1
|
Promila L, Sarkar K, Guleria S, Rakshit A, Rathore M, Singh NC, Khan S, Tomar MS, Ammanathan V, Barthwal MK, Kumaravelu J, Shrivastava A, Mitra K, Guha R, Aggarwal A, Lahiri A. Mitochondrial calcium uniporter regulates human fibroblast-like synoviocytes invasion via altering mitochondrial dynamics and dictates rheumatoid arthritis pathogenesis. Free Radic Biol Med 2025; 234:55-71. [PMID: 40188890 DOI: 10.1016/j.freeradbiomed.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that currently has no cure. Fibroblast-like synoviocytes (FLS), present in the RA synovium, play a pivotal role in RA pathogenesis. Notably, FLS in the RA patients (RA-FLS) exhibit characteristics similar to cancer cells, like enhanced migration, invasiveness, uncontrolled proliferation, resistance to apoptosis, and metabolic reprogramming. RA-FLS invasiveness is linked to radiographic joint damage in the patients, whereas inhibiting the FLS migration mitigates disease pathology. However, the molecular mechanisms underlying the migration and invasion capabilities of RA-FLS are not entirely understood. In this work, we have explored the function of mitochondrial calcium uniporter (MCU) and calcium signaling in FLS invasion. Our findings demonstrate a positive correlation between MCU expression and RA disease score. Interestingly, mitochondrial size was reduced, and peripheral localization was more pronounced in the RA-FLS when compared to the control FLS. Mitochondrial calcium import inhibition in the FLS by specific MCU inhibitor, Ruthenium-360 restored these altered mitochondrial dynamics and reduced the invasive phenotype. Through unbiased transcriptome analysis, we identified that MCU-mediated calcium signaling in RA-FLS leads to the enriched actin cytoskeleton and focal adhesion pathways responsible for the invasion phenotype, which can be effectively suppressed by inhibiting MCU. Additionally, we found that mitochondrial transport facilitator Miro1 binds to MCU in a calcium-dependent manner and regulates MCU-mediated mitochondrial dynamics and RA-FLS invasion. Experiments utilizing mice xenograft model demonstrated that MCU silencing diminishes the migration of RA-FLS toward the sites of inflammation in the immunocompromised SCID mice. Altogether, our findings highlight MCU as a promising therapeutic target to inhibit RA-FLS migration and RA progression.
Collapse
Affiliation(s)
- Lakra Promila
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kabita Sarkar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shivika Guleria
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Adrija Rakshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Manisha Rathore
- Lab Animal Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nishakumari C Singh
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shaziya Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Veena Ammanathan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagavelu Kumaravelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Kalyan Mitra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Lab Animal Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Fabiano ED, Poole JM, Reinhart-King CA. Mechanometabolism: recent findings on the intersection of cell adhesion, cell migration, and metabolism. Am J Physiol Cell Physiol 2025; 328:C1866-C1879. [PMID: 40271988 DOI: 10.1152/ajpcell.00892.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/26/2024] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Chemical and mechanical cues within the extracellular matrix (ECM) can initiate intracellular signaling that changes an array of fundamental cell functions. In recent work, studies of cell-ECM adhesion have deepened to include the influence of the physical ECM on cell metabolism. Since many biological processes involve metabolic programs, changes to cellular metabolism in response to cues in the ECM can have marked effects on cell health. In this review, we describe molecular mechanisms associated with cell-ECM adhesion that are key players in metabolism-induced changes to cell behaviors, including migration. We first review how changes to metabolite availability in the extracellular environment or manipulation of metabolic machinery in cells impact focal adhesions. We then connect this work to recent findings regarding the reverse relationship, namely, how the manipulation of focal adhesion proteins or integrins feeds back to alter cell metabolism. Finally, we consider the latest findings from studies that describe how the mechanical properties of the ECM, primarily stiffness and confinement, alter cellular metabolism. We identify key areas of future investigation that may elucidate the molecular drivers that permit cells to respond to mechanical and chemical ECM cues by reprogramming their metabolism to better inform future diagnostics and therapeutics for disease states.
Collapse
Affiliation(s)
- Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Department of Bioengineering, Rice University, Houston, Texas, United States
| | - Jenna M Poole
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, United States
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Department of Bioengineering, Rice University, Houston, Texas, United States
| |
Collapse
|
3
|
Moriyama M, Mori R, Hayakawa T, Moriyama H. FOXO3A Plays a Role in Wound Healing by Regulating Fibroblast Mitochondrial Dynamics. J Invest Dermatol 2025; 145:1489-1501.e4. [PMID: 39547393 DOI: 10.1016/j.jid.2024.10.600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
The skin plays a protective role against harmful environmental stress such as UV rays. Therefore, the skin is constantly exposed to potential injuries, and wound healing is a vital process for the survival of all higher organisms. Wound healing is dependent on aging and metabolic status at a whole-body level. Because the FOXO family plays a role in aging and metabolism, we investigated the molecular functions of FOXO3A in skin wound healing using FoxO3a-/- mice. We observed that FoxO3a-/- mice showed accelerated skin wound healing. During wound healing, more fibroblasts accumulated at the wound edges and migrated into the wound bed in FoxO3a-/- mice. Moreover, cell migration of dermal fibroblasts isolated from FoxO3a-/- mice was significantly induced. During the in vitro cell migration, we observed accelerated mitochondrial fragmentation and decreased oxygen consumption in the mitochondria of FoxO3a-/- fibroblasts. These changes were caused by the upregulation of mitochondrial Rho GTPase 1, which is an essential mediator of microtubule-based mitochondrial motility. Mitochondrial Rho GTPase 1 inhibition significantly attenuated cell migration, mitochondrial fragmentation, and mitochondrial recruitment to the leading edge of the cells. These data indicate that FOXO3A plays a crucial role in wound healing by regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Mariko Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan.
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takao Hayakawa
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan
| | - Hiroyuki Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, Japan.
| |
Collapse
|
4
|
Huang CC, Chen YL, Chien CL. Mitochondrial aldehyde dehydrogenase restores the migratory capacity inhibited by high glucose-induced hyperosmolality. Sci Rep 2025; 15:17741. [PMID: 40404697 PMCID: PMC12098716 DOI: 10.1038/s41598-025-02022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
Cell migration, which is often impaired under high glucose (HG) conditions, plays a crucial role in the pathogenesis of various diabetic complications. This study investigates the role of mitochondrial aldehyde dehydrogenase (ALDH2) in the HG-induced migratory inhibition. Using fibroblasts sub-cultured in HG medium as a cell model of chronic hyperglycemia, we found that prolonged exposure to HG stress inhibited cell migration via a novel mechanism independent of oxidative stress or cell death. By increasing osmolality, HG induced perinuclear clustering of mitochondria, enhanced focal adhesion maturation, and caused the cells to be less responsive to migratory cues. The pharmacological inhibition of ALDH2 exaggerated this phenomenon, while ALDH2 overexpression protected cells from the migratory impairment caused by HG-induced hyperosmolality. Cells with ALDH2 overexpression exhibited less mature focal adhesions and longer mitochondrial network, suggesting that ALDH2 might preserve mitochondrial integrity to facilitate the focal adhesion turnover during cell migration.
Collapse
Affiliation(s)
- Chi-Cheng Huang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Lien Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Chen W, Zhuang A, Liu C, He Y, Kaixin Lu, Jiang T, Zhang H, Gao R, Xue X. Mitochondrial enzyme HIBADH protects against calcium oxalate nephrolithiasis by modulating oxidative stress and apoptosis. Arch Biochem Biophys 2025; 770:110452. [PMID: 40334962 DOI: 10.1016/j.abb.2025.110452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Calcium oxalate (CaOx) nephrolithiasis, as one of the most common types of kidney stones, poses a major threat to human health. This study aimed to investigate the role of 3-hydroxyisobutyrate dehydrogenase (HIBADH) in the pathogenesis of CaOx nephrolithiasis. CaOx nephrolithiasis models were established in rats via 1 % ethylene glycol and 2 % ammonium chloride induction and in HK-2 cells using calcium oxalate monohydrate (COM, 100 μg/mL). HIBADH expression was modulated through plasmid transfection and siRNA knockdown in vitro, and AAV2/9-mediated gene transfer in vivo. Multiple parameters were assessed, including cell crystal adhesion, apoptosis, cell cycle distribution, oxidative stress markers (SOD, MDA, MitoSOX fluorescence), and mitochondrial function (ATP level, mitochondrial membrane potential), using various techniques such as crystal adhesion assay, flow cytometry, western blot, qRT-PCR, and fluorescence microscopy. Kidney tissues were analyzed through H&E, Von Kossa, and PAS staining. Results demonstrated that HIBADH expression was significantly downregulated in CaOx nephrolithiasis rats and COM-treated HK-2 cells. In vitro, HIBADH overexpression reduced cell crystal adhesion and apoptosis, promoted cell cycle progression, mitigated mitochondria-involved cellular oxidative stress, and enhanced mitochondrial function in COM-induced HK-2 cells. In vivo, AAV2/9-mediated HIBADH overexpression attenuated crystal deposits and tubular injury, reduced apoptosis, and mitigated mitochondria-involved cellular oxidative stress in kidney tissues. The mitochondria-targeted antioxidant Mito-TEMPO counteracted the effects of HIBADH silencing, highlighting the role of mitochondrial function in HIBADH's protective mechanism. This study identifies HIBADH as a critical regulator in CaOx nephrolithiasis, exerting its protective effects through modulation of mitochondrial function and mitochondria-involved cellular oxidative stress, cell crystal adhesion, and apoptosis. Our findings elucidate the link between mitochondrial metabolism and kidney stone formation, positioning HIBADH as a key protective factor and a promising candidate with therapeutic potential for CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Wenwei Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Anni Zhuang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Changyi Liu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfeng He
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Kaixin Lu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Tao Jiang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hua Zhang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Rui Gao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Xueyi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
6
|
Shannon N, Raymond C, Palmer C, Homa S, Bonini M, Seward D, Cunniff B. Miro1 expression alters global gene expression, ERK1/2 phosphorylation, oxidation and cell cycle progression. J Cell Sci 2025; 138:jcs263554. [PMID: 40067243 PMCID: PMC11993262 DOI: 10.1242/jcs.263554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Mitochondrial positioning supports localized energy and signaling requirements. Miro1 is necessary for attachment of mitochondria to microtubule motor proteins for trafficking. When Miro1 is deleted (Miro1-/-) from mouse embryonic fibroblasts (MEFs), mitochondria become sequestered to the perinuclear space, disrupting subcellular signaling gradients. Here, we show that Miro1-/- MEFs grow slower than Miro1+/+ and Miro1-/- MEFs stably re-expressing a Myc-Miro1 plasmid. Miro1-/- MEFs have a decreased percentage of cells in G1 and increased percentage of cells in S phase. We conducted the first ever RNA sequencing experiment dependent upon Miro1 expression and found differentially expressed genes related to MAPK signaling, cell proliferation and migration. ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) phosphorylation is elevated both spatially and temporally following serum stimulation in Miro1-/- MEFs, whereas the expression levels and oxidation of the dual specificity phosphatases (DUSP1-DUSP6) is unchanged. Finally, we found the oxidation status of ERK1/2 is increased in Miro1-/- MEFs compared to that seen in Miro1+/+ and Myc-Miro1 MEFs. These results highlight transcriptional control based off Miro1 expression and demonstrate the dynamic regulation of ERK1/2 upon deletion of Miro1 which might support the observed cell cycle and proliferation defects.
Collapse
Affiliation(s)
- Nathaniel Shannon
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| | - Cory Raymond
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| | - Chloe Palmer
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| | - Silver Homa
- Department of Medicine and Biochemistry, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, USA
| | - Marcelo Bonini
- Department of Medicine and Biochemistry, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, USA
| | - David Seward
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
7
|
Marlar-Pavey M, Tapias-Gomez D, Mettlen M, Friedman JR. Compositionally unique mitochondria in filopodia support cellular migration. Curr Biol 2025; 35:1227-1241.e6. [PMID: 39978347 PMCID: PMC11945552 DOI: 10.1016/j.cub.2025.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
Local metabolic demand within cells varies widely, and the extent to which individual mitochondria can be specialized to meet these functional needs is unclear. We examined the subcellular distribution of the mitochondrial contact site and cristae organizing system (MICOS) complex, a spatial and functional organizer of mitochondria, and discovered that it dynamically enriches at the tip of a minor population of mitochondria in the cell periphery. Based on their appearance, we term these mitochondria "METEORs". METEORs have a unique composition, and MICOS enrichment sites are depleted of mtDNA and matrix proteins and contain high levels of the Ca2+ uniporter MCU, suggesting a functional specialization. METEORs are also enriched for the myosin MYO19, which promotes their trafficking to a small subset of filopodia. We identify a positive correlation between the length of filopodia and the presence of METEORs and show that elimination of mitochondria from filopodia impairs cellular motility. Our data reveal a novel type of mitochondrial heterogeneity and suggest compositionally specialized mitochondria support cell migration.
Collapse
Affiliation(s)
- Madeleine Marlar-Pavey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Tapias-Gomez
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Decros G, Zhang Y, Fernie AR. Mitochondrial support of high rates of photosynthesis. PLANT COMMUNICATIONS 2025; 6:101285. [PMID: 39955615 PMCID: PMC11956085 DOI: 10.1016/j.xplc.2025.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Affiliation(s)
- Guillaume Decros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
9
|
Shannon N, Raymond C, Palmer C, Seward D, Cunniff B. Miro1 expression alters global gene expression, ERK1/2 phosphorylation, oxidation, and cell cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622334. [PMID: 39574731 PMCID: PMC11581026 DOI: 10.1101/2024.11.06.622334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Subcellular mitochondrial positioning in cells is necessary for localized energy and signaling requirements. Mitochondria are strategically trafficked throughout the cytoplasm via the actin cytoskeleton, microtubule motor proteins, and adaptor proteins. Miro1, an outer mitochondrial membrane adaptor protein, is necessary for attachment of mitochondria to microtubule motor proteins for trafficking. Previous work showed when Miro1 is deleted (Miro1-/-) from mouse embryonic fibroblasts (MEFs), the mitochondria become sequestered to the perinuclear space, disrupting subcellular energy and reactive oxygen species gradients. Here, we show that Miro1-/- MEFs grow slower compared to Miro1+/+ and Miro1-/- MEFs stably re-expressing the Myc-Miro1 plasmid. Miro1-/- MEFs have a have a cell cycle defect with decreased percentage of cells in G1 and increased cells in the S phase of the cell cycle. We conducted the first ever RNA sequencing experiment dependent upon Miro1 expression and found differential expression in cell proliferation and migration genes upon deletion of Miro1, including the MAP Kinase signaling pathway. We find that ERK1/2 phosphorylation is elevated both spatially (cytoplasm and nucleus) and temporally following serum stimulation in Miro1-/- MEFs. We investigated the expression levels and oxidation of the Dual Specificity Phosphatases (DUSP1-6), ERK1/2 target phosphatases. We found no differences in DUSP1-6 expression and oxidation under asynchronous and synchronized cells. Lastly, we evaluated the oxidation status of ERK1/2 and found an increase in ERK1/2 oxidation in the Miro1-/- MEFs compared to Miro1+/+ and Myc-Miro1. These data highlight transcriptional control based off Miro1 expression and demonstrate the highly dynamic regulation of ERK1/2 upon deletion of Miro1 that may support the observed cell cycle and proliferation defects.
Collapse
Affiliation(s)
- Nathaniel Shannon
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| | - Cory Raymond
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| | - Chloe Palmer
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| | - David Seward
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont Cancer Center, Larner College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Findinier J, Joubert LM, Fakhimi N, Schmid MF, Malkovskiy AV, Chiu W, Burlacot A, Grossman AR. Dramatic changes in mitochondrial subcellular location and morphology accompany activation of the CO 2 concentrating mechanism. Proc Natl Acad Sci U S A 2024; 121:e2407548121. [PMID: 39405346 PMCID: PMC11513932 DOI: 10.1073/pnas.2407548121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/23/2024] Open
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Ribulose 1,5 Bisphosphate Carboxylase/Oxygenase (Rubisco) into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization is a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limitation, although a role for this reorganization in CCM function remains unclear. We used the green microalga Chlamydomonas reinhardtii to monitor changes in mitochondrial position and ultrastructure as cells transition between high CO2 and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral cell location and orient in parallel tubular arrays that extend along the cell's apico-basal axis. We show that these ultrastructural changes correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membranes, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, with the latter involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial respiration in VLC-acclimated cells reduces the affinity of the cells for Ci. Overall, our results suggest that mitochondrial repositioning functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
| | - Neda Fakhimi
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
| | - Andrey V. Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
- Department of Bioengineering, Stanford University, Stanford, CA94305
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
- Biology Department, Stanford University, Stanford, CA94305
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
- Biology Department, Stanford University, Stanford, CA94305
| |
Collapse
|
11
|
Zhao M, Wang J, Zhu S, Wang M, Chen C, Wang L, Liu J. Mitochondrion-based organellar therapies for central nervous system diseases. Cell Commun Signal 2024; 22:487. [PMID: 39390521 PMCID: PMC11468137 DOI: 10.1186/s12964-024-01843-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
As most traditional drugs used to treat central nervous system (CNS) diseases have a single therapeutic target, many of them cannot treat complex diseases or diseases whose mechanism is unknown and cannot effectively reverse the root changes underlying CNS diseases. This raises the question of whether multiple functional components are involved in the complex pathological processes of CNS diseases. Organelles are the core functional units of cells, and the replacement of damaged organelles with healthy organelles allows the multitargeted and integrated modulation of cellular functions. The development of therapies that target independent functional units in the cell, specifically, organelle-based therapies, is rapidly progressing. This article comprehensively discusses the pathogenesis of mitochondrial homeostasis disorders, which involve mitochondria, one of the most important organelles in CNS diseases, and the machanisms of mitochondrion-based therapies, as well as current preclinical and clinical studies on the efficacy of therapies targeting mitochondrial to treat CNS diseases, to provide evidence for use of organelle-based treatment strategies in the future.
Collapse
Affiliation(s)
- Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Shuaiyu Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Chong Chen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Local Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- National Genetic Test Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian City, Liaoning Province, 116011, P.R. China.
- Liaoning Key Laboratory of Frontier Technology of Stem Cell and Precision Medicine, Dalian Innovation Institute of Stem Cell and Precision Medicine, No. 57, Xinda Street, High-Tech Park, Dalian City, Liaoning Province, 116023, P.R. China.
| |
Collapse
|
12
|
Machesky LM. Lipid synthesis leads the way for invasive migration. J Cell Biol 2024; 223:e202408005. [PMID: 39348026 PMCID: PMC11441311 DOI: 10.1083/jcb.202408005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Invasive migration requires cells to break through extracellular matrix barriers, which is an energy-expensive process. In this issue, Park et al. (https://doi.org/10.1083/jcb.202402035) highlight the importance of biosynthesis of fatty acids, phospholipids, and isoprenoids in driving invasive migration of the Caenorhabditis elegans anchor cell through a basement membrane barrier during development.
Collapse
|
13
|
Libring S, Berestesky ED, Reinhart-King CA. The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria. Clin Exp Metastasis 2024; 41:567-587. [PMID: 38489056 PMCID: PMC11499424 DOI: 10.1007/s10585-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
14
|
Guo L. F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions: New insight and implications. Pharmacol Res 2024; 208:107393. [PMID: 39233058 DOI: 10.1016/j.phrs.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca2+ uptake contributes to Ca2+ storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate. Organelle communications are mediated by Ca2+/ROS signals, vesicle transport and membrane contact sites. The permeability transition pore (PTP) is an unselective channel that provides a release pathway for Ca2+/ROS, mtDNA and metabolites. F-ATP synthase inhibitory factor 1 (IF1) participates in regulation of PTP opening and is required for the translocation of transcriptional factors c-Myc/PGC1α to mitochondria to stimulate metabolic switch. IF1, a mitochondrial specific protein, has been suggested to regulate other organelles including nucleus, endoplasmic reticulum and lysosomes. IF1 may be able to mediate mitochondria-organelle interactions and cellular physiology through regulation of PTP activity.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
15
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
16
|
Schmied C, Ebner M, Samsó P, Van Der Veen R, Haucke V, Lehmann M. OrgaMapper: a robust and easy-to-use workflow for analyzing organelle positioning. BMC Biol 2024; 22:220. [PMID: 39343900 PMCID: PMC11440938 DOI: 10.1186/s12915-024-02015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Eukaryotic cells are highly compartmentalized by a variety of organelles that carry out specific cellular processes. The position of these organelles within the cell is elaborately regulated and vital for their function. For instance, the position of lysosomes relative to the nucleus controls their degradative capacity and is altered in pathophysiological conditions. The molecular components orchestrating the precise localization of organelles remain incompletely understood. A confounding factor in these studies is the fact that organelle positioning is surprisingly non-trivial to address e.g., perturbations that affect the localization of organelles often lead to secondary phenotypes such as changes in cell or organelle size. These phenotypes could potentially mask effects or lead to the identification of false positive hits. To uncover and test potential molecular components at scale, accurate and easy-to-use analysis tools are required that allow robust measurements of organelle positioning. RESULTS Here, we present an analysis workflow for the faithful, robust, and quantitative analysis of organelle positioning phenotypes. Our workflow consists of an easy-to-use Fiji plugin and an R Shiny App. These tools enable users without background in image or data analysis to (1) segment single cells and nuclei and to detect organelles, (2) to measure cell size and the distance between detected organelles and the nucleus, (3) to measure intensities in the organelle channel plus one additional channel, (4) to measure radial intensity profiles of organellar markers, and (5) to plot the results in informative graphs. Using simulated data and immunofluorescent images of cells in which the function of known factors for lysosome positioning has been perturbed, we show that the workflow is robust against common problems for the accurate assessment of organelle positioning such as changes of cell shape and size, organelle size and background. CONCLUSIONS OrgaMapper is a versatile, robust, and easy-to-use automated image analysis workflow that can be utilized in microscopy-based hypothesis testing and screens. It effectively allows for the mapping of the intracellular space and enables the discovery of novel regulators of organelle positioning.
Collapse
Affiliation(s)
- Christopher Schmied
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany.
- Present address: EU-OPENSCREEN ERIC, Robert-Roessle-Straße 10, Berlin, 13125, Germany.
| | - Michael Ebner
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
| | - Paula Samsó
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
| | - Rozemarijn Van Der Veen
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, 14195, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut Für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, Berlin, 13125, Germany
| |
Collapse
|
17
|
Meng X, Zhu Y, Tan H, Daraqel B, Ming Y, Li X, Yang G, He X, Song J, Zheng L. The cytoskeleton dynamics-dependent LINC complex in periodontal ligament stem cells transmits mechanical stress to the nuclear envelope and promotes YAP nuclear translocation. Stem Cell Res Ther 2024; 15:284. [PMID: 39243052 PMCID: PMC11380336 DOI: 10.1186/s13287-024-03884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) are important seed cells in tissue engineering and clinical applications. They are the priority receptor cells for sensing various mechanical stresses. Yes-associated protein (YAP) is a recognized mechanically sensitive transcription factor. However, the role of YAP in regulating the fate of PDLSCs under tension stress (TS) and its underlying mechanism is still unclear. METHODS The effects of TS on the morphology and fate of PDLSCs were investigated using fluorescence staining, transmission electron microscopy, flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). Then qRT-PCR, western blotting, immunofluorescence staining and gene knockdown experiments were performed to investigate the expression and distribution of YAP and its correlation with PDLSCs proliferation. The effects of cytoskeleton dynamics on YAP nuclear translocation were subsequently explored by adding cytoskeleton inhibitors. The effect of cytoskeleton dynamics on the expression of the LINC complex was proved through qRT-PCR and western blotting. After destroying the LINC complex by adenovirus, the effects of the LINC complex on YAP nuclear translocation and PDLSCs proliferation were investigated. Mitochondria-related detections were then performed to explore the role of mitochondria in YAP nuclear translocation. Finally, the in vitro results were verified by constructing orthodontic tooth movement models in Sprague-Dawley rats. RESULTS TS enhanced the polymerization and stretching of F-actin, which upregulated the expression of the LINC complex. This further strengthened the pull on the nuclear envelope, enlarged the nuclear pore, and facilitated YAP's nuclear entry, thus enhancing the expression of proliferation-related genes. In this process, mitochondria were transported to the periphery of the nucleus along the reconstructed microtubules. They generated ATP to aid YAP's nuclear translocation and drove F-actin polymerization to a certain degree. When the LINC complex was destroyed, the nuclear translocation of YAP was inhibited, which limited PDLSCs proliferation, impeded periodontal tissue remodeling, and hindered tooth movement. CONCLUSIONS Our study confirmed that appropriate TS could promote PDLSCs proliferation and periodontal tissue remodeling through the mechanically driven F-actin/LINC complex/YAP axis, which could provide theoretical guidance for seed cell expansion and for promoting healthy and effective tooth movement in clinical practice.
Collapse
Affiliation(s)
- Xuehuan Meng
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Baraa Daraqel
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
- Oral Health Research and Promotion Unit, Al-Quds University, Jerusalem, Palestine
| | - Ye Ming
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xiang Li
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
- Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
18
|
Boulton DP, Caino MC. Emerging roles for Mitochondrial Rho GTPases in tumor biology. J Biol Chem 2024; 300:107670. [PMID: 39128718 PMCID: PMC11402688 DOI: 10.1016/j.jbc.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Mitochondrial Rho GTPases (MIRO1 and MIRO2) are primarily studied for their role as resident mitochondrial anchor proteins that facilitate mitochondria trafficking in neurons. However, it is now appreciated that these proteins have critical roles in cancer. In this review, we focus on examining the role of MIROs in cancer, including expression changes in tumors and the molecular mechanisms by which MIROs impact tumor cell growth, invasion, and metastasis. Additionally, we give an overview of how MIRO's functions in normal cells within the tumor microenvironment can support or inhibit tumor growth and metastasis. Although this is still an emerging field, the current consensus is that the MIROs primarily promote tumor progression of disparate tumor types. As mitochondrial proteins are now being targeted in the clinic, we discuss their potential as novel proteins to target in cancer.
Collapse
Affiliation(s)
- Dillon P Boulton
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA; Pharmacology Graduate Program, University of Colorado, Aurora, Colorado, USA
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
19
|
Marabitti V, Vulpis E, Nazio F, Campello S. Mitochondrial Transfer as a Strategy for Enhancing Cancer Cell Fitness:Current Insights and Future Directions. Pharmacol Res 2024; 208:107382. [PMID: 39218420 DOI: 10.1016/j.phrs.2024.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
It is now recognized that tumors are not merely masses of transformed cells but are intricately interconnected with healthy cells in the tumor microenvironment (TME), forming complex and heterogeneous structures. Recent studies discovered that cancer cells can steal mitochondria from healthy cells to empower themselves, while reducing the functions of their target organ. Mitochondrial transfer, i.e. the intercellular movement of mitochondria, is recently emerging as a novel process in cancer biology, contributing to tumor growth, metastasis, and resistance to therapy by shaping the metabolic landscape of the tumor microenvironment. This review highlights the influence of transferred mitochondria on cancer bioenergetics, redox balance and apoptotic resistance, which collectively foster aggressive cancer phenotype. Furthermore, the therapeutic implications of mitochondrial transfer are discussed, emphasizing the potential of targeting these pathways to overcome drug resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Veronica Marabitti
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Elisabetta Vulpis
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesca Nazio
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
20
|
Qian L, Koval OM, Endoni BT, Juhr D, Stein CS, Allamargot C, Lin LH, Guo DF, Rahmouni K, Boudreau RL, Streeter J, Thiel WH, Grumbach IM. MIRO1 controls energy production and proliferation of smooth muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607854. [PMID: 39185180 PMCID: PMC11343164 DOI: 10.1101/2024.08.13.607854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background The outer mitochondrial Rho GTPase 1, MIRO1, mediates mitochondrial motility within cells, but implications for vascular smooth muscle cell (VSMC) physiology and its roles invascular diseases, such as neointima formation following vascular injury are widely unknown. Methods An in vivo model of selective Miro1 deletion in VSMCs was generated, and the animals were subjected to carotid artery ligation. The molecular mechanisms relevant to VSMC proliferation were then explored in explanted VSMCs by imaging mitochondrial positioning and cristae structure and assessing the effects on ATP production, metabolic function and interactions with components of the electron transport chain (ETC). Results MIRO1 was robustly expressed in VSMCs within human atherosclerotic plaques and promoted VSMC proliferation and neointima formation in mice by blocking cell-cycle progression at G1/S, mitochondrial positioning, and PDGF-induced ATP production and respiration; overexpression of a MIRO1 mutant lacking the EF hands that are required for mitochondrial mobility did not fully rescue these effects. At the ultrastructural level, Miro1 deletion distorted the mitochondrial cristae and reduced the formation of super complexes and the activity of ETC complex I. Conclusions Mitochondrial motility is essential for VSMC proliferation and relies on MIRO1. The EF-hands of MIRO1 regulate the intracellular positioning of mitochondria. Additionally, the absence of MIRO1 leads to distorted mitochondrial cristae and reduced ATP generation. Our findings demonstrate that motility is linked to mitochondrial ATP production. We elucidated two unrecognized mechanisms through which MIRO1 influences cell proliferation by modulating mitochondria: first, by managing mitochondrial placement via Ca2+-dependent EF hands, and second, by affecting cristae structure and ATP synthesis.
Collapse
Affiliation(s)
- Lan Qian
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Olha M. Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Benney T. Endoni
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
- Interdisciplinary Program in Molecular Medicine, University of Iowa
| | - Denise Juhr
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Colleen S. Stein
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | | | - Li-Hsien Lin
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Deng-Fu Guo
- Department of Neuroscience and Pharmacology, University of Iowa
| | - Kamal Rahmouni
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
- Interdisciplinary Program in Molecular Medicine, University of Iowa
- Department of Neuroscience and Pharmacology, University of Iowa
- Veterans Affairs Healthcare System, Iowa City, IA 52246, USA
| | - Ryan L. Boudreau
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Jennifer Streeter
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - William H. Thiel
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City IA 52242, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City IA 52242, USA
- Veterans Affairs Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
21
|
Lee IW, Tazehkand AP, Sha ZY, Adhikari D, Carroll J. An aggregated mitochondrial distribution in preimplantation embryos disrupts nuclear morphology, function, and developmental potential. Proc Natl Acad Sci U S A 2024; 121:e2317316121. [PMID: 38917013 PMCID: PMC11228517 DOI: 10.1073/pnas.2317316121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
A dispersed cytoplasmic distribution of mitochondria is a hallmark of normal cellular organization. Here, we have utilized the expression of exogenous Trak2 in mouse oocytes and embryos to disrupt the dispersed distribution of mitochondria by driving them into a large cytoplasmic aggregate. Our findings reveal that aggregated mitochondria have minimal impact on asymmetric meiotic cell divisions of the oocyte. In contrast, aggregated mitochondria during the first mitotic division result in daughter cells with unequal sizes and increased micronuclei. Further, in two-cell embryos, microtubule-mediated centering properties of the mitochondrial aggregate prevent nuclear centration, distort nuclear shape, and inhibit DNA synthesis and the onset of embryonic transcription. These findings demonstrate the motor protein-mediated distribution of mitochondria throughout the cytoplasm is highly regulated and is an essential feature of cytoplasmic organization to ensure optimal cell function.
Collapse
Affiliation(s)
- In-Won Lee
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Abbas Pirpour Tazehkand
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zi-Yi Sha
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - John Carroll
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
22
|
Marlar-Pavey M, Tapias-Gomez D, Mettlen M, Friedman JR. Compositionally unique mitochondria in filopodia support cellular migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600105. [PMID: 38948746 PMCID: PMC11212966 DOI: 10.1101/2024.06.21.600105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Local metabolic demand within cells varies widely and the extent to which individual mitochondria can be specialized to meet these functional needs is unclear. We examined the subcellular distribution of MICOS, a spatial and functional organizer of mitochondria, and discovered that it dynamically enriches at the tip of a minor population of mitochondria in the cell periphery that we term "METEORs". METEORs have a unique composition; MICOS enrichment sites are depleted of mtDNA and matrix proteins and contain high levels of the Ca2+ uniporter MCU, suggesting a functional specialization. METEORs are also enriched for the myosin MYO19, which promotes their trafficking to a small subset of filopodia. We identify a positive correlation between the length of filopodia and the presence of METEORs and show that elimination of mitochondria from filopodia impairs cellular motility. Our data reveal a novel type of mitochondrial heterogeneity and suggest compositionally specialized mitochondria support cell migration.
Collapse
Affiliation(s)
| | - Daniel Tapias-Gomez
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
23
|
Mesa D, Barbieri E, Raimondi A, Freddi S, Miloro G, Jendrisek G, Caldieri G, Quarto M, Schiano Lomoriello I, Malabarba MG, Bresci A, Manetti F, Vernuccio F, Abdo H, Scita G, Lanzetti L, Polli D, Tacchetti C, Pinton P, Bonora M, Di Fiore PP, Sigismund S. A tripartite organelle platform links growth factor receptor signaling to mitochondrial metabolism. Nat Commun 2024; 15:5119. [PMID: 38879572 PMCID: PMC11180189 DOI: 10.1038/s41467-024-49543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024] Open
Abstract
One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.
Collapse
Affiliation(s)
- Deborah Mesa
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Stefano Freddi
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gorana Jendrisek
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Micaela Quarto
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Irene Schiano Lomoriello
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Grazia Malabarba
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | - Hind Abdo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR Institute for Photonics and Nanotechnology (CNR-IFN), Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Pier Paolo Di Fiore
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Sara Sigismund
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
24
|
Wang W, Zanotelli MR, Sabo LN, Fabiano ED, Goldfield NM, Le C, Techasiriwan EP, Lopez S, Berestesky ED, Reinhart-King CA. Collagen density regulates tip-stalk cell rearrangement during angiogenesis via cellular bioenergetics. APL Bioeng 2024; 8:026120. [PMID: 38872716 PMCID: PMC11170328 DOI: 10.1063/5.0195249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Tumor vasculature plays a crucial role in tumor progression, affecting nutrition and oxygen transportation as well as the efficiency of drug delivery. While targeting pro-angiogenic growth factors has been a significant focus for treating tumor angiogenesis, recent studies indicate that metabolism also plays a role in regulating endothelial cell behavior. Like cancer cells, tumor endothelial cells undergo metabolic changes that regulate rearrangement for tip cell position during angiogenesis. Our previous studies have shown that altered mechanical properties of the collagen matrix regulate angiogenesis and can promote a tumor vasculature phenotype. Here, we examine the effect of collagen density on endothelial cell tip-stalk cell rearrangement and cellular energetics during angiogenic sprouting. We find that increased collagen density leads to an elevated energy state and an increased rate of tip-stalk cell switching, which is correlated with the energy state of the cells. Tip cells exhibit higher glucose uptake than stalk cells, and inhibition of glucose uptake revealed that invading sprouts rely on glucose to meet elevated energy requirements for invasion in dense matrices. This work helps to elucidate the complex interplay between the mechanical microenvironment and the endothelial cell metabolic status during angiogenesis, which could have important implications for developing new anti-cancer therapies.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | - Lindsey N. Sabo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Emily D. Fabiano
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Natalie M. Goldfield
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chloe Le
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Elle P. Techasiriwan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Santiago Lopez
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Emily D. Berestesky
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
25
|
Aspenström P. Miro GTPases at the Crossroads of Cytoskeletal Dynamics and Mitochondrial Trafficking. Cells 2024; 13:647. [PMID: 38607086 PMCID: PMC11012113 DOI: 10.3390/cells13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Miro GTPases are key components in the machinery responsible for transporting mitochondria and peroxisomes along microtubules, and also play important roles in regulating calcium homeostasis and organizing contact sites between mitochondria and the endoplasmic reticulum. Moreover, Miro GTPases have been shown to interact with proteins that actively regulate cytoskeletal organization and dynamics, suggesting that these GTPases participate in organizing cytoskeletal functions and organelle transport. Derailed mitochondrial transport is associated with neuropathological conditions such as Parkinson's and Alzheimer's diseases. This review explores our recent understanding of the diverse roles of Miro GTPases under cytoskeletal control, both under normal conditions and during the course of human diseases such as neuropathological disorders.
Collapse
Affiliation(s)
- Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE 751 85 Uppsala, Sweden
| |
Collapse
|
26
|
Liu Y, Wang YJ, Du Y, Liu W, Huang X, Fan Z, Lu J, Yi R, Xiang XW, Xia X, Gu H, Liu YJ, Liu B. DNA nanomachines reveal an adaptive energy mode in confinement-induced amoeboid migration powered by polarized mitochondrial distribution. Proc Natl Acad Sci U S A 2024; 121:e2317492121. [PMID: 38547056 PMCID: PMC10998588 DOI: 10.1073/pnas.2317492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Ya-Jun Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yang Du
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Wei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Zihui Fan
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Runqiu Yi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xiao-Wei Xiang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xinwei Xia
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Hongzhou Gu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| |
Collapse
|
27
|
Findinier J, Joubert LM, Schmid MF, Malkovskiy A, Chiu W, Burlacot A, Grossman AR. Dramatic Changes in Mitochondrial Subcellular Location and Morphology Accompany Activation of the CO 2 Concentrating Mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586705. [PMID: 38585955 PMCID: PMC10996633 DOI: 10.1101/2024.03.25.586705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization appears to be a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limiting conditions, although a role for this reorganization in CCM function remains unclear. We used the green microalgae Chlamydomonas reinhardtii to monitor changes in the position and ultrastructure of mitochondrial membranes as cells transition between high CO2 (HC) and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral location, become wedged between the plasma membrane and chloroplast envelope, and mitochondrial membranes orient in parallel tubular arrays that extend from the cell's apex to its base. We show that these ultrastructural changes require protein and RNA synthesis, occur within 90 min of shifting cells to VLC conditions, correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membrane, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, which is involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial electron transport in VLC acclimated cells reduces the cell's affinity for inorganic carbon. Overall, our results suggest that CIA5-dependent mitochondrial repositioning/reorientation functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Andrey Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Chustecki JM, Johnston IG. Collective mitochondrial dynamics resolve conflicting cellular tensions: From plants to general principles. Semin Cell Dev Biol 2024; 156:253-265. [PMID: 38043948 DOI: 10.1016/j.semcdb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
Mitochondria play diverse and essential roles in eukaryotic cells, and plants are no exception. Plant mitochondria have several differences from their metazoan and fungal cousins: they often exist in a fragmented state, move rapidly on actin rather than microtubules, have many plant-specific metabolic features and roles, and usually contain only a subset of the complete mtDNA genome, which itself undergoes frequent recombination. This arrangement means that exchange and complementation is essential for plant mitochondria, and recent work has begun to reveal how their collective dynamics and resultant "social networks" of encounters support this exchange, connecting plant mitochondria in time rather than in space. This review will argue that this social network perspective can be extended to a "societal network", where mitochondrial dynamics are an essential part of the interacting cellular society of organelles and biomolecules. Evidence is emerging that mitochondrial dynamics allow optimal resolutions to competing cellular priorities; we will survey this evidence and review potential future research directions, highlighting that plant mitochondria can help reveal and test principles that apply across other kingdoms of life. In parallel with this fundamental cell biology, we also highlight the translational "One Health" importance of plant mitochondrial behaviour - which is exploited in the production of a vast amount of crops consumed worldwide - and the potential for multi-objective optimisation to understand and rationally re-engineer the evolved resolutions to these tensions.
Collapse
Affiliation(s)
- Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway; Computational Biology Unit, University of Bergen, Bergen, Norway.
| |
Collapse
|
29
|
Mosier JA, Fabiano ED, Ludolph CM, White AE, Reinhart-King CA. Confinement primes cells for faster migration by polarizing active mitochondria. NANOSCALE ADVANCES 2023; 6:209-220. [PMID: 38125598 PMCID: PMC10729874 DOI: 10.1039/d3na00478c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Mechanical cues in the tumor microenvironment interplay with internal cellular processes to control cancer cell migration. Microscale pores present in tumor tissue confer varying degrees of confinement on migrating cells, increasing matrix contact and inducing cytoskeletal rearrangement. Previously, we observed that increased collagen matrix contact significantly increased cell migration speed and cell-induced strains within the matrix. However, the effects of this confinement on future cell migration are not fully understood. Here, we use a collagen microtrack platform to determine the effect of confinement on priming MDA-MB-231 cancer cells for fast migration. We show that migration through a confined track results in increased speed and accumulation of migratory machinery, including actin and active mitochondria, in the front of migrating breast cancer cells. By designing microtracks that allow cells to first navigate a region of high confinement, then a region of low confinement, we assessed whether migration in high confinement changes future migratory behavior. Indeed, cells maintain their speed attained in high confinement even after exiting to a region of low confinement, indicating that cells maintain memory of previous matrix cues to fuel fast migration. Active mitochondria maintain their location at the front of the cell even after cells leave high confinement. Furthermore, knocking out vinculin to disrupt focal adhesions disrupts active mitochondrial localization and disrupts the fast migration seen upon release from confinement. Together, these data suggest that active mitochondrial localization in confinement may facilitate fast migration post-confinement. By better understanding how confinement contributes to future cancer cell migration, we can identify potential therapeutic targets to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Catherine M Ludolph
- Department of Chemical Engineering, University of Texas at Austin Austin TX USA
| | - Addison E White
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | | |
Collapse
|
30
|
Li AYZ, Di Y, Rathore S, Chiang ACY, Jezek J, Ma H. Milton assembles large mitochondrial clusters, mitoballs, to sustain spermatogenesis. Proc Natl Acad Sci U S A 2023; 120:e2306073120. [PMID: 37579146 PMCID: PMC10450580 DOI: 10.1073/pnas.2306073120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo frequent remodeling to accommodate developmental needs. Here, we describe a striking organization of mitochondria into a large ball-like structure adjacent to the nucleus in premeiotic Drosophila melanogaster spermatocytes, which we term "mitoball". Mitoballs are transient structures that colocalize with the endoplasmic reticulum, Golgi bodies, and the fusome. We observed similar premeiotic mitochondrial clusters in a wide range of insect species, including mosquitos and cockroaches. Through a genetic screen, we identified that Milton, an adaptor protein that links mitochondria to microtubule-based motors, mediates mitoball formation. Flies lacking a 54 amino acid region in the C terminus of Milton completely lacked mitoballs, had swollen mitochondria in their spermatocytes, and showed reduced male fertility. We suggest that the premeiotic mitochondrial clustering is a conserved feature of insect spermatogenesis that supports sperm development.
Collapse
Affiliation(s)
- Andy Y. Z. Li
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Sumaera Rathore
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Ason C.-Y. Chiang
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
- School of Biosciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Jan Jezek
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Hansong Ma
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
- School of Biosciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
| |
Collapse
|
31
|
Dong W, Zhang W, Yuan L, Xie Y, Li Y, Li K, Zhu W. Rescuers from the Other Shore: Intercellular Mitochondrial Transfer and Its Implications in Central Nervous System Injury and Diseases. Cell Mol Neurobiol 2023; 43:2525-2540. [PMID: 36867301 PMCID: PMC11410152 DOI: 10.1007/s10571-023-01331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
As the powerhouse and core of cellular metabolism and survival, mitochondria are the essential organelle in mammalian cells and maintain cellular homeostasis by changing their content and morphology to meet demands through mitochondrial quality control. It has been observed that mitochondria can move between cells under physiological and pathophysiological conditions, which provides a novel strategy for preserving mitochondrial homeostasis and also a therapeutic target for applications in clinical settings. Therefore, in this review, we will summarize currently known mechanisms of intercellular mitochondrial transfer, including modes, triggers, and functions. Due to the highly demanded energy and indispensable intercellular linkages of the central nervous system (CNS), we highlight the mitochondrial transfer in CNS. We also discuss future application possibilities and difficulties that need to be addressed in the treatment of CNS injury and diseases. This clarification should shed light on its potential clinical applications as a promising therapeutic target in neurological diseases. Intercellular mitochondrial transfer maintains the homeostasis of central nervous system (CNS), and its alteration is related to several neurological diseases. Supplementing exogenous mitochondrial donor cells and mitochondria, or utilizing some medications to regulate the process of transfer might mitigate the disease and injury.
Collapse
Affiliation(s)
- Weichen Dong
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China
| | - Linying Yuan
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Yunzi Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Iron Metabolism and Mitochondrial Function, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu Province, China.
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China.
| |
Collapse
|
32
|
Bruno S, Lamberty A, McCoy M, Mark Z, Daphtary N, Aliyeva M, Butnor K, Poynter ME, Anathy V, Cunniff B. Deletion of Miro1 in airway club cells potentiates allergic asthma phenotypes. FRONTIERS IN ALLERGY 2023; 4:1187945. [PMID: 37377691 PMCID: PMC10291198 DOI: 10.3389/falgy.2023.1187945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are multifaceted organelles necessary for numerous cellular signaling and regulatory processes. Mitochondria are dynamic organelles, trafficked and anchored to subcellular sites depending upon the cellular and tissue requirements. Precise localization of mitochondria to apical and basolateral membranes in lung epithelial cells is important for key mitochondrial processes. Miro1 is an outer mitochondrial membrane GTPase that associates with adapter proteins and microtubule motors to promote intracellular movement of mitochondria. We show that deletion of Miro1 in lung epithelial cells leads to perinuclear clustering of mitochondria. However, the role of Miro1 in epithelial cell response to allergic insults remains unknown. We generated a conditional mouse model to delete Miro1 in Club Cell Secretory Protein (CCSP) positive lung epithelial cells to examine the potential roles of Miro1 and mitochondrial trafficking in the lung epithelial response to the allergen, house dust mite (HDM). Our data show that Miro1 suppresses epithelial induction and maintenance of the inflammatory response to allergen, as Miro1 deletion modestly induces increases in pro-inflammatory signaling, specifically IL-6, IL-33, CCL20 and eotaxin levels, tissue reorganization, and airway hyperresponsiveness. Furthermore, loss of Miro1 in CCSP+ lung epithelial cells blocks resolution of the asthmatic insult. This study further demonstrates the important contribution of mitochondrial dynamic processes to the airway epithelial allergen response and the pathophysiology of allergic asthma.
Collapse
Affiliation(s)
- Sierra Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Amelia Lamberty
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Margaret McCoy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Zoe Mark
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Nirav Daphtary
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Minara Aliyeva
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Kelly Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Matthew E. Poynter
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
33
|
Sontag EM, Morales-Polanco F, Chen JH, McDermott G, Dolan PT, Gestaut D, Le Gros MA, Larabell C, Frydman J. Nuclear and cytoplasmic spatial protein quality control is coordinated by nuclear-vacuolar junctions and perinuclear ESCRT. Nat Cell Biol 2023; 25:699-713. [PMID: 37081164 DOI: 10.1038/s41556-023-01128-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Effective protein quality control (PQC), essential for cellular health, relies on spatial sequestration of misfolded proteins into defined inclusions. Here we reveal the coordination of nuclear and cytoplasmic spatial PQC. Cytoplasmic misfolded proteins concentrate in a cytoplasmic juxtanuclear quality control compartment, while nuclear misfolded proteins sequester into an intranuclear quality control compartment (INQ). Particle tracking reveals that INQ and the juxtanuclear quality control compartment converge to face each other across the nuclear envelope at a site proximal to the nuclear-vacuolar junction marked by perinuclear ESCRT-II/III protein Chm7. Strikingly, convergence at nuclear-vacuolar junction contacts facilitates VPS4-dependent vacuolar clearance of misfolded cytoplasmic and nuclear proteins, the latter entailing extrusion of nuclear INQ into the vacuole. Finding that nuclear-vacuolar contact sites are cellular hubs of spatial PQC to facilitate vacuolar clearance of nuclear and cytoplasmic inclusions highlights the role of cellular architecture in proteostasis maintenance.
Collapse
Affiliation(s)
- Emily M Sontag
- Department of Biology, Stanford University, Stanford, CA, USA.
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
| | | | - Jian-Hua Chen
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gerry McDermott
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T Dolan
- Department of Biology, Stanford University, Stanford, CA, USA
- Quantitative Virology and Evolution Unit, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Mark A Le Gros
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carolyn Larabell
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Parlani M, Jorgez C, Friedl P. Plasticity of cancer invasion and energy metabolism. Trends Cell Biol 2023; 33:388-402. [PMID: 36328835 PMCID: PMC10368441 DOI: 10.1016/j.tcb.2022.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Energy deprivation is a frequent adverse event in tumors that is caused by mutations, malperfusion, hypoxia, and nutrition deficit. The resulting bioenergetic stress leads to signaling and metabolic adaptation responses in tumor cells, secures survival, and adjusts migration activity. The kinetic responses of cancer cells to energy deficit were recently identified, including a switch of invasive cancer cells to energy-conservative amoeboid migration and an enhanced capability for distant metastasis. We review the energy programs employed by different cancer invasion modes including collective, mesenchymal, and amoeboid migration, as well as their interconversion in response to energy deprivation, and we discuss the consequences for metastatic escape. Understanding the energy requirements of amoeboid and other dissemination strategies offers rationales for improving therapeutic targeting of metastatic cancer progression.
Collapse
Affiliation(s)
- Maria Parlani
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands
| | - Carolina Jorgez
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen 6525GA, The Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Genomics Center, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
35
|
Splitt RL, DeMali KA. Metabolic reprogramming in response to cell mechanics. Biol Cell 2023; 115:e202200108. [PMID: 36807920 PMCID: PMC10192020 DOI: 10.1111/boc.202200108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/20/2023]
Abstract
Much attention has been dedicated to understanding how cells sense and respond to mechanical forces. The types of forces cells experience as well as the repertoire of cell surface receptors that sense these forces have been identified. Key mechanisms for transmitting that force to the cell interior have also emerged. Yet, how cells process mechanical information and integrate it with other cellular events remains largely unexplored. Here we review the mechanisms underlying mechanotransduction at cell-cell and cell-matrix adhesions, and we summarize the current understanding of how cells integrate information from the distinct adhesion complexes with cell metabolism.
Collapse
Affiliation(s)
- Rebecca L. Splitt
- Department of Biochemistry and Molecular Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242
| | - Kris A. DeMali
- Department of Biochemistry and Molecular Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
36
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
37
|
Matarrese P, Vona R, Ascione B, Cittadini C, Tocci A, Mileo AM. Tumor Microenvironmental Cytokines Drive NSCLC Cell Aggressiveness and Drug-Resistance via YAP-Mediated Autophagy. Cells 2023; 12:cells12071048. [PMID: 37048121 PMCID: PMC10093141 DOI: 10.3390/cells12071048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.
Collapse
Affiliation(s)
- Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| | - Rosa Vona
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Barbara Ascione
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Camilla Cittadini
- Oncology Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Viale Regina Elena, 299-00161 Rome, Italy
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
| | - Anna Maria Mileo
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53-00144 Rome, Italy
- Correspondence: (P.M.); (A.M.M.)
| |
Collapse
|
38
|
Zhang F, Zhang R, Wei M, Li G. A machine learning based approach for quantitative evaluation of cell migration in Transwell assays based on deformation characteristics. Analyst 2023; 148:1371-1382. [PMID: 36857714 DOI: 10.1039/d2an01882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Many pathological and physiological processes, including embryonic development, immune response and cancer metastasis, involve studies on cell migration, and especially detection methods, for which it is difficult to satisfy the requirements for rapid and quantitative evaluation and analysis. In view of the shortcomings in simultaneously quantifying the number of migrated cells and non-migrated cells using Transwell assays, we propose a novelty approach for the evaluation of cell migration by distinguishing whether the cells have migrated based on the regularity of the cell morphology changes. Traditionally, the status of living cells and dead cells are detected and analyzed by machine learning using some common morphological characteristics, e.g., area and perimeter of the cells. However, the accuracy of detecting whether cells have migrated or not using these common characteristics is not high, and the characteristics are not appropriate for our studies. Therefore, from the point of view of mechanism analysis for the migration behavior, we examined the regularity of different morphology changes of migrated cells and non-migrated cells, and thus discovered the distinguishable morphological characteristics. Then, two deformation characteristics, deformation index and taper index are proposed. Then, a machine learning based algorithm that can identify migrated cells according to the proposed deformation characteristics was devised. In addition, images of migrated cells and non-migrated cells were obtained from the Transwell assays. This algorithm was trained, and was able to successfully identify migrated cells with an accuracy of 84% using the proposed morphological characteristics. This method greatly improves the identification accuracy when compared with the identification of traditional characteristics of which the accuracy was about 54.7%. This machine learning based method might be employed as a potential tool for cell counting and evaluation of cell migration with the aim of reducing time and improving automation compared with the traditional method. This method is effective, rapid, and incorporate advances in artificial intelligence which could be used for adapting the current evaluation methods.
Collapse
Affiliation(s)
- Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Rongbiao Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Guoxiao Li
- School of Information Engineering, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212400, China
| |
Collapse
|
39
|
Han L, Zhang C, Wang D, Zhang J, Tang Q, Li MJ, Sack MN, Wang L, Zhu L. Retrograde regulation of mitochondrial fission and epithelial to mesenchymal transition in hepatocellular carcinoma by GCN5L1. Oncogene 2023; 42:1024-1037. [PMID: 36759571 DOI: 10.1038/s41388-023-02621-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Metabolic reprogram is crucial to support cancer cell growth and movement as well as determine cell fate. Mitochondrial protein acetylation regulates mitochondrial metabolism, which is relevant to cancer cell migration and invasion. The functional role of mitochondrial protein acetylation on cancer cell migration remains unclear. General control of amino acid synthesis 5 like-1(GCN5L1), as the regulator of mitochondrial protein acetylation, functions on metabolic reprogramming in mouse livers. In this study, we find that GCN5L1 expression is significantly decreased in metastatic HCC tissues. Loss of GCN5L1 promotes reactive oxygen species (ROS) generation through enhanced fatty acid oxidation (FAO), followed by activation of cellular ERK and DRP1 to promote mitochondrial fission and epithelia to mesenchymal transition (EMT) to boost cell migration. Moreover, palmitate and carnitine-stimulated FAO promotes mitochondrial fission and EMT gene expression to activate HCC cell migration. On the other hand, increased cellular acetyl-CoA level, the product of FAO, enhances HCC cell migration. Taken together, our finding uncovers the metastasis suppressor role as well as the underlying mechanism of GCN5L1 in HCC and also provides evidence of FAO retrograde control of HCC metastasis.
Collapse
Affiliation(s)
- Linmeng Han
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunyu Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Danni Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhang
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiqi Tang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin, China
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - Lingdi Wang
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Lu Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
40
|
Puccini J, Wei J, Tong L, Bar-Sagi D. Cytoskeletal association of ATP citrate lyase controls the mechanodynamics of macropinocytosis. Proc Natl Acad Sci U S A 2023; 120:e2213272120. [PMID: 36787367 PMCID: PMC9974455 DOI: 10.1073/pnas.2213272120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/15/2023] [Indexed: 02/15/2023] Open
Abstract
Macropinocytosis is an actin-dependent mode of nonselective endocytosis that mediates the uptake of extracellular fluid-phase cargoes. It is now well recognized that tumor cells exploit macropinocytosis to internalize macromolecules that can be catabolized and used to support cell growth and proliferation under nutrient-limiting conditions. Therefore, the identification of molecular mechanisms that control macropinocytosis is fundamental to the understanding of the metabolic adaptive landscape of tumor cells. Here, we report that the acetyl-CoA-producing enzyme, ATP citrate lyase (ACLY), is a key regulator of macropinocytosis and describes a heretofore-unappreciated association of ACLY with the actin cytoskeleton. The cytoskeletal tethering of ACLY is required for the spatially defined acetylation of heterodimeric actin capping protein, which we identify as an essential mediator of the actin remodeling events that drive membrane ruffling and macropinocytosis. Furthermore, we identify a requirement for mitochondrial-derived citrate, an ACLY substrate, for macropinocytosis, and show that mitochondria traffic to cell periphery regions juxtaposed to plasma membrane ruffles. Collectively, these findings establish a mode of metabolite compartmentalization that supports the spatiotemporal modulation of membrane-cytoskeletal interactions required for macropinocytosis by coupling regional acetyl-CoA availability with dynamic protein acetylation.
Collapse
Affiliation(s)
- Joseph Puccini
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY10016
| | - Jia Wei
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
41
|
Groenendyk J, Stoletov K, Paskevicius T, Li W, Dai N, Pujol M, Busaan E, Ng HH, Boukouris AE, Saleme B, Haromy A, Cui K, Hu M, Yan Y, Zhang R, Michelakis E, Chen XZ, Lewis JD, Tang J, Agellon LB, Michalak M. Loss of the fructose transporter SLC2A5 inhibits cancer cell migration. Front Cell Dev Biol 2022; 10:896297. [PMID: 36268513 PMCID: PMC9578049 DOI: 10.3389/fcell.2022.896297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the primary cause of cancer patient death and the elevation of SLC2A5 gene expression is often observed in metastatic cancer cells. Here we evaluated the importance of SLC2A5 in cancer cell motility by silencing its gene. We discovered that CRISPR/Cas9-mediated inactivation of the SLC2A5 gene inhibited cancer cell proliferation and migration in vitro as well as metastases in vivo in several animal models. Moreover, SLC2A5-attenuated cancer cells exhibited dramatic alterations in mitochondrial architecture and localization, uncovering the importance of SLC2A5 in directing mitochondrial function for cancer cell motility and migration. The direct association of increased abundance of SLC2A5 in cancer cells with metastatic risk in several types of cancers identifies SLC2A5 as an important therapeutic target to reduce or prevent cancer metastasis.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Wenjuan Li
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Myriam Pujol
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Erin Busaan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Hoi Hei Ng
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Miao Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yanan Yan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | | | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- *Correspondence: Luis B. Agellon, ; Marek Michalak,
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Luis B. Agellon, ; Marek Michalak,
| |
Collapse
|
42
|
Bouchareb R, Yu L, Lassen E, Daehn IS. Isolation of Conditionally Immortalized Mouse Glomerular Endothelial Cells with Fluorescent Mitochondria. J Vis Exp 2022:10.3791/64147. [PMID: 36190268 PMCID: PMC10840453 DOI: 10.3791/64147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Glomerular endothelial cell (GEC) dysfunction can initiate and contribute to glomerular filtration barrier breakdown. Increased mitochondrial oxidative stress has been suggested as a mechanism resulting in GEC dysfunction in the pathogenesis of some glomerular diseases. Historically the isolation of GECs from in vivo models has been notoriously challenging due to difficulties in isolating pure cultures from glomeruli. GECs have complex growth requirements in vitro and a very limited lifespan. Here, we describe the procedure for isolating and culturing conditionally immortalized GECs with fluorescent mitochondria, enabling the tracking of mitochondrial fission and fusion events. GECs were isolated from the kidneys of a double transgenic mouse expressing the thermolabile SV40 TAg (from the Immortomouse), conditionally promoting proliferation and suppressing cell differentiation, and a photo-convertible fluorescent protein (Dendra2) in all mitochondria (from the photo-activatable mitochondria [PhAMexcised] mouse). The stable cell line generated allows for cell differentiation after inactivation of the immortalizing SV40 TAg gene and photo-activation of a subset of mitochondria causing a switch in fluorescence from green to red. The use of mitoDendra2-GECs allows for live imaging of fluorescent mitochondria's distribution, fusion, and fission events without staining the cells.
Collapse
Affiliation(s)
- Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai;
| | - Liping Yu
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai
| | - Emelie Lassen
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai
| | - Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
43
|
Chustecki JM, Etherington RD, Gibbs DJ, Johnston IG. Altered collective mitochondrial dynamics in the Arabidopsis msh1 mutant compromising organelle DNA maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5428-5439. [PMID: 35662332 PMCID: PMC9467644 DOI: 10.1093/jxb/erac250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 05/19/2023]
Abstract
Mitochondria form highly dynamic populations in the cells of plants (and almost all eukaryotes). The characteristics and benefits of this collective behaviour, and how it is influenced by nuclear features, remain to be fully elucidated. Here, we use a recently developed quantitative approach to reveal and analyse the physical and collective 'social' dynamics of mitochondria in an Arabidopsis msh1 mutant where the organelle DNA maintenance machinery is compromised. We use a newly created line combining the msh1 mutant with mitochondrially targeted green fluorescent protein (GFP), and characterize mitochondrial dynamics with a combination of single-cell time-lapse microscopy, computational tracking, and network analysis. The collective physical behaviour of msh1 mitochondria is altered from that of the wild type in several ways: mitochondria become less evenly spread, and networks of inter-mitochondrial encounters become more connected, with greater potential efficiency for inter-organelle exchange-reflecting a potential compensatory mechanism for the genetic challenge to the mitochondrial DNA population, supporting more inter-organelle exchange. We find that these changes are similar to those observed in friendly, where mitochondrial dynamics are altered by a physical perturbation, suggesting that this shift to higher connectivity may reflect a general response to mitochondrial challenges, where physical dynamics of mitochondria may be altered to control the genetic structure of the mtDNA population.
Collapse
Affiliation(s)
| | | | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
44
|
Abstract
Pten is one of the most frequently mutated tumour suppressor gene in cancer. PTEN is generally altered in invasive cancers such as glioblastomas, but its function in collective cell migration and invasion is not fully characterised. Herein, we report that the loss of PTEN increases cell speed during collective migration of non-tumourous cells both in vitro and in vivo. We further show that loss of PTEN promotes LKB1-dependent phosphorylation and activation of the major metabolic regulator AMPK. In turn AMPK increases VASP phosphorylation, reduces VASP localisation at cell-cell junctions and decreases the interjunctional transverse actin arcs at the leading front, provoking a weakening of cell-cell contacts and increasing migration speed. Targeting AMPK activity not only slows down PTEN-depleted cells, it also limits PTEN-null glioblastoma cell invasion, opening new opportunities to treat glioblastoma lethal invasiveness. Pten is a tumour suppressor gene that is associated with highly invasive cancers such as glioblastoma. Here the authors show that PTEN loss results in increased migratory behaviour, which can be countered by targeting AMPK activity.
Collapse
|
45
|
Nahacka Z, Novak J, Zobalova R, Neuzil J. Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front Cell Dev Biol 2022; 10:937753. [PMID: 35959487 PMCID: PMC9358137 DOI: 10.3389/fcell.2022.937753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are organelles essential for tumor cell proliferation and metastasis. Although their main cellular function, generation of energy in the form of ATP is dispensable for cancer cells, their capability to drive their adaptation to stress originating from tumor microenvironment makes them a plausible therapeutic target. Recent research has revealed that cancer cells with damaged oxidative phosphorylation import healthy (functional) mitochondria from surrounding stromal cells to drive pyrimidine synthesis and cell proliferation. Furthermore, it has been shown that energetically competent mitochondria are fundamental for tumor cell migration, invasion and metastasis. The spatial positioning and transport of mitochondria involves Miro proteins from a subfamily of small GTPases, localized in outer mitochondrial membrane. Miro proteins are involved in the structure of the MICOS complex, connecting outer and inner-mitochondrial membrane; in mitochondria-ER communication; Ca2+ metabolism; and in the recycling of damaged organelles via mitophagy. The most important role of Miro is regulation of mitochondrial movement and distribution within (and between) cells, acting as an adaptor linking organelles to cytoskeleton-associated motor proteins. In this review, we discuss the function of Miro proteins in various modes of intercellular mitochondrial transfer, emphasizing the structure and dynamics of tunneling nanotubes, the most common transfer modality. We summarize the evidence for and propose possible roles of Miro proteins in nanotube-mediated transfer as well as in cancer cell migration and metastasis, both processes being tightly connected to cytoskeleton-driven mitochondrial movement and positioning.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| | - Jaromir Novak
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Renata Zobalova
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| |
Collapse
|
46
|
Shannon N, Gravelle R, Cunniff B. Mitochondrial trafficking and redox/phosphorylation signaling supporting cell migration phenotypes. Front Mol Biosci 2022; 9:925755. [PMID: 35936783 PMCID: PMC9355248 DOI: 10.3389/fmolb.2022.925755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of cell signaling cascades is critical in making sure the response is activated spatially and for a desired duration. Cell signaling cascades are spatially and temporally controlled through local protein phosphorylation events which are determined by the activation of specific kinases and/or inactivation of phosphatases to elicit a complete and thorough response. For example, A-kinase-anchoring proteins (AKAPs) contribute to the local regulated activity protein kinase A (PKA). The activity of kinases and phosphatases can also be regulated through redox-dependent cysteine modifications that mediate the activity of these proteins. A primary example of this is the activation of the epidermal growth factor receptor (EGFR) and the inactivation of the phosphatase and tensin homologue (PTEN) phosphatase by reactive oxygen species (ROS). Therefore, the local redox environment must play a critical role in the timing and magnitude of these events. Mitochondria are a primary source of ROS and energy (ATP) that contributes to redox-dependent signaling and ATP-dependent phosphorylation events, respectively. The strategic positioning of mitochondria within cells contributes to intracellular gradients of ROS and ATP, which have been shown to correlate with changes to protein redox and phosphorylation status driving downstream cellular processes. In this review, we will discuss the relationship between subcellular mitochondrial positioning and intracellular ROS and ATP gradients that support dynamic oxidation and phosphorylation signaling and resulting cellular effects, specifically associated with cell migration signaling.
Collapse
Affiliation(s)
- Nathaniel Shannon
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Randi Gravelle
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|
47
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
48
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
49
|
Torres A, Vivanco S, Lavín F, Pereda C, Chernobrovkin A, Gleisner A, Alcota M, Larrondo M, López MN, Salazar-Onfray F, Zubarev RA, González FE. Haptoglobin Induces a Specific Proteomic Profile and a Mature-Associated Phenotype on Primary Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2022; 23:ijms23136882. [PMID: 35805888 PMCID: PMC9266681 DOI: 10.3390/ijms23136882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) play a critical role in dendritic cells (DCs) ability to trigger a specific and efficient adaptive immune response for different physiological and pathological scenarios. We have previously identified constitutive DAMPs (HMGB1 and Calreticulin) as well as new putative inducible DAMPs such as Haptoglobin (HP), from a therapeutically used heat shock-conditioned melanoma cell lysate (called TRIMEL). Remarkably, HP was shown to be the most abundant protein in the proteomic profile of heat shock-conditioned TRIMEL samples. However, its relative contribution to the observed DCs phenotype has not been fully elucidated. Human DCs were generated from monocytes isolated from PBMC of melanoma patients and healthy donors. DC lineage was induced with rhIL-4 and rhGM-CSF. After additional stimulation with HP, the proteome of these HP-stimulated cells was characterized. In addition, DCs were phenotypically characterized by flow cytometry for canonical maturation markers and cytokine production. Finally, in vitro transmigration capacity was assessed using Transwell plates. Our results showed that the stimulation with HP was associated with the presence of exclusive and higher relative abundance of specific immune-; energy production-; lipid biosynthesis-; and DAMPs-related proteins. Importantly, HP stimulation enhanced the expression of specific DC maturation markers and pro-inflammatory and Th1-associated cytokines, and an in vitro transmigration of primary human DCs. Taken together, these data suggest that HP can be considered as a new inducible DAMP with an important role in in vitro DC activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Sheilah Vivanco
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Francisca Lavín
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Milton Larrondo
- Blood Bank Service, University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Mercedes N. López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-2-29781714
| |
Collapse
|
50
|
Morin M, Moindjie H, Nahmias C. Le transport mitochondrial. Med Sci (Paris) 2022; 38:585-593. [DOI: 10.1051/medsci/2022085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La reprogrammation métabolique est l’un des marqueurs de la carcinogenèse. Au cœur de cette reprogrammation se trouvent les mitochondries qui produisent l’énergie sous forme de molécules d’ATP. La régulation spatio-temporelle de la production d’ATP, indispensable pour fournir l’énergie au bon endroit et au bon moment, est assurée par le transport intracellulaire des mitochondries. Les complexes Miro/TRAK présents à la surface des mitochondries se lient aux protéines motrices de la cellule (dynéine, kinésine, myosine) pour transporter les mitochondries le long du cytosquelette. Ces acteurs du transport mitochondrial sont souvent dérégulés dans le cancer. Nous présentons dans cette revue les mécanismes par lesquels le transport mitochondrial contribue à la migration, à la division cellulaire et à la réponse au stress des cellules cancéreuses. Décrypter ces mécanismes pourrait ouvrir la voie à de nouvelles approches thérapeutiques en oncologie.
Collapse
|