male mice. At the onset of silencing, X chromosome H3K9 trimethylation (H3K9me3) enrichment is downstream of DDR factors. Without Setdb1, the X chromosome accrues DDR proteins but not H3K9me3. Consequently, sex chromosome remodeling and silencing fail, causing germ cell apoptosis. Our data implicate TRIM28 in linking the DDR to SETDB1 and uncover additional factors with putative meiotic XY-silencing functions. Furthermore, we show that SETDB1 imposes timely expression of meiotic and post-meiotic genes. Setdb1 thus unites the DDR network, asynapsis, and meiotic chromosome silencing.
Collapse
Affiliation(s)
- Takayuki Hirota
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Blakeley
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mahesh N Sangrithi
- KK Women's and Children's Hospital, Department of Reproductive Medicine, Singapore 229899, Singapore; Duke-NUS Graduate Medical School, Singapore 119077, Singapore
| | | | - Vesela Encheva
- Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Elias ElInati
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Obah A Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands; Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
24
|
Larson EL, Kopania EEK, Good JM. Spermatogenesis and the Evolution of Mammalian Sex Chromosomes. Trends Genet 2018; 34:722-732. [PMID: 30077434 PMCID: PMC6161750 DOI: 10.1016/j.tig.2018.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/23/2022]
Abstract
Developmental constraint and sexual conflict shape the evolution of heteromorphic sex chromosomes. These contrasting forces are perhaps strongest during spermatogenesis in species with XY males. In this review, we consider how the unique regulatory environment and selective pressures of spermatogenesis interact to impact sex chromosome evolution in mammals. We explore how each developmental phase of spermatogenesis influences sex chromosome gene content, structure, and rate of molecular evolution, and how these attributes may contribute to speciation. We argue that a developmental context is fundamental to understanding sex chromosome evolution and that an evolutionary perspective can shed new light on our understanding of sperm development.
Collapse
Affiliation(s)
- Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| | - Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
25
|
Sangrithi MN, Turner JMA. Mammalian X Chromosome Dosage Compensation: Perspectives From the Germ Line. Bioessays 2018; 40:e1800024. [PMID: 29756331 DOI: 10.1002/bies.201800024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/15/2018] [Indexed: 01/04/2023]
Abstract
Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy.
Collapse
Affiliation(s)
- Mahesh N Sangrithi
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore.,Duke-NUS Graduate Medical School, Singapore, 119077, Singapore
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
26
|
O'Neill MJ, O'Neill RJ. Sex chromosome repeats tip the balance towards speciation. Mol Ecol 2018; 27:3783-3798. [PMID: 29624756 DOI: 10.1111/mec.14577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create suboptimal sex ratios but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex-determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation.
Collapse
Affiliation(s)
- Michael J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
27
|
Abstract
Over the 180 My since their origin, the sex chromosomes of mammals have evolved a gene repertoire highly specialized for function in the male germline. The mouse Y chromosome is unique among mammalian Y chromosomes characterized to date in that it is large, gene-rich and euchromatic. Yet, little is known about its diversity in natural populations. Here, we take advantage of published whole-genome sequencing data to survey the diversity of sequence and copy number of sex-linked genes in three subspecies of house mice. Copy number of genes on the repetitive long arm of both sex chromosomes is highly variable, but sequence diversity in nonrepetitive regions is decreased relative to expectations based on autosomes. We use simulations and theory to show that this reduction in sex-linked diversity is incompatible with neutral demographic processes alone, but is consistent with recent positive selection on genes active during spermatogenesis. Our results support the hypothesis that the mouse sex chromosomes are engaged in ongoing intragenomic conflict.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
28
|
Larson EL, Keeble S, Vanderpool D, Dean MD, Good JM. The Composite Regulatory Basis of the Large X-Effect in Mouse Speciation. Mol Biol Evol 2017; 34:282-295. [PMID: 27999113 PMCID: PMC6200130 DOI: 10.1093/molbev/msw243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The disruption of meiotic sex chromosome inactivation (MSCI) has been proposed to be a major developmental mechanism underlying the rapid evolution of hybrid male sterility. We tested this idea by analyzing cell-specific gene expression across spermatogenesis in two lineages of house mice and their sterile and fertile reciprocal hybrids. We found pervasive disruption of sex chromosome gene expression in sterile hybrids at every stage of spermatogenesis. Failure of MSCI was developmentally preceded by increased silencing of autosomal genes, supporting the hypothesis that divergence at the hybrid incompatibility gene, Prdm9, results in increased rates of autosomal asynapsis which in turn triggers widespread silencing of unsynapsed chromatin. We also detected opposite patterns of postmeiotic overexpression or hyper-repression of the sex chromosomes in reciprocal hybrids, supporting the hypothesis that genomic conflict has driven functional divergence that leads to deleterious X-Y dosage imbalances in hybrids. Our developmental timeline also exposed more subtle patterns of mitotic misregulation on the X chromosome, a previously undocumented stage of spermatogenic disruption in this cross. These results indicate that multiple hybrid incompatibilities have converged on a common regulatory phenotype, the disrupted expression of the sex chromosomes during spermatogenesis. Collectively, these data reveal a composite regulatory basis to hybrid male sterility in mice that helps resolve the mechanistic underpinnings of the well-documented large X-effect in mice speciation. We propose that the inherent sensitivity of spermatogenesis to X-linked regulatory disruption has the potential to be a major driver of reproductive isolation in species with chromosomal sex determination.
Collapse
Affiliation(s)
- Erica L Larson
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT
| |
Collapse
|
29
|
Moretti C, Vaiman D, Tores F, Cocquet J. Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells. Epigenetics Chromatin 2016; 9:47. [PMID: 27795737 PMCID: PMC5081929 DOI: 10.1186/s13072-016-0099-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During meiosis, the X and Y chromosomes are transcriptionally silenced. The persistence of repressive chromatin marks on the sex chromatin after meiosis initially led to the assumption that XY gene silencing persists to some extent in spermatids. Considering the many reports of XY-linked genes expressed and needed in the post-meiotic phase of mouse spermatogenesis, it is still unclear whether or not the mouse sex chromatin is a repressive or permissive environment, after meiosis. RESULTS To determine the transcriptional and chromatin state of the sex chromosomes after meiosis, we re-analyzed ten ChIP-Seq datasets performed on mouse round spermatids and four RNA-seq datasets from male germ cells purified at different stages of spermatogenesis. For this, we used the last version of the genome (mm10/GRCm38) and included reads that map to several genomic locations in order to properly interpret the high proportion of sex chromosome-encoded multicopy genes. Our study shows that coverage of active epigenetic marks H3K4me3 and Kcr is similar on the sex chromosomes and on autosomes. The post-meiotic sex chromatin nevertheless differs from autosomal chromatin in its enrichment in H3K9me3 and its depletion in H3K27me3 and H4 acetylation. We also identified a posttranslational modification, H3K27ac, which specifically accumulates on the Y chromosome. In parallel, we found that the X and Y chromosomes are enriched in genes expressed post-meiotically and display a higher proportion of spermatid-specific genes compared to autosomes. Finally, we observed that portions of chromosome 14 and of the sex chromosomes share specific features, such as enrichment in H3K9me3 and the presence of multicopy genes that are specifically expressed in round spermatids, suggesting that parts of chromosome 14 are under the same evolutionary constraints than the sex chromosomes. CONCLUSIONS Based on our expression and epigenomic studies, we conclude that, after meiosis, the mouse sex chromosomes are no longer silenced but are nevertheless regulated differently than autosomes and accumulate different chromatin marks. We propose that post-meiotic selective constraints are at the basis of the enrichment of spermatid-specific genes and of the peculiar chromatin composition of the sex chromosomes and of parts of chromosome 14.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Daniel Vaiman
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frederic Tores
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Julie Cocquet
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
30
|
Abstract
Meiosis is essential for reproduction in sexually reproducing organisms. A key stage in meiosis is the synapsis of maternal and paternal homologous chromosomes, accompanied by exchange of genetic material to generate crossovers. A decade ago, studies found that when chromosomes fail to synapse, the many hundreds of genes housed within them are transcriptionally inactivated. This process, meiotic silencing, is conserved in all mammals studied to date, but its purpose is not yet defined. Here, I review the molecular genetics of meiotic silencing and consider the many potential functions that it could serve in the mammalian germ line. In addition, I discuss how meiotic silencing influences sex differences in meiotic infertility and the profound impact that meiotic silencing has had on the evolution of mammalian sex chromosomes.
Collapse
|
31
|
Contrasting Levels of Molecular Evolution on the Mouse X Chromosome. Genetics 2016; 203:1841-57. [PMID: 27317678 DOI: 10.1534/genetics.116.186825] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/08/2016] [Indexed: 11/18/2022] Open
Abstract
The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution-divergence in protein sequence, gene expression, and DNA methylation-across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation.
Collapse
|
32
|
Hu YC, Namekawa SH. Functional significance of the sex chromosomes during spermatogenesis. Reproduction 2016; 149:R265-77. [PMID: 25948089 DOI: 10.1530/rep-14-0613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mammalian sex chromosomes arose from an ordinary pair of autosomes. Over hundreds of millions of years, they have evolved into highly divergent X and Y chromosomes and have become increasingly specialized for male reproduction. Both sex chromosomes have acquired and amplified testis-specific genes, suggestive of roles in spermatogenesis. To understand how the sex chromosome genes participate in the regulation of spermatogenesis, we review genes, including single-copy, multi-copy, and ampliconic genes, whose spermatogenic functions have been demonstrated in mouse genetic studies. Sex chromosomes are subject to chromosome-wide transcriptional silencing in meiotic and postmeiotic stages of spermatogenesis. We also discuss particular sex-linked genes that escape postmeiotic silencing and their evolutionary implications. The unique gene contents and genomic structures of the sex chromosomes reflect their strategies to express genes at various stages of spermatogenesis and reveal the driving forces that shape their evolution.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC1.Free Japanese abstract: A Japanese translation of this abstract is freely available at http://www.reproduction-online.org/content/149/6/R265/suppl/DC2.
Collapse
Affiliation(s)
- Yueh-Chiang Hu
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Satoshi H Namekawa
- Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA Division of Developmental BiologyDivision of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
33
|
Vernet N, Mahadevaiah SK, Decarpentrie F, Longepied G, de Rooij DG, Burgoyne PS, Mitchell MJ. Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Head Remodelling and Sperm Tail Development. PLoS One 2016; 11:e0145398. [PMID: 26765744 PMCID: PMC4713206 DOI: 10.1371/journal.pone.0145398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/30/2015] [Indexed: 01/25/2023] Open
Abstract
A previous study indicated that genetic information encoded on the mouse Y chromosome short arm (Yp) is required for efficient completion of the second meiotic division (that generates haploid round spermatids), restructuring of the sperm head, and development of the sperm tail. Using mouse models lacking a Y chromosome but with varying Yp gene complements provided by Yp chromosomal derivatives or transgenes, we recently identified the Y-encoded zinc finger transcription factors Zfy1 and Zfy2 as the Yp genes promoting the second meiotic division. Using the same mouse models we here show that Zfy2 (but not Zfy1) contributes to the restructuring of the sperm head and is required for the development of the sperm tail. The preferential involvement of Zfy2 is consistent with the presence of an additional strong spermatid-specific promotor that has been acquired by this gene. This is further supported by the fact that promotion of sperm morphogenesis is also seen in one of the two markedly Yp gene deficient models in which a Yp deletion has created a Zfy2/1 fusion gene that is driven by the strong Zfy2 spermatid-specific promotor, but encodes a protein almost identical to that encoded by Zfy1. Our results point to there being further genetic information on Yp that also has a role in restructuring the sperm head.
Collapse
Affiliation(s)
- Nadege Vernet
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom.,Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, France
| | - Shantha K Mahadevaiah
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom.,The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Fanny Decarpentrie
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom.,The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Guy Longepied
- Aix Marseille Université GMGF, Marseille, France.,Inserm, UMR_S 910, Marseille, France
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Center for Reproductive Medicine, Amsterdam Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Paul S Burgoyne
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
| | - Michael J Mitchell
- Aix Marseille Université GMGF, Marseille, France.,Inserm, UMR_S 910, Marseille, France
| |
Collapse
|
34
|
Li M, Huang R, Jiang X, Chen Y, Zhang Z, Zhang X, Liang P, Zhan S, Cao S, Songyang Z, Huang J. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo. PLoS One 2015; 10:e0143148. [PMID: 26599493 PMCID: PMC4658030 DOI: 10.1371/journal.pone.0143148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
Mammalian spermatogenesis is a highly regulated multistage process of sperm generation. It is hard to uncover the real function of a testis specific gene in vitro since the in vitro model is not yet mature. With the development of the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system, we can now rapidly generate knockout mouse models of testis specific genes to study the process of spermatogenesis in vivo. SYCP3-like X-linked 2 (SLX2) is a germ cell specific component, which contains a Cor1 domain and belongs to the XLR (X-linked, lymphocyte regulated) family. Previous studies suggested that SLX2 might play an important role in mouse spermatogenesis based on its subcellular localization and interacting proteins. However, the function of SLX2 in vivo is still elusive. Here, to investigate the functions of SLX2 in spermatogenesis, we disrupted the Slx2 gene by using the CRISPR/Cas9 system. Since Slx2 is a testis specific X-linked gene, we obtained knockout male mice in the first generation and accelerated the study process. Compared with wild-type mice, Slx2 knockout mice have normal testis and epididymis. Histological observation of testes sections showed that Slx2 knockout affected none of the three main stages of spermatogenesis: mitosis, meiosis and spermiogenesis. In addition, we further confirmed that disruption of Slx2 did not affect the number of spermatogonial stem cells, meiosis progression or XY body formation by immunofluorescence analysis. As spermatogenesis was normal in Slx2 knockout mice, these mice were fertile. Taken together, we showed that Slx2 itself is not an essential gene for mouse spermatogenesis and CRISPR/Cas9 technique could speed up the functional study of testis specific X-linked gene in vivo.
Collapse
Affiliation(s)
- Minyan Li
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Huang
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xue Jiang
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Chen
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Zhang
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiya Zhang
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Puping Liang
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoquan Zhan
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanbo Cao
- Key Laboratory of Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhou Songyang
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjiu Huang
- Guangdong Province Key Laboratory of Reproductive Medicine, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Institute of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Zhou J, Stein P, Leu NA, Chmátal L, Xue J, Ma J, Huang X, Lampson MA, Schultz RM, Wang PJ. Accelerated reproductive aging in females lacking a novel centromere protein SYCP2L. Hum Mol Genet 2015; 24:6505-14. [PMID: 26362258 PMCID: PMC4614708 DOI: 10.1093/hmg/ddv359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 11/13/2022] Open
Abstract
Menopause results from loss of ovarian function and marks the end of a woman's reproductive life. Alleles of the human SYCP2L locus are associated with age at natural menopause (ANM). SYCP2L is a paralogue of the synaptonemal complex protein SYCP2 and is expressed exclusively in oocytes. Here we report that SYCP2L localizes to centromeres of dictyate stage oocytes, which represent the limited pool of primordial oocytes that are formed perinatally and remain arrested till ovulation. Centromere localization of SYCP2L requires its C-terminal portion, which is missing in truncated variants resulting from low-frequency nonsense mutations identified in humans. Female mice lacking SYCP2L undergo a significantly higher progressive loss of oocytes with age compared with wild-type females and are less fertile. Specifically, the pool of primordial oocytes becomes more rapidly depleted in SYCP2L-deficient than in wild-type females, such that with aging, fewer oocytes undergo maturation in developing follicles. We find that a human SYCP2L intronic single nucleotide polymorphism (SNP) rs2153157, which is associated with ANM, changes the splicing efficiency of U12-type minor introns and may therefore regulate the steady-state amount of SYCP2L transcript. Furthermore, the more efficiently spliced allele of this intronic SNP in SYCP2L is associated with increased ANM. Our results suggest that SYCP2L promotes the survival of primordial oocytes and thus provide functional evidence for its association with ANM in humans.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Paula Stein
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Lukáš Chmátal
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Jiangyang Xue
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA, Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA and
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA,
| |
Collapse
|
36
|
Identification and Characterization of Xlr5c as a Novel Nuclear Localization Protein in Mouse Germ Cells. PLoS One 2015; 10:e0130087. [PMID: 26075718 PMCID: PMC4468186 DOI: 10.1371/journal.pone.0130087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
Background Spermatogenesis is the complex process by which diploid stem cells generate haploid germ cells in gamete production. Members of the Xlr (X-chromosome linked, lymphocyte regulated) superfamily play essential roles in spermatogenesis. The expression, localization and role in spermatogenesis of one such member, Xlr5c, has not been reported previously. Methodology/Principal Findings Xlr5c mRNA and protein levels in murine testes and other tissues were investigated using RT-PCR and Western blotting. Xlr5c was abundantly transcribed in mouse testes, particularly during the early stages of spermatogenesis and throughout prophase I in the nuclei of spermatocytes. Xlr5c was specifically localized at synaptonemal complexes(SCs) region in preleptotene and pachytene spermatocytes, as was the homologous Xlr protein Sycp3. Conclusions/Significance These results suggest that Xlr5c was abundantly transcribed in germ cells, localized at SCs region, where it may play a potential role during the early stages of spermatogenesis. Identification and characterization of this novel testis protein may offer a new perspective for understanding of the molecular mechanisms involved in germ cell differentiation.
Collapse
|
37
|
Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A 2015; 112:E2630-9. [PMID: 25941382 DOI: 10.1073/pnas.1418840112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In response to cell swelling, volume-regulated anion channels (VRACs) participate in a process known as regulatory volume decrease (RVD). Only recently, first insight into the molecular identity of mammalian VRACs was obtained by the discovery of the leucine-rich repeats containing 8A (LRRC8A) gene. Here, we show that bestrophin 1 (BEST1) but not LRRC8A is crucial for volume regulation in human retinal pigment epithelium (RPE) cells. Whole-cell patch-clamp recordings in RPE derived from human-induced pluripotent stem cells (hiPSC) exhibit an outwardly rectifying chloride current with characteristic functional properties of VRACs. This current is severely reduced in hiPSC-RPE cells derived from macular dystrophy patients with pathologic BEST1 mutations. Disruption of the orthologous mouse gene (Best1(-/-)) does not result in obvious retinal pathology but leads to a severe subfertility phenotype in agreement with minor endogenous expression of Best1 in murine RPE but highly abundant expression in mouse testis. Sperm from Best1(-/-) mice showed reduced motility and abnormal sperm morphology, indicating an inability in RVD. Together, our data suggest that the molecular identity of VRACs is more complex--that is, instead of a single ubiquitous channel, VRACs could be formed by cell type- or tissue-specific subunit composition. Our findings provide the basis to further examine VRAC diversity in normal and diseased cell physiology, which is key to exploring novel therapeutic approaches in VRAC-associated pathologies.
Collapse
|
38
|
de Boer P, de Vries M, Ramos L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 2014; 3:174-202. [PMID: 25511638 DOI: 10.1111/andr.300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
Mouse mutants that show effects on sperm head shape, the sperm tail (flagellum), and motility were analysed in a systematic way. This was achieved by grouping mutations in the following classes: manchette, acrosome, Sertoli cell contact, chromatin remodelling, and mutations involved in complex regulations such as protein (de)phosphorylation and RNA stability, and flagellum/motility mutations. For all mutant phenotypes, flagellum function (motility) was affected. Head shape, including the nucleus, was also affected in spermatozoa of most mouse models, though with considerable variation. For the mutants that were categorized in the flagellum/motility group, generally normal head shapes were found, even when the flagellum did not develop or only poorly so. Most mutants are sterile, an occasional one semi-sterile. For completeness, the influence of the sex chromosomes on sperm phenotype is included. Functionally, the genes involved can be categorized as regulators of spermiogenesis. When extrapolating these data to human sperm samples, in vivo selection for motility would be the tool for weeding out the products of suboptimal spermiogenesis and epididymal sperm maturation. The striking dependency of motility on proper sperm head development is not easy to understand, but likely is of evolutionary benefit. Also, sperm competition after mating can never act against the long-term multi-generation interest of genetic integrity. Hence, it is plausible to suggest that short-term haplophase fitness i.e., motility, is developmentally integrated with proper nucleus maturation, including genetic integrity to protect multi-generation fitness. We hypothesize that, when the prime defect is in flagellum formation, apparently a feedback loop was not necessary as head morphogenesis in these mutants is mostly normal. Extrapolating to human-assisted reproductive techniques practice, this analysis would supply the arguments for the development of tools to select for motility as a continuous (non-discrete) parameter.
Collapse
Affiliation(s)
- P de Boer
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
39
|
Soh YQS, Alföldi J, Pyntikova T, Brown LG, Graves T, Minx PJ, Fulton RS, Kremitzki C, Koutseva N, Mueller JL, Rozen S, Hughes JF, Owens E, Womack JE, Murphy WJ, Cao Q, de Jong P, Warren WC, Wilson RK, Skaletsky H, Page DC. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 2014; 159:800-13. [PMID: 25417157 DOI: 10.1016/j.cell.2014.09.052] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
Abstract
We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.
Collapse
Affiliation(s)
- Y Q Shirleen Soh
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica Alföldi
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Laura G Brown
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Patrick J Minx
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Robert S Fulton
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Colin Kremitzki
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Natalia Koutseva
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Jacob L Mueller
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Steve Rozen
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Elaine Owens
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - James E Womack
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - William J Murphy
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - Qing Cao
- BACPAC Resources, Children's Hospital Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | - Pieter de Jong
- BACPAC Resources, Children's Hospital Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Helen Skaletsky
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
40
|
Manunza A, Casellas J, Quintanilla R, González-Prendes R, Pena RN, Tibau J, Mercadé A, Castelló A, Aznárez N, Hernández-Sánchez J, Amills M. A genome-wide association analysis for porcine serum lipid traits reveals the existence of age-specific genetic determinants. BMC Genomics 2014; 15:758. [PMID: 25189197 PMCID: PMC4164741 DOI: 10.1186/1471-2164-15-758] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/25/2014] [Indexed: 01/07/2023] Open
Abstract
Background The genetic determinism of blood lipid concentrations, the main risk factor for atherosclerosis, is practically unknown in species other than human and mouse. Even in model organisms, little is known about how the genetic determinants of lipid traits are modulated by age-specific factors. To gain new insights into this issue, we have carried out a genome-wide association study (GWAS) for cholesterol (CHOL), triglyceride (TRIG) and low (LDL) and high (HDL) density lipoprotein concentrations measured in Duroc pigs at two time points (45 and 190 days). Results Analysis of data with mixed-model methods (EMMAX, GEMMA, GenABEL) and PLINK showed a low positional concordance between trait-associated regions (TARs) for serum lipids at 45 and 190 days. Besides, the proportion of phenotypic variance explained by SNPs at these two time points was also substantially different. The four analyses consistently detected two regions on SSC3 (124 Mb, CHOL and LDL at 190 days) and SSC6 (135 Mb, CHOL and TRIG at 190 days) with highly significant effects on the porcine blood lipid profile. Moreover, we have found that SNP variation within SSC3, SSC6, SSC10, SSC13 and SSC16 TARs is associated with the expression of several genes mapping to other chromosomes and related to lipid metabolism. Conclusions Our data demonstrate that the effects of genomic determinants influencing lipid concentrations in pigs, as well as the amount of phenotypic variance they explain, are influenced by age-related factors. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-758) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
41
|
Vernet N, Szot M, Mahadevaiah SK, Ellis PJI, Decarpentrie F, Ojarikre OA, Rattigan Á, Taketo T, Burgoyne PS. The expression of Y-linked Zfy2 in XY mouse oocytes leads to frequent meiosis 2 defects, a high incidence of subsequent early cleavage stage arrest and infertility. Development 2014; 141:855-66. [PMID: 24496622 PMCID: PMC3912830 DOI: 10.1242/dev.091165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Outbred XYSry- female mice that lack Sry due to the 11 kb deletion Srydl1Rlb have very limited fertility. However, five lines of outbred XYd females with Y chromosome deletions YDel(Y)1Ct-YDel(Y)5Ct that deplete the Rbmy gene cluster and repress Sry transcription were found to be of good fertility. Here we tested our expectation that the difference in fertility between XO, XYd-1 and XYSry- females would be reflected in different degrees of oocyte depletion, but this was not the case. Transgenic addition of Yp genes to XO females implicated Zfy2 as being responsible for the deleterious Y chromosomal effect on fertility. Zfy2 transcript levels were reduced in ovaries of XYd-1 compared with XYSry- females in keeping with their differing fertility. In seeking the biological basis of the impaired fertility we found that XYSry-, XYd-1 and XO,Zfy2 females produce equivalent numbers of 2-cell embryos. However, in XYSry- and XO,Zfy2 females the majority of embryos arrested with 2-4 cells and almost no blastocysts were produced; by contrast, XYd-1 females produced substantially more blastocysts but fewer than XO controls. As previously documented for C57BL/6 inbred XY females, outbred XYSry- and XO,Zfy2 females showed frequent failure of the second meiotic division, although this did not prevent the first cleavage. Oocyte transcriptome analysis revealed major transcriptional changes resulting from the Zfy2 transgene addition. We conclude that Zfy2-induced transcriptional changes in oocytes are sufficient to explain the more severe fertility impairment of XY as compared with XO females.
Collapse
Affiliation(s)
- Nadège Vernet
- MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Comptour A, Moretti C, Serrentino ME, Auer J, Ialy-Radio C, Ward MA, Touré A, Vaiman D, Cocquet J. SSTY proteins co-localize with the post-meiotic sex chromatin and interact with regulators of its expression. FEBS J 2014; 281:1571-84. [PMID: 24456183 DOI: 10.1111/febs.12724] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/07/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023]
Abstract
In mammals, X- and Y-encoded genes are transcriptionally shut down during male meiosis, but expression of many of them is (re)activated in spermatids after meiosis. Post-meiotic XY gene expression is regulated by active epigenetic marks, which are de novo incorporated in the sex chromatin of spermatids, and by repressive epigenetic marks inherited during meiosis; alterations in this process lead to male infertility. In the mouse, post-meiotic XY gene expression is known to depend on genetic information carried by the male-specific region of the Y chromosome long arm (MSYq). The MSYq gene Sly has been shown to be a key regulator of post-meiotic sex chromosome gene expression and is necessary for the maintenance/recruitment of repressive epigenetic marks on the sex chromatin, but studies suggest that another MSYq gene may also be required. The best candidate to date is Ssty, an MSYq multi-copy gene of unknown function. Here, we show that SSTY proteins are specifically expressed in round and elongating spermatids, and co-localize with post-meiotic sex chromatin. Moreover, SSTY proteins interact with SLY protein and its X-linked homolog SLX/SLXL1, and may be required for localization of SLX/SLY proteins in the spermatid nucleus and sex chromatin. Our data suggest that SSTY is a second MSYq factor involved in the control of XY gene expression during sperm differentiation. As Slx/Slxl1 and Sly genes have been shown to be involved in the XY intra-genomic conflict, which affects the offspring sex ratio, Ssty may constitute another player in this conflict.
Collapse
Affiliation(s)
- Aurélie Comptour
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Institut Cochin, Paris, France; Centre National de la Recherche Scientifique, UMR8104, Paris, France; Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhou J, McCarrey JR, Wang PJ. A 1.1-Mb segmental deletion on the X chromosome causes meiotic failure in male mice. Biol Reprod 2013; 88:159. [PMID: 23677977 DOI: 10.1095/biolreprod.112.106963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mammalian X chromosome contains a large number of multicopy genes that are expressed during spermatogenesis. The roles of these genes during germ cell development and the functional significance of gene multiplication remain mostly unexplored, as the presence of multicopy gene families poses a challenge for genetic studies. Here we report the deletion of a 1.1-Mb segment of the mouse X chromosome that is syntenic with the human Xq22.1 region and contains 20 genes that are expressed predominantly in testis and brain, including three members of the nuclear export factor gene family (Nxf2, Nxf3, and Nxf7) and five copies of preferentially expressed antigen in melanoma-like 3 (Pramel3). We have shown that germline-specific Cre/loxP-mediated deletion of this 1.1-Mb segment is efficient and causes defective chromosomal synapsis, meiotic arrest, and sterility in male mice. Our results demonstrate that this 1.1-Mb region contains one or more novel X-linked factors that are essential for male meiosis.
Collapse
Affiliation(s)
- Jian Zhou
- Center for Animal Transgenesis and Germ Cell Research, Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
44
|
Cocquet J, Ellis PJI, Mahadevaiah SK, Affara NA, Vaiman D, Burgoyne PS. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet 2012; 8:e1002900. [PMID: 23028340 PMCID: PMC3441658 DOI: 10.1371/journal.pgen.1002900] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/01/2012] [Indexed: 11/27/2022] Open
Abstract
Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC) and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation. Both copies of a gene have normally an equal chance of being inherited; however, some genes can act “selfishly” to be transmitted to >50% of offspring: a phenomenon known as transmission distortion. Distorting genes on the X or Y chromosome leads to an excess of female/male offspring respectively. This then sets up a “genomic conflict” (arms race) between the sex chromosomes that can radically affect their gene content. Male mice that have lost part of their Y produce >50% female offspring and show over-activation of multiple genes on the X, providing strong circumstantial evidence for distortion. Here, we demonstrate the existence of a genomic conflict regulated by the genes Slx/Slxl1 and Sly, present in ∼50 to 100 copies on the X and Y chromosomes respectively. SLX/SLXL1 and SLY proteins have antagonistic effects on sex chromosome expression in developing sperm and skew the offspring sex-ratio in favor of females/males. Interestingly, while deficiency of either gene alone leads to severe fertility problems, fertility is improved when both genes are deficient. We believe that the conflict in which Slx/Slxl1 and Sly are involved led to the amplification of X and Y genes and may have played an important role in mouse speciation.
Collapse
|
45
|
Affiliation(s)
- Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America.
| |
Collapse
|
46
|
Campbell P, Good JM, Dean MD, Tucker PK, Nachman MW. The contribution of the Y chromosome to hybrid male sterility in house mice. Genetics 2012; 191:1271-81. [PMID: 22595240 PMCID: PMC3416006 DOI: 10.1534/genetics.112.141804] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/10/2012] [Indexed: 12/18/2022] Open
Abstract
Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.
Collapse
Affiliation(s)
- Polly Campbell
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | |
Collapse
|
47
|
Ellis PJI, Yu Y, Zhang S. Transcriptional dynamics of the sex chromosomes and the search for offspring sex-specific antigens in sperm. Reproduction 2011; 142:609-19. [DOI: 10.1530/rep-11-0228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to pre-select offspring sex via separation of X- and Y-bearing sperm would have profound ramifications for the animal husbandry industry. No fully satisfactory method is as yet available for any species, although flow sorting is commercially viable for cattle. The discovery of antigens that distinguish X- and Y-bearing sperm, i.e. offspring sex-specific antigens (OSSAs), would allow for batched immunological separation of sperm and thus enable a safer, more widely applicable and high-throughput means of sperm sorting. This review addresses the basic processes of spermatogenesis that have complicated the search for OSSAs, in particular the syncytial development of male germ cells, and the transcriptional dynamics of the sex chromosomes during and after meiosis. We survey the various approaches taken to discover OSSA and propose that a whole-genome transcriptional approach to the problem is the most promising avenue for future research in the field.
Collapse
|
48
|
Zhuang XJ, Hou XJ, Liao SY, Wang XX, Cooke HJ, Zhang M, Han C. SLXL1, a novel acrosomal protein, interacts with DKKL1 and is involved in fertilization in mice. PLoS One 2011; 6:e20866. [PMID: 21698294 PMCID: PMC3115956 DOI: 10.1371/journal.pone.0020866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/12/2011] [Indexed: 11/19/2022] Open
Abstract
Background Spermatogenesis is a complex cellular developmental process which involves diverse families of genes. The Xlr (X-linked, lymphocyte regulated) family includes multiple members, only a few of which have reported functions in meiosis, post-meiotic maturation, and fertilization of germ cells. Slx-like1 (Slxl1) is a member of the Xlr family, whose expression and function in spermatogenesis need to be elucidated. Methodology/Principal Findings The mRNA and protein expression and localization of Slxl1 were investigated by RT-PCR, Western blotting and immunohistochemistry in different tissues and at different stages of spermatogenesis. The interacting partner of SLXL1 was examined by co-immunoprecipitation and co-localization. Assessment of the role of SLXL1 in capacitation, acrosome reaction, zona pellucida binding/penetration, and fertilization was carried out in vitro using blocking antisera. The results showed that Slxl1 mRNA and protein were specifically expressed in the testis. SLXL1 was exclusively located in the acrosome of post-meiotic germ cells and interacts with DKKL1 (Dickkopf-like1), which is an acrosome-associated protein and plays an important role in fertilization. The rates of zona pellucida binding/penetration and fertilization were significantly reduced by the anti-SLXL1 polyclonal antiserum. Conclusions/Significance SLXL1 is the first identified member of the XLR family that is associated with acrosome and is involved in zona pellucid binding/penetration and subsequent fertilization. These results, together with previous studies, suggest that Xlr family members participate in diverse processes from meiosis to fertilization during spermatogenesis.
Collapse
Affiliation(s)
- Xin-jie Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, People's Republic of China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiao-jun Hou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shang-Ying Liao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiu-Xia Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Howard J. Cooke
- Institute of Genetic and Molecular Medicine MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, People's Republic of China
| | - Chunsheng Han
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
49
|
O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG. Spermiation: The process of sperm release. SPERMATOGENESIS 2011; 1:14-35. [PMID: 21866274 DOI: 10.4161/spmg.1.1.14525] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 02/06/2023]
Abstract
Spermiation is the process by which mature spermatids are released from Sertoli cells into the seminiferous tubule lumen prior to their passage to the epididymis. It takes place over several days at the apical edge of the seminiferous epithelium, and involves several discrete steps including remodelling of the spermatid head and cytoplasm, removal of specialized adhesion structures and the final disengagement of the spermatid from the Sertoli cell. Spermiation is accomplished by the co-ordinated interactions of various structures, cellular processes and adhesion complexes which make up the "spermiation machinery". This review addresses the morphological, ultrastructural and functional aspects of mammalian spermiation. The molecular composition of the spermiation machinery, its dynamic changes and regulatory factors are examined. The causes of spermiation failure and their impact on sperm morphology and function are assessed in an effort to understand how this process may contribute to sperm count suppression during contraception and to phenotypes of male infertility.
Collapse
Affiliation(s)
- Liza O'Donnell
- Prince Henry's Institute of Medical Research; Clayton, VIC Australia
| | | | | | | | | |
Collapse
|