1
|
Desgrouas C, Deryabin I, Duvillier C, Frankel D, Kaspi E, Quibel T, Le Goff G, Cerino M, Mortreux J, Gérard B, Dard R, Badens C. Homozygous loss of function variant in LMNB2 gene causes major brain malformation and perinatal death. J Med Genet 2025; 62:345-349. [PMID: 40011009 DOI: 10.1136/jmg-2024-110549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Lamins play a major role in the mechanical stability of cell nuclei, the organisation of chromatin and the DNA replication, transcription and repair. The expression profiles of A-type and B-type lamins vary depending on developmental stages, cell types and tissues. Lamin B2 is expressed very early in embryogenesis, especially in the central nervous system, where it is essential for neuronal migration and brain development. Pathogenic missense variants in lamin B2 have been linked to conditions such as lipodystrophy, progressive myoclonic epilepsy and primary microcephaly. Here, we report clinical data and molecular findings for two related newborns carrying a homozygous loss-of-function variant in the LMNB2 gene. Both newborns died in the perinatal period and exhibited a similar phenotype at birth, including severe brain development abnormalities, which closely mirror findings observed in several Lmnb2-deficient mouse models. Western blot and immunofluorescence cell labelling performed on the patient's fibroblasts obtained at birth confirmed the complete absence of lamin B2 and revealed an increase in lamin B1, together with alterations in alpha-tubulin and vimentin organisation. This novel clinical form of laminopathy associated with lamin B2 deficiency expands the molecular causes of brain development abnormalities to LMNB2 gene variants.
Collapse
Affiliation(s)
| | - Igor Deryabin
- Laboratoire de foetopathologie, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
- Département d'Obstétrique et Gynécologie, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - Clémence Duvillier
- Département d'Obstétrique et Gynécologie, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - Diane Frankel
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Biologie cellulaire, AP-HM, Marseille, France
| | - Elise Kaspi
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Biologie cellulaire, AP-HM, Marseille, France
| | - Thibaud Quibel
- Département d'Obstétrique et Gynécologie, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | | | - Mathieu Cerino
- Aix Marseille Univ, INSERM, C2VN, Marseille, France
- AP-HM, Service de Biochimie, Marseille, France
| | | | | | - Rodolphe Dard
- Département de Génétique, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Saint-Germain-en-Laye, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, C2VN, Marseille, France
- AP-HM, Service de Biochimie, Marseille, France
| |
Collapse
|
2
|
Sen S, Estève PO, Raman K, Beaulieu J, Chin H, Feehery G, Vishnu U, Xu SY, Samuelson J, Pradhan S. Distinct structural and functional heterochromatin partitioning of lamin B1 and lamin B2 revealed using genome-wide nicking enzyme epitope targeted DNA sequencing. Nucleic Acids Res 2025; 53:gkae1317. [PMID: 39817518 PMCID: PMC11736435 DOI: 10.1093/nar/gkae1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025] Open
Abstract
Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq). NEED-seq offers antibody-targeted controlled nicking by Nt.CviPII-pGL fusion to study specific protein-DNA complexes in formaldehyde fixed cells, allowing for both visual and genomic resolution of epitope bound chromatin. When applied to nuclei, NEED-seq yielded genome-wide profile of chromatin-associated proteins and histone PTMs. Additionally, NEED-seq of lamin B1 and B2 demonstrated their association with heterochromatin. Lamin B1- and B2-associated domains (LAD) segregated to three different states, and states with stronger LAD correlated with heterochromatic marks. Hi-C analysis displayed A and B compartment with equal lamin B1 and B2 distribution, although methylated DNA remained high in B compartment. LAD clustering with Hi-C resulted in subcompartments, with lamin B1 and B2 partitioning to facultative and constitutive heterochromatin, respectively, and were associated with neuronal development. Thus, lamin B1 and B2 show structural and functional partitioning in mammalian nucleus.
Collapse
Affiliation(s)
- Sagnik Sen
- Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA
| | - Pierre-Olivier Estève
- Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA
| | - Karthikeyan Raman
- Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA
| | - Julie Beaulieu
- Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA
| | - Hang Gyeong Chin
- PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - George R Feehery
- Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA
| | | | - Shuang-yong Xu
- Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA
| | - James C Samuelson
- Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA
| | - Sriharsa Pradhan
- Molecular Genetics and Genomics, New England Biolabs, Inc, 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
3
|
Shi XC, Zhang T, Li C, Guo CJ, Yang Q, Feng Y, Wang J, Qu CX. Impact of Nuclear Peripheral Chromatin Lamin LMNB1 Gene in the Proliferation and Migration of Glioma Cells. Neurochem Res 2024; 50:46. [PMID: 39636549 DOI: 10.1007/s11064-024-04298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The goal of this study is to explore the role of the LMNB1 gene in glioma. A cohort of 160 patients who underwent glioma surgery were randomly selected of this study. The LMNB1 expression was assessed employing immunohistochemical and real-time quantitative polymerase chain reaction methods. Initially, RNA interference technology was applied to suppress gene expression, followed by the evaluation of tumor cell proliferation, apoptosis, cell cycle dynamics, and migration. The underlying molecular mechanisms of LMNB1 function were examined by a human phospho-kinase array and immunoblotting. And we established the xenograft models to determine the effect of tumor growth as well as the degree of invasion in shLMNB1 mice. Elevated LMNB1 expression correlated with unfavorable overall survival and disease-free survival. A substantial inhibition in cell growth was observed subsequent to LMNB1 knockdown in SHG-44 and U251 glioma cells. SHG-44-shLMNB1 cells exhibited a reduction in the S phase population, along with an increase in cells in G1 and G2 phases. Similarly, shLMNB1 U251 cells showed fewer cells in the S phase and an elevation in cells in G1 phase. Notably, increased apoptosis was observed in U251-shLMNB1 cells and SHG-44-shLMNB1 cells. Wound healing and Transwell migration assays demonstrated a significant decrease in the migration rate of both SHG-44-shLMNB1 and U251-shLMNB1 cells. The phosphorylation levels of Akt1/2/3, as well as the expressions of PI3K, AKT, and p-AKT proteins, were reduced in the shLMNB1 group. Downregulation of LMNB1 repressed tumor progress in vivo. The silencing of LMNB1 was found to significantly reduce the proliferation of human glioma cells, induce apoptosis in tumor cells, impede the progression of the cell cycle, and inhibit the migration of tumor cells. Consequently, we hypothesize that LMNB1 promotes glioma cell proliferation through mechanisms involving the inhibition of tumor cell apoptosis, acceleration of the cell cycle, and enhancement of tumor cell migration. We found that LMNB1 exert critical roles in glioma progression may via regulation of PI3K/Akt signaling pathway. These observations suggest that LMNB1 holds clinical potential for diagnostic and prognostic applications in glioma, presenting novel targets for drug development.
Collapse
Affiliation(s)
- Xiang-Cheng Shi
- The Pathology Department of Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Ting Zhang
- The Pathology Department of Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Cheng Li
- The Pathology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030012, China
| | - Chen-Jia Guo
- The Pathology Department of Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Qin Yang
- The Pathology Department of Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Yao Feng
- The Pathology Department of Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Jie Wang
- The Pathology Department of Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Chong-Xiao Qu
- The Pathology Department of Shanxi Provincial People's Hospital, Taiyuan, 030012, China.
- Department of Pathology, Shanxi Provincial People's Hospital, No. 29 of Shuangtasi Road, Yingze District, Taiyuan, 030012, China.
| |
Collapse
|
4
|
Koufi FD, Neri I, Ramazzotti G, Rusciano I, Mongiorgi S, Marvi MV, Fazio A, Shin M, Kosodo Y, Cani I, Giorgio E, Cortelli P, Manzoli L, Ratti S. Lamin B1 as a key modulator of the developing and aging brain. Front Cell Neurosci 2023; 17:1263310. [PMID: 37720548 PMCID: PMC10501396 DOI: 10.3389/fncel.2023.1263310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Lamin B1 is an essential protein of the nuclear lamina that plays a crucial role in nuclear function and organization. It has been demonstrated that lamin B1 is essential for organogenesis and particularly brain development. The important role of lamin B1 in physiological brain development and aging has only recently been at the epicenter of attention and is yet to be fully elucidated. Regarding the development of brain, glial cells that have long been considered as supporting cells to neurons have overturned this representation and current findings have displayed their active roles in neurogenesis and cerebral development. Although lamin B1 has increased levels during the differentiation of the brain cells, during aging these levels drop leading to senescent phenotypes and inciting neurodegenerative disorders such as Alzheimer's and Parkinson's disease. On the other hand, overexpression of lamin B1 leads to the adult-onset neurodegenerative disease known as Autosomal Dominant Leukodystrophy. This review aims at highlighting the importance of balancing lamin B1 levels in glial cells and neurons from brain development to aging.
Collapse
Affiliation(s)
- Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Irene Neri
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Antonietta Fazio
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Minkyung Shin
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Yoichi Kosodo
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Ilaria Cani
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), Anatomy Centre, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Genotype-Phenotype Correlations in Human Diseases Caused by Mutations of LINC Complex-Associated Genes: A Systematic Review and Meta-Summary. Cells 2022; 11:cells11244065. [PMID: 36552829 PMCID: PMC9777268 DOI: 10.3390/cells11244065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in genes encoding proteins associated with the linker of nucleoskeleton and cytoskeleton (LINC) complex within the nuclear envelope cause different diseases with varying phenotypes including skeletal muscle, cardiac, metabolic, or nervous system pathologies. There is some understanding of the structure of LINC complex-associated proteins and how they interact, but it is unclear how mutations in genes encoding them can cause the same disease, and different diseases with different phenotypes. Here, published mutations in LINC complex-associated proteins were systematically reviewed and analyzed to ascertain whether patterns exist between the genetic sequence variants and clinical phenotypes. This revealed LMNA is the only LINC complex-associated gene in which mutations commonly cause distinct conditions, and there are no clear genotype-phenotype correlations. Clusters of LMNA variants causing striated muscle disease are located in exons 1 and 6, and metabolic disease-associated LMNA variants are frequently found in the tail of lamin A/C. Additionally, exon 6 of the emerin gene, EMD, may be a mutation "hot-spot", and diseases related to SYNE1, encoding nesprin-1, are most often caused by nonsense type mutations. These results provide insight into the diverse roles of LINC-complex proteins in human disease and provide direction for future gene-targeted therapy development.
Collapse
|
6
|
Wu G, Tian Q, Liu J, Zhou Q, Zou D, Chen Z, Wu T, Wang W, Xia H, Zhou J. Comprehensive analysis of expression and prognosis for LMNB family genes in human sarcoma. Medicine (Baltimore) 2022; 101:e28933. [PMID: 35356902 PMCID: PMC10513290 DOI: 10.1097/md.0000000000028933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Previous studies indicated that lamin proteins were thought to be related to gene expression, chromatin structure, and unclear stability. There are 2 types of vertebrate lamins, including A and B. The 2 B type proteins are encoded by lamin B1 (LMNB1) and lamin B2 (LMNB2). The LMNBs factor has been found to be associated with the development of multiple tumors, but its association with sarcoma has been barely mentioned.The transcription levels of LMNBs were analyzed via Oncomine database. Gene Expression Profiling Interactive Analysis (GEPIA) dataset was adopted to analyze the differential expression of LMNBs in sarcoma. Cancer Cell Line Encyclopedia dataset was used to explore the expression of LMNBs in sarcoma cell line. We analyzed the prognostic value of LMNBs in GEPIA and Kaplan-Meier Plotter. Oncomine and GEPIA datasets were also used to detect the relationship between LMNBs and their co-expressed genes. We used the Database for Annotation, Visualization and Integrated Discovery to conduct the Gene Ontology analysis of LMNBs and their co-expressed genes. Kyoto Encyclopedia of Genes and Genomes was also used to analyze the pathway of LMNBs.LMNB1 and LMNB2 were reported to be hyperexpressed in sarcoma. The expression of LMNBs was elevated in various sarcoma cell lines. According to the results, we observed that LMNBs were connected to the poor overall survival, recurrence-free survival, and disease-free survival of sarcoma patients.This study indicated that hyperexpression of LMNBs was significantly related to worse outcome of sarcoma, LMNB1 and LMNB2 were expected to become potential biomarkers for human.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Xia
- * Correspondence: Hong Xia, Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, Hunan 411100, China (e-mail: ); Jian Zhou,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China (e-mail: ).
| | - Jian Zhou
- * Correspondence: Hong Xia, Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, Hunan 411100, China (e-mail: ); Jian Zhou,Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China (e-mail: ).
| |
Collapse
|
7
|
Sferra A, Fortugno P, Motta M, Aiello C, Petrini S, Ciolfi A, Cipressa F, Moroni I, Leuzzi V, Pieroni L, Marini F, Boespflug Tanguy O, Eymard-Pierre E, Danti FR, Compagnucci C, Zambruno G, Brusco A, Santorelli FM, Chiapparini L, Francalanci P, Loizzo AL, Tartaglia M, Cestra G, Bertini E. Biallelic mutations in RNF220 cause laminopathies featuring leukodystrophy, ataxia and deafness. Brain 2021; 144:3020-3035. [PMID: 33964137 DOI: 10.1093/brain/awab185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Leukodystrophies are a heterogeneous group of rare inherited disorders that involve preferentially the white matter of the central nervous system (CNS). These conditions are characterized by a primary glial cell and myelin sheath pathology of variable etiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in 5 large consanguineous nuclear families allowed to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report on two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the cause underlying a novel form of leukodystrophy with ataxia and sensorineural deafness having fibrotic cardiomyopathy and hepatopathy as associated features, in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation, and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology: mutations primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness, and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Antonella Sferra
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Paola Fortugno
- Department of Life, Health and Environmental Sciences University of L'Aquila, 00167 Rome, Italy.,Human Functional Genomics, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Marialetizia Motta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Chiara Aiello
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesca Cipressa
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University, 00185 Rome, Italy
| | | | - Federica Marini
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Odile Boespflug Tanguy
- Service de Neurologie Pédiatrique, Centre de reference leucodystrophies et leucoencephalopathies de cause rare (LEUKOFRANCE), APHP Hopital Robert-Debré, 75019 Paris, France.,Université de Paris, NeuroDiderot, UMR 1141 INSERM 75651 Paris, France
| | - Eleonore Eymard-Pierre
- Service de Cytogénétique Médicale CHU de Clermont Ferrand, Hopital ESTAING 63003 CLERMONT FERRAND, France
| | - Federica Rachele Danti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10124 Turin, Italy
| | | | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paola Francalanci
- Department of Laboratories, Pathology Unit, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Anna Livia Loizzo
- DIDASCO Società Cooperativa Sociale- Centro di riabilitazione, 00185 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Gianluca Cestra
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy.,Santa Lucia IRCCS Foundation, 00179 Rome, Italy.,Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) 00185 Rome, Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
8
|
Zhao CC, Chen J, Zhang LY, Liu H, Zhang CG, Liu Y. Lamin B2 promotes the progression of triple negative breast cancer via mediating cell proliferation and apoptosis. Biosci Rep 2021; 41:BSR20203874. [PMID: 33416073 PMCID: PMC7846963 DOI: 10.1042/bsr20203874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a more common type of breast cancer with high distant metastasis and poor prognosis. The potential role of lamins in cancer progression has been widely revealed. However, the function of lamin B2 (LMNB2) in TNBC progression is still unclear. The present study aimed to investigate the role of LMNB2 in TNBC. The cancer genome atlas (TCGA) database analysis and immunohistochemistry (IHC) were performed to examine LMNB2 expression levels. LMNB2 short hairpin RNA plasmid or lentivirus was used to deplete the expression of LMNB2 in human TNBC cell lines including MDA-MB-468 and MDA-MB-231. Alterations in cell proliferation and apoptosis in vitro and the nude mouse tumorigenicity assay in vivo were subsequently analyzed. The human TNBC tissues shown high expression of LMNB2 according to the bioinformation analysis and IHC assays. LMNB2 expression was correlated with the clinical pathological features of TNBC patients, including pTNM stage and lymph node metastasis. Through in vitro and in vivo assays, we confirmed LMNB2 depletion suppressed the proliferation and induced the apoptosis of TNBC cells, and inhibited tumor growth of TNBC cells in mice, with the decrease in Ki67 expression or the increase in caspase-3 expression. In conclusion, LMNB2 may promote TNBC progression and could serve as a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Cui-Cui Zhao
- Department of VIP Ward, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
| | - Jing Chen
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
- Department of Pancreatic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Li-Ying Zhang
- Department of internal medicine, Mudanjiang Cancer Hospital, Mudanjiang, P.R. China
| | - Hong Liu
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
- Second Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Chuan-Gui Zhang
- Department of VIP Ward, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
| | - Yan Liu
- Department of VIP Ward, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, P.R. China
| |
Collapse
|
9
|
Chen NY, Kim PH, Fong LG, Young SG. Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficiencies. Nucleus 2020; 11:237-249. [PMID: 32910721 PMCID: PMC7529418 DOI: 10.1080/19491034.2020.1815410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
The nuclear membranes function as a barrier to separate the cell nucleus from the cytoplasm, but this barrier can be compromised by nuclear membrane ruptures, leading to intermixing of nuclear and cytoplasmic contents. Spontaneous nuclear membrane ruptures (i.e., ruptures occurring in the absence of mechanical stress) have been observed in cultured cells, but they are more frequent in the setting of defects or deficiencies in nuclear lamins and when cells are subjected to mechanical stress. Nuclear membrane ruptures in cultured cells have been linked to DNA damage, but the relevance of ruptures to developmental or physiologic processes in vivo has received little attention. Recently, we addressed that issue by examining neuronal migration in the cerebral cortex, a developmental process that subjects the cell nucleus to mechanical stress. In the setting of lamin B1 deficiency, we observed frequent nuclear membrane ruptures in migrating neurons in the developing cerebral cortex and showed that those ruptures are likely the cause of observed DNA damage, neuronal cell death, and profound neuropathology. In this review, we discuss the physiologic relevance of nuclear membrane ruptures, with a focus on migrating neurons in cell culture and in the cerebral cortex of genetically modified mice.
Collapse
Affiliation(s)
- Natalie Y. Chen
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Paul H. Kim
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Loren G. Fong
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen G. Young
- Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Cristofoli F, Moss T, Moore HW, Devriendt K, Flanagan-Steet H, May M, Jones J, Roelens F, Fons C, Fernandez A, Martorell L, Selicorni A, Maitz S, Vitiello G, Van der Hoeven G, Skinner SA, Bollen M, Vermeesch JR, Steet R, Van Esch H. De Novo Variants in LMNB1 Cause Pronounced Syndromic Microcephaly and Disruption of Nuclear Envelope Integrity. Am J Hum Genet 2020; 107:753-762. [PMID: 32910914 PMCID: PMC7536573 DOI: 10.1016/j.ajhg.2020.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022] Open
Abstract
Lamin B1 plays an important role in the nuclear envelope stability, the regulation of gene expression, and neural development. Duplication of LMNB1, or missense mutations increasing LMNB1 expression, are associated with autosomal-dominant leukodystrophy. On the basis of its role in neurogenesis, it has been postulated that LMNB1 variants could cause microcephaly. Here, we confirm this hypothesis with the identification of de novo mutations in LMNB1 in seven individuals with pronounced primary microcephaly (ranging from -3.6 to -12 SD) associated with relative short stature and variable degree of intellectual disability and neurological features as the core symptoms. Simplified gyral pattern of the cortex and abnormal corpus callosum were noted on MRI of three individuals, and these individuals also presented with a more severe phenotype. Functional analysis of the three missense mutations showed impaired formation of the LMNB1 nuclear lamina. The two variants located within the head group of LMNB1 result in a decrease in the nuclear localization of the protein and an increase in misshapen nuclei. We further demonstrate that another mutation, located in the coil region, leads to increased frequency of condensed nuclei and lower steady-state levels of lamin B1 in proband lymphoblasts. Our findings collectively indicate that de novo mutations in LMNB1 result in a dominant and damaging effect on nuclear envelope formation that correlates with microcephaly in humans. This adds LMNB1 to the growing list of genes implicated in severe autosomal-dominant microcephaly and broadens the phenotypic spectrum of the laminopathies.
Collapse
Affiliation(s)
- Francesca Cristofoli
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tonya Moss
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Hannah W Moore
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Heather Flanagan-Steet
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Melanie May
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Julie Jones
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Filip Roelens
- Pediatric Neurology, Department of Pediatrics, AZ Delta, Brugsesteenweg 90, 8800 Roeselare, Belgium
| | - Carmen Fons
- Pediatric Neurology Department, Sant Joan de Déu Hospital, Passeig de Sant Joan de Déu 2, 08950 Barcelona, Spain
| | - Anna Fernandez
- Pediatric Neurology Department, Sant Joan de Déu Hospital, Passeig de Sant Joan de Déu 2, 08950 Barcelona, Spain
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Sant Joan de Déu Hospital, Passeig de Sant Joan de Déu 2, 08950 Barcelona, Spain
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Sant'Anna Hospital, Via Ravona 20, 22042 Como, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, MBBM Foundation, S. Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Giuseppina Vitiello
- Department of Translational Medicine and Molecular Medicine and Medical Biotechnologies, Federico II University, via Pansini 5, 80131 Naples, Italy
| | - Gerd Van der Hoeven
- Laboratory of Biosignalling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Steven A Skinner
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Mathieu Bollen
- Laboratory of Biosignalling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for the Genetics of Cognition, Department of Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
12
|
Chen NY, Yang Y, Weston TA, Belling JN, Heizer P, Tu Y, Kim P, Edillo L, Jonas SJ, Weiss PS, Fong LG, Young SG. An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death. Proc Natl Acad Sci U S A 2019; 116:25870-25879. [PMID: 31796586 PMCID: PMC6926041 DOI: 10.1073/pnas.1917225116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiencies in either lamin B1 or lamin B2 cause both defective migration of cortical neurons in the developing brain and reduced neuronal survival. The neuronal migration abnormality is explained by a weakened nuclear lamina that interferes with nucleokinesis, a nuclear translocation process required for neuronal migration. In contrast, the explanation for impaired neuronal survival is poorly understood. We hypothesized that the forces imparted on the nucleus during neuronal migration result in nuclear membrane (NM) ruptures, causing interspersion of nuclear and cytoplasmic contents-and ultimately cell death. To test this hypothesis, we bred Lmnb1-deficient mice that express a nuclear-localized fluorescent Cre reporter. Migrating neurons within the cortical plate of E18.5 Lmnb1-deficient embryos exhibited NM ruptures, evident by the escape of the nuclear-localized reporter into the cytoplasm and NM discontinuities by electron microscopy. The NM ruptures were accompanied by DNA damage and cell death. The NM ruptures were not observed in nonmigrating cells within the ventricular zone. NM ruptures, DNA damage, and cell death were also observed in cultured Lmnb1-/- and Lmnb2-/- neurons as they migrated away from neurospheres. To test whether mechanical forces on the cell nucleus are relevant to NM ruptures in migrating neurons, we examined cultured Lmnb1-/- neurons when exposed to external constrictive forces (migration into a field of tightly spaced silicon pillars). As the cells entered the field of pillars, there were frequent NM ruptures, accompanied by DNA damage and cell death.
Collapse
Affiliation(s)
- Natalie Y Chen
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Thomas A Weston
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Jason N Belling
- California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Patrick Heizer
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Paul Kim
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lovelyn Edillo
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Steven J Jonas
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Children's Discovery and Innovation Institute, University of California, Los Angeles, CA 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| | - Paul S Weiss
- California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095;
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
13
|
Takamori Y, Hirahara Y, Wakabayashi T, Mori T, Koike T, Kataoka Y, Tamura Y, Kurebayashi S, Kurokawa K, Yamada H. Differential expression of nuclear lamin subtypes in the neural cells of the adult rat cerebral cortex. IBRO Rep 2018; 5:99-109. [PMID: 30505974 PMCID: PMC6251786 DOI: 10.1016/j.ibror.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/12/2018] [Accepted: 11/03/2018] [Indexed: 11/30/2022] Open
Abstract
Lamins are type V intermediate filament proteins that are located beneath the inner nuclear membrane. In mammalian somatic cells, LMNB1 and LMNB2 encode somatic lamins B1 and B2, respectively, and the LMNA gene is alternatively spliced to generate somatic lamins A and C. Mutations in lamin genes have been linked to many human hereditary diseases, including neurodegenerative disorders. Knowledge about lamins in the nervous system has been accumulated recently, but a precise analysis of lamin subtypes in glial cells has not yet been reported. In this study we investigated the composition of lamin subtypes in neurons, astrocytes, oligodendrocyte-lineage cells, and microglia in the adult rat cerebral cortex using an immunohistochemical staining method. Lamin A was not observed in neurons and glial cells. Lamin C was observed in astrocytes, mature oligodendrocytes and neurons, but not observed in oligodendrocyte progenitor cells. Microglia also did not stain positive for lamin C which differed from macrophages, with lamin C positive. Lamin B1 and B2 were observed in all glial cells and neurons. Lamin B1 was intensely positive in oligodendrocyte progenitor cells compared with other glial cells and neurons. Lamin B2 was weakly positive in all glial cells compared to neurons. Our current study might provide useful information to reveal how the onset mechanisms of human neurodegenerative diseases are associated with mutations in genes for nuclear lamin proteins.
Collapse
Affiliation(s)
- Yasuharu Takamori
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan
| | - Yukie Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan
| | | | - Tetsuji Mori
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan.,Faculty of Medicine, Tottori University, Tottori, Japan
| | - Taro Koike
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan
| | - Yosky Kataoka
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
| | - Yasuhisa Tamura
- Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan
| | - Shuji Kurebayashi
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan.,Department of School Education Research, Shizuoka University, Shizuoka, Japan
| | - Kiyoshi Kurokawa
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan.,Department of Human Health Science, Osaka international University, Osaka, Japan
| | - Hisao Yamada
- Department of Anatomy and Cell Science, Kansai Medical University, Osaka, Japan
| |
Collapse
|
14
|
Brady GF, Kwan R, Cunha JB, Elenbaas JS, Omary MB. Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology 2018; 154:1602-1619.e1. [PMID: 29549040 PMCID: PMC6038707 DOI: 10.1053/j.gastro.2018.03.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
The nuclear lamina is a multi-protein lattice composed of A- and B-type lamins and their associated proteins. This protein lattice associates with heterochromatin and integral inner nuclear membrane proteins, providing links among the genome, nucleoskeleton, and cytoskeleton. In the 1990s, mutations in EMD and LMNA were linked to Emery-Dreifuss muscular dystrophy. Since then, the number of diseases attributed to nuclear lamina defects, including laminopathies and other disorders, has increased to include more than 20 distinct genetic syndromes. Studies of patients and mouse genetic models have pointed to important roles for lamins and their associated proteins in the function of gastrointestinal organs, including liver and pancreas. We review the interactions and functions of the lamina in relation to the nuclear envelope and genome, the ways in which its dysfunction is thought to contribute to human disease, and possible avenues for targeted therapies.
Collapse
Affiliation(s)
- Graham F. Brady
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,To whom correspondence should be addressed: University of Michigan Medical School, Division of Gastroenterology, Department of Internal Medicine, 1137 Catherine St., Ann Arbor, MI 48109-5622.
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S. Elenbaas
- Medical Scientist Training Program, Washington University, St Louis, Missouri
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Ǻbo Akademi University, Turku, Finland
| |
Collapse
|
15
|
Gigante CM, Dibattista M, Dong FN, Zheng X, Yue S, Young SG, Reisert J, Zheng Y, Zhao H. Lamin B1 is required for mature neuron-specific gene expression during olfactory sensory neuron differentiation. Nat Commun 2017; 8:15098. [PMID: 28425486 PMCID: PMC5411488 DOI: 10.1038/ncomms15098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/28/2017] [Indexed: 01/29/2023] Open
Abstract
B-type lamins are major constituents of the nuclear lamina in all metazoan cells, yet have specific roles in the development of certain cell types. Although they are speculated to regulate gene expression in developmental contexts, a direct link between B-type lamins and developmental gene expression in an in vivo system is currently lacking. Here, we identify lamin B1 as a key regulator of gene expression required for the formation of functional olfactory sensory neurons. By using targeted knockout in olfactory epithelial stem cells in adult mice, we show that lamin B1 deficient neurons exhibit attenuated response to odour stimulation. This deficit can be explained by decreased expression of genes involved in mature neuron function, along with increased expression of genes atypical of the olfactory lineage. These results support that the broadly expressed lamin B1 regulates expression of a subset of genes involved in the differentiation of a specific cell type.
Collapse
Affiliation(s)
- Crystal M. Gigante
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Michele Dibattista
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari ‘A. Moro', Bari 70121, Italy
| | - Frederick N. Dong
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xiaobin Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Sibiao Yue
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Stephen G. Young
- Department of Medicine, Molecular Biology Institute and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104, USA
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Haiqing Zhao
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
16
|
Abstract
SUMMARYThe nucleoskeleton is an important structural feature of the metazoan nucleus and is involved in the regulation of genome expression and maintenance. The nuclear lamins are intermediate filament proteins that form a peripheral nucleoskeleton in concert with other lamin-associated proteins. Several other proteins normally found in the cytoskeleton have also been identified in the nucleus, but, as will be discussed here, their roles in forming a nucleoskeleton have not been elucidated. Nevertheless, mutations in lamins and lamin-associated proteins cause a spectrum of diseases, making them interesting targets for future research.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
17
|
Abstract
Lamins are major components of the nuclear lamina, a network of proteins that supports the nuclear envelope in metazoan cells. Over the past decade, biochemical studies have provided support for the view that lamins are not passive bystanders providing mechanical stability to the nucleus but play an active role in the organization of the genome and the function of fundamental nuclear processes. It has also become apparent that lamins are critical for human health, as a large number of mutations identified in the gene that encodes for A-type lamins are associated with tissue-specific and systemic genetic diseases, including the accelerated aging disorder known as Hutchinson-Gilford progeria syndrome. Recent years have witnessed great advances in our understanding of the role of lamins in the nucleus and the functional consequences of disease-associated A-type lamin mutations. Many of these findings have been presented in comprehensive reviews. In this mini-review, we discuss recent breakthroughs in the role of lamins in health and disease and what lies ahead in lamin research.
Collapse
Affiliation(s)
- Sita Reddy
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lucio Comai
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Molecular Microbiology and Immunology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Medrano-Fernández A, Barco A. Nuclear organization and 3D chromatin architecture in cognition and neuropsychiatric disorders. Mol Brain 2016; 9:83. [PMID: 27595843 PMCID: PMC5011999 DOI: 10.1186/s13041-016-0263-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/06/2016] [Indexed: 01/08/2023] Open
Abstract
The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the main physical substrate for behavioral adaptation to new experiences in a changing environment. Although transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these mechanisms can trigger behavioral malfunction.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
19
|
Saarinen I, Mirtti T, Seikkula H, Boström PJ, Taimen P. Differential Predictive Roles of A- and B-Type Nuclear Lamins in Prostate Cancer Progression. PLoS One 2015; 10:e0140671. [PMID: 26469707 PMCID: PMC4607298 DOI: 10.1371/journal.pone.0140671] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common cancer among men in western countries. While active surveillance is increasingly utilized, the majority of patients are currently treated with radical prostatectomy. In order to avoid over-treatment, there is an indisputable need for reliable biomarkers to identify the potentially aggressive and lethal cases. Nuclear intermediate filament proteins called lamins play a role in chromatin organization, gene expression and cell stiffness. The expression of lamin A is associated with poor outcome in colorectal cancer but to date the prognostic value of the lamins has not been tested in other solid tumors. METHODS We studied the expression of different lamins with immunohistochemistry in a tissue microarray material of 501 PCa patients undergoing radical prostatectomy and lymph node dissection. Patients were divided into two staining categories (low and high expression). The correlation of lamin expression with clinicopathological variables was tested and the association of lamin status with biochemical recurrence (BCR) and disease specific survival (DSS) was further analyzed. RESULTS Low expression of lamin A associated with lymph node positivity (p<0.01) but not with other clinicopathological variables and low expression had a borderline independent significant association with DSS (HR = 0.4; 95% CI 0.2-1.0; p = 0.052). Similarly, low lamin C expression associated with poorer survival (HR = 0.2; 95% CI 0.1-0.6; p = 0.004). Lamin B1 expression did not associate with clinicopathological variables but high expression independently predicted BCR in multivariable Cox regression analysis (HR = 1.8; 95% CI 1.1-2.9; p = 0.023). Low expression of lamin B2 correlated with lymph node positivity (p<0.01) and predicted unfavorable DSS (HR = 0.4; 95% CI 0.2-1.0; p = 0.047). CONCLUSIONS These results suggest differential roles for lamins in PCa progression. Reduced amounts of lamin A/C and B2 increase risk for lymph node metastasis and disease specific death possibly through increased nuclear deformability while high expression of lamin B1 predicts disease recurrence.
Collapse
Affiliation(s)
- Irena Saarinen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland; MediCity, Research Laboratory, University of Turku, Turku, Finland
| | - Tuomas Mirtti
- Department of Pathology, Helsinki University Hospital and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Seikkula
- Department of Urology, Turku University Hospital, Turku, Finland
| | - Peter J. Boström
- Department of Urology, Turku University Hospital, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland; MediCity, Research Laboratory, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
20
|
Razafsky D, Hodzic D. Nuclear envelope: positioning nuclei and organizing synapses. Curr Opin Cell Biol 2015; 34:84-93. [PMID: 26079712 DOI: 10.1016/j.ceb.2015.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about A-type lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins.
Collapse
Affiliation(s)
- David Razafsky
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Didier Hodzic
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
21
|
Torvaldson E, Kochin V, Eriksson JE. Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus 2015; 6:166-71. [PMID: 25793944 DOI: 10.1080/19491034.2015.1017167] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lamin A/C is part of the nuclear lamina, a meshwork of intermediate filaments underlying the inner nuclear membrane. The lamin network is anchoring a complex set of structural and linker proteins and is either directly or through partner proteins also associated or interacting with a number of signaling protein and transcription factors. During mitosis the nuclear lamina is dissociated by well established phosphorylation- dependent mechanisms. A-type lamins are, however, also phosphorylated during interphase. A recent study identified 20 interphase phosphorylation sites on lamin A/C and explored their functions related to lamin dynamics; movements, localization and solubility. Here we discuss these findings in the light of lamin functions in health and disease.
Collapse
Affiliation(s)
- Elin Torvaldson
- a Department of Biosciences; Åbo Akademi University ; Turku , Finland
| | | | | |
Collapse
|
22
|
Camps J, Erdos MR, Ried T. The role of lamin B1 for the maintenance of nuclear structure and function. Nucleus 2015; 6:8-14. [PMID: 25602590 PMCID: PMC4615282 DOI: 10.1080/19491034.2014.1003510] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022] Open
Abstract
Lamins constitute an integral structural component of the nuclear lamina. However, their impact on the structure and stability of chromosome territories, and on the regulation of gene expression is explored to a lesser extent. By 3D-FISH, Camps and colleagues showed that lamin B1 (LMNB1) is required for proper chromosome condensation in interphase nuclei, and deficiency of LMNB1 triggers the relocation of the epigenetic mark of facultative heterochromatin, H3K27me3, toward the interior of the nucleus. Additionally, LMNB1 repression slowed cellular growth due to S-phase delays and increased genomic instability. Finally, silencing of LMNB1 resulted in enlarged nuclear speckles and in extensive changes in alternative splicing of multiple genes. Altogether, the data suggest a central role of LMNB1 for the condensation of chromosome territories, for the distribution of heterochromatin, and for the regulation of gene expression and splicing.
Collapse
Affiliation(s)
- Jordi Camps
- Laboratory of Gastrointestinal and Pancreatic Oncology; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Hospital Clínic of Barcelona, CIBERehd; Barcelona, Spain
| | - Michael R Erdos
- Genome Technology Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda, MD USA
| | - Thomas Ried
- Section of Cancer Genomics, Genetics Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
23
|
Fedorchak GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:76-92. [PMID: 25008017 PMCID: PMC4252489 DOI: 10.1016/j.pbiomolbio.2014.06.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Abstract
Cells respond to mechanical forces by activating specific genes and signaling pathways that allow the cells to adapt to their physical environment. Examples include muscle growth in response to exercise, bone remodeling based on their mechanical load, or endothelial cells aligning under fluid shear stress. While the involved downstream signaling pathways and mechanoresponsive genes are generally well characterized, many of the molecular mechanisms of the initiating 'mechanosensing' remain still elusive. In this review, we discuss recent findings and accumulating evidence suggesting that the cell nucleus plays a crucial role in cellular mechanotransduction, including processing incoming mechanoresponsive signals and even directly responding to mechanical forces. Consequently, mutations in the involved proteins or changes in nuclear envelope composition can directly impact mechanotransduction signaling and contribute to the development and progression of a variety of human diseases, including muscular dystrophy, cancer, and the focus of this review, dilated cardiomyopathy. Improved insights into the molecular mechanisms underlying nuclear mechanotransduction, brought in part by the emergence of new technologies to study intracellular mechanics at high spatial and temporal resolution, will not only result in a better understanding of cellular mechanosensing in normal cells but may also lead to the development of novel therapies in the many diseases linked to defects in nuclear envelope proteins.
Collapse
Affiliation(s)
- Gregory R Fedorchak
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ashley Kaminski
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Department of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Lee JM, Jung HJ, Fong LG, Young SG. Do lamin B1 and lamin B2 have redundant functions? Nucleus 2014; 5:287-92. [PMID: 25482116 PMCID: PMC4152341 DOI: 10.4161/nucl.29615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022] Open
Abstract
Lamins B1 and B2 have a high degree of sequence similarity and are widely expressed from the earliest stages of development. Studies of Lmnb1 and Lmnb2 knockout mice revealed that both of the B-type lamins are crucial for neuronal migration in the developing brain. These observations naturally posed the question of whether the two B-type lamins might play redundant functions in the development of the brain. To explore that issue, Lee and coworkers generated "reciprocal knock-in mice" (knock-in mice that produce lamin B1 from the Lmnb2 locus and knock-in mice that produce lamin B2 from the Lmnb1 locus). Both lines of knock-in mice manifested neurodevelopmental abnormalities similar to those in conventional knockout mice, indicating that lamins B1 and B2 have unique functions and that increased production of one B-type lamin cannot compensate for the loss of the other.
Collapse
Affiliation(s)
- John M Lee
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Hea-Jin Jung
- Molecular Biology Institute; University of California; Los Angeles, CA USA
| | - Loren G Fong
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - Stephen G Young
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, CA USA
- Molecular Biology Institute; University of California; Los Angeles, CA USA
- Department of Human Genetics; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| |
Collapse
|
25
|
Abstract
Much of the work on nuclear lamins during the past 15 years has focused on mutations in LMNA (the gene for prelamin A and lamin C) that cause particular muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. These disorders, often called "laminopathies," mainly affect mesenchymal tissues (e.g., striated muscle, bone, and fibrous tissue). Recently, however, a series of papers have identified important roles for nuclear lamins in the central nervous system. Studies of knockout mice uncovered a key role for B-type lamins (lamins B1 and B2) in neuronal migration in the developing brain. Also, duplications of LMNB1 (the gene for lamin B1) have been shown to cause autosome-dominant leukodystrophy. Finally, recent studies have uncovered a peculiar pattern of nuclear lamin expression in the brain. Lamin C transcripts are present at high levels in the brain, but prelamin A expression levels are very low-due to regulation of prelamin A transcripts by microRNA 9. This form of prelamin A regulation likely explains why "prelamin A diseases" such as Hutchinson-Gilford progeria syndrome spare the central nervous system. In this review, we summarize recent progress in elucidating links between nuclear lamins and neurobiology.
Collapse
|