1
|
Yang Y, Jin X, Yang L, Xu X, Xie Y, Ai Y, Li X, Ma Y, Xu C, Li Q, Ge X, Yi T, Jiang T, Wang X, Piao Y, Jin X. GNE-317 Reverses MSN-Mediated Proneural-to-Mesenchymal Transition and Suppresses Chemoradiotherapy Resistance in Glioblastoma via PI3K/mTOR. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412517. [PMID: 39921260 PMCID: PMC11948001 DOI: 10.1002/advs.202412517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/11/2025] [Indexed: 02/10/2025]
Abstract
Glioblastoma (GBM) resistance to chemoradiotherapy is a major factor contributing to poor treatment outcomes. This resistance markedly affects the effectiveness of surgery combined with chemoradiotherapy and leads to post-surgical tumor recurrence. Therefore, exploring the mechanisms underlying chemoradiotherapy resistance in GBM is crucial for understanding its progression and improving therapeutic options. This study found that moesin (MSN) acts as a key promotor of chemoradiotherapy resistance in glioma stem cells (GSCs), enhancing their proliferation and stemness maintenance. Mechanistically, MSN activates the downstream PI3K/mTOR signaling pathway, driving the proneural-to-mesenchymal transition (PMT) in GSCs. This process enhances the repair of DNA damage caused by radiotherapy (RT) and temozolomide (TMZ), thereby increasing the resistance of GSCs to chemoradiotherapy. Additionally, GNE-317, a small molecule drug capable of crossing the blood-brain barrier, specifically inhibits MSN and suppresses the activation of downstream PI3K/mTOR signaling. Importantly, the combination of GNE-317 with RT and TMZ exhibits a strong synergistic effect both in vivo and in vitro, achieving better efficacy compared to the traditional combination of RT and TMZ. This study not only advances understanding of the mechanisms underlying chemoradiotherapy resistance in GBM but also provides a promising new approach for enhancing treatment outcomes.
Collapse
Affiliation(s)
- Yong‐Chang Yang
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Xing‐Yu Jin
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Ling‐Ling Yang
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Xing Xu
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
| | - Yang Xie
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Yi‐Ding Ai
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Xin‐Chao Li
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Ye‐Cheng Ma
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
- Tianjin Medical UniversityTianjin300060P. R. China
| | | | - Qi Li
- Tianjin Medical UniversityTianjin300060P. R. China
| | - Xiang‐Lian Ge
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
| | - Tai‐Long Yi
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
| | - Tao Jiang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijing100054P. R. China
| | - Xiao‐Guang Wang
- Department of Neuro‐Oncology and NeurosurgeryTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| | - Ying‐Zhe Piao
- Department of Neuro‐Oncology and NeurosurgeryTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060P. R. China
| | - Xun Jin
- Department of Biochemistry and Molecular BiologyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinTianjin's Clinical Research Center for CancerHuanhuxi Road, Ti‐Yuan‐BeiHexi DistrictTianjin300060P. R. China
| |
Collapse
|
2
|
Oriakhi K, Erharuyi O, Orumwensodia KO, Essien EE, Falodun A, Uadia PO, Bernhard F, Engel N. Pro-apoptotic and anti-proliferative activities of cassane diterpenoids on squamous carcinoma cells: An in vitro and in silico study. Toxicol Rep 2024; 13:101833. [PMID: 39717850 PMCID: PMC11665704 DOI: 10.1016/j.toxrep.2024.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Squamous carcinoma of the head and neck is characterized by aberrant apoptosis that prolongs the proliferative capacity of the cells and by uncontrolled cell growth. This study aimed to examine the pro-apoptotic and antiproliferative effects of Caesalpinia pulcherrima cassane diterpenoids on squamous carcinoma cells in vitro. The cytotoxicity of four (4) cassane diterpenoids {Six-cinnamoyl- 7-hydroxyvouacapen-5-ol(1), pulcherrimin A(2), C(3), and E(4)} isolated from C. pulcherrima was determined in squamous carcinoma cell lines (CAL33, FaDu, and Detroit 562) and in non tumorigenic fibroblast cells. The results showed that compounds 1 and 4 had the highest cytotoxic potential, significantly reducing cell viability in all squamous cell lines in a concentration dependent manner. Compounds 1 and 4 may inhibit the proliferation of CAL33 cells by reducing their ability to divide, decreasing PCNA expression, and suppressing migration. Additionally, treatment with compounds 1 and 4 led to an activation of Caspase 3 expression in FaDu cells. Molecular docking analysis revealed strong binding affinities of compounds 1 and 4 to the Caspase 3 receptor, with values of -8.5 and -8.8 kcal/mol, respectively. These results suggest that Pulcherrimin E and 6-cinnamoyl-7-hydroxylvouacapen-5-ol have potential antitumor effects based on their selective cytotoxic effect on squamous carcinoma cells in vitro.
Collapse
Affiliation(s)
- Kelly Oriakhi
- Department of Medical Biochemistry, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Nigeria
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, USA
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University, Medical Center, Schillingallee 35, Rostock 18057, Germany
| | - Osayemwenre Erharuyi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Nigeria
| | | | | | - Abiodun Falodun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Nigeria
| | - Patrick O. Uadia
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Nigeria
| | - Frerich Bernhard
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University, Medical Center, Schillingallee 35, Rostock 18057, Germany
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University, Medical Center, Schillingallee 35, Rostock 18057, Germany
| |
Collapse
|
3
|
Sester S, Wilms G, Ahlburg J, Babendreyer A, Becker W. Elevated expression levels of the protein kinase DYRK1B induce mesenchymal features in A549 lung cancer cells. BMC Cancer 2024; 24:1341. [PMID: 39482615 PMCID: PMC11529244 DOI: 10.1186/s12885-024-13057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The protein kinase DYRK1B is a negative regulator of cell proliferation but has been found to be overexpressed in diverse human solid cancers. While DYRK1B is recognized to promote cell survival and adaption to stressful conditions, the consequences of elevated DYRK1B levels in cancer cells are largely uncharted. METHODS To elucidate the role of DYRK1B in cancer cells, we established a A549 lung adenocarcinoma cell model featuring conditional overexpression of DYRK1B. This system was used to characterize the impact of heightened DYRK1B levels on gene expression and to monitor phenotypic and functional changes. RESULTS A549 cells with induced overexpression of wild type DYRK1B acquired a mesenchymal cell morphology with diminished cell-cell contacts and a reorganization of the pericellular actin cytoskeleton into stress fibers. This transition was not observed in cells overexpressing a catalytically impaired DYRK1B variant. The phenotypic changes were associated with increased expression of the transcription factors SNAIL and SLUG, which are core regulators of epithelial mesenchymal transition (EMT). Further profiling of DYRK1B-overexpressing cells revealed transcriptional changes that are characteristic for the mesenchymal conversion of epithelial cells, including the upregulation of genes that are related to cancer cell invasion and metastasis. Functionally, DYRK1B overexpression enhanced the migratory capacity of A549 cells in a wound healing assay. CONCLUSIONS The present data identify DYRK1B as a regulator of phenotypic plasticity in A549 cells. Increased expression of DYRK1B induces mesenchymal traits in A549 lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Soraya Sester
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Joana Ahlburg
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
4
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Seki H, Kitabatake K, Tanuma SI, Tsukimoto M. Involvement of RAGE in radiation-induced acquisition of malignant phenotypes in human glioblastoma cells. Biochim Biophys Acta Gen Subj 2024; 1868:130650. [PMID: 38830560 DOI: 10.1016/j.bbagen.2024.130650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Glioblastoma (GBM), a highly aggressive malignant tumor of the central nervous system, is mainly treated with radiotherapy. However, since irradiation may lead to the acquisition of migration ability by cancer cells, thereby promoting tumor metastasis and invasion, it is important to understand the mechanism of cell migration enhancement in order to prevent recurrence of GBM. The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor activated by high mobility group box 1 (HMGB1). In this study, we found that RAGE plays a role in the enhancement of cell migration by γ-irradiation in human GBM A172 cells. γ-Irradiation induced actin remodeling, a marker of motility acquisition, and enhancement of cell migration in A172 cells. Both phenotypes were suppressed by specific inhibitors of RAGE (FPS-ZM1 and TTP488) or by knockdown of RAGE. The HMGB1 inhibitor ethyl pyruvate similarly suppressed γ-irradiation-induced enhancement of cell migration. In addition, γ-irradiation-induced phosphorylation of STAT3 was suppressed by RAGE inhibitors, and a STAT3 inhibitor suppressed γ-irradiation-induced enhancement of cell migration, indicating that STAT3 is involved in the migration enhancement downstream of RAGE. Our results suggest that HMGB1-RAGE-STAT3 signaling is involved in radiation-induced enhancement of GBM cell migration, and may contribute to GBM recurrence by promoting metastasis and invasion.
Collapse
Affiliation(s)
- Hiromu Seki
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sei-Ichi Tanuma
- Meikai University Research Institute of Odontology, Sakado, Saitama, Japan; Faculty of Human Science, University of Human Arts and Sciences, Iwatsuki, Saitama, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
| |
Collapse
|
6
|
Tripathi SK, Sahoo RK, Biswal BK. Exposure of piperlongumine attenuates stemness and epithelial to mesenchymal transition phenotype with more potent anti-metastatic activity in SOX9 deficient human lung cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5631-5647. [PMID: 38280008 DOI: 10.1007/s00210-024-02965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Phytocompounds have shown hopeful results in cancer therapy. Piperlongumine (PIP), a naturally derived bioactive alkaloid found in our dietary spice, exhibits promising pharmacological relevance including anticancer activity. This study reconnoitred the anti-lung cancer effect of PIP and the allied mechanisms, in vitro and ex vivo. The cytotoxic, anti-proliferative, and apoptotic effects of PIP on lung cancer cells (LCC) were checked via cell viability, colony formation, cell migration, invasion, comet assay, and various staining techniques. Further, multicellular spheroids assay explored the anti-lung cancer potential of PIP, ex vivo. Preliminary results explored that PIP exerts selective cytotoxic and anti-proliferative effects on LCC by DNA damage and cell cycle arrest. PIP remarkably escalated the cellular and mitochondrial reactive oxygen species (ROS) generation and promoted dissipation of mitochondrial membrane potential (MMP), which triggers activation of caspase-dependent apoptotic pathway in LCC. Mechanistically, PIP showed F-actin deformation mediated significant anti-migratory and anti-invasive activity against LCC. Herein, we also found that F-actin dis-organization modulates the expression of epithelial to mesenchymal transition (EMT) markers and inhibits the expression of stemness marker proteins, like SOX9, CD-133, and CD-44. Moreover, PIP effectively reduced the size of spheroids with strong apoptotic and cytotoxic effects, ex vivo. This has been the first study to discover the high expression of SOX9 supporting the survival of LCC, whereas its inhibition induces higher sensitivity to PIP treatment. This study concludes a newer therapeutic agent (PIP) with promising anticancer activity against LCC by escalating ROS and attenuating MMP, stemness, and EMT.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
- Lineberger Comprehensive Cancer Centre, University of North Carolina, Chapel Hill, 27514, NC, USA
| | - Rajeev Kumar Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
7
|
Shi X, Sheng Y, Fei H, Wei B, Zhang Z, Xia X, Mao C, Si X. Combined transcriptome and proteome analysis reveals MSN and ARFIP2 as biomarkers for trastuzumab resistance of breast cancer. Breast Cancer Res Treat 2024; 207:187-201. [PMID: 38750271 DOI: 10.1007/s10549-024-07355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE HER2-positive breast cancer (BC) accounts for 20-30% of all BC subtypes and is linked to poor prognosis. Trastuzumab (Tz), a humanized anti-HER2 monoclonal antibody, is a first-line treatment for HER2-positive breast cancer which faces resistance challenges. This study aimed to identify the biomarkers driving trastuzumab resistance. METHODS Differential expression analysis of genes and proteins between trastuzumab-sensitive (TS) and trastuzumab-resistant (TR) cells was conducted using RNA-seq and iTRAQ. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used to study their functions. The prognostic significance and protein levels of ARFIP2 and MSN were evaluated using online tools and immunohistochemistry. Sensitivity of MSN and ARFIP2 to other therapies was assessed using public pharmacogenomics databases and the R language. RESULTS Five genes were up-regulated, and nine genes were down-regulated in TR cells at both transcriptional and protein levels. Low ARFIP2 and high MSN expression linked to poor BC prognosis. MSN increased and ARFIP2 decreased in TR patients, correlating with shorter OS. MSN negatively impacted fulvestrant and immunotherapy sensitivity, while ARFIP2 had a positive impact. CONCLUSION Our findings suggest that MSN and ARFIP2 could serve as promising biomarkers for predicting response to Tz, offering valuable insights for future research in the identification of diagnostic and therapeutic targets for BC patients with Tz resistance.
Collapse
Affiliation(s)
- Xiao Shi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuan Sheng
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211116, China
| | - Haoran Fei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Bangbang Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhenyu Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyu Xia
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Kim NY, Kim MO, Shin S, Kwon WS, Kim B, Lee JY, In Lee S. Effect of atractylenolide III on zearalenone-induced Snail1-mediated epithelial-mesenchymal transition in porcine intestinal epithelium. J Anim Sci Biotechnol 2024; 15:80. [PMID: 38845033 PMCID: PMC11157892 DOI: 10.1186/s40104-024-01038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The intestinal epithelium performs essential physiological functions, such as nutrient absorption, and acts as a barrier to prevent the entry of harmful substances. Mycotoxins are prevalent contaminants found in animal feed that exert harmful effects on the health of livestock. Zearalenone (ZEA) is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals. Here, we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium. RESULTS Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin, which induced Snail1-mediated epithelial-to-mesenchymal transition (EMT). In addition, ZEA induces Snail-mediated EMT through the activation of TGF-β signaling. The treatment of IPEC-J2 cells with atractylenolide III, which were exposed to ZEA, alleviated EMT. CONCLUSIONS Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epithelial cells and ways to mitigate it.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan, 38540, Republic of Korea
| | - Joon Yeop Lee
- National Institute for Korean Medicine Development, Gyeongsan, 38540, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-sangbuk-do, 37224, Republic of Korea.
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do, 37224, Republic of Korea.
| |
Collapse
|
9
|
Park SY, Choi H, Choi SM, Wang S, Shim S, Jun W, Lee J, Chung JW. T-plastin contributes to epithelial-mesenchymal transition in human lung cancer cells through FAK/AKT/Slug axis signaling pathway. BMB Rep 2024; 57:305-310. [PMID: 38835117 PMCID: PMC11214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelialmesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway. [BMB Reports 2024; 57(6): 305-310].
Collapse
Affiliation(s)
- Soon Yong Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Hyeongrok Choi
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Soo Min Choi
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Seungwon Wang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Sangin Shim
- Department of Agronomy, Gyeongsang National University, Jinju 52828, Korea
| | - Woojin Jun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 49315, Korea
| | - Jin Woong Chung
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
10
|
Cayetano-Salazar L, Hernandez-Moreno JA, Bello-Martinez J, Olea-Flores M, Castañeda-Saucedo E, Ramirez M, Mendoza-Catalán MA, Navarro-Tito N. Regulation of cellular and molecular markers of epithelial-mesenchymal transition by Brazilin in breast cancer cells. PeerJ 2024; 12:e17360. [PMID: 38737746 PMCID: PMC11088821 DOI: 10.7717/peerj.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jose A. Hernandez-Moreno
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jorge Bello-Martinez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Eduardo Castañeda-Saucedo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Monica Ramirez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Miguel A. Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
11
|
Ilnitskaya AS, Litovka NI, Rubtsova SN, Zhitnyak IY, Gloushankova NA. Actin Cytoskeleton Remodeling Accompanied by Redistribution of Adhesion Proteins Drives Migration of Cells in Different EMT States. Cells 2024; 13:780. [PMID: 38727316 PMCID: PMC11083118 DOI: 10.3390/cells13090780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose epithelial characteristics and gain mesenchymal features. Here, we used several cell models to study migratory activity and redistribution of cell-cell adhesion proteins in cells in different EMT states: EGF-induced EMT of epithelial IAR-20 cells; IAR-6-1 cells with a hybrid epithelial-mesenchymal phenotype; and their more mesenchymal derivatives, IAR-6-1-DNE cells lacking adherens junctions. In migrating cells, the cell-cell adhesion protein α-catenin accumulated at the leading edges along with ArpC2/p34 and α-actinin. Suppression of α-catenin shifted cell morphology from fibroblast-like to discoid and attenuated cell migration. Expression of exogenous α-catenin in MDA-MB-468 cells devoid of α-catenin drastically increased their migratory capabilities. The Y654 phosphorylated form of β-catenin was detected at integrin adhesion complexes (IACs). Co-immunoprecipitation studies indicated that α-catenin and pY654-β-catenin were associated with IAC proteins: vinculin, zyxin, and α-actinin. Taken together, these data suggest that in cells undergoing EMT, catenins not participating in assembly of adherens junctions may affect cell migration.
Collapse
Affiliation(s)
- Alla S. Ilnitskaya
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia; (A.S.I.); (N.I.L.); (S.N.R.); (I.Y.Z.)
| | - Nikita I. Litovka
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia; (A.S.I.); (N.I.L.); (S.N.R.); (I.Y.Z.)
| | - Svetlana N. Rubtsova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia; (A.S.I.); (N.I.L.); (S.N.R.); (I.Y.Z.)
| | - Irina Y. Zhitnyak
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia; (A.S.I.); (N.I.L.); (S.N.R.); (I.Y.Z.)
- Department of Molecular Genetics, University of Toronto, 661 University Ave, MaRS West, Toronto, ON 5MG 1M1, Canada
| | - Natalya A. Gloushankova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia; (A.S.I.); (N.I.L.); (S.N.R.); (I.Y.Z.)
| |
Collapse
|
12
|
Lai YJ, Chang SH, Tung YC, Chang GJ, Almeida CD, Chen WJ, Yeh YH, Tsai FC. Naringin activates semaphorin 3A to ameliorate TGF-β-induced endothelial-to-mesenchymal transition related to atrial fibrillation. J Cell Physiol 2024; 239:e31248. [PMID: 38501506 DOI: 10.1002/jcp.31248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-β)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-β specifically in cardiac tissues (TGF-β transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-β transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-β transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Puzi, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Ying-Chang Tung
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Celina De Almeida
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University Tao-Yuan, Tao-Yuan, Taiwan
| | - Feng-Chun Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Benarroch E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024; 102:e209202. [PMID: 38330281 DOI: 10.1212/wnl.0000000000209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
|
14
|
Kim M, Choi K, Krizaj D, Kim J. Regulation of Corneal Stromal Cell Behavior by Modulating Curvature Using a Hydraulically Controlled Organ Chip Array. RESEARCH SQUARE 2024:rs.3.rs-3973873. [PMID: 38464213 PMCID: PMC10925400 DOI: 10.21203/rs.3.rs-3973873/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Curvature is a critical factor in cornea mechanobiology, but its impact on phenotypic alterations and extracellular matrix remodeling of cornea stroma remains unclear. In this work, we investigated how curvature influences the corneal stroma using a hydraulically controlled curvature array chip. The responses of stromal cells to low, medium, and high curvatures were observed by preparing three phenotypes of corneal stromal cells: corneal keratocytes, fibroblasts, and myofibroblasts. Keratocytes exhibited phenotypic alterations in response to curvature changes, notably including a decrease in ALDH3 expression and an increase in α-SMA expression. For focal adhesion, corneal fibroblast and myofibroblasts showed enhanced vinculin localization in response to curvature, while corneal keratocytes presented reduced vinculin expression. For cell alignment and ECM expression, most stromal cells under all curvatures showed a radially organized f-actin and collagen fibrils. Interestingly, for corneal fibroblast under medium curvature, we observed orthogonal cell alignment, which is linked to the unique hoop and meridional stress profiles of the curved surface. Furthermore, lumican expression was upregulated in corneal keratocytes, and keratocan expression was increased in corneal fibroblasts and myofibroblasts due to curvature. These results demonstrate that curvature influences both the phenotype of corneal stromal cells and the structural organization of corneal stroma tissue without any external stimuli. This curvature-dependent behavior of corneal stromal cells presents potential opportunities for creating therapeutic strategies for corneal shape dysfunctions.
Collapse
Affiliation(s)
- Minju Kim
- Department of Mechanical Engineering, University of Utah, Salt Lake City, USA
| | - Kanghoon Choi
- Department of Mechanical Engineering, University of Utah, Salt Lake City, USA
| | - David Krizaj
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, USA
| | - Jungkyu Kim
- Department of Mechanical Engineering, University of Utah, Salt Lake City, USA
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, USA
| |
Collapse
|
15
|
Kim YJ, Lee DB, Jeong E, Jeon JY, Kim HD, Kang H, Kim YK. Magnetically Stimulated Integrin Binding Alters Cell Polarity and Affects Epithelial-Mesenchymal Plasticity in Metastatic Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8365-8377. [PMID: 38319067 DOI: 10.1021/acsami.3c16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Inorganic nanoparticles (NPs) have been widely recognized for their stability and biocompatibility, leading to their widespread use in biomedical applications. Our study introduces a novel approach that harnesses inorganic magnetic nanoparticles (MNPs) to stimulate apical-basal polarity and induce epithelial traits in cancer cells, targeting the hybrid epithelial/mesenchymal (E/M) state often linked to metastasis. We employed mesocrystalline iron oxide MNPs to apply an external magnetic field, disrupting normal cell polarity and simulating an artificial cellular environment. These led to noticeable changes in the cell shape and function, signaling a shift toward the hybrid E/M state. Our research suggests that apical-basal stimulation in cells through MNPs can effectively modulate key cellular markers associated with both epithelial and mesenchymal states without compromising the structural properties typical of mesenchymal cells. These insights advance our understanding of how cells respond to physical cues and pave the way for novel cancer treatment strategies. We anticipate that further research and validation will be instrumental in exploring the full potential of these findings in clinical applications, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Yu Jin Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Dae Beom Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Eunjin Jeong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Joo Yeong Jeon
- Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine─Phoenix, Phoenix, Arizona 85004, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| | - Young Keun Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
16
|
Sacco JL, Vaneman ZT, Gomez EW. Extracellular matrix viscoelasticity regulates TGFβ1-induced epithelial-mesenchymal transition and apoptosis via integrin linked kinase. J Cell Physiol 2024; 239:e31165. [PMID: 38149820 DOI: 10.1002/jcp.31165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Transforming growth factor (TGF)-β1 is a multifunctional cytokine that plays important roles in health and disease. Previous studies have revealed that TGFβ1 activation, signaling, and downstream cell responses including epithelial-mesenchymal transition (EMT) and apoptosis are regulated by the elasticity or stiffness of the extracellular matrix. However, tissues within the body are not purely elastic, rather they are viscoelastic. How matrix viscoelasticity impacts cell fate decisions downstream of TGFβ1 remains unknown. Here, we synthesized polyacrylamide hydrogels that mimic the viscoelastic properties of breast tumor tissue. We found that increasing matrix viscous dissipation reduces TGFβ1-induced cell spreading, F-actin stress fiber formation, and EMT-associated gene expression changes, and promotes TGFβ1-induced apoptosis in mammary epithelial cells. Furthermore, TGFβ1-induced expression of integrin linked kinase (ILK) and colocalization of ILK with vinculin at cell adhesions is attenuated in mammary epithelial cells cultured on viscoelastic substrata in comparison to cells cultured on nearly elastic substrata. Overexpression of ILK promotes TGFβ1-induced EMT and reduces apoptosis in cells cultured on viscoelastic substrata, suggesting that ILK plays an important role in regulating cell fate downstream of TGFβ1 in response to matrix viscoelasticity.
Collapse
Affiliation(s)
- Jessica L Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zachary T Vaneman
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
17
|
Nurmagambetova A, Mustyatsa V, Saidova A, Vorobjev I. Morphological and cytoskeleton changes in cells after EMT. Sci Rep 2023; 13:22164. [PMID: 38092761 PMCID: PMC10719275 DOI: 10.1038/s41598-023-48279-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Epithelial cells undergoing EMT experience significant alterations at transcriptional and morphological levels. However, changes in the cytoskeleton, especially cytoskeleton dynamics are poorly described. Addressing the question we induced EMT in three cell lines (MCF-7, HaCaT and A-549) and analyzed morphological and cytoskeletal changes there using immunostaining and life cell imaging of cells transfected with microtubule and focal adhesion markers. In all studied cell lines, cell area after EMT increased, MCF-7 and A-549 cells became elongated, while HaCaT cells kept the aspect ratio the same. We next analyzed three components of the cytoskeleton: microtubules, stress fibers and focal adhesions. The following changes were observed after EMT in cultured cells: (i) Organization of microtubules becomes more radial; and the growth rate of microtubule plus ends was accelerated; (ii) Actin stress fibers become co-aligned forming the longitudinal cell axis; and (iii) Focal adhesions had decreased area in all cancer cell lines studied and became more numerous in HaCaT cells. We conclude that among dynamic components of the cytoskeleton, the most significant changes during EMT happen in the regulation of microtubules.
Collapse
Affiliation(s)
- Assel Nurmagambetova
- School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan.
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan.
| | - Vadim Mustyatsa
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan
| | - Aleena Saidova
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan
| | - Ivan Vorobjev
- School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Avenue, 53, 010000, Astana, Kazakhstan.
| |
Collapse
|
18
|
Bernacchioni C, Rossi M, Vannuzzi V, Prisinzano M, Seidita I, Raeispour M, Muccilli A, Castiglione F, Bruni P, Petraglia F, Donati C. Sphingosine-1-phosphate receptor 3 is a non-hormonal target to counteract endometriosis-associated fibrosis. Fertil Steril 2023:S0015-0282(23)02074-5. [PMID: 38072366 DOI: 10.1016/j.fertnstert.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/31/2023]
Abstract
OBJECTIVE To study the molecular mechanisms responsible for fibrosis in endometriosis by investigating whether the protein expression levels of sphingosine-1-phosphate receptor 3 (S1PR3), one of the five specific receptors of the bioactive sphingolipid sphingosine-1-phosphate (S1P), correlate with fibrosis extent in endometriotic lesions and which are the cellular mechanisms involved in this process. DESIGN Case-control laboratory study and cultured endometriotic cells. SETTING University research institute and university hospital. PATIENT(S) A total of 33 women, with and without endometriosis, were included in the study. INTERVENTIONS(S) Endometriotic lesions were obtained from women with endometriosis (ovarian endometrioma, n = 8; deep infiltrating endometriosis, n = 15; [urological n = 5, gastrointestinal n = 6, and posterior n = 4]) and control endometrium from healthy women, n = 10, by means of laparoscopic and hysteroscopic surgery. The expression of S1PR3 was evaluated using immunohistochemistry and the extent of fibrosis was assessed using Masson's trichrome staining. Human-cultured epithelial endometriotic 12Z cells were used to evaluate the mechanisms involved in the profibrotic effect of S1PR3 activation. MAIN OUTCOME MEASURE(S) The expression of S1PR3 in endometriotic lesions is positively correlated with endometriosis-associated fibrosis. In addition, S1P induced epithelial-mesenchymal transition (EMT) and fibrosis in epithelial endometriotic cells. Using RNA interference and pharmacological approaches, the profibrotic effect of S1P was shown to rely on S1PR3, thus unveiling the molecular mechanism implicated in the profibrotic action of the bioactive sphingolipid. RESULT(S) The protein expression levels of S1PR3 were significantly augmented in the glandular sections of endometrioma and deep infiltrating endometriosis of different localizations with respect to the control endometrium and positively correlated with the extent of fibrosis. Sphingosine-1-phosphate was shown to have a crucial role in the onset of fibrosis in epithelial endometriotic cells, stimulating the expression of EMT and fibrotic markers. Genetic approaches have highlighted that S1PR3 mediates the fibrotic effect of S1P. Downstream of S1PR3, ezrin and extracellular-signal-regulated kinases 1 and 2 signaling were found to be critically implicated in the EMT and fibrosis elicited by S1P. CONCLUSION(S) Sphingosine-1-phosphate receptor 3 may represent a possible innovative pharmacological target for endometriosis.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.
| | - Margherita Rossi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | | | - Matteo Prisinzano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Isabelle Seidita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Maryam Raeispour
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Angela Muccilli
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy; Obstetrics and Gynecology, Careggi University Hospital, Florence, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| |
Collapse
|
19
|
Abedrabbo M, Sloomy S, Abu-Leil R, Kfir-Cohen E, Ravid S. Scribble, Lgl1, and myosin IIA interact with α-/β-catenin to maintain epithelial junction integrity. Cell Adh Migr 2023; 17:1-23. [PMID: 37743653 PMCID: PMC10761038 DOI: 10.1080/19336918.2023.2260645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
E-cadherin-catenin complex together with the cytoskeleton, builds the core of Adherens junctions (AJs). It has been reported that Scribble stabilizes the coupling of E-cadherin with catenins promoting epithelial cell adhesion, but the mechanism remains unknown. We show that Scribble, Lgl1, and NMII-A reside in a complex with E-cadherin-catenin complex. Depletion of either Scribble or Lgl1 disrupts the localization of E-cadherin-catenin complex to AJs. aPKCζ phosphorylation of Lgl1 regulates AJ localization of Lgl1 and E-cadherin-catenin complexes. Both Scribble and Lgl1 regulate the activation and recruitment of NMII-A at AJs. Finally, Scribble and Lgl1 are downregulated by TGFβ-induced EMT, and their re-expression during EMT impedes its progression. Our results provide insight into the mechanism regulating AJ integrity by Scribble, Lgl1, and NMII-A.
Collapse
Affiliation(s)
- Maha Abedrabbo
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shirel Sloomy
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Reham Abu-Leil
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Einav Kfir-Cohen
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shoshana Ravid
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
20
|
Cho Y, Kim J, Park J, Doh J. Surface nanotopography and cell shape modulate tumor cell susceptibility to NK cell cytotoxicity. MATERIALS HORIZONS 2023; 10:4532-4540. [PMID: 37559559 DOI: 10.1039/d3mh00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, 77, Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - JangHyuk Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
- Institute of Engineering Research, BioMAX, Seoul National University, Seoul, South Korea
| |
Collapse
|
21
|
Wang Z. Role of transforming growth factor-β in airway remodelling in bronchiolitis obliterans. Growth Factors 2023; 41:192-209. [PMID: 37487145 DOI: 10.1080/08977194.2023.2239356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Airway remodelling is the main pathological mechanism of bronchiolitis obliterans (BO). Several studies have found that transforming growth factor-β (TGF-β) expression is increased in BO during airway remodelling, where it plays an important role in various biological processes by binding to its receptor complex to activate multiple signalling proteins and pathways. This review examines the role of TGF-β in airway remodelling in BO and its potential as a therapeutic target, highlighting the mechanisms of TGF-β activation and signalling, cellular targets of TGF-β actions, and research progress in TGF-β signalling and TGF-β-mediated processes.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Frost B. Alzheimer's disease and related tauopathies: disorders of disrupted neuronal identity. Trends Neurosci 2023; 46:797-813. [PMID: 37591720 PMCID: PMC10528597 DOI: 10.1016/j.tins.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Postmitotic neurons require persistently active controls to maintain terminal differentiation. Unlike dividing cells, aberrant cell cycle activation in mature neurons causes apoptosis rather than transformation. In Alzheimer's disease (AD) and related tauopathies, evidence suggests that pathogenic forms of tau drive neurodegeneration via neuronal cell cycle re-entry. Multiple interconnected mechanisms linking tau to cell cycle activation have been identified, including, but not limited to, tau-induced overstabilization of the actin cytoskeleton, consequent changes to nuclear architecture, and disruption of heterochromatin-mediated gene silencing. Cancer- and development-associated pathways are upregulated in human and cellular models of tauopathy, and many tau-induced cellular phenotypes are also present in various cancers and progenitor/stem cells. In this review, I delve into mechanistic parallels between tauopathies, cancer, and development, and highlight the role of tau in cancer and in the developing brain. Based on these studies, I put forth a model by which pathogenic forms of tau disrupt the program that maintains terminal neuronal differentiation, driving cell cycle re-entry and consequent neuronal death. This framework presents tauopathies as conditions involving the profound toxic disruption of neuronal identity.
Collapse
Affiliation(s)
- Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
23
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
24
|
Farkas K, Ferretti E. Derivation of Human Extraembryonic Mesoderm-like Cells from Primitive Endoderm. Int J Mol Sci 2023; 24:11366. [PMID: 37511125 PMCID: PMC10380231 DOI: 10.3390/ijms241411366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
In vitro modeling of human peri-gastrulation development is a valuable tool for understanding embryogenetic mechanisms. The extraembryonic mesoderm (ExM) is crucial in supporting embryonic development by forming tissues such as the yolk sac, allantois, and chorionic villi. However, the origin of human ExM remains only partially understood. While evidence suggests a primitive endoderm (PrE) origin based on morphological findings, current in vitro models use epiblast-like cells. To address this gap, we developed a protocol to generate ExM-like cells from PrE-like cell line called naïve extraembryonic endoderm (nEnd). We identified the ExM-like cells by specific markers (LUM and ANXA1). Moreover, these in vitro-produced ExM cells displayed angiogenic potential on a soft matrix, mirroring their physiological role in vasculogenesis. By integrating single-cell RNA sequencing (scRNAseq) data, we found that the ExM-like cells clustered with the LUM/ANXA1-rich cell populations of the gastrulating embryo, indicating similarity between in vitro and ex utero cell populations. This study confirms the derivation of ExM from PrE and establishes a cell culture system that can be utilized to investigate ExM during human peri-gastrulation development, both in monolayer cultures and more complex models.
Collapse
Affiliation(s)
- Karin Farkas
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 1165 Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elisabetta Ferretti
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 1165 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Jena SK, Das S, Chakraborty S, Ain R. Molecular determinants of epithelial mesenchymal transition in mouse placenta and trophoblast stem cell. Sci Rep 2023; 13:10978. [PMID: 37414855 PMCID: PMC10325982 DOI: 10.1038/s41598-023-37977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Trophectoderm cells of the blastocyst are the precursor of the placenta that is comprised of trophoblast, endothelial and smooth muscle cells. Since trophoectoderm cells are epithelial in nature, epithelial mesenchymal transition (EMT) of trophoblast stem (TS) cells might play pivotal role in placental morphogenesis. However, the molecular regulation of EMT during placental development and trophoblast differentiation still remained elusive. In this report, we sought to identify the molecular signature that regulates EMT during placental development and TS cell differentiation in mice. On E7.5 onwards the TS cells, located in the ectoplacental cone (EPC), rapidly divide and differentiate leading to formation of placenta proper. Using a real time PCR based array of functional EMT transcriptome with RNA from mouse implantation sites (IS) on E7.5 and E9.5, it was observed that there was an overall reduction of EMT gene expression in the IS as gestation progressed from E7.5 to E9.5 albeit the levels of EMT gene expression were substantial on both days. Further validation of array results using real time PCR and western blot analysis showed significant decrease in EMT-associated genes that included (a) transcription factors (Snai2, Zeb1, Stat3 and Foxc2), (b) extracellular matrix and cell adhesion related genes (Bmp1, Itga5, Vcan and Col3A1), (c) migration and motility- associated genes (Vim, Msn and FN1) and (d) differentiation and development related genes (Wnt5b, Jag1 and Cleaved Notch-1) on E9.5. To understand whether EMT is an ongoing process during placentation, the EMT-associated signatures genes, prevalent on E 7.5 and 9.5, were analysed on E12.5, E14.5 and E17.5 of mouse placenta. Interestingly, expression of these EMT-signature proteins were significantly higher at E12.5 though substantial expressions was observed in placenta with progression of gestation from mid- to late. To evaluate whether TS cells have the potential to undergo EMT ex vivo, TS cells were subjected to EMT induction, which was confirmed using morphological analysis and marker gene expression. Induction of EMT in TS cells showed similar gene expression profile of placental EMT. These results have broad biological implications, as inadequate mesenchymal transition leading to improper trophoblast-vasculogenic mimicry leads to placental pathophysiology and pregnancy failure.
Collapse
Affiliation(s)
- Shipra Kanti Jena
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India
| | - Shreya Das
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal, 700032, India
| | - Shreeta Chakraborty
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal, 700032, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West Bengal, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India.
| |
Collapse
|
26
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
27
|
Beckmann A, Ramirez P, Gamez M, Gonzalez E, De Mange J, Bieniek KF, Ray WJ, Frost B. Moesin is an effector of tau-induced actin overstabilization, cell cycle activation, and neurotoxicity in Alzheimer's disease. iScience 2023; 26:106152. [PMID: 36879821 PMCID: PMC9984563 DOI: 10.1016/j.isci.2023.106152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/01/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In Alzheimer's disease, neurons acquire phenotypes that are also present in various cancers, including aberrant activation of the cell cycle. Unlike cancer, cell cycle activation in post-mitotic neurons is sufficient to induce cell death. Multiple lines of evidence suggest that abortive cell cycle activation is a consequence of pathogenic forms of tau, a protein that drives neurodegeneration in Alzheimer's disease and related "tauopathies." Here we combine network analyses of human Alzheimer's disease and mouse models of Alzheimer's disease and primary tauopathy with studies in Drosophila to discover that pathogenic forms of tau drive cell cycle activation by disrupting a cellular program involved in cancer and the epithelial-mesenchymal transition (EMT). Moesin, an EMT driver, is elevated in cells harboring disease-associated phosphotau, over-stabilized actin, and ectopic cell cycle activation. We further find that genetic manipulation of Moesin mediates tau-induced neurodegeneration. Taken together, our study identifies novel parallels between tauopathy and cancer.
Collapse
Affiliation(s)
- Adrian Beckmann
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Gamez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elias Gonzalez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jasmine De Mange
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
28
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
29
|
Ahandoust S, Li K, Sun X, Li BY, Yokota H, Na S. Intracellular and extracellular moesins differentially regulate Src activity and β-catenin translocation to the nucleus in breast cancer cells. Biochem Biophys Res Commun 2023; 639:62-69. [PMID: 36470073 DOI: 10.1016/j.bbrc.2022.11.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
It is increasingly recognized that a single protein can have multiple, sometimes paradoxical, roles in cell functions as well as pathological conditions depending on its cellular locations. Here we report that moesins (MSNs) in the intracellular and extracellular domains present opposing roles in pro-tumorigenic signaling in breast cancer cells. Using live cell imaging with fluorescence resonance energy transfer (FRET)- and green fluorescent protein (GFP)-based biosensors, we investigated the molecular mechanism underlying the cellular location-dependent effect of MSN on Src and β-catenin signaling in MDA-MB-231 breast cancer cells. Inhibition of intracellular MSN decreased the activities of Src and FAK, whereas overexpression of intracellular MSN increased them. By contrast, extracellular MSN decreased the activities of Src, FAK, and RhoA, as well as β-catenin translocation to the nucleus. Consistently, Western blotting and MTT-based analysis showed that overexpression of intracellular MSN elevated the expression of oncogenic genes, such as p-Src, β-catenin, Lrp5, MMP9, Runx2, and Snail, as well as cell viability, whereas extracellular MSN suppressed them. Conditioned medium derived from MSN-overexpressing mesenchymal stem cells or osteocytes showed the anti-tumor effects by inhibiting the Src activity and β-catenin translocation to the nucleus as well as the activities of FAK and RhoA and MTT-based cell viability. Conditioned medium derived from MSN-inhibited cells increased the Src activity, but it did not affect the activities of FAK and RhoA. Silencing CD44 and/or FN1 in MDA-MB-231 cells blocked the suppression of Src activity and β-catenin accumulation in the nucleus by extracellular MSN. Collectively, the results suggest that cellular location-specific MSN is a strong regulator of Src and β-catenin signaling in breast cancer cells, and that extracellular MSN exerts tumor-suppressive effects via its interaction with CD44 and FN1.
Collapse
Affiliation(s)
- Sina Ahandoust
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
30
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
31
|
Farkas MH, Skelton LA, Ramachandra-Rao S, Au E, Fliesler SJ. Morphological, biochemical, and transcriptomic characterization of iPSC-derived human RPE cells from normal and Smith-Lemli-Opitz syndrome patients. Mol Vis 2022; 28:394-411. [PMID: 36540063 PMCID: PMC9744241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/11/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Michael H. Farkas
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
- Department of Biochemistry and the Neuroscience Graduate Program, The State University of New York- University at Buffalo, Buffalo, NY
- Research Service, VA Western New York Healthcare System, Buffalo, NY
| | - Lara A. Skelton
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
- Department of Biochemistry and the Neuroscience Graduate Program, The State University of New York- University at Buffalo, Buffalo, NY
- Research Service, VA Western New York Healthcare System, Buffalo, NY
| | - Sriganesh Ramachandra-Rao
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
- Department of Biochemistry and the Neuroscience Graduate Program, The State University of New York- University at Buffalo, Buffalo, NY
- Research Service, VA Western New York Healthcare System, Buffalo, NY
| | - Elizabeth Au
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
| | - Steven J. Fliesler
- Department of Ophthalmology (Ross Eye Institute), The State University of New York- University at Buffalo, Buffalo, NY
- Department of Biochemistry and the Neuroscience Graduate Program, The State University of New York- University at Buffalo, Buffalo, NY
- Research Service, VA Western New York Healthcare System, Buffalo, NY
| |
Collapse
|
32
|
Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis - A potential role for epithelial-mesenchymal transition. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:268-278. [PMID: 36159185 PMCID: PMC9489739 DOI: 10.1016/j.jdsr.2022.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a process comprising cellular and molecular events which result in cells shifting from an epithelial to a mesenchymal phenotype. Periodontitis is a destructive chronic disease of the periodontium initiated in response to a dysbiotic microbiome, and dominated by Gram-negative bacteria in the subgingival niches accompanied by an aberrant immune response in susceptible subjects. Both EMT and periodontitis share common risk factors and drivers, including Gram-negative bacteria, excess inflammatory cytokine production, smoking, oxidative stress and diabetes mellitus. In addition, periodontitis is characterized by down-regulation of key epithelial markers such as E-cadherin together with up-regulation of transcriptional factors and mesenchymal proteins, including Snail1, vimentin and N-cadherin, which also occur in the EMT program. Clinically, these phenotypic changes may be reflected by increases in microulceration of the pocket epithelial lining, granulation tissue formation, and fibrosis. Both in vitro and in vivo data now support the potential involvement of EMT as a pathogenic mechanism in periodontal diseases which may facilitate bacterial invasion into the underlying gingival tissues and propagation of inflammation. This review surveys the available literature and provides evidence linking EMT to periodontitis pathogenesis.
Collapse
Affiliation(s)
- Saif S Saliem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Salwan Y Bede
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Ali A Abdulkareem
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| | - Michael R Milward
- ŌSchool of Dentistry, University of Birmingham, 5 Mill Pool Way, B5 7EG Birmingham, UK
| | - Bashar H Abdullah
- College of Dentistry, University of Baghdad, P.O. Box 1417, Bab Al Mudam, Baghdad, Iraq
| |
Collapse
|
33
|
Villarinho NJ, Vasconcelos FDC, Mazzoccoli L, da Silva Robaina MC, Pessoa LS, Siqueira PET, Maia RC, de Oliveira DM, Leite de Sampaio E Spohr TC, Lopes GF. Effects of long-term exposure to MST-312 on lung cancer cells tumorigenesis: Role of SHH/GLI-1 axis. Cell Biol Int 2022; 46:1468-1479. [PMID: 35811464 DOI: 10.1002/cbin.11843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022]
Abstract
Replicative immortality is a key feature of cancer cells and it is maintained by the expression of telomerase, a promising target of novel therapies. Long-term telomerase inhibition can induce resistance, but the mechanisms underlying this process remain unclear. The Sonic hedgehog pathway (SHH) is an embryogenic pathway involved in tumorigenesis and modulates the transcription of telomerase. We evaluated the effects of long-term treatment of the telomerase inhibitor MST-312 in morphology, proliferation, resistance, and in the SHH pathway molecules expression levels in lung cancer cells. Cells treated for 12 weeks with MST-312 showed changes in morphology, such as spindle-shaped cells, and a shift in the distribution of F-ACTIN from cortical to diffuse. Treatment also significantly reduced cells' efficiency to form spheroids and their clonogenic potential, independently of the cell cycle and telomeric DNA content. Moreover, GLI-1 expression levels were significantly reduced after 12 weeks of MST-312 treatment, indicating a possible inhibition of this signaling axis in the SHH pathway, without hindering NANOG and OCT4 expression. Here, we described a novel implication of long-term treatment with MST-312 functionally and molecularly, shedding new light on the molecular mechanisms of this drug in vitro.
Collapse
Affiliation(s)
- Nicolas Jones Villarinho
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia da Cunha Vasconcelos
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano Mazzoccoli
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Cristina da Silva Robaina
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Santos Pessoa
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pablo Enrique Torres Siqueira
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Madureira de Oliveira
- Departamento de Bases Biológicas da Saúde, Universidade Federal de Brasília-Campus Ceilândia, Brasilia, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer IECPN, Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Faria Lopes
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Hemato-oncologia Celular e Molecular, Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brazil.,Divisão de Bioprodutos, Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM), Arraial do Cabo, Brazil
| |
Collapse
|
34
|
Lai YJ, Tsai FC, Chang GJ, Chang SH, Huang CC, Chen WJ, Yeh YH. miR-181b targets semaphorin 3A to mediate TGF-β-induced endothelial-mesenchymal transition related to atrial fibrillation. J Clin Invest 2022; 132:142548. [PMID: 35775491 PMCID: PMC9246393 DOI: 10.1172/jci142548] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial fibrosis is an essential contributor to atrial fibrillation (AF). It remains unclear whether atrial endocardial endothelial cells (AEECs) that undergo endothelial-mesenchymal transition (EndMT) are among the sources of atrial fibroblasts. We studied human atria, TGF-β-treated human AEECs, cardiac-specific TGF-β-transgenic mice, and heart failure rabbits to identify the underlying mechanism of EndMT in atrial fibrosis. Using isolated AEECs, we found that miR-181b was induced in TGF-β-treated AEECs, which decreased semaphorin 3A (Sema3A) and increased EndMT markers, and these effects could be reversed by a miR-181b antagomir. Experiments in which Sema3A was increased by a peptide or decreased by a siRNA in AEECs revealed a mechanistic link between Sema3A and LIM-kinase 1/phosphorylated cofilin (LIMK/p-cofilin) signaling and suggested that Sema3A is upstream of LIMK in regulating actin remodeling through p-cofilin. Administration of the miR-181b antagomir or recombinant Sema3A to TGF-β-transgenic mice evoked increased Sema3A, reduced EndMT markers, and significantly decreased atrial fibrosis and AF vulnerability. Our study provides a mechanistic link between the induction of EndMT by TGF-β via miR-181b/Sema3A/LIMK/p-cofilin signaling to atrial fibrosis. Blocking miR-181b and increasing Sema3A are potential strategies for AF therapeutic intervention.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Respiratory Therapy, Chang Gung University College of Medicine, Tao Yuan, Taiwan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chia Yi, Taiwan
| | - Feng-Chun Tsai
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Gwo-Jyh Chang
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Tao Yuan, Taiwan
| | - Shang-Hung Chang
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Chung-Chi Huang
- Department of Respiratory Therapy, Chang Gung University College of Medicine, Tao Yuan, Taiwan.,Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Tao Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Tao Yuan, Taiwan.,Department of Medicine and
| |
Collapse
|
35
|
Khuntia P, Rawal S, Marwaha R, Das T. Actin-driven Golgi apparatus dispersal during collective migration of epithelial cells. Proc Natl Acad Sci U S A 2022; 119:e2204808119. [PMID: 35749357 PMCID: PMC9245705 DOI: 10.1073/pnas.2204808119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
As a sedentary epithelium turns motile during wound healing, morphogenesis, and metastasis, the Golgi apparatus moves from an apical position, above the nucleus, to a basal position. This apical-to-basal repositioning of Golgi is critical for epithelial cell migration. Yet the molecular mechanism underlying it remains elusive, although microtubules are believed to play a role. Using live-cell and super-resolution imaging, we show that at the onset of collective migration of epithelial cells, Golgi stacks get dispersed to create an unpolarized transitional structure, and surprisingly, this dispersal process depends not on microtubules but on actin cytoskeleton. Golgi-actin interaction involves Arp2/3-driven actin projections emanating from the actin cortex, and a Golgi-localized actin elongation factor, MENA. While in sedentary epithelial cells, actin projections intermittently interact with the apically located Golgi, and the frequency of this event increases before the dispersion of Golgi stacks, at the onset of cell migration. Preventing Golgi-actin interaction with MENA-mutants eliminates Golgi dispersion and reduces the persistence of cell migration. Taken together, we show a process of actin-driven Golgi dispersion that is mechanistically different from the well-known Golgi apparatus fragmentation during mitosis and is essential for collective migration of epithelial cells.
Collapse
Affiliation(s)
- Purnati Khuntia
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Simran Rawal
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Rituraj Marwaha
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
36
|
Aloisio FM, Barber DL. Arp2/3 complex activity is necessary for mouse ESC differentiation, times formative pluripotency, and enables lineage specification. Stem Cell Reports 2022; 17:1318-1333. [PMID: 35658973 PMCID: PMC9214060 DOI: 10.1016/j.stemcr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Mouse embryonic stem cells (mESCs), a model for differentiation into primed epiblast-like cells (EpiLCs), have revealed transcriptional and epigenetic control of early embryonic development. The control and significance of morphological changes, however, remain less defined. We show marked changes in morphology and actin architectures during differentiation that depend on Arp2/3 complex but not formin activity. Inhibiting Arp2/3 complex activity pharmacologically or genetically does not block exit from naive pluripotency, but attenuates increases in EpiLC markers. We find that inhibiting Arp2/3 complex activity delays formative pluripotency and causes globally defective lineage specification as indicated by RNA sequencing, with significant effects on TBX3-depedendent transcriptional programs. We also identify two previously unreported indicators of mESC differentiation, namely, MRTF and FHL2, which have inverse Arp2/3 complex-dependent nuclear translocation. Our findings on Arp2/3 complex activity in differentiation and the established role of formins in EMT indicate that these two actin nucleators regulate distinct modes of epithelial plasticity.
Collapse
Affiliation(s)
- Francesca M Aloisio
- Department of Cell & Tissue Biology, University of California San Francisco, Box 0512, 513 Parnassus Ave., San Francisco, CA 94143, USA
| | - Diane L Barber
- Department of Cell & Tissue Biology, University of California San Francisco, Box 0512, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Basu A, Paul MK, Alioscha-Perez M, Grosberg A, Sahli H, Dubinett SM, Weiss S. Statistical parametrization of cell cytoskeleton reveals lung cancer cytoskeletal phenotype with partial EMT signature. Commun Biol 2022; 5:407. [PMID: 35501466 PMCID: PMC9061773 DOI: 10.1038/s42003-022-03358-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial–mesenchymal Transition (EMT) is a multi-step process that involves cytoskeletal rearrangement. Here, developing and using an image quantification tool, Statistical Parametrization of Cell Cytoskeleton (SPOCC), we have identified an intermediate EMT state with a specific cytoskeletal signature. We have been able to partition EMT into two steps: (1) initial formation of transverse arcs and dorsal stress fibers and (2) their subsequent conversion to ventral stress fibers with a concurrent alignment of fibers. Using the Orientational Order Parameter (OOP) as a figure of merit, we have been able to track EMT progression in live cells as well as characterize and quantify their cytoskeletal response to drugs. SPOCC has improved throughput and is non-destructive, making it a viable candidate for studying a broad range of biological processes. Further, owing to the increased stiffness (and by inference invasiveness) of the intermediate EMT phenotype compared to mesenchymal cells, our work can be instrumental in aiding the search for future treatment strategies that combat metastasis by specifically targeting the fiber alignment process. A computational method for automated quantification of actin stress fiber alignment in fluorescence images of cultured cells is presented, used to detect changes in stress fiber organization during EMT, with pathways regulating actin dynamics manipulated leading to the discovery of a cytoskeletal phenotype.
Collapse
Affiliation(s)
- Arkaprabha Basu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Manash K Paul
- Department of Medicine, University of California Los Angeles, Los Angles, CA, USA.,Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mitchel Alioscha-Perez
- Electronics and Informatics Department, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Microelectronics Centre, Heverlee, Belgium
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.,The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA, USA
| | - Hichem Sahli
- Electronics and Informatics Department, Vrije Universiteit Brussel, Brussels, Belgium.,Interuniversity Microelectronics Centre, Heverlee, Belgium
| | - Steven M Dubinett
- Department of Medicine, University of California Los Angeles, Los Angles, CA, USA.,Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,California NanoSystems Institute, Los Angeles, CA, USA.,VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA. .,California NanoSystems Institute, Los Angeles, CA, USA. .,Department of Physiology, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Nalluri SM, Sankhe CS, O'Connor JW, Blanchard PL, Khouri JN, Phan SH, Virgi G, Gomez EW. Crosstalk between ERK and MRTF‐A signaling regulates TGFβ1‐induced epithelial‐mesenchymal transition. J Cell Physiol 2022; 237:2503-2515. [DOI: 10.1002/jcp.30705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sandeep M. Nalluri
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Chinmay S. Sankhe
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Joseph W. O'Connor
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Paul L. Blanchard
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Joelle N. Khouri
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Steven H. Phan
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Gage Virgi
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Esther W. Gomez
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
- Department of Biomedical Engineering The Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
39
|
A biophysical perspective of the regulatory mechanisms of ezrin/radixin/moesin proteins. Biophys Rev 2022; 14:199-208. [PMID: 35340609 PMCID: PMC8921360 DOI: 10.1007/s12551-021-00928-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Many signal transductions resulting from ligand-receptor interactions occur at the cell surface. These signaling pathways play essential roles in cell polarization, membrane morphogenesis, and the modulation of membrane tension at the cell surface. However, due to the large number of membrane-binding proteins, including actin-membrane linkers, and transmembrane proteins present at the cell surface, the molecular mechanisms underlying the regulation at the cell surface are yet unclear. Here, we describe the molecular functions of one of the key players at the cell surface, ezrin/radixin/moesin (ERM) proteins from a biophysical point of view. We focus our discussion on biophysical properties of ERM proteins revealed by using biophysical tools in live cells and in vitro reconstitution systems. We first describe the structural properties of ERM proteins and then discuss the interactions of ERM proteins with PI(4,5)P2 and the actin cytoskeleton. These properties of ERM proteins revealed by using biophysical approaches have led to a better understanding of their physiological functions in cells and tissues. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00928-0.
Collapse
|
40
|
Mosquera MJ, Kim S, Bareja R, Fang Z, Cai S, Pan H, Asad M, Martin ML, Sigouros M, Rowdo FM, Ackermann S, Capuano J, Bernheim J, Cheung C, Doane A, Brady N, Singh R, Rickman DS, Prabhu V, Allen JE, Puca L, Coskun AF, Rubin MA, Beltran H, Mosquera JM, Elemento O, Singh A. Extracellular Matrix in Synthetic Hydrogel-Based Prostate Cancer Organoids Regulate Therapeutic Response to EZH2 and DRD2 Inhibitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100096. [PMID: 34676924 PMCID: PMC8820841 DOI: 10.1002/adma.202100096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/09/2021] [Indexed: 05/30/2023]
Abstract
Following treatment with androgen receptor (AR) pathway inhibitors, ≈20% of prostate cancer patients progress by shedding their AR-dependence. These tumors undergo epigenetic reprogramming turning castration-resistant prostate cancer adenocarcinoma (CRPC-Adeno) into neuroendocrine prostate cancer (CRPC-NEPC). No targeted therapies are available for CRPC-NEPCs, and there are minimal organoid models to discover new therapeutic targets against these aggressive tumors. Here, using a combination of patient tumor proteomics, RNA sequencing, spatial-omics, and a synthetic hydrogel-based organoid, putative extracellular matrix (ECM) cues that regulate the phenotypic, transcriptomic, and epigenetic underpinnings of CRPC-NEPCs are defined. Short-term culture in tumor-expressed ECM differentially regulated DNA methylation and mobilized genes in CRPC-NEPCs. The ECM type distinctly regulates the response to small-molecule inhibitors of epigenetic targets and Dopamine Receptor D2 (DRD2), the latter being an understudied target in neuroendocrine tumors. In vivo patient-derived xenograft in immunocompromised mice showed strong anti-tumor response when treated with a DRD2 inhibitor. Finally, we demonstrate that therapeutic response in CRPC-NEPCs under drug-resistant ECM conditions can be overcome by first cellular reprogramming with epigenetic inhibitors, followed by DRD2 treatment. The synthetic organoids suggest the regulatory role of ECM in therapeutic response to targeted therapies in CRPC-NEPCs and enable the discovery of therapies to overcome resistance.
Collapse
Affiliation(s)
- Matthew J Mosquera
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sungwoong Kim
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Zhou Fang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Shuangyi Cai
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Heng Pan
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Muhammad Asad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Maria Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Florencia M Rowdo
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Sarah Ackermann
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Jared Capuano
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Jacob Bernheim
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Cynthia Cheung
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Ashley Doane
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Nicholas Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | | | | | - Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Ahmet F Coskun
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, 3012, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ankur Singh
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, 14850, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| |
Collapse
|
41
|
Miyano T, Suzuki A, Sakamoto N. Hyperosmotic stress induces epithelial-mesenchymal transition through rearrangements of focal adhesions in tubular epithelial cells. PLoS One 2021; 16:e0261345. [PMID: 34932568 PMCID: PMC8691603 DOI: 10.1371/journal.pone.0261345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/30/2021] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of tubular epithelial cells is a hallmark of renal tubulointerstitial fibrosis and is associated with chronic renal injury as well as acute renal injury. As one of the incidences and risk factors for acute renal injury, increasing the osmolality in the proximal tubular fluid by administration of intravenous mannitol has been reported, but the detailed mechanisms remain unclear. Hyperosmotic conditions caused by mannitol in the tubular tissue may generate not only osmotic but also mechanical stresses, which are known to be able to induce EMT in epithelial cells, thereby contributing to renal injury. Herein, we investigate the effect of hyperosmolarity on EMT in tubular epithelial cells. Normal rat kidney (NRK)-52E cells were exposed to mannitol-induced hyperosmotic stress. Consequently, the hyperosmotic stress led to a reduced expression of the epithelial marker E-cadherin and an enhanced expression of the mesenchymal marker, α-smooth muscle actin (α-SMA), which indicates an initiation of EMT in NKR-52E cells. The hyperosmotic condition also induced time-dependent disassembly and rearrangements of focal adhesions (FAs) concomitant with changes in actin cytoskeleton. Moreover, prevention of FAs rearrangements by cotreatment with Y-27632, a Rho-associated protein kinase inhibitor, could abolish the effects of hyperosmotic mannitol treatment, thus attenuating the expression of α-SMA to the level in nontreated cells. These results suggest that hyperosmotic stress may induce EMT through FAs rearrangement in proximal tubular epithelial cells.
Collapse
Affiliation(s)
- Takashi Miyano
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
42
|
Mousavikhamene Z, Sykora DJ, Mrksich M, Bagheri N. Morphological features of single cells enable accurate automated classification of cancer from non-cancer cell lines. Sci Rep 2021; 11:24375. [PMID: 34934149 PMCID: PMC8692621 DOI: 10.1038/s41598-021-03813-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Accurate cancer detection and diagnosis is of utmost importance for reliable drug-response prediction. Successful cancer characterization relies on both genetic analysis and histological scans from tumor biopsies. It is known that the cytoskeleton is significantly altered in cancer, as cellular structure dynamically remodels to promote proliferation, migration, and metastasis. We exploited these structural differences with supervised feature extraction methods to introduce an algorithm that could distinguish cancer from non-cancer cells presented in high-resolution, single cell images. In this paper, we successfully identified the features with the most discriminatory power to successfully predict cell type with as few as 100 cells per cell line. This trait overcomes a key barrier of machine learning methodologies: insufficient data. Furthermore, normalizing cell shape via microcontact printing on self-assembled monolayers enabled better discrimination of cell lines with difficult-to-distinguish phenotypes. Classification accuracy remained robust as we tested dissimilar cell lines across various tissue origins, which supports the generalizability of our algorithm.
Collapse
Affiliation(s)
- Zeynab Mousavikhamene
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Daniel J Sykora
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Neda Bagheri
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- Departments of Biology and Chemical Engineering, University of Washington, 1410 NE Campus Parkway, Seattle, WA, 98195, USA.
| |
Collapse
|
43
|
Synthesis and in vitro evaluation of anti-inflammatory, antioxidant, and anti-fibrotic effects of new 8-aminopurine-2,6-dione-based phosphodiesterase inhibitors as promising anti-asthmatic agents. Bioorg Chem 2021; 117:105409. [PMID: 34749117 DOI: 10.1016/j.bioorg.2021.105409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023]
Abstract
Phosphodiesterase (PDE) inhibitors are currently an extensively studied group of compounds that can bring many benefits in the treatment of various inflammatory and fibrotic diseases, including asthma. Herein, we describe a series of novel N'-phenyl- or N'-benzylbutanamide and N'-arylidenebutanehydrazide derivatives of 8-aminopurine-2,6-dione (27-43) and characterized them as prominent pan-PDE inhibitors. Most of the compounds exhibited antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced murine macrophages RAW264.7. The most active compounds (32-35 and 38) were evaluated in human bronchial epithelial cells (HBECs) derived from asthmatics. To better map the bronchial microenvironment in asthma, HBECs after exposure to selected 8-aminopurine-2,6-dione derivatives were incubated in the presence of two proinflammatory and/or profibrotic factors: transforming growth factor type β (TGF-β) and interleukin 13 (IL-13). Compounds 32-35 and 38 significantly reduced both IL-13- and TGF-β-induced expression of proinflammatory and profibrotic mediators, respectively. Detailed analysis of their inhibition preferences for selected PDEs showed high affinity for isoenzymes important in the pathogenesis of asthma, including PDE1, PDE3, PDE4, PDE7, and PDE8. The presented data confirm that structural modifications within the 7 and 8 positions of the purine-2,6-dione core result in obtaining preferable pan-PDE inhibitors which in turn exert an excellent anti-inflammatory and anti-fibrotic effect in the bronchial epithelial cells derived from asthmatic patients. This dual-acting pan-PDE inhibitors constitute interesting and promising lead structures for further anti-asthmatic agent discovery.
Collapse
|
44
|
Jiménez-Uribe AP, Gómez-Sierra T, Aparicio-Trejo OE, Orozco-Ibarra M, Pedraza-Chaverri J. Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal 2021; 87:110123. [PMID: 34438016 DOI: 10.1016/j.cellsig.2021.110123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
The fibrotic process could be easily defined as a pathological excess of extracellular matrix deposition, leading to disruption of tissue architecture and eventually loss of function; however, this process involves a complex network of several signal transduction pathways. Virtually almost all organs could be affected by fibrosis, the most affected are the liver, lung, skin, kidney, heart, and eyes; in all of them, the transforming growth factor-beta (TGF-β) has a central role. The canonical and non-canonical signal pathways of TGF-β impact the fibrotic process at the cellular and molecular levels, inducing the epithelial-mesenchymal transition (EMT) and the induction of profibrotic gene expression with the consequent increase in proteins such as alpha-smooth actin (α-SMA), fibronectin, collagen, and other extracellular matrix proteins. Recently, it has been reported that some molecules that have not been typically associated with the fibrotic process, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), mammalian target of rapamycin (mTOR), histone deacetylases (HDAC), and sphingosine-1 phosphate (S1P); are critical in its development. In this review, we describe and discuss the role of these new players of fibrosis and the convergence with TGF-β signaling pathways, unveiling new insights into the panorama of fibrosis that could be useful for future therapeutic targets.
Collapse
Affiliation(s)
| | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269 Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
45
|
Hosseini K, Frenzel A, Fischer-Friedrich E. EMT changes actin cortex rheology in a cell-cycle-dependent manner. Biophys J 2021; 120:3516-3526. [PMID: 34022239 PMCID: PMC8391033 DOI: 10.1016/j.bpj.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/06/2023] Open
Abstract
The actin cortex is a key structure for cellular mechanics and cellular migration. Accordingly, cancer cells were shown to change their actin cytoskeleton and their mechanical properties in correlation with different degrees of malignancy and metastatic potential. Epithelial-mesenchymal transition (EMT) is a cellular transformation associated with cancer progression and malignancy. To date, a detailed study of the effects of EMT on the frequency-dependent viscoelastic mechanics of the actin cortex is still lacking. In this work, we have used an established atomic force microscope-based method of cell confinement to quantify the rheology of the actin cortex of human breast, lung, and prostate epithelial cells before and after EMT in a frequency range of 0.02-2 Hz. Interestingly, we find for all cell lines opposite EMT-induced changes in interphase and mitosis; whereas the actin cortex softens upon EMT in interphase, the cortex stiffens in mitosis. Our rheological data can be accounted for by a rheological model with a characteristic timescale of slowest relaxation. In conclusion, our study discloses a consistent rheological trend induced by EMT in human cells of diverse tissue origin, reflecting major structural changes of the actin cytoskeleton upon EMT.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
46
|
Eschenbruch J, Dreissen G, Springer R, Konrad J, Merkel R, Hoffmann B, Noetzel E. From Microspikes to Stress Fibers: Actin Remodeling in Breast Acini Drives Myosin II-Mediated Basement Membrane Invasion. Cells 2021; 10:cells10081979. [PMID: 34440749 PMCID: PMC8394122 DOI: 10.3390/cells10081979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular mechanisms of basement membrane (BM) invasion remain poorly understood. We investigated the invasion-promoting mechanisms of actin cytoskeleton reorganization in BM-covered MCF10A breast acini. High-resolution confocal microscopy has characterized actin cell protrusion formation and function in response to tumor-resembling ECM stiffness and soluble EGF stimulation. Traction force microscopy quantified the mechanical BM stresses that invasion-triggered acini exerted on the BM-ECM interface. We demonstrate that acini use non-proteolytic actin microspikes as functional precursors of elongated protrusions to initiate BM penetration and ECM probing. Further, these microspikes mechanically widened the collagen IV pores to anchor within the BM scaffold via force-transmitting focal adhesions. Pre-invasive basal cells located at the BM-ECM interface exhibited predominantly cortical actin networks and actin microspikes. In response to pro-invasive conditions, these microspikes accumulated and converted subsequently into highly contractile stress fibers. The phenotypical switch to stress fiber cells matched spatiotemporally with emerging high BM stresses that were driven by actomyosin II contractility. The activation of proteolytic invadopodia with MT1-MMP occurred at later BM invasion stages and only in cells already disseminating into the ECM. Our study demonstrates that BM pore-widening filopodia bridge mechanical ECM probing function and contractility-driven BM weakening. Finally, these EMT-related cytoskeletal adaptations are critical mechanisms inducing the invasive transition of benign breast acini.
Collapse
|
47
|
Nanomechanical Hallmarks of Helicobacter pylori Infection in Pediatric Patients. Int J Mol Sci 2021; 22:ijms22115624. [PMID: 34070700 PMCID: PMC8198391 DOI: 10.3390/ijms22115624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: the molecular mechanism of gastric cancer development related to Helicobacter pylori (H. pylori) infection has not been fully understood, and further studies are still needed. Information regarding nanomechanical aspects of pathophysiological events that occur during H. pylori infection can be crucial in the development of new prevention, treatment, and diagnostic measures against clinical consequences associated with H. pylori infection, including gastric ulcer, duodenal ulcer, and gastric cancer. Methods: in this study, we assessed mechanical properties of children’s healthy and H. pylori positive stomach tissues and the mechanical response of human gastric cells exposed to heat-treated H. pylori cells using atomic force microscopy (AFM NanoWizard 4 BioScience JPK Instruments Bruker). Elastic modulus (i.e., the Young’s modulus) was derived from the Hertz–Sneddon model applied to force-indentation curves. Human tissue samples were evaluated using rapid urease tests to identify H. pylori positive samples, and the presence of H. pylori cells in those samples was confirmed using immunohistopathological staining. Results and conclusion: collected data suggest that nanomechanical properties of infected tissue might be considered as markers indicated H. pylori presence since infected tissues are softer than uninfected ones. At the cellular level, this mechanical response is at least partially mediated by cell cytoskeleton remodeling indicating that gastric cells are able to tune their mechanical properties when subjected to the presence of H. pylori products. Persistent fluctuations of tissue mechanical properties in response to H. pylori infection might, in the long-term, promote induction of cancer development.
Collapse
|
48
|
Jackson-Weaver O, Ungvijanpunya N, Yuan Y, Qian J, Gou Y, Wu J, Shen H, Chen Y, Li M, Richard S, Chai Y, Sucov HM, Xu J. PRMT1-p53 Pathway Controls Epicardial EMT and Invasion. Cell Rep 2021; 31:107739. [PMID: 32521264 DOI: 10.1016/j.celrep.2020.107739] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 02/08/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Epicardial cells are cardiac progenitors that give rise to the majority of cardiac fibroblasts, coronary smooth muscle cells, and pericytes during development. An integral phase of epicardial fate transition is epithelial-to-mesenchymal transition (EMT) that confers motility. We uncover an essential role for the protein arginine methyltransferase 1 (PRMT1) in epicardial invasion and differentiation. Using scRNA-seq, we show that epicardial-specific deletion of Prmt1 reduced matrix and ribosomal gene expression in epicardial-derived cell lineages. PRMT1 regulates splicing of Mdm4, which is a key controller of p53 stability. Loss of PRMT1 leads to accumulation of p53 that enhances Slug degradation and blocks EMT. During heart development, the PRMT1-p53 pathway is required for epicardial invasion and formation of epicardial-derived lineages: cardiac fibroblasts, coronary smooth muscle cells, and pericytes. Consequently, this pathway modulates ventricular morphogenesis and coronary vessel formation. Altogether, our study reveals molecular mechanisms involving the PRMT1-p53 pathway and establish its roles in heart development.
Collapse
Affiliation(s)
- Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA; Trauma & Critical Care Education Division, Tulane School of Medicine, Tulane University, New Orleans, LA, USA
| | - Nicha Ungvijanpunya
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Jiang Qian
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Yongchao Gou
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA; College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jian Wu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Hua Shen
- Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Stéphane Richard
- Segal Cancer Center, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Yang Chai
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Henry M Sucov
- Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, CA, USA; Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA; Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Danac JMC, Uy AGG, Garcia RL. Exosomal microRNAs in colorectal cancer: Overcoming barriers of the metastatic cascade (Review). Int J Mol Med 2021; 47:112. [PMID: 33907829 PMCID: PMC8075282 DOI: 10.3892/ijmm.2021.4945] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of cancer cells from a primary tumor to distant sites is a multi-step process that involves cellular reprogramming, the breaking or breaching of physical barriers and the preparation of a pre-metastatic niche for colonization. The loss of adhesion between cells, cytoskeletal remodeling, the reduction in size and change in cell shape, the destruction of the extracellular matrix, and the modification of the tumor microenvironment facilitate migration and invasion into surrounding tissues. The promotion of vascular leakiness enables intra- and extravasation, while angiogenesis and immune suppression help metastasizing cells become established in the new site. Tumor-derived exosomes have long been known to harbor microRNAs (miRNAs or miRs) that help prepare secondary sites for metastasis; however, their roles in the early and intermediate steps of the metastatic cascade are only beginning to be characterized. The present review article presents a summary and discussion of the miRNAs that form part of colorectal cancer (CRC)-derived exosomal cargoes and which play distinct roles in epithelial to mesenchymal plasticity and metastatic organotropism. First, an overview of epithelial-to-mesenchymal transition (EMT), metastatic organotropism, as well as exosome biogenesis, cargo sorting and uptake by recipient cells is presented. Lastly, the potential of these exosomal miRNAs as prognostic biomarkers for metastatic CRC, and the blocking of these as a possible therapeutic intervention is discussed.
Collapse
Affiliation(s)
- Joshua Miguel C Danac
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Aileen Geobee G Uy
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Reynaldo L Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
50
|
ARHGEF10L Promotes Cervical Tumorigenesis via RhoA-Mediated Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6683264. [PMID: 33833821 PMCID: PMC8012150 DOI: 10.1155/2021/6683264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022]
Abstract
Background Rho guanine nucleotide exchange factor 10-like protein (ARHGEF10L) is a member of the guanine nucleotide exchange factor family, which regulates Rho GTPase activities, thus contributing to tumorigenesis. Our previous study demonstrated a strong association between the ARHGEF10L gene and the risk of cervical carcinoma. This study investigated the pathogenic role and mechanism of ARHGEF10L in cervical tumors. Methods The HeLa cell line, which was derived from cervical carcinoma, was transfected with ARHGEF10L-overexpressing plasmids or anti-ARHGEF10L siRNA. Cell counting kit-8 assays, wound-healing assays, and cell apoptosis assays were performed to investigate the effects of ARHGEF10L on cell activities. A Rho pull-down assay and RNA-sequencing analysis were performed to investigate the pathogenic pathway of ARHGEF10L involvement in cervical tumors. Results ARHGEF10L overexpression promoted cell proliferation and migration, reduced cell apoptosis, and induced epithelial-to-mesenchymal transition (EMT) via downregulation of E-cadherin and upregulation of N-cadherin and Slug in transfected HeLa cells. The overexpression of ARHGEF10L also upregulated GTP-RhoA, ROCK1, and phospho-ezrin/radixin/moesin (ERM) expression in HeLa cells. RNA-sequencing analysis detected altered transcription of 31 genes in HeLa cells with ARHGEF10L overexpression. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) pathway analyses identified significant differences in cyclin-dependent protein serine/threonine kinase activity, cell responses to vitamin A, and Toll-like receptor signaling pathways. Both real-time PCR and Western blotting verified the increased expression of heat shock 70 kDa protein 6 (HSPA6) in ARHGEF10L-overexpressing HeLa cells. Since we reported that ARHGEF10L played a role through RhoA-ROCK1-ERM signaling, an important pathway in tumorigenesis, and stimulated EMT and HSPA6 expression in liver tumors and gastric tumor cells, we suggest that ARHGEF10L is a novel oncogene in many tumors.
Collapse
|