1
|
Aïqui-Reboul-Paviet O, Bakhache W, Bernard E, Holsteyn L, Neyret A, Briant L. The Rac1-PAK1-Arp2/3 signaling axis regulates CHIKV nsP1-induced filopodia and optimal viral genome replication. J Virol 2024; 98:e0061224. [PMID: 39297643 PMCID: PMC11495065 DOI: 10.1128/jvi.00612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/10/2024] [Indexed: 10/23/2024] Open
Abstract
Alphavirus infection induces dramatic remodeling of host cellular membranes, producing filopodia-like and intercellular extensions. The formation of filopodia-like extensions has been primarily assigned to the replication protein nsP1, which binds and reshapes the host plasma membrane when expressed alone. While reported decades ago, the molecular mechanisms behind nsP1 membrane deformation remain unknown. Using mammalian epithelial cells and Chikungunya virus (CHIKV) as models, we characterized nsP1-induced membrane deformations as highly dynamic actin-rich lamellipodia and filopodia-like extensions. Through pharmacological inhibition and genetic invalidation, we identified the critical contribution of the Rac1 GTPase and its downstream effectors PAK1 and the actin nucleator Arp2 in nsP1-induced membrane deformation. An intact Rac1-PAK1-Arp2 signaling axis was also required for optimal CHIKV genome replication. Therefore, our results designate the Rac1-PAK1-Arp2 pathway as an essential signaling node for CHIKV infection and establish a parallel requirement for host factors involved in nsP1-induced plasma membrane reshaping and assembly of a functional replication complex.IMPORTANCEThe alphavirus nsP1 protein dramatically remodels host cellular membranes, resulting in the formation of filopodia-like extensions. Although described decades ago, the molecular mechanisms controlling these membrane deformations and their functional importance remain elusive. Our study provides mechanistic insight, uncovering the critical role of the Rac1 GTPase, along with its downstream effectors PAK1 and the actin nucleator Arp2, in the nsP1-associated phenotype. Furthermore, we demonstrate that the Rac1-PAK1-Arp2 pathway is essential for optimal CHIKV genome replication. Our findings establish a parallel in the cellular mechanisms governing nsP1-induced plasma membrane reshaping and the production of a functional replication complex in infected cells.
Collapse
Affiliation(s)
| | - William Bakhache
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Eric Bernard
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Lise Holsteyn
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Aymeric Neyret
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Laurence Briant
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| |
Collapse
|
2
|
Tong CS, Su M, Sun H, Chua XL, Xiong D, Guo S, Raj R, Ong NWP, Lee AG, Miao Y, Wu M. Collective dynamics of actin and microtubule and its crosstalk mediated by FHDC1. Front Cell Dev Biol 2024; 11:1261117. [PMID: 38567385 PMCID: PMC10985548 DOI: 10.3389/fcell.2023.1261117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024] Open
Abstract
The coordination between actin and microtubule network is crucial, yet this remains a challenging problem to dissect and our understanding of the underlying mechanisms remains limited. In this study, we used travelling waves in the cell cortex to characterize the collective dynamics of cytoskeletal networks. Our findings show that Cdc42 and F-BAR-dependent actin waves in mast cells are mainly driven by formin-mediated actin polymerization, with the microtubule-binding formin FH2 domain-containing protein 1 (FHDC1) as an early regulator. Knocking down FHDC1 inhibits actin wave formation, and this inhibition require FHDC1's interaction with both microtubule and actin. The phase of microtubule depolymerization coincides with the nucleation of actin waves and microtubule stabilization inhibit actin waves, leading us to propose that microtubule shrinking and the concurrent release of FHDC1 locally regulate actin nucleation. Lastly, we show that FHDC1 is crucial for multiple cellular processes such as cell division and migration. Our data provided molecular insights into the nucleation mechanisms of actin waves and uncover an antagonistic interplay between microtubule and actin polymerization in their collective dynamics.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Su Guo
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Ravin Raj
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Nicole Wen Pei Ong
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Ann Gie Lee
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Oevel K, Hohensee S, Kumar A, Rosas-Brugada I, Bartolini F, Soykan T, Haucke V. Rho GTPase signaling and mDia facilitate endocytosis via presynaptic actin. eLife 2024; 12:RP92755. [PMID: 38502163 PMCID: PMC10950329 DOI: 10.7554/elife.92755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Neurotransmission at synapses is mediated by the fusion and subsequent endocytosis of synaptic vesicle membranes. Actin has been suggested to be required for presynaptic endocytosis but the mechanisms that control actin polymerization and its mode of action within presynaptic nerve terminals remain poorly understood. We combine optical recordings of presynaptic membrane dynamics and ultrastructural analysis with genetic and pharmacological manipulations to demonstrate that presynaptic endocytosis is controlled by actin regulatory diaphanous-related formins mDia1/3 and Rho family GTPase signaling in mouse hippocampal neurons. We show that impaired presynaptic actin assembly in the near absence of mDia1/3 and reduced RhoA activity is partly compensated by hyperactivation of Rac1. Inhibition of Rac1 signaling further aggravates impaired presynaptic endocytosis elicited by loss of mDia1/3. Our data suggest that interdependent mDia1/3-Rho and Rac1 signaling pathways cooperatively act to facilitate synaptic vesicle endocytosis by controlling presynaptic F-actin.
Collapse
Affiliation(s)
- Kristine Oevel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Svea Hohensee
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | | | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical CenterNew York CityUnited States
| | - Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität BerlinBerlinGermany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
4
|
Li Z, Su M, Xie X, Wang P, Bi H, Li E, Ren K, Dong L, Lv Z, Ma X, Liu Y, Zhao B, Peng Y, Liu J, Liu L, Yang J, Ji P, Mei Y. mDia formins form hetero-oligomers and cooperatively maintain murine hematopoiesis. PLoS Genet 2023; 19:e1011084. [PMID: 38157491 PMCID: PMC10756686 DOI: 10.1371/journal.pgen.1011084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.
Collapse
Affiliation(s)
- Zhaofeng Li
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Xinshu Xie
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Pan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Honghao Bi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ermin Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lili Dong
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Xuezhen Ma
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yijie Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuanliang Peng
- Department of Hematology, the Second Xiangya Hospital; Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University; Changsha, China
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital; Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University; Changsha, China
| | - Lu Liu
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yang Mei
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| |
Collapse
|
5
|
Mechanical Forces Govern Interactions of Host Cells with Intracellular Bacterial Pathogens. Microbiol Mol Biol Rev 2022; 86:e0009420. [PMID: 35285720 PMCID: PMC9199418 DOI: 10.1128/mmbr.00094-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.
Collapse
|
6
|
Chiereghin C, Robusto M, Massa V, Castorina P, Ambrosetti U, Asselta R, Soldà G. Role of Cytoskeletal Diaphanous-Related Formins in Hearing Loss. Cells 2022; 11:cells11111726. [PMID: 35681420 PMCID: PMC9179844 DOI: 10.3390/cells11111726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Hearing relies on the proper functioning of auditory hair cells and on actin-based cytoskeletal structures. Diaphanous-related formins (DRFs) are evolutionarily conserved cytoskeletal proteins that regulate the nucleation of linear unbranched actin filaments. They play key roles during metazoan development, and they seem particularly pivotal for the correct physiology of the reproductive and auditory systems. Indeed, in Drosophila melanogaster, a single diaphanous (dia) gene is present, and mutants show sterility and impaired response to sound. Vertebrates, instead, have three orthologs of the diaphanous gene: DIAPH1, DIAPH2, and DIAPH3. In humans, defects in DIAPH1 and DIAPH3 have been associated with different types of hearing loss. In particular, heterozygous mutations in DIAPH1 are responsible for autosomal dominant deafness with or without thrombocytopenia (DFNA1, MIM #124900), whereas regulatory mutations inducing the overexpression of DIAPH3 cause autosomal dominant auditory neuropathy 1 (AUNA1, MIM #609129). Here, we provide an overview of the expression and function of DRFs in normal hearing and deafness.
Collapse
Affiliation(s)
- Chiara Chiereghin
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Di Rudinì 8, 20146 Milan, Italy;
| | | | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Via F. Sforza 35, 20122 Milan, Italy;
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
| | - Giulia Soldà
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
- Correspondence:
| |
Collapse
|
7
|
Zhang Z, Bao Z, Gao P, Yao J, Wang P, Chai D. Diverse Roles of F-BoxProtein3 in Regulation of Various Cellular Functions. Front Cell Dev Biol 2022; 9:802204. [PMID: 35127719 PMCID: PMC8807484 DOI: 10.3389/fcell.2021.802204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Accumulated evidence shows that the F-box protein 3 (FBXO3) has multiple biological functions, including regulation of immune pathologies, neuropathic diseases and antiviral response. In this review article, we focus on the role of FBXO3 in inflammatory disorders and human malignancies. We also describe the substrates of FBXO3, which contribute to inflammatory disorders and cancers. We highlight that the high expression of FBXO3 is frequently observed in rheumatoid arthritis, leukemia, pituitary adenoma, and oral squamous cell carcinoma. Moreover, we discuss the regulation of FBXO3 by both carcinogens and cancer preventive agents. Our review provides a comprehensive understanding of the role of FBXO3 in various biological systems and elucidates how FBXO3 regulates substrate ubiquitination and degradation during various physiological and pathological processes. Therefore, FBXO3 can be a novel target in the treatment of human diseases including carcinomas.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhengqi Bao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Penglian Gao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Junyi Yao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Peter Wang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
- *Correspondence: Peter Wang, ; Damin Chai,
| | - Damin Chai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- *Correspondence: Peter Wang, ; Damin Chai,
| |
Collapse
|
8
|
Mangon A, Salaün D, Bouali ML, Kuzmić M, Quitard S, Thuault S, Isnardon D, Audebert S, Puech PH, Verdier-Pinard P, Badache A. iASPP contributes to cell cortex rigidity, mitotic cell rounding, and spindle positioning. J Cell Biol 2021; 220:212730. [PMID: 34705028 PMCID: PMC8562848 DOI: 10.1083/jcb.202012002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/03/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022] Open
Abstract
iASPP is a protein mostly known as an inhibitor of p53 pro-apoptotic activity and a predicted regulatory subunit of the PP1 phosphatase, which is often overexpressed in tumors. We report that iASPP associates with the microtubule plus-end binding protein EB1, a central regulator of microtubule dynamics, via an SxIP motif. iASPP silencing or mutation of the SxIP motif led to defective microtubule capture at the cortex of mitotic cells, leading to abnormal positioning of the mitotic spindle. These effects were recapitulated by the knockdown of the membrane-to-cortex linker Myosin-Ic (Myo1c), which we identified as a novel partner of iASPP. Moreover, iASPP or Myo1c knockdown cells failed to round up upon mitosis because of defective cortical stiffness. We propose that by increasing cortical rigidity, iASPP helps cancer cells maintain a spherical geometry suitable for proper mitotic spindle positioning and chromosome partitioning.
Collapse
Affiliation(s)
- Aurélie Mangon
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Danièle Salaün
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Mohamed Lala Bouali
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Sabine Quitard
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Sylvie Thuault
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Pierre-Henri Puech
- Laboratoire Adhésion et Inflammation, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Aix Marseille Université, Turing Center for Living Systems, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
9
|
Nonredundant roles of DIAPHs in primary ciliogenesis. J Biol Chem 2021; 296:100680. [PMID: 33872598 PMCID: PMC8122175 DOI: 10.1016/j.jbc.2021.100680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Primary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability. Recently, we showed that the formin DIAPH1 is involved in ciliogenesis. However, the role of other DIAPH family members in ciliogenesis had not been investigated. Here we show that depletion of either DIAPH2 or DIAPH3 also disrupted ciliogenesis and cilia length. DIAPH3 depletion also reduced trafficking within cilia. To specifically examine the role of DIAPH3 at the base, we used fused full-length DIAPH3 to centrin, which targeted DIAPH3 to the basal body, causing increased trafficking to the ciliary base, an increase in cilia length, and formation of bulbs at the tips of cilia. Additionally, we confirmed that the microtubule-stabilizing properties of DIAPH3 are important for its cilia length functions and trafficking. These results indicate the importance of DIAPH proteins in regulating cilia maintenance. Moreover, defects in ciliogenesis caused by DIAPH depletion could only be rescued by expression of the specific family member depleted, indicating nonredundant roles for these proteins.
Collapse
|
10
|
Abstract
As multi-cellular organisms evolved from small clusters of cells to complex metazoans, biological tubes became essential for life. Tubes are typically thought of as mainly playing a role in transport, with the hollow space (lumen) acting as a conduit to distribute nutrients and waste, or for gas exchange. However, biological tubes also provide a platform for physiological, mechanical, and structural functions. Indeed, tubulogenesis is often a critical aspect of morphogenesis and organogenesis. C. elegans is made up of tubes that provide structural support and protection (the epidermis), perform the mechanical and enzymatic processes of digestion (the buccal cavity, pharynx, intestine, and rectum), transport fluids for osmoregulation (the excretory system), and execute the functions necessary for reproduction (the germline, spermatheca, uterus and vulva). Here we review our current understanding of the genetic regulation, molecular processes, and physical forces involved in tubulogenesis and morphogenesis of the epidermal, digestive and excretory systems in C. elegans.
Collapse
Affiliation(s)
- Daniel D Shaye
- Department of Physiology and Biophysics, University of Illinois at Chicago-College of Medicine, Chicago, IL, United States.
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| |
Collapse
|
11
|
The actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size. Dev Biol 2021; 469:12-25. [PMID: 32980309 DOI: 10.1016/j.ydbio.2020.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
Abstract
The sarcomere is the basic contractile unit of muscle, composed of repeated sets of actin thin filaments and myosin thick filaments. During muscle development, sarcomeres grow in size to accommodate the growth and function of muscle fibers. Failure in regulating sarcomere size results in muscle dysfunction; yet, it is unclear how the size and uniformity of sarcomeres are controlled. Here we show that the formin Diaphanous is critical for the growth and maintenance of sarcomere size: Dia sets sarcomere length and width through regulation of the number and length of the actin thin filaments in the Drosophila flight muscle. To regulate thin filament length and sarcomere size, Dia interacts with the Gelsolin superfamily member Flightless I (FliI). We suggest that these actin regulators, by controlling actin dynamics and turnover, generate uniformly sized sarcomeres tuned for the muscle contractions required for flight.
Collapse
|
12
|
Palander O, Trimble WS. DIAPH1 regulates ciliogenesis and trafficking in primary cilia. FASEB J 2020; 34:16516-16535. [PMID: 33124112 DOI: 10.1096/fj.202001178r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
Primary cilia are critical hubs for several signaling pathways, and defects in ciliogenesis or cilia maintenance produce a range of diseases collectively known as ciliopathies. Ciliogenesis requires vesicle trafficking along a network of microtubules and actin filaments to the basal body. The DIAPH1 (Diaphanous-related formin) family of formins promotes both actin polymerization and EB1-dependent microtubule (MT) stability. EB1 and EB3 have previously been implicated in cilia biogenesis to carry out centrosome-related functions. However, the role of DIAPH1 proteins had not been examined. Here we show that the depletion of DIAPH1 decreased ciliogenesis, cilia length, and reduced trafficking within cilia. Additionally, both actin nucleating and microtubule-stabilizing properties of DIAPH1 are important for their cilia functions. To assess their roles in ciliogenesis in isolation, we targeted DIAPH1 specifically to the basal body, which caused an increase in cilia length and increased trafficking within cilia. Intriguingly, expression of DIAPH1 mutants associated with human deafness and microcephaly impaired ciliation and caused cilia elongation and bulb formation. These results suggest that the actin and microtubule functions of DIAPH1 proteins regulate cilia maintenance in part by regulating vesicular trafficking to the base of the primary cilia.
Collapse
Affiliation(s)
- Oliva Palander
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
van Gisbergen P, Wu SZ, Cheng X, Pattavina KA, Bezanilla M. In vivo analysis of formin dynamics in the moss P. patens reveals functional class diversification. J Cell Sci 2020; 133:jcs233791. [PMID: 31969472 PMCID: PMC10679510 DOI: 10.1242/jcs.233791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/07/2020] [Indexed: 01/02/2023] Open
Abstract
Formins are actin regulators critical for diverse processes across eukaryotes. With many formins in plants and animals, it has been challenging to determine formin function in vivo We found that the phylogenetically distinct class I integral membrane formins (denoted For1) from the moss P.patens enrich at sites of membrane turnover, with For1D more tightly associated with the plasma membrane than For1A. To probe formin function, we generated formin-null lines with greatly reduced formin complexity. We found that For1A and For1D help to anchor actin near the cell apex, with For1A contributing to formation of cytosolic actin, while For1D contributes to plasma membrane-associated actin. At the cortex, For1A and For1D localized to motile puncta and differentially impacted actin dynamics. We found that class I cortical formin mobility depended on microtubules and only moderately on actin, whereas class II formin (denoted For2) mobility solely depended on actin. Moreover, cortical For2A tightly correlated with the puncta labeled by the endocytic membrane dye FM4-64, and null mutants in class I formins did not affect uptake of a similar dye, FM1-43, suggesting that class I and II formins are involved in distinct membrane trafficking pathways.
Collapse
Affiliation(s)
- Peter van Gisbergen
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Kelli A Pattavina
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
14
|
Klein O, Krier-Burris RA, Lazki-Hagenbach P, Gorzalczany Y, Mei Y, Ji P, Bochner BS, Sagi-Eisenberg R. Mammalian diaphanous-related formin 1 (mDia1) coordinates mast cell migration and secretion through its actin-nucleating activity. J Allergy Clin Immunol 2019; 144:1074-1090. [PMID: 31279009 PMCID: PMC7278082 DOI: 10.1016/j.jaci.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Actin remodeling is a key regulator of mast cell (MC) migration and secretion. However, the precise mechanism underlying the coordination of these processes has remained obscure. OBJECTIVE We sought to characterize the actin rearrangements that occur during MC secretion or chemotactic migration and identify the underlying mechanism of their coordination. METHODS Using high-resolution microscopy, we analyzed the dynamics of actin rearrangements in MCs triggered to migration by IL-8 or prostaglandin E2 or to FcεRI-stimulated secretion. RESULTS We show that a major feature of the actin skeleton in MCs stimulated to migration is the buildup of pericentral actin clusters that prevent cell flattening and converge the secretory granules (SGs) in the cell center. This migratory phenotype is replaced on encounter of an IgE cross-linking antigen that stimulates secretion through a secretory phenotype characterized by cell flattening, reduction of actin mesh density, ruffling of cortical actin, and mobilization of SGs. Furthermore, we show that knockdown of mammalian diaphanous-related formin 1 (mDia1) inhibits chemotactic migration and its typical actin rearrangements, whereas expression of an active mDia1 mutant recapitulates the migratory actin phenotype and enhances cell migration while inhibiting FcεRI-triggered secretion. However, mice deficient in mDia1 appear to have normal numbers of MCs in various organs at baseline. CONCLUSION Our results demonstrate a unique role of actin rearrangements in clustering the SGs and inhibiting their secretion during MC migration. We identify mDia1 as a novel regulator of MC response that coordinates MC chemotaxis and secretion through its actin-nucleating activity.
Collapse
Affiliation(s)
- Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rebecca A Krier-Burris
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Pia Lazki-Hagenbach
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaara Gorzalczany
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yang Mei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Multiple roles of the actin and microtubule-regulating formins in the developing brain. Neurosci Res 2019; 138:59-69. [DOI: 10.1016/j.neures.2018.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
|
16
|
Liu C, Zhu R, Mao Y. Nuclear Actin Polymerized by mDia2 Confines Centromere Movement during CENP-A Loading. iScience 2018; 9:314-327. [PMID: 30448731 PMCID: PMC6240728 DOI: 10.1016/j.isci.2018.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Centromeres are specialized chromosomal regions epigenetically defined by the histone H3 variant centromere protein A (CENP-A). CENP-A needs to be replenished in every cell cycle, but how new CENP-A is stably incorporated into centromeric chromatin remains unclear. We have discovered that a cytoskeletal protein, diaphanous formin mDia2, is essential for the stable incorporation of new CENP-A proteins into centromeric nucleosomes. Here we report that mDia2-mediated formation of dynamic and short nuclear actin filaments in G1 nucleus is required to maintain CENP-A levels at the centromere. Importantly, mDia2 and nuclear actin are required for constrained centromere movement during CENP-A loading, and depleting nuclear actin or MgcRacGAP, which lies upstream of mDia2, extends centromeric association of the CENP-A loading chaperone Holliday junction recognition protein (HJURP). Our findings thus suggest that nuclear actin polymerized by mDia2 contributes to the physical confinement of G1 centromeres so that HJURP-mediated CENP-A loading reactions can be productive, and centromere's epigenetic identity can be stably maintained.
Collapse
Affiliation(s)
- Chenshu Liu
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, 630 W 168(th) Street, New York, NY 10032, USA.
| | - Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, 630 W 168(th) Street, New York, NY 10032, USA
| | - Yinghui Mao
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, 630 W 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
17
|
|
18
|
Fernández-Barrera J, Alonso MA. Coordination of microtubule acetylation and the actin cytoskeleton by formins. Cell Mol Life Sci 2018; 75:3181-3191. [PMID: 29947928 PMCID: PMC11105221 DOI: 10.1007/s00018-018-2855-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
The acetylation of the lysine 40 residue of α-tubulin was described more than 30 years ago and has been the subject of intense research ever since. Although the exact function of this covalent modification of tubulin in the cell remains unknown, it has been established that tubulin acetylation confers resilience to mechanical stress on the microtubules. Formins have a dual role in the fate of the actin and tubulin cytoskeletons. On the one hand, they catalyze the formation of actin filaments, and on the other, they bind microtubules, act on their stability, and regulate their acetylation and alignment with actin fibers. Recent evidence indicates that formins coordinate the actin cytoskeleton and tubulin acetylation by modulating the levels of free globular actin (G-actin). G-actin, in turn, controls the activity of the myocardin-related transcription factor-serum response factor transcriptional complex that regulates the expression of the α-tubulin acetyltransferase 1 (α-TAT1) gene, which encodes the main enzyme responsible for tubulin acetylation. The effect of formins on tubulin acetylation is the combined result of their ability to activate α-TAT1 gene transcription and of their capacity to regulate microtubule stabilization. The contribution of these two mechanisms in different formins is discussed, particularly with respect to INF2, a formin that is mutated in hereditary human renal and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
19
|
Graubner FR, Gram A, Kautz E, Bauersachs S, Aslan S, Agaoglu AR, Boos A, Kowalewski MP. Uterine responses to early pre-attachment embryos in the domestic dog and comparisons with other domestic animal species. Biol Reprod 2018. [PMID: 28651344 PMCID: PMC5803782 DOI: 10.1093/biolre/iox063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the dog, there is no luteolysis in the absence of pregnancy. Thus, this species lacks any anti-luteolytic endocrine signal as found in other species that modulate uterine function during the critical period of pregnancy establishment. Nevertheless, in the dog an embryo-maternal communication must occur in order to prevent rejection of embryos. Based on this hypothesis, we performed microarray analysis of canine uterine samples collected during pre-attachment phase (days 10-12) and in corresponding non-pregnant controls, in order to elucidate the embryo attachment signal. An additional goal was to identify differences in uterine responses to pre-attachment embryos between dogs and other mammalian species exhibiting different reproductive patterns with regard to luteolysis, implantation, and preparation for placentation. Therefore, the canine microarray data were compared with gene sets from pigs, cattle, horses, and humans. We found 412 genes differentially regulated between the two experimental groups. The functional terms most strongly enriched in response to pre-attachment embryos related to extracellular matrix function and remodeling, and to immune and inflammatory responses. Several candidate genes were validated by semi-quantitative PCR. When compared with other species, best matches were found with human and equine counterparts. Especially for the pig, the majority of overlapping genes showed opposite expression patterns. Interestingly, 1926 genes did not pair with any of the other gene sets. Using a microarray approach, we report the uterine changes in the dog driven by the presence of embryos and compare these results with datasets from other mammalian species, finding common-, contrary-, and exclusively canine-regulated genes.
Collapse
Affiliation(s)
- Felix R Graubner
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ewa Kautz
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefan Bauersachs
- Institute of Agricultural Sciences, Animal Physiology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Selim Aslan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Near East University, Nicosia, North Cyprus
| | - Ali R Agaoglu
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Migh E, Götz T, Földi I, Szikora S, Gombos R, Darula Z, Medzihradszky KF, Maléth J, Hegyi P, Sigrist S, Mihály J. Microtubule organization in presynaptic boutons relies on the formin DAAM. Development 2018; 145:dev158519. [PMID: 29487108 DOI: 10.1242/dev.158519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/14/2018] [Indexed: 02/02/2023]
Abstract
Regulation of the cytoskeleton is fundamental to the development and function of synaptic terminals, such as neuromuscular junctions. Despite the identification of numerous proteins that regulate synaptic actin and microtubule dynamics, the mechanisms of cytoskeletal control during terminal arbor formation have remained largely elusive. Here, we show that DAAM, a member of the formin family of cytoskeleton organizing factors, is an important presynaptic regulator of neuromuscular junction development in Drosophila We demonstrate that the actin filament assembly activity of DAAM plays a negligible role in terminal formation; rather, DAAM is necessary for synaptic microtubule organization. Genetic interaction studies consistently link DAAM with the Wg/Ank2/Futsch module of microtubule regulation and bouton formation. Finally, we provide evidence that DAAM is tightly associated with the synaptic active zone scaffold, and electrophysiological data point to a role in the modulation of synaptic vesicle release. Based on these results, we propose that DAAM is an important cytoskeletal effector element of the Wg/Ank2 pathway involved in the determination of basic synaptic structures, and, additionally, that DAAM may couple the active zone scaffold to the presynaptic cytoskeleton.
Collapse
Affiliation(s)
- Ede Migh
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Torsten Götz
- Institut für Biologie/Genetik and NeuroCure, Freie Universitat Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Rita Gombos
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - József Maléth
- MTA-SZTE Translational Gastroenterology Research Group, Szeged H-6725, Hungary
| | - Péter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, Szeged H-6725, Hungary
- Institute for Translational Medicine, University of Pecs, Pécs H-7624, Hungary
| | - Stephan Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universitat Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
21
|
EB1-binding-myomegalin protein complex promotes centrosomal microtubules functions. Proc Natl Acad Sci U S A 2017; 114:E10687-E10696. [PMID: 29162697 DOI: 10.1073/pnas.1705682114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Control of microtubule dynamics underlies several fundamental processes such as cell polarity, cell division, and cell motility. To gain insights into the mechanisms that control microtubule dynamics during cell motility, we investigated the interactome of the microtubule plus-end-binding protein end-binding 1 (EB1). Via molecular mapping and cross-linking mass spectrometry we identified and characterized a large complex associating a specific isoform of myomegalin termed "SMYLE" (for short myomegalin-like EB1 binding protein), the PKA scaffolding protein AKAP9, and the pericentrosomal protein CDK5RAP2. SMYLE was associated through an evolutionarily conserved N-terminal domain with AKAP9, which in turn was anchored at the centrosome via CDK5RAP2. SMYLE connected the pericentrosomal complex to the microtubule-nucleating complex (γ-TuRC) via Galectin-3-binding protein. SMYLE associated with nascent centrosomal microtubules to promote microtubule assembly and acetylation. Disruption of SMYLE interaction with EB1 or AKAP9 prevented microtubule nucleation and their stabilization at the leading edge of migrating cells. In addition, SMYLE depletion led to defective astral microtubules and abnormal orientation of the mitotic spindle and triggered G1 cell-cycle arrest, which might be due to defective centrosome integrity. As a consequence, SMYLE loss of function had a profound impact on tumor cell motility and proliferation, suggesting that SMYLE might be an important player in tumor progression.
Collapse
|
22
|
Juanes MA, Bouguenina H, Eskin JA, Jaiswal R, Badache A, Goode BL. Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. J Cell Biol 2017; 216:2859-2875. [PMID: 28663347 PMCID: PMC5584174 DOI: 10.1083/jcb.201702007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/14/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Cell motility depends on tight coordination between the microtubule (MT) and actin cytoskeletons, but the mechanisms underlying this MT-actin cross talk have remained poorly understood. Here, we show that the tumor suppressor protein adenomatous polyposis coli (APC), which is a known MT-associated protein, directly nucleates actin assembly to promote directed cell migration. By changing only two residues in APC, we generated a separation-of-function mutant, APC (m4), that abolishes actin nucleation activity without affecting MT interactions. Expression of full-length APC carrying the m4 mutation (APC (m4)) rescued cellular defects in MT organization, MT dynamics, and mitochondrial distribution caused by depletion of endogenous APC but failed to restore cell migration. Wild-type APC and APC (m4) localized to focal adhesions (FAs), and APC (m4) was defective in promoting actin assembly at FAs to facilitate MT-induced FA turnover. These results provide the first direct evidence for APC-mediated actin assembly in vivo and establish a role for APC in coordinating MTs and actin at FAs to direct cell migration.
Collapse
Affiliation(s)
| | - Habib Bouguenina
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | | | - Richa Jaiswal
- Department of Biology, Brandeis University, Waltham, MA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA
| |
Collapse
|
23
|
Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments. Sci Rep 2017; 7:44976. [PMID: 28338090 PMCID: PMC5364497 DOI: 10.1038/srep44976] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
Functions of septin cytoskeletal polymers in tumorigenesis are still poorly defined. Their role in the regulation of cytokinesis and cell migration were proposed to contribute to cancer associated aneuploidy and metastasis. Overexpression of Septin 9 (Sept9) promotes migration of cancer cell lines. SEPT9 mRNA and protein expression is increased in breast tumors compared to normal and peritumoral tissues and amplification of SEPT9 gene was positively correlated with breast tumor progression. However, the existence of multiple isoforms of Sept9 is a confounding factor in the analysis of Sept9 functions. In the present study, we analyze the protein expression of Sept9_i2, an uncharacterized isoform, in breast cancer cell lines and tumors and describe its specific impact on cancer cell migration and Sept9 cytoskeletal distribution. Collectively, our results showed that, contrary to Sept9_i1, Sept9_i2 did not support cancer cell migration, and induced a loss of subnuclear actin filaments. These effects were dependent on Sept9_i2 specific N-terminal sequence. Sept9_i2 was strongly down-regulated in breast tumors compared to normal mammary tissues. Thus our data indicate that Sept9_i2 is a negative regulator of breast tumorigenesis. We propose that Sept9 tumorigenic properties depend on the balance between Sept9_i1 and Sept9_i2 expression levels.
Collapse
|
24
|
Foldi I, Szikora S, Mihály J. Formin' bridges between microtubules and actin filaments in axonal growth cones. Neural Regen Res 2017; 12:1971-1973. [PMID: 29323030 PMCID: PMC5784339 DOI: 10.4103/1673-5374.221148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- István Foldi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Szeged, Hungary
| |
Collapse
|
25
|
Ngo T, Miao X, Robinson DN, Zhou QQ. An RNA-binding protein, RNP-1, protects microtubules from nocodazole and localizes to the leading edge during cytokinesis and cell migration in Dictyostelium cells. Acta Pharmacol Sin 2016; 37:1449-1457. [PMID: 27569394 DOI: 10.1038/aps.2016.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/21/2016] [Indexed: 01/02/2023]
Abstract
AIM RNA-binding proteins are a large group of regulators (800-1000 in humans), some of which play significant roles in mRNA local translation. In this study, we analyzed the functions of the protein RNP-1, which was previously discovered in a genetic selection screen for nocodazole suppression. METHODS The growth rates and the microtubule networks of Dictyostelium cells were assessed with or without nocodazole (10 μmol/L) in suspension culture. Fluorescent images of RNP-1-GFP and RFP-tubulin were captured when cells were undergoing cytokinesis, then the GFP signal intensity and distance to the nearest centrosome were analyzed by using a computer program written in Matlab®. The RNP-1-GFP-expresseding cells were polarized, and the time-lapse images of cells were captured when cells were chemotaxing to a cAMP source. RESULTS Over-expression of RNP-1 rescued the growth defects caused by the microtubule-destabilizing agent nocodazole. Over-expression of RNP-1 protected microtubules from nocodazole treatment. In cells undergoing cytokinesis, the RNP-1 protein was localized to the polar regions of the cell cortex, and protein levels decreased proportionally as the power of the distance from the cell cortex to the nearest centrosome. In chemotactic cells, the RNP-1 protein localized to the leading edge of moving cells. Sequence analysis revealed that RNP-1 has two RNA-binding domains and is related to cytosolic poly(A)-binding proteins (PABPCs) in humans. CONCLUSION RNP-1 has roles in protecting microtubules and in directing cortical movement during cytokinesis and cell migration in Dictyostelium cells. The sequence similarity of RNP-1 to human PABPCs suggests that PABPCs may have similar functions in mammalian cells, perhaps in regulating microtubule dynamics and functions during cortical movement in cytokinesis and cell migration.
Collapse
|
26
|
Liu C, Mao Y. Diaphanous formin mDia2 regulates CENP-A levels at centromeres. J Cell Biol 2016; 213:415-24. [PMID: 27185834 PMCID: PMC4878093 DOI: 10.1083/jcb.201512034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/20/2016] [Indexed: 12/05/2022] Open
Abstract
The diaphanous formin mDia2, a protein involved in cytoskeletal control, is required for new CENP-A loading at centromeres during the cell cycle to maintain epigenetic markers. Centromeres of higher eukaryotes are epigenetically defined by centromere protein A (CENP-A), a centromere-specific histone H3 variant. The incorporation of new CENP-A into centromeres to maintain the epigenetic marker after genome replication in S phase occurs in G1 phase; however, how new CENP-A is loaded and stabilized remains poorly understood. Here, we identify the formin mDia2 as essential for stable replenishment of new CENP-A at centromeres. Quantitative imaging, pulse-chase analysis, and high-resolution ratiometric live-cell studies demonstrate that mDia2 and its nuclear localization are required to maintain CENP-A levels at centromeres. Depletion of mDia2 results in a prolonged centromere association of holiday junction recognition protein (HJURP), the chaperone required for CENP-A loading. A constitutively active form of mDia2 rescues the defect in new CENP-A loading caused by depletion of male germ cell Rac GTPase-activating protein (MgcRacGAP), a component of the small GTPase pathway essential for CENP-A maintenance. Thus, the formin mDia2 functions downstream of the MgcRacGAP-dependent pathway in regulating assembly of new CENP-A containing nucleosomes at centromeres.
Collapse
Affiliation(s)
- Chenshu Liu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Yinghui Mao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
27
|
Lin-Hendel EG, McManus MJ, Wallace DC, Anderson SA, Golden JA. Differential Mitochondrial Requirements for Radially and Non-radially Migrating Cortical Neurons: Implications for Mitochondrial Disorders. Cell Rep 2016; 15:229-37. [PMID: 27050514 DOI: 10.1016/j.celrep.2016.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/08/2016] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction has been increasingly linked to neurodevelopmental disorders such as intellectual disability, childhood epilepsy, and autism spectrum disorder, conditions also associated with cortical GABAergic interneuron dysfunction. Although interneurons have some of the highest metabolic demands in the postnatal brain, the importance of mitochondria during interneuron development is unknown. We find that interneuron migration from the basal forebrain to the neocortex is highly sensitive to perturbations in oxidative phosphorylation. Both pharmacologic and genetic inhibition of adenine nucleotide transferase 1 (Ant1) disrupts the non-radial migration of interneurons, but not the radial migration of cortical projection neurons. The selective dependence of cortical interneuron migration on oxidative phosphorylation may be a mechanistic pathway upon which multiple developmental and metabolic pathologies converge.
Collapse
Affiliation(s)
- Erika G Lin-Hendel
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Developmental, Regenerative and Stem Cell Biology, Biomedical Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meagan J McManus
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Bartolini F, Andres-Delgado L, Qu X, Nik S, Ramalingam N, Kremer L, Alonso MA, Gundersen GG. An mDia1-INF2 formin activation cascade facilitated by IQGAP1 regulates stable microtubules in migrating cells. Mol Biol Cell 2016; 27:1797-808. [PMID: 27030671 PMCID: PMC4884070 DOI: 10.1091/mbc.e15-07-0489] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 03/25/2016] [Indexed: 01/08/2023] Open
Abstract
The formin INF2 is required for stable Glu microtubule formation and inhibition of microtubule dynamics in NIH3T3 cells downstream of mDia1 and LPA. Evidence also shows that the formation of an mDia1/INF2 complex is necessary for microtubule stabilization stimulated by LPA and is regulated by IQGAP1. Multiple formins regulate microtubule (MT) arrays, but whether they function individually or in a common pathway is unknown. Lysophosphatidic acid (LPA) stimulates the formation of stabilized detyrosinated MTs (Glu MTs) in NIH3T3 fibroblasts through RhoA and the formin mDia1. Here we show that another formin, INF2, is necessary for mDia1-mediated induction of Glu MTs and regulation of MT dynamics and that mDia1 can be bypassed by activating INF2. INF2 localized to MTs after LPA treatment in an mDia1-dependent manner, suggesting that mDia1 regulates INF2. Mutants of either formin that disrupt their interaction failed to rescue MT stability in cells depleted of the respective formin, and the mDia1-interacting protein IQGAP1 regulated INF2’s localization to MTs and the induction of Glu MTs by either formin. The N-terminus of IQGAP1 associated with the C-terminus of INF2 directly, suggesting the possibility of a tripartite complex stimulated by LPA. Supporting this, the interaction of mDia1 and INF2 was induced by LPA and dependent on IQGAP1. Our data highlight a unique mechanism of formin action in which mDia1 and INF2 function in series to stabilize MTs and point to IQGAP1 as a scaffold that facilitates the activation of one formin by another.
Collapse
Affiliation(s)
- Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Laura Andres-Delgado
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Xiaoyi Qu
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Sara Nik
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Nagendran Ramalingam
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Leonor Kremer
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Miguel A Alonso
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
29
|
Weise-Cross L, Taylor JM, Mack CP. Inhibition of Diaphanous Formin Signaling In Vivo Impairs Cardiovascular Development and Alters Smooth Muscle Cell Phenotype. Arterioscler Thromb Vasc Biol 2015; 35:2374-83. [PMID: 26381868 DOI: 10.1161/atvbaha.115.305879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We and others have previously shown that RhoA-dependent stimulation of myocardin-related transcription factor nuclear localization promotes smooth muscle cell (SMC) marker gene expression. The goal of this study was to provide direct in vivo evidence that actin polymerization by the diaphanous-related formins contributes to the regulation of SMC differentiation and phenotype. APPROACH AND RESULTS Conditional Cre-based genetic approaches were used to overexpress a well-characterized dominant-negative variant of mDia1 (DNmDia) in SMC. DNmDia expression in SM22-expressing cells resulted in embryonic and perinatal lethality in ≈20% of mice because of defects in myocardial development and SMC investment of peripheral vessels. Although most DNmDia(+)/SM22Cre(+) mice exhibited no overt phenotype, the re-expression of SMC differentiation marker gene expression that occurs after carotid artery ligation was delayed, and this effect was accompanied by a significant decrease in myocardin-related transcription factor-A nuclear localization. Interestingly, neointima growth was inhibited by expression of DNmDia in SMC and this was likely because of a defect in directional SMC migration and not to defects in SMC proliferation or survival. Finally, by using the tamoxifen-inducible SM MHC-CreER(T2) line, we showed that SMC-specific induction of DNmDia in adult mice decreased SMC marker gene expression. CONCLUSIONS Our demonstration that diaphanous-related formin signaling plays a role in heart and vascular development and the maintenance of SMC phenotype provides important new evidence that Rho/actin/myocardin-related transcription factor signaling plays a critical role in cardiovascular function.
Collapse
Affiliation(s)
- Laura Weise-Cross
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Joan M Taylor
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Christopher P Mack
- From the Department of Pathology, University of North Carolina, Chapel Hill.
| |
Collapse
|
30
|
Arden JD, Lavik KI, Rubinic KA, Chiaia N, Khuder SA, Howard MJ, Nestor-Kalinoski AL, Alberts AS, Eisenmann KM. Small-molecule agonists of mammalian Diaphanous-related (mDia) formins reveal an effective glioblastoma anti-invasion strategy. Mol Biol Cell 2015; 26:3704-18. [PMID: 26354425 PMCID: PMC4626057 DOI: 10.1091/mbc.e14-11-1502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/04/2015] [Indexed: 12/26/2022] Open
Abstract
Formin agonists impede the most dangerous aspect of glioblastoma—tumor spread into surrounding healthy tissue. Formin activation impairs a novel aspect of the transformed cell and informs the development of antitumor strategies for a cancer needing a more effective therapy. The extensive invasive capacity of glioblastoma (GBM) makes it resistant to surgery, radiotherapy, and chemotherapy and thus makes it lethal. In vivo, GBM invasion is mediated by Rho GTPases through unidentified downstream effectors. Mammalian Diaphanous (mDia) family formins are Rho-directed effectors that regulate the F-actin cytoskeleton to support tumor cell motility. Historically, anti-invasion strategies focused upon mDia inhibition, whereas activation remained unexplored. The recent development of small molecules directly inhibiting or activating mDia-driven F-actin assembly that supports motility allows for exploration of their role in GBM. We used the formin inhibitor SMIFH2 and mDia agonists IMM-01/-02 and mDia2-DAD peptides, which disrupt autoinhibition, to examine the roles of mDia inactivation versus activation in GBM cell migration and invasion in vitro and in an ex vivo brain slice invasion model. Inhibiting mDia suppressed directional migration and spheroid invasion while preserving intrinsic random migration. mDia agonism abrogated both random intrinsic and directional migration and halted U87 spheroid invasion in ex vivo brain slices. Thus mDia agonism is a superior GBM anti-invasion strategy. We conclude that formin agonism impedes the most dangerous GBM component—tumor spread into surrounding healthy tissue. Formin activation impairs novel aspects of transformed cells and informs the development of anti-GBM invasion strategies.
Collapse
Affiliation(s)
- Jessica D Arden
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Kari I Lavik
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Kaitlin A Rubinic
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Nicolas Chiaia
- Department of Neurosciences, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Sadik A Khuder
- Departments of Medicine and Public Health and Homeland Security, University of Toledo Health Science Campus, Toledo, OH 43614
| | - Marthe J Howard
- Department of Neurosciences, University of Toledo Health Science Campus, Toledo, OH 43614
| | | | - Arthur S Alberts
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Kathryn M Eisenmann
- Department of Biochemistry and Cancer Biology, University of Toledo Health Science Campus, Toledo, OH 43614 )
| |
Collapse
|
31
|
Zhao Z, Manser E. Myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK), the ROCK-like effectors of Cdc42 and Rac1. Small GTPases 2015; 6:81-8. [PMID: 26090570 DOI: 10.1080/21541248.2014.1000699] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cdc42 is a member of the Rho GTPase protein family that plays key roles in local F-actin organization through a number of kinase and non-kinase effector proteins. The myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs), and the RhoA binding coiled-coil containing kinases (ROCKs) are widely expressed members of the Dystrophia myotonica protein kinase (DMPK) family. The MRCK proteins are ∼190 kDa multi-domain proteins expressed in all cells and coordinate certain acto-myosin networks. Notably MRCK is a key regulator of myosin18A and myosin IIA/B, and through phosphorylation of their common regulatory light chains (MYL9 or MLC2) to promote actin stress fiber contractility. The MRCK kinases are regulated by Cdc42, which is required for cell polarity and directional migration; MRCK links to the acto-myosin complex through interaction with a coiled-coil containing adaptor proteins LRAP35a/b. The biological activities of MRCK in model organisms such as worms and flies confirm it as a myosin II activator. In mammalian cell culture MRCK can be critical for cancer cell migration and neurite outgrowth. We review the current literatures regarding MRCK and highlight the similarities and differences between MRCK and ROCK kinases.
Collapse
Affiliation(s)
- Zhuoshen Zhao
- a sGSK Group; Institute of Molecular and Cell Biology (IMCB) ; Singapore
| | | |
Collapse
|
32
|
Vitriol EA, McMillen LM, Kapustina M, Gomez SM, Vavylonis D, Zheng JQ. Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia. Cell Rep 2015. [PMID: 25865895 DOI: 10.1016/j.celrep.2015.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer-binding protein thymosin β4 (Tβ4) for optimal leading-edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it does not interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions.
Collapse
Affiliation(s)
- Eric A Vitriol
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Laura M McMillen
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
| | - Maryna Kapustina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shawn M Gomez
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Vitriol EA, McMillen LM, Kapustina M, Gomez SM, Vavylonis D, Zheng JQ. Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia. Cell Rep 2015; 11:433-45. [PMID: 25865895 DOI: 10.1016/j.celrep.2015.03.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 11/20/2014] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer-binding protein thymosin β4 (Tβ4) for optimal leading-edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it does not interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions.
Collapse
Affiliation(s)
- Eric A Vitriol
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Laura M McMillen
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
| | - Maryna Kapustina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shawn M Gomez
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Isogai T, van der Kammen R, Goerdayal SS, Heck AJR, Altelaar AFM, Innocenti M. Proteomic analyses uncover a new function and mode of action for mouse homolog of Diaphanous 2 (mDia2). Mol Cell Proteomics 2015; 14:1064-78. [PMID: 25682332 PMCID: PMC4390252 DOI: 10.1074/mcp.m114.043885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/29/2022] Open
Abstract
mDia2 is an auto-inhibited Formin influencing actin dynamics upon conversion to the active conformation. mDia2 regulates actin-based protrusions and cell invasion, cell differentiation, vesicle trafficking, and cytokinesis. However, whether mDia2 has additional functions and how its action is functionally specified remain unknown. Here we draw the interactome of auto-inhibited and constitutively active mDia2 to address these issues. We embed mDia2 in protein networks accounting for its attributed functions and unexpectedly link it to the Ubiquitin Proteasome System. Taking FBXO3 as a test case, we show that mDia2 binds FBXO3 and p53, and regulates p53 transcriptional activity in an actin-nucleation-independent and conformation-insensitive manner. Increased mDia2 and FBXO3 levels elevate p53 activity and expression thereby sensitizing cells to p53-dependent apoptosis, whereas their decrease produces opposite effects. Thus, we discover a new role of mDia2 in p53 regulation suggesting that the closed conformation is biologically active and an FBXO3-based mechanism to functionally specify mDia2's activity.
Collapse
Affiliation(s)
- Tadamoto Isogai
- From the ‡Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Rob van der Kammen
- From the ‡Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Soenita S Goerdayal
- §Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- §Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; ¶Netherlands Proteomics Centre and Cancer Genomics Centre, 3584 CH Utrecht, The Netherlands
| | - A F Maarten Altelaar
- §Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; ¶Netherlands Proteomics Centre and Cancer Genomics Centre, 3584 CH Utrecht, The Netherlands
| | - Metello Innocenti
- From the ‡Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
35
|
Amarachintha SP, Ryan KJ, Cayer M, Boudreau NS, Johnson NM, Heckman CA. Effect of Cdc42 domains on filopodia sensing, cell orientation, and haptotaxis. Cell Signal 2014; 27:683-93. [PMID: 25435426 DOI: 10.1016/j.cellsig.2014.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/21/2014] [Indexed: 11/17/2022]
Abstract
Filopodia are sensors which, along with microtubules, regulate the persistence of locomotion. To determine whether protrusions were involved in sensing adhesion, epithelial cells were cultured on platinum and tantalum gradients. Protrusions were defined by an unbiased statistical method of classification as factors 4 (filopodia), 5 (mass distribution), and 7 (nascent neurites). When the prevalence of protrusions was measured in zones of high (H), middle (M), and low (L) adhesiveness, the main differences were in factor 4. Its values were highest at H and declined at M and L regardless of the gradient composition. The significance of the differences was enhanced when T (top/adhesive end) and B (bottom/nonadhesive end) sides of cells were analyzed separately. Since information about sidedness increased the statistical power of the test, this result suggested that cells pointed more filopodia toward the adhesive end. Trends occurred in factors 5 and 7 only when conditions allowed for a marked trend in factor 4. The data showed that gradient sensing is proportional to the prevalence of filopodia, and filopodia are the only protrusions engaged in comparing adhesiveness across a cell. The probability (P) of the significance of a trend was then used to determine how cells sense the gradient. Binding peptides (BPs) were introduced representing sequences critical for Cdc42 docking on a specific partner. BPs for IQGAP (IQ(calmodulin-binding domain)-containing GTPase-activating protein) and ACK (Cdc42-associated kinase) reduced factor 4 values and prevented cell orientation on the gradient. Micrographs showed attenuated or stubby filopodia. These effectors may be implicated in gradient sensing. Another IQGAP BP increased filopodia prevalence and enhanced orientation on the gradient (P<0.00015). A Wiskott-Aldrich syndrome protein (WASP) BP had no effect. When sensing and orientation were abolished, they both failed at the level of filopodia, indicating that filopodia are both sensors and implementers of signals transduced by adhesion.
Collapse
Affiliation(s)
- Surya P Amarachintha
- Center for Microscopy and Microanalysis, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Kenneth J Ryan
- Department of Applied Statistics and Operations Research, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Marilyn Cayer
- Center for Microscopy and Microanalysis, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Nancy S Boudreau
- Department of Applied Statistics and Operations Research, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Nathan M Johnson
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Carol A Heckman
- Center for Microscopy and Microanalysis, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States; Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| |
Collapse
|
36
|
Nowotarski SH, McKeon N, Moser RJ, Peifer M. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development. Mol Biol Cell 2014; 25:3147-65. [PMID: 25143400 PMCID: PMC4196866 DOI: 10.1091/mbc.e14-05-0951] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Actin-based protrusions are important for signaling and migration during development and homeostasis. Gain- and loss-of-function and quantitative approaches are used to define differential roles for the actin elongation factors Diaphanous and Enabled in regulating distinct protrusive behaviors in different tissues during Drosophila morphogenesis. Actin-based protrusions are important for signaling and migration during development and homeostasis. Defining how different tissues in vivo craft diverse protrusive behaviors using the same genomic toolkit of actin regulators is a current challenge. The actin elongation factors Diaphanous and Enabled both promote barbed-end actin polymerization and can stimulate filopodia in cultured cells. However, redundancy in mammals and Diaphanous’ role in cytokinesis limited analysis of whether and how they regulate protrusions during development. We used two tissues driving Drosophila dorsal closure—migratory leading-edge (LE) and nonmigratory amnioserosal (AS) cells—as models to define how cells shape distinct protrusions during morphogenesis. We found that nonmigratory AS cells produce filopodia that are morphologically and dynamically distinct from those of LE cells. We hypothesized that differing Enabled and/or Diaphanous activity drives these differences. Combining gain- and loss-of-function with quantitative approaches revealed that Diaphanous and Enabled each regulate filopodial behavior in vivo and defined a quantitative “fingerprint”—the protrusive profile—which our data suggest is characteristic of each actin regulator. Our data suggest that LE protrusiveness is primarily Enabled driven, whereas Diaphanous plays the primary role in the AS, and reveal each has roles in dorsal closure, but its robustness ensures timely completion in their absence.
Collapse
Affiliation(s)
- Stephanie H Nowotarski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie McKeon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachel J Moser
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
37
|
Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Curr Opin Cell Biol 2014; 30:74-82. [PMID: 24999834 DOI: 10.1016/j.ceb.2014.06.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 02/04/2023]
Abstract
Cell migration directed by spatial cues, or taxis, is a primary mechanism for orchestrating concerted and collective cell movements during development, wound repair, and immune responses. Compared with the classic example of amoeboid chemotaxis, in which fast-moving cells such as neutrophils are directed by gradients of soluble factors, directed migration of slow-moving mesenchymal cells such as fibroblasts is poorly understood. Mesenchymal cells possess a distinctive organization of the actin cytoskeleton and associated adhesion complexes as its primary mechanical system, generating the asymmetric forces required for locomotion without strong polarization. The emerging hypothesis is that the molecular underpinnings of mesenchymal taxis involve distinct signaling pathways and diverse requirements for regulation.
Collapse
|