1
|
Kelly M, Capelli R, Dima RI, Carloni P. Role of Residues Undergoing Hereditary Spastic Paraplegias Mutations: Insights from Simulating the Spiral to Ring Transition in Katanin. J Chem Inf Model 2025; 65:4655-4661. [PMID: 40257225 PMCID: PMC12076492 DOI: 10.1021/acs.jcim.5c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Several dozen mutations in the M87 isoform of the spastin enzyme have been associated with mobility impairment in hereditary spastic paraplegias. Some of them impact the structural determinants of two functional conformations of the protein: spiral and ring. Here we investigate the possible patterns between these disease-related residues in spastin and aligned regions in the closely related protein katanin toward their role in the transition of the two conformations, which is essential for both enzymes' function. By performing a variety of molecular simulations (including metadynamics) on katanin, we suggest that about one-fourth of the known M87 spastin disease-associated mutations also affect the interconversion and/or the stability of a previously unrecognized intermediate of the katanin transition. The protocol used here can be applied to the study of conformational changes in other large biomolecular complexes.
Collapse
Affiliation(s)
- Maria
S. Kelly
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Riccardo Capelli
- Department
of Biosciences, Università degli
Studi di Milano, 20133 Milano, Italy
| | - Ruxandra I. Dima
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Paolo Carloni
- INM-9, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
2
|
Ma A, Liang Z, Zhang H, Meng Z, Zhu J, Chen S, Lin Q, Jiang T, Tan M. UCHL1-Mediated Spastin Degradation Regulates Microtubule Severing and Hippocampal Neurite Outgrowth. J Mol Neurosci 2025; 75:54. [PMID: 40272610 DOI: 10.1007/s12031-025-02348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
As a key component of the cytoskeleton, microtubule dynamic provides structural support for neurite outgrowth. Spastin, a microtubule severing enzyme associated with hereditary spastic paraplegia (HSP), is crucial for the growth and branching of neuronal processes. Thus, the activity and function of spastin need to be strictly regulated. However, the mechanism by which spastin protein levels are regulated is still poorly understood. In the current study, we showed that UCHL1 interacted with spastin via mass spectrometry, GST-pulldown and immunoprecipitation assays. Overexpression of UCHL1 decreased the protein level of spastin, while the genetic knockdown of UCHL1 increased that of spastin. CHX chase assay showed that UCHL1 regulated the protein degradation of spastin. Application of proteasome inhibitor MG-132 suppressed UCHL1-mediated spastin degradation. Furthermore, overexpression or knockout of UCHL1 can inhibit or restore spastin-mediated microtubule severing, thereby regulating neuronal length and branch formation. These findings reveal the important regulatory mechanism of UCHL1 on spastin-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Ao Ma
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhi Liang
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Hongde Zhang
- Department of Recovery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhichao Meng
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiehao Zhu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qisheng Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Tao Jiang
- Department of Orthopedics, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510050, China.
| | - Minghui Tan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Ramakrishnan S, Mohan N, Dong Z, Liu M, Qiang L. Unraveling Isoform Complexity: The Roles of M1- and M87-Spastin in Spastic Paraplegia 4 (SPG4). Mov Disord 2025; 40:420-430. [PMID: 39614608 PMCID: PMC11928279 DOI: 10.1002/mds.30072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Spastic Paraplegia 4 (SPG4) is a debilitating neurodegenerative disorder characterized by progressive muscle weakness and spasticity in the lower limbs, often leading to gait impairment. Central to SPG4 pathology is the die-back degeneration of corticospinal tracts, primarily driven by mutations in the spastin protein encoded by the SPAST gene. SPAST gives rise to two major spastin isoforms, M1- and M87-spastin, which are generated from distinct translation initiation sites. Although spastin is implicated in various cellular functions, the specific roles of each isoform in the pathogenesis of SPG4 remain poorly understood. This review offers an overview of the genetic and structural organization of the M1- and M87-spastin isoforms, highlighting their distinct and overlapping functions, and exploring their potential roles in the haploinsufficiency and gain-of-toxicity mechanisms underlying SPG4. We also present a novel perspective on the evolutionary emergence of M1-spastin and its potential unique involvement in the pathogenesis of SPG4. Drawing upon the latest research, we propose an intriguing hypothesis regarding the hetero-oligomerization of M1- and M87-spastin, exploring how their interaction may drive disease progression and open new avenues for therapeutic intervention. By integrating the current research with these fresh insights, we seek to illuminate the complex molecular mechanisms driving SPG4 and foster the development of innovative therapeutic strategies. This review not only incorporates existing knowledge but also lays the groundwork for future studies aimed at uncovering the isoform-specific roles of spastin in SPG4, with the ultimate goal of advancing targeted treatments for this challenging neurodegenerative disorder. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Skandha Ramakrishnan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
4
|
Degoutin M, Angelini C, Bar C, El Khedoud WA, Barnerias C, Boulariah-Hadjou R, Estiar MA, Ewenczyk C, Gan-Or Z, Lacombe D, Lefeuvre C, Majethia P, Messaoud-Khelifi M, Narayanan DL, Rouleau GA, Suchowersky O, Shukla A, Guillaud-Bataille M, Stevanin G, Goizet C. From spastic paraplegia to infantile neurodegenerative disorder: Expanding the phenotypic spectrum associated with biallelic SPAST variants. Eur J Neurol 2025; 32:e70025. [PMID: 39731306 DOI: 10.1111/ene.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/12/2024] [Indexed: 12/29/2024]
Abstract
PURPOSE Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST. METHODS Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder. RESULTS We describe 5 patients with pure HSP with a variable age of onset, mostly in infancy, and 4 patients with profound intellectual disability and progressively worsening tetrapyramidal syndrome. The patients' parents, heterozygous carriers of pathogenic SPAST variants, included both asymptomatic carriers and patients with classic forms of SPG4. CONCLUSION Biallelic variants of SPAST may explain cases of hereditary spastic paraplegia with autosomal recessive inheritance. Furthermore, some biallelic variants may also cause psychomotor regression with an infantile neurodegenerative disorder, associated with a tetrapyramidal syndrome, a new phenotype associated with the SPAST gene.
Collapse
Affiliation(s)
- Manon Degoutin
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- Université de Bordeaux, UFR Des Sciences médicales, Bordeaux, France
| | - Chloé Angelini
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- Centre de référence Maladies Rares « neurogénétique », CHU Bordeaux, Bordeaux, France
- CNRS, INCIA, UMR 5287, NRGen Team, Univ. Bordeaux, EPHE, Bordeaux, France
| | - Claire Bar
- Centre de référence Maladies Rares « neurogénétique », CHU Bordeaux, Bordeaux, France
- CNRS, INCIA, UMR 5287, NRGen Team, Univ. Bordeaux, EPHE, Bordeaux, France
- Service de Neuropédiatrie, CHU Bordeaux, Bordeaux, France
| | - Wahiba Amer El Khedoud
- Laboratoire de Biologie Cellulaire et moléculaire, faculté Des Sciences Biologiques, USTHB, Algiers, Algeria
| | - Christine Barnerias
- Service de Neuropédiatrie, CR Neuromusculaire Necker, Hôpital Necker-Enfants Malades, Paris, France
| | - Razika Boulariah-Hadjou
- Laboratoire de Biologie Cellulaire et moléculaire, faculté Des Sciences Biologiques, USTHB, Algiers, Algeria
| | | | - Claire Ewenczyk
- Sorbonne Université, Institut du Cerveau, INSERM, CNRS, APHP, Paris, France
| | - Ziv Gan-Or
- Department of Human Genetics, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Didier Lacombe
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- Centre de référence Maladies Rares Anomalies du développement Embryonnaire, CHU Bordeaux, Bordeaux, France
- Laboratoire Maladies Rares: Génétique et Métabolisme (MRGM) INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Claire Lefeuvre
- Service de Neurologie, APHP, Raymond Poincaré, Garches, France
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mouna Messaoud-Khelifi
- Laboratoire de Biologie Cellulaire et moléculaire, faculté Des Sciences Biologiques, USTHB, Algiers, Algeria
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guy A Rouleau
- Department of Human Genetics, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Oksana Suchowersky
- Department of Medicine, Medical Genetics and Pediatrics, University of Alberta, Edmonton, Canada
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Marine Guillaud-Bataille
- Département de génétique médicale, AP-HP, Sorbonne Université, UF de Neurogénétique Moléculaire et Cellulaire, CGMC, Hôpital Pitié-Salpêtrière, Paris, France
| | - Giovanni Stevanin
- Centre de référence Maladies Rares « neurogénétique », CHU Bordeaux, Bordeaux, France
- CNRS, INCIA, UMR 5287, NRGen Team, Univ. Bordeaux, EPHE, Bordeaux, France
| | - Cyril Goizet
- Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France
- Centre de référence Maladies Rares « neurogénétique », CHU Bordeaux, Bordeaux, France
- CNRS, INCIA, UMR 5287, NRGen Team, Univ. Bordeaux, EPHE, Bordeaux, France
| |
Collapse
|
5
|
Bhopatkar SB, Huang J. Novel SPAST Deletion Mutation in an American Family With Hereditary Spastic Paraplegia: A Case Report. J Investig Med High Impact Case Rep 2025; 13:23247096251323173. [PMID: 40019011 PMCID: PMC11869264 DOI: 10.1177/23247096251323173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 03/01/2025] Open
Abstract
The diverse group of neurodegenerative disorders known as hereditary spastic paraplegia (HSP) is characterized by spasticity and weakness of the bilateral lower extremity due to degeneration of the corticospinal tract. The pathogenesis of HSP is broad, with autosomal dominant, autosomal recessive, X-linked recessive, mitochondrial inheritance, and de novo mutations reported, along with remarkable heterogeneity of mutations and clinical presentation. Of these, the most common subtype of HSP is HSP type 4 (HSP-SPG4), a result of mutations in the SPAST gene (chromosome 2p22.3) that leads to impaired activity of the microtubule-severing protein spastin. Typically presenting as an uncomplicated, autosomal dominant form of the disease, HSP-SPG4 has been documented worldwide with vast genomic variance across the SPAST gene. Despite common features in clinical phenotypes, a clear link between SPAST gene variants and disease presentation remains vague. Here, we report a novel 26.1 kb deletion in the SPAST gene (del exons 4-7) in a US family with previously undiagnosed HSP-SPG4.
Collapse
Affiliation(s)
- Sydney B. Bhopatkar
- Class of 2026, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Juebin Huang
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
6
|
Sardina F, Carsetti C, Giorgini L, Fattorini G, Cestra G, Rinaldo C. Cul-4 inhibition rescues spastin levels and reduces defects in hereditary spastic paraplegia models. Brain 2024; 147:3534-3546. [PMID: 38551087 PMCID: PMC11449140 DOI: 10.1093/brain/awae095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 10/05/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) are degenerative motor neuron diseases characterized by progressive spasticity and weakness in the lower limbs. The most common form of HSP is due to SPG4 gene haploinsufficiency. SPG4 encodes the microtubule severing enzyme spastin. Although, there is no cure for SPG4-HSP, strategies to induce a spastin recovery are emerging as promising therapeutic approaches. Spastin protein levels are regulated by poly-ubiquitination and proteasomal-mediated degradation, in a neddylation-dependent manner. However, the molecular players involved in this regulation are unknown. Here, we show that the Cullin-4-RING E3 ubiquitin ligase complex (CRL4) regulates spastin stability. Inhibition of CRL4 increases spastin levels by preventing its poly-ubiquitination and subsequent degradation in spastin-proficient and in patient derived SPG4 haploinsufficient cells. To evaluate the role of CRL4 complex in spastin regulation in vivo, we developed a Drosophila melanogaster model of SPG4 haploinsufficiency which show alterations of synapse morphology and locomotor activity, recapitulating phenotypical defects observed in patients. Downregulation of the CRL4 complex, highly conserved in Drosophila, rescues spastin levels and the phenotypical defects observed in flies. As a proof of concept of possible pharmacological treatments, we demonstrate a recovery of spastin levels and amelioration of the SPG4-HSP-associated defects both in the fly model and in patient-derived cells by chemical inactivation of the CRL4 complex with NSC1892. Taken together, these findings show that CRL4 contributes to spastin stability regulation and that it is possible to induce spastin recovery and rescue of SPG4-HSP defects by blocking the CRL4-mediated spastin degradation.
Collapse
Affiliation(s)
- Francesca Sardina
- National Research Council (CNR), Institute of Molecular Biology and Pathology (IBPM), c/o University of Rome Sapienza, 00185 Rome, Italy
| | - Claudia Carsetti
- National Research Council (CNR), Institute of Molecular Biology and Pathology (IBPM), c/o University of Rome Sapienza, 00185 Rome, Italy
- Department of Biology and Biotechnology, University of Rome Sapienza, 00185, Rome, Italy
| | - Ludovica Giorgini
- National Research Council (CNR), Institute of Molecular Biology and Pathology (IBPM), c/o University of Rome Sapienza, 00185 Rome, Italy
| | - Gaia Fattorini
- National Research Council (CNR), Institute of Molecular Biology and Pathology (IBPM), c/o University of Rome Sapienza, 00185 Rome, Italy
- Department of Biology and Biotechnology, University of Rome Sapienza, 00185, Rome, Italy
| | - Gianluca Cestra
- National Research Council (CNR), Institute of Molecular Biology and Pathology (IBPM), c/o University of Rome Sapienza, 00185 Rome, Italy
- Department of Biology and Biotechnology, University of Rome Sapienza, 00185, Rome, Italy
- Fondazione Santa Lucia IRCCS, c/o CERC, 00179, Rome, Italy
| | - Cinzia Rinaldo
- National Research Council (CNR), Institute of Molecular Biology and Pathology (IBPM), c/o University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
7
|
Damiani D, Baggiani M, Della Vecchia S, Naef V, Santorelli FM. Pluripotent Stem Cells as a Preclinical Cellular Model for Studying Hereditary Spastic Paraplegias. Int J Mol Sci 2024; 25:2615. [PMID: 38473862 DOI: 10.3390/ijms25052615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.
Collapse
Affiliation(s)
- Devid Damiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Matteo Baggiani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| |
Collapse
|
8
|
Wang J, Wu Y, Dong H, Ji Y, Zhang L, Liu Y, Liu Y, Gao X, Jia Y, Wang X. A novel truncated variant in SPAST results in spastin accumulation and defects in microtubule dynamics. BMC Med Genomics 2023; 16:321. [PMID: 38066582 PMCID: PMC10704811 DOI: 10.1186/s12920-023-01759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE Haploinsufficiency is widely accepted as the pathogenic mechanism of hereditary spastic paraplegias type 4 (SPG4). However, there are some cases that cannot be explained by reduced function of the spastin protein encoded by SPAST. The aim of this study was to identify the causative variant of SPG4 in a large Chinese family and explore its pathological mechanism. MATERIALS AND METHODS A five-generation family with 49 members including nine affected (4 males and 5 females) and 40 unaffected individuals in Mongolian nationality was recruited. Whole exome sequencing was employed to investigate the genetic etiology. Western blotting and immunofluorescence were used to analyze the effects of the mutant proteins in vitro. RESULTS A novel frameshift variant NM_014946.4: c.483_484delinsC (p.Val162Leufs*2) was identified in SPAST from a pedigree with SPG4. The variant segregated with the disease in the family and thus determined as the disease-causing variant. The c.483_484delinsC variant produced two truncated mutants (mutant M1 and M87 isoforms). They accumulated to a higher level and presented increased stability than their wild-type counterparts and may lost the microtubule severing activity. CONCLUSION SPAST mutations leading to premature stop codons do not always act through haploinsufficiency. The potential toxicity to the corticospinal tract caused by the intracellular accumulation of truncated spastin should be considered as the pathological mechanism of SPG4.
Collapse
Affiliation(s)
- Jie Wang
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot, 010070, China
| | - Yihan Wu
- Department of Family Medicine, Inner Mongolia People's Hospital, Hohhot, 010057, China
| | - Hong Dong
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China
| | - Yunpeng Ji
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China
| | - Lichun Zhang
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China
| | - Yaxian Liu
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China
| | - Yueshi Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (RRBGL), Inner Mongolia University, Hohhot, 010070, China
| | - Xin Gao
- Department of Pediatrics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China
| | - Yueqi Jia
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China.
| | - Xiaohua Wang
- Department of Genetics, Inner Mongolia Maternity and Child Health Care Hospital, Hohhot, 010020, China.
| |
Collapse
|
9
|
Fukuda H, Mizuguchi T, Doi H, Kameyama S, Kunii M, Joki H, Takahashi T, Komiya H, Sasaki M, Miyaji Y, Ohori S, Koshimizu E, Uchiyama Y, Tsuchida N, Fujita A, Hamanaka K, Misawa K, Miyatake S, Tanaka F, Matsumoto N. Long-read sequencing revealing intragenic deletions in exome-negative spastic paraplegias. J Hum Genet 2023; 68:689-697. [PMID: 37308565 DOI: 10.1038/s10038-023-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/01/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive spasticity and weakness in the lower extremities. To date, a total of 88 types of SPG are known. To diagnose HSP, multiple technologies, including microarray, direct sequencing, multiplex ligation-dependent probe amplification, and short-read next-generation sequencing, are often chosen based on the frequency of HSP subtypes. Exome sequencing (ES) is commonly used. We used ES to analyze ten cases of HSP from eight families. We identified pathogenic variants in three cases (from three different families); however, we were unable to determine the cause of the other seven cases using ES. We therefore applied long-read sequencing to the seven undetermined HSP cases (from five families). We detected intragenic deletions within the SPAST gene in four families, and a deletion within PSEN1 in the remaining family. The size of the deletion ranged from 4.7 to 12.5 kb and involved 1-7 exons. All deletions were entirely included in one long read. We retrospectively performed an ES-based copy number variation analysis focusing on pathogenic deletions, but were not able to accurately detect these deletions. This study demonstrated the efficiency of long-read sequencing in detecting intragenic pathogenic deletions in ES-negative HSP patients.
Collapse
Affiliation(s)
- Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Shinichi Kameyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hideto Joki
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Neurology, National Hospital Organization Yokohama Medical Center, Yokohama, Kanagawa, 245-8575, Japan
| | - Tatsuya Takahashi
- Department of Neurology, National Hospital Organization Yokohama Medical Center, Yokohama, Kanagawa, 245-8575, Japan
| | - Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mei Sasaki
- Department of Neurology, Yokohama Minami Kyosai Hospital, Yokohama, 236-0037, Japan
| | - Yosuke Miyaji
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
- Department of Genetics, Kitasato University Hospital, Sagamihara, 252-0375, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
| |
Collapse
|
10
|
Chen YJ, Wang MW, Qiu YS, Yuan RY, Wang N, Lin X, Chen WJ. Alu Retrotransposition Event in SPAST Gene as a Novel Cause of Hereditary Spastic Paraplegia. Mov Disord 2023; 38:1750-1755. [PMID: 37394769 DOI: 10.1002/mds.29522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES To diagnose the molecular cause of hereditary spastic paraplegia (HSP) observed in a four-generation family with autosomal dominant inheritance. METHODS Multiplex ligation-dependent probe amplification (MLPA), whole-exome sequencing (WES), and RNA sequencing (RNA-seq) of peripheral blood leukocytes were performed. Reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing were used to characterize target regions of SPAST. RESULTS A 121-bp AluYb9 insertion with a 30-bp poly-A tail flanked by 15-bp direct repeats on both sides was identified in the edge of intron 16 in SPAST that segregated with the disease phenotype. CONCLUSIONS We identified an intronic AluYb9 insertion inducing splicing alteration in SPAST causing pure HSP phenotype that was not detected by routine WES analysis. Our findings suggest RNA-seq is a recommended implementation for undiagnosed cases by first-line diagnostic approaches. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yi-Jun Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Meng-Wen Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Shen W, Liu C, Hu Y, Ding Q, Feng J, Liu Z, Kong X. Spastin is required for human immunodeficiency virus-1 efficient replication through cooperation with the endosomal sorting complex required for transport (ESCRT) protein. Virol Sin 2023:S1995-820X(23)00054-8. [PMID: 37172824 DOI: 10.1016/j.virs.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes simply 15 proteins and thus depends on multiple host cellular factors for virus reproduction. Spastin, a microtubule severing protein, is an identified HIV-1 dependency factor, but the mechanism regulating HIV-1 is unclear. Here, the study showed that knockdown of spastin inhibited the production of the intracellular HIV-1 Gag protein and new virions through enhancing Gag lysosomal degradation. Further investigation showed that increased sodium tolerance 1 (IST1), the subunit of endosomal sorting complex required for transport (ESCRT), could interact with the MIT domain of spastin to regulate the intracellular Gag production. In summary, spastin is required for HIV-1 replication, while spastin-IST1 interaction facilitates virus production by regulating HIV-1 Gag intracellular trafficking and degradation. Spastin may serve as new target for HIV-1 prophylactic and therapy.
Collapse
Affiliation(s)
- Wenyuan Shen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Department of Spine Surgery, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yue Hu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Qian Ding
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiabin Feng
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhou Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Wang XC, Liu RH, Wang T, Wang Y, Jiang Y, Chen DD, Wang XY, Hou TS, Kong QX. A novel missense mutation in SPAST causes hereditary spastic paraplegia in male members of a family: A case report. Mol Med Rep 2023; 27:79. [PMID: 36825575 PMCID: PMC10018243 DOI: 10.3892/mmr.2023.12966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) comprises a group of hereditary and neurodegenerative diseases that are characterized by axonal degeneration or demyelination of bilateral corticospinal tracts in the spinal cord; affected patients exhibit progressive spasticity and weakness in the lower limbs. The most common manifestation of HSP is spastic paraplegia type 4 (SPG4), which is caused by mutations in the spastin (SPAST) gene. The present study reports the clinical characteristics of affected individuals and sequencing analysis of a mutation that caused SPG4 in a family. All affected family members exhibited spasticity and weakness of the lower limbs and, notably, only male members of the family were affected. Whole‑exome sequencing revealed that all affected individuals had a novel c.1785C>A (p. Ser595Arg) missense mutation in SPAST. Bioinformatics analysis revealed changes in both secondary and tertiary structures of the mutated protein. The novel missense mutation in SPAST supported the diagnosis of SPG4 in this family and expands the spectrum of pathogenic mutations that cause SPG4. Analysis of SPAST sequences revealed that most pathogenic mutations occurred in the AAA domain of the protein, which may have a close relationship with SPG4 pathogenesis.
Collapse
Affiliation(s)
- Xing-Chen Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Rui-Han Liu
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Ting Wang
- Department of Nursing, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yanling Wang
- Department of Nursing, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yan Jiang
- Clinical Medical College, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dan-Dan Chen
- Clinical Medical College, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xin-Yu Wang
- Clinical Medical College, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Tong-Shu Hou
- Second Clinical Medical College, Binzhou Medical University, Binzhou, Shandong 256600, P.R. China
| | - Qing-Xia Kong
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Nan H, Chu M, Liu L, Xie K, Wu L. A novel truncating variant of SPAST associated with hereditary spastic paraplegia indicates a haploinsufficiency pathogenic mechanism. Front Neurol 2022; 13:1005544. [DOI: 10.3389/fneur.2022.1005544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
IntroductionHereditary spastic paraplegias (HSPs) are genetic neurodegenerative diseases. The most common form of pure HSP that is inherited in an autosomal dominant manner is spastic paraplegia type 4 (SPG4), which is caused by mutations in the SPAST gene. Different theories have been proposed as the mechanism underlying SPAST-HSP for different types of genetic mutations, including gain- and loss-of-function mechanisms. To better understand the mutation mechanisms, we performed genetic analysis and investigated a truncating SPAST variant that segregated with disease in one family.Objectives and methodsWe described a pure HSP pedigree with family members across four generations. We performed genetic analysis and investigated a novel frameshift pathogenic variant (c.862_863dupAC, p. H289Lfs*27) in this family. We performed reverse transcription-polymerase chain reaction (RT-PCR), Sanger sequencing, and quantitative RT-PCR using total RNA from an Epstein-Barr virus-induced lymphoblastoid cell line produced from the proband. We also performed Western blotting on cell lysates to investigate if the protein expression of spastin is affected by this variant.ResultsThis variant (c.862_863dupAC, p. H289Lfs*27) co-segregated with pure HSP in this family and is not registered in any public database. Measurement of SPAST transcripts in lymphoblasts from the proband demonstrated a reduction of SPAST transcript levels through likely nonsense-mediated mRNA decay. Immunoblot analyses demonstrated a reduction of spastin protein expression levels in lymphoblasts.ConclusionWe report an SPG4 family with a novel heterozygous frameshift variant p.H289Lfs*27 in SPAST. Our study implies haploinsufficiency as the pathogenic mechanism for this variant and expands the known mutation spectrum of SPAST.
Collapse
|
14
|
Costa AC, Sousa MM. The Role of Spastin in Axon Biology. Front Cell Dev Biol 2022; 10:934522. [PMID: 35865632 PMCID: PMC9294387 DOI: 10.3389/fcell.2022.934522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurons are highly polarized cells with elaborate shapes that allow them to perform their function. In neurons, microtubule organization—length, density, and dynamics—are essential for the establishment of polarity, growth, and transport. A mounting body of evidence shows that modulation of the microtubule cytoskeleton by microtubule-associated proteins fine tunes key aspects of neuronal cell biology. In this respect, microtubule severing enzymes—spastin, katanin and fidgetin—a group of microtubule-associated proteins that bind to and generate internal breaks in the microtubule lattice, are emerging as key modulators of the microtubule cytoskeleton in different model systems. In this review, we provide an integrative view on the latest research demonstrating the key role of spastin in neurons, specifically in the context of axonal cell biology. We focus on the function of spastin in the regulation of microtubule organization, and axonal transport, that underlie its importance in the intricate control of axon growth, branching and regeneration.
Collapse
Affiliation(s)
- Ana Catarina Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| | - Monica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação Em Saúde (i3S), University of Porto, Porto, Portugal
- *Correspondence: Ana Catarina Costa, ; Monica Mendes Sousa,
| |
Collapse
|
15
|
Shen T, Zhang W, Li L, Zuo RX, Wang ZJ, Xiao T, Zheng KW. A novel variant of SPAST in a pedigree with pure hereditary spastic paraplegia in Yunnan Province. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:67. [PMID: 35282124 PMCID: PMC8848415 DOI: 10.21037/atm-21-6698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a rare group of genetically heterogeneous, neurodegenerative disorders. The aim of this study was to identify pathological candidate genes and variants in a large pedigree cohort of 11 purely HSP patients in Yunnan Province. METHODS Whole-exome sequencing (WES) was applied to 2 HSP patients and 1 control patient to screen out the candidate gene variants. Then, filtration and verification of these pathological variants were performed by Sanger sequencing. RESULTS After the raw data were filtered, two genes with novel variations (SPAST: c.1510 C>T, p.Gln504X, RefSeq.NM_199436; DNAJC16: c.718 C>T, p.Q240X, Ref Seq NM_015291) were identified. The accession numbers of the genes in the ClinVar database were SCV001573094 and SCV001573804, respectively. One gene with a reported single nucleotide polymorphism (CPT1C: rs150853576) was filtered as a candidate variant. Using Sanger sequencing, the novel SPAST gene (protein: Spastin) variant leading to a predicted premature termination and an 18% deletion of the SPAST/spastic paraplegia type 4 (SPG4) protein was confirmed to exist only in affected individuals. The candidate CPT1C and DNAJC16 variants were verified in almost all HSP patients, with one exception. CONCLUSIONS Considering that the clinical symptoms and time of onset of HSP are highly heterogeneous, the SPAST as a genotype-phenotype cosegregated variant might be the causative gene of this pedigree, and the other two variants might present cumulative risks to the occurrence and progression of HSP. These three candidate genes with or without novel variants may be potential contributors to disease onset, and therefore useful diagnostic and therapeutic biomarkers. Further research is required to confirm the functions of these genes.
Collapse
Affiliation(s)
- Tao Shen
- Institute of Basic and Clinical Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Wen Zhang
- Institute of Basic and Clinical Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Digestive System, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Li Li
- Institute of Basic and Clinical Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Rong-Xia Zuo
- Institute of Basic and Clinical Medicine, Yunnan Provincial Key Laboratory for Clinical Virology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zi-Jun Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Tai Xiao
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Kun-Wen Zheng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
16
|
Piermarini E, Akarsu S, Connors T, Kneussel M, Lane MA, Morfini G, Karabay A, Baas PW, Qiang L. Modeling gain-of-function and loss-of-function components of SPAST-based hereditary spastic paraplegia using transgenic mice. Hum Mol Genet 2021; 31:1844-1859. [PMID: 34935948 PMCID: PMC9169457 DOI: 10.1093/hmg/ddab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a disease in which dieback degeneration of corticospinal tracts, accompanied by axonal swellings, leads to gait deficiencies. SPG4-HSP, the most common form of the disease, results from mutations of human spastin gene (SPAST), which is the gene that encodes spastin, a microtubule-severing protein. The lack of a vertebrate model that recapitulates both the etiology and symptoms of SPG4-HSP has stymied the development of effective therapies for the disease. hSPAST-C448Y mice, which express human mutant spastin at the ROSA26 locus, display corticospinal dieback and gait deficiencies but not axonal swellings. On the other hand, mouse spastin gene (Spast)-knockout (KO) mice display axonal swellings but not corticospinal dieback or gait deficiencies. One possibility is that reduced spastin function, resulting in axonal swellings, is not the cause of the disease but exacerbates the toxic effects of the mutant protein. To explore this idea, Spast-KO and hSPAST-C448Y mice were crossbred, and the offspring were compared with the parental lines via histological and behavioral analyses. The crossbred animals displayed axonal swellings as well as earlier onset, worsened gait deficiencies and corticospinal dieback compared with the hSPAST-C448Y mouse. These results, together with observations on changes in histone deacetylases 6 and tubulin modifications in the axon, indicate that each of these three transgenic mouse lines is valuable for investigating a different component of the disease pathology. Moreover, the crossbred mice are the best vertebrate model to date for testing potential therapies for SPG4-HSP.
Collapse
Affiliation(s)
- Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Seyma Akarsu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Theresa Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Peter W Baas
- To whom correspondence should be addressed at: Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA. Tel: +1 2159918311; Fax: +1 2158439082; ; Tel: +1 2159918298;
| | - Liang Qiang
- To whom correspondence should be addressed at: Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA. Tel: +1 2159918311; Fax: +1 2158439082; ; Tel: +1 2159918298;
| |
Collapse
|
17
|
Chen R, Du S, Yao Y, Zhang L, Luo J, Shen Y, Xu Z, Zeng X, Zhang L, Liu M, Yin C, Tang B, Tan J, Xu X, Liu JY. A Novel SPAST Mutation Results in Spastin Accumulation and Defects in Microtubule Dynamics. Mov Disord 2021; 37:598-607. [PMID: 34927746 PMCID: PMC9300132 DOI: 10.1002/mds.28885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background Haploinsufficiency is widely accepted as the pathogenic mechanism of spastic paraplegia type 4 (SPG4). However, there are some cases that cannot be explained by reduced function of the spastin protein encoded by SPAST. Objectives To identify the causative gene of autosomal dominant hereditary spastic paraplegia in three large Chinese families and explore the pathological mechanism of a spastin variant. Methods Three large Chinese hereditary spastic paraplegia families with a total of 247 individuals (67 patients) were investigated, of whom 59 members were recruited to the study. Genetic testing was performed to identify the causative gene. Western blotting and immunofluorescence were used to analyze the effects of the mutant proteins in vitro. Results In the three hereditary spastic paraplegia families, of whom three index cases were misdiagnosed as other types of neurological diseases, a novel c.985dupA (p.Met329Asnfs*3) variant in SPAST was identified and was shown to cosegregate with the phenotype in the three families. The c.985dupA mutation produced two truncated mutants (mutant M1 and M87 isoforms) that accumulated to a higher level than their wild‐type counterparts. Furthermore, the mutant M1 isoform heavily decorated the microtubules and rendered them resistant to depolymerization. In contrast, the mutant M87 isoform was diffusely localized in both the nucleus and the cytoplasm, could not decorate microtubules, and was not able to promote microtubule disassembly. Conclusions SPAST mutations leading to premature stop codons do not always act through haploinsufficiency. The truncated spastin may damage the corticospinal tracts through an isoform‐specific toxic effect.
Collapse
Affiliation(s)
- Rui Chen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shiyue Du
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yanyi Yao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Lu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Junyu Luo
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yinhua Shen
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhenping Xu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaomei Zeng
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Luoying Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chuang Yin
- Department of Neurology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jun Tan
- Department of Neurology, Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Mohan N, Qiang L, Morfini G, Baas PW. Therapeutic Strategies for Mutant SPAST-Based Hereditary Spastic Paraplegia. Brain Sci 2021; 11:brainsci11081081. [PMID: 34439700 PMCID: PMC8394973 DOI: 10.3390/brainsci11081081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations of the SPAST gene that encodes the microtubule-severing enzyme called spastin are the chief cause of Hereditary Spastic Paraplegia. Growing evidence indicates that pathogenic mutations functionally compromise the spastin protein and endow it with toxic gain-of-function properties. With each of these two factors potentially relevant to disease etiology, the present article discusses possible therapeutic strategies that may ameliorate symptoms in patients suffering from SPAST-based Hereditary Spastic Paraplegia, which is usually termed SPG4-HSP.
Collapse
Affiliation(s)
- Neha Mohan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Peter W. Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19422, USA; (N.M.); (L.Q.)
- Correspondence: ; Tel.: +1-215-991-8289; Fax: +1-215-843-9082
| |
Collapse
|
19
|
Anticipation Can Be More Common in Hereditary Spastic Paraplegia with SPAST Mutations Than It Appears. Can J Neurol Sci 2021; 49:651-661. [PMID: 34353391 DOI: 10.1017/cjn.2021.188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Hereditary spastic paraplegia (HSP) is a heterogeneous neurodegenerative disorder with lower-limb spasticity and weakness. Different patterns of inheritance have been identified in HSP. Most autosomal-dominant HSPs (AD-HSPs) are associated with mutations of the SPAST gene (SPG4), leading to a pure form of HSP with variable age-at-onset (AAO). Anticipation, an earlier onset of disease, as well as aggravation of symptoms in successive generations, may be correlated to SPG4. Herein, we suggested that anticipation might be a relatively common finding in SPG4 families. METHODS Whole-exome sequencing was done on DNA of 14 unrelated Iranian AD-HSP probands. Data were analyzed, and candidate variants were PCR-amplified and sequenced by the Sanger method, subsequently checked in family members to co-segregation analysis. Multiplex ligation-dependent probe amplification (MLPA) was done for seven probands. Clinical features of the probands were recorded, and the probable anticipation was checked in these families. Other previous reported SPG4 families were investigated to anticipation. RESULTS Our findings showed that SPG4 was the common subtype of HSP; three families carried variants in the KIF5A, ATL1, and MFN2 genes, while five families harbored mutations in the SPAST gene. Clinical features of only SPG4 families indicated decreasing AAO in affected individuals of the successive generations, and this difference was significant (p-value <0.05). CONCLUSION It seems SPAST will be the first candidate gene in families that manifests a pure form of AD-HSP and anticipation. Therefore, it may be a powerful situation of genotype-phenotype correlation. However, the underlying mechanism of anticipation in these families is not clear yet.
Collapse
|
20
|
Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H, Ghaedi H. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol 2021; 268:2065-2082. [PMID: 31745725 DOI: 10.1007/s00415-019-09633-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022]
Abstract
AIMS The hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited neurodegenerative disorders. Although, several genotype-phenotype studies have carried out on HSPs, the association between genotypes and clinical phenotypes remain incomplete since most studies are small in size or restricted to a few genes. Accordingly, this study provides the systematic meta-analysis of genotype-phenotype associations in HSP. METHODS AND RESULTS We retrieved literature on genotype-phenotype associations in patients with HSP and mutated SPAST, REEP1, ATL1, SPG11, SPG15, SPG7, SPG35, SPG54, SPG5. In total, 147 studies with 13,570 HSP patients were included in our meta-analysis. The frequency of mutations in SPAST (25%) was higher than REEP1 (3%), as well as ATL1 (5%) in AD-HSP patients. As for AR-HSP patients, the rates of mutations in SPG11 (18%), SPG15 (7%) and SPG7 (13%) were higher than SPG5 (5%), as well as SPG35 (8%) and SPG54 (7%). The mean age of AD-HSP onset for ATL1 mutation-positive patients was earlier than patients with SPAST, REEP1 mutations. Also, the tendency toward younger age at AR-HSP onset for SPG35 was higher than other mutated genes. It is noteworthy that the mean age at HSP onset ranged from infancy to adulthood. As for the gender distribution, the male proportion in SPG7-HSP (90%) and REEP1-HSP (78%) was markedly high. The frequency of symptoms was varied among patients with different mutated genes. The rates of LL weakness, superficial sensory abnormalities, neuropathy, and deep sensory impairment were noticeably high in REEP1 mutations carriers. Also, in AR-HSP patients with SPG11 mutations, the presentation of symptoms including pes cavus, Neuropathy, and UL spasticity was higher. CONCLUSION Our comprehensive genotype-phenotype assessment of available data displays that the mean age at disease onset and particular sub-phenotypes are associated with specific mutated genes which might be beneficial for a diagnostic procedure and differentiation of the specific mutated genes phenotype among diverse forms of HSP.
Collapse
Affiliation(s)
- Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Parmedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran
| | - Hossein Darvish
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran.
| |
Collapse
|
21
|
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020; 52:1046-1056. [PMID: 32989326 PMCID: PMC9148538 DOI: 10.1038/s41588-020-0695-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Michael C Sierant
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sandra M Nordlie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Aureliane Elie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Mark A Corbett
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bethany Y Norton
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Clare L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Brandon S Guida
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Helen Magee
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - James Liu
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Stephen Pastore
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John B Vincent
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | - Michael C Fahey
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jesia G Berry
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Harper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chongchen Zhou
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Jennifer Heim
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Dani L Webber
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mahalia S B Frank
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Amar H Sheth
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Diane Doummar
- Sorbonne Université, APHP, Service de Neurologie Pédiatrique et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | | | | | | | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Jeff L Waugh
- Departments of Pediatrics & Neurology, University of Texas Southwestern and Children's Medical Center of Dallas, Dallas, TX, USA
| | - Lance Rodan
- Departments of Genetics & Genomics and Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Julie S Cohen
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ali Fatemi
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - John P Phillips
- Departments of Pediatrics and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy Feyma
- Division of Pediatric Neurology, Gillette Children's Hospital, St Paul, MN, USA
| | - Suzanna C MacLennan
- Department of Paediatric Neurology, Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Spencer Vaughan
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Kylie E Crompton
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan M Reid
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dinah S Reddihough
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Qing Shang
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Children's Hospital of Zhengzhou University/Henan Children's Hospital, Zhengzhou, China
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yana A Wilson
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah J McIntyre
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shrikant M Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daniela C Zarnescu
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alastair H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
22
|
Sakoe K, Shioda N, Matsuura T. A newly identified NES sequence present in spastin regulates its subcellular localization and microtubule severing activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118862. [PMID: 32979422 DOI: 10.1016/j.bbamcr.2020.118862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023]
Abstract
Spastin, a microtubule-severing AAA ATPase, regulates microtubule dynamics and plays important roles in cell division and neurogenesis. Mutations in the spastin-coding gene SPAST lead to neurodegenerative disorders and cause spastic paraplegia type 4. Spastin has two main isoforms, M1 and M87, that differ only in the presence or absence of 86 N-terminal amino acids and have alternative splicing variants that lack exon4. The N-terminal region of M1 contains a hydrophobic domain, nuclear localization signal (NLS), and nuclear export signal (NES), which partly explains the differences in the two isoforms' localization. However, the mechanisms involved in regulating isoform localization, and the effects of localization on spastin functions are not fully understood. We found endogenous M1 and M87 shuttled between the nucleus and cytoplasm during the cell cycle. We identified a NES (amino acids 195-204) that spans the microtubule-interacting and endosomal-trafficking domain and exon4 region. Furthermore, the NES sequence contains both the coiled-coil and exon4 region of spastin isoforms. Highly conserved leucine 195 in exon3 and the two residues in exon4 are crucial for predicted coiled-coil formation. Mutations in NES or leptomycin B treatment reduced cytoplasmic localization and microtubule fragmentation in M87 rather than in M1. Phosphomimetic mutation of threonine 306 adjacent to the NLS (amino acids 309-312) inhibited nuclear transport of M87. Our results indicate that the newly identified NES in the spastin isoforms containing exon4 regulates the subcellular localization of spastin in coordination with NLS controlled by the phosphorylation state of spastin, and is involved in microtubule severing.
Collapse
Affiliation(s)
- Kumi Sakoe
- Division of Neurology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tohru Matsuura
- Division of Neurology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
23
|
Allison R, Edgar JR, Reid E. Spastin MIT Domain Disease-Associated Mutations Disrupt Lysosomal Function. Front Neurosci 2019; 13:1179. [PMID: 31787869 PMCID: PMC6856053 DOI: 10.3389/fnins.2019.01179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
The hereditary spastic paraplegias (HSPs) are genetic motor neuron diseases characterized by progressive degeneration of corticospinal tract axons. Mutations in SPAST, encoding the microtubule-severing ATPase spastin, are the most common causes of HSP. The broad SPAST mutational spectrum indicates a haploinsufficiency pathogenic mechanism in most cases. Most missense mutations cluster in the ATPase domain, where they disrupt the protein's ability to sever microtubules. However, several putative missense mutations in the protein's microtubule interacting and trafficking (MIT) domain have also been described, but the pathogenicity of these mutations has not been verified with functional studies. Spastin promotes endosomal tubule fission, and defects in this lead to lysosomal enzyme mistrafficking and downstream lysosomal abnormalities. We investigated the function of three disease-associated spastin MIT mutants and found that none was able to promote normal endosomal tubule fission, lysosomal enzyme receptor trafficking, or lysosomal morphology. One of the mutations affected recruitment of spastin to endosomes, a property that requires the canonical function of the MIT domain in binding endosomal sorting complex required for transport (ESCRT)-III proteins. However, the other mutants did not affect spastin's endosomal recruitment, raising the possibility of pathologically important non-canonical roles for the MIT domain. In conclusion, we demonstrate that spastin MIT mutants cause functional abnormalities related to the pathogenesis of HSP. These mutations do not directly affect spastin's microtubule-severing capacity, and so we identify a new molecular pathological mechanism by which spastin mutations may cause disease.
Collapse
Affiliation(s)
- Rachel Allison
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James R Edgar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Evan Reid
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Zhu Z, Zhang C, Zhao G, Liu Q, Zhong P, Zhang M, Tang W, Zhan F, Tian W, Wang Y, Yin K, Huang X, Jiang J, Liu X, Liu S, Zhou H, Luan X, Tang H, Wang Y, Chen S, Cao L. Novel mutations in the SPAST gene cause hereditary spastic paraplegia. Parkinsonism Relat Disord 2019; 69:125-133. [PMID: 31751864 DOI: 10.1016/j.parkreldis.2019.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/05/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mutations in the SPAST gene are the most frequent cause of hereditary spastic paraplegia (HSP). We aim to extend the mutation spectrum of spastic paraplegia 4 (SPG4) and carried out experiment in vitro to explore the influence of the SPAST gene mutation on the function of corresponding protein. METHODS Whole-exome sequencing (WES) combined with multiplex ligation-dependent probe amplification (MLPA) were performed in a cohort of 150 patients clinically diagnosed with HSP. We focus on screening for mutations in SPAST gene and carrying out functional experiments to assess the effects of the novel variants. RESULTS A total of 34 different mutations in the SPAST gene were identified, of which 10 were novel, including 1 missense (c.1479T > A), 1 nonsense (c.766G > T), 3 splicing (c.1413 + 1_1413+4delGTAA, c.1729-1G > A and c.1536+2T > G) and 5 frameshift mutations (c.1094delC, c.885dupA, c.517_518delAG, c.280delG and c.908dupC). For 7 novel non-splicing mutations, functional study showed that accumulated M1 spastin colcocalized with microtubules which was different from a uniformly diffused M87 spastin. While an impairment in severing activity was observed in both mutant M1 and mutant M87, except for c.280delG. All 3 novel splicing variants w ere predicted to affect splicing by using bioinformatic programs. However, only c.1536+2T > G had no influence on splice site in vitro, which conflicts with the in-silico analysis. CONCLUSION We genetically diagnosed 40 SPG4 patients. All the novel non-splicing mutations except for c.280delG were certified to exert an effect on the microtubule-severing and all the novel splicing mutations other than c.1536+2T > G would cause abnormal splicing of the spastin.
Collapse
Affiliation(s)
- Zeyu Zhu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chao Zhang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, China.
| | - Guohua Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Ping Zhong
- Department of Neurology, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, China.
| | - Mei Zhang
- Department of Neurology, Huainan First People's Hospital Affiliated to Bengbu Medical College, Huainan, Anhui Province, China.
| | - Weiguo Tang
- Department of Neurology, Zhoushan Hospital, Zhoushan, Zhejiang Province, China.
| | - Feixia Zhan
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wotu Tian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Wang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Huainan First People's Hospital Affiliated to Bengbu Medical College, Huainan, Anhui Province, China.
| | - Kaili Yin
- McKusick-Zhang Center for Genetic Medicine and State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.
| | - Xiaojun Huang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingwen Jiang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoli Liu
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shangha, China.
| | - Shihua Liu
- Department of Neurology, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, China.
| | - Haiyan Zhou
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xinghua Luan
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Huidong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Wang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Cao
- Department of Neurology and Institute of Neurology, Rui Jin Hospital & Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Qiang L, Piermarini E, Baas PW. New hypothesis for the etiology of SPAST-based hereditary spastic paraplegia. Cytoskeleton (Hoboken) 2019; 76:289-297. [PMID: 31108029 DOI: 10.1002/cm.21528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 01/26/2023]
Abstract
Mutations of the SPAST gene are the chief cause of hereditary spastic paraplegia. Controversy exists in the medical community as to whether the etiology of the disease is haploinsufficiency or toxic gain-of-function properties of the mutant spastin proteins. In recognition of strong reasons that support each possible mechanism, here we present a novel perspective, based in part on new studies with mouse models and in part on the largest study to date on patients with the disease. We posit that haploinsufficiency does not cause the disease but makes the corticospinal tracts vulnerable to a second hit, which is usually the mutant spastin proteins but could also be proteins generated by mutations of other genes that may or may not cause the disease on their own.
Collapse
Affiliation(s)
- Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University, College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Qiang L, Piermarini E, Muralidharan H, Yu W, Leo L, Hennessy LE, Fernandes S, Connors T, Yates PL, Swift M, Zholudeva LV, Lane MA, Morfini G, Alexander GM, Heiman-Patterson TD, Baas PW. Hereditary spastic paraplegia: gain-of-function mechanisms revealed by new transgenic mouse. Hum Mol Genet 2019; 28:1136-1152. [PMID: 30520996 DOI: 10.1093/hmg/ddy419] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/31/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations of the SPAST gene, which encodes the microtubule-severing protein spastin, are the most common cause of hereditary spastic paraplegia (HSP). Haploinsufficiency is the prevalent opinion as to the mechanism of the disease, but gain-of-function toxicity of the mutant proteins is another possibility. Here, we report a new transgenic mouse (termed SPASTC448Y mouse) that is not haploinsufficient but expresses human spastin bearing the HSP pathogenic C448Y mutation. Expression of the mutant spastin was documented from fetus to adult, but gait defects reminiscent of HSP (not observed in spastin knockout mice) were adult onset, as is typical of human patients. Results of histological and tracer studies on the mouse are consistent with progressive dying back of corticospinal axons, which is characteristic of the disease. The C448Y-mutated spastin alters microtubule stability in a manner that is opposite to the expectations of haploinsufficiency. Neurons cultured from the mouse display deficits in organelle transport typical of axonal degenerative diseases, and these deficits were worsened by depletion of endogenous mouse spastin. These results on the SPASTC448Y mouse are consistent with a gain-of-function mechanism underlying HSP, with spastin haploinsufficiency exacerbating the toxicity of the mutant spastin proteins. These findings reveal the need for a different therapeutic approach than indicated by haploinsufficiency alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura E Hennessy
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Guillermo M Alexander
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | - Terry D Heiman-Patterson
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | | |
Collapse
|
27
|
Khidiyatova IM, Akhmetgaleyeva AF, Saifullina EV, Idrisova RF, Yankina MA, Shavalieva VV, Magzhanov RV, Khusnutdinova EK. Major Mutation in the SPAST Gene in Patients with Autosomal Dominant Spastic Paraplegia from the Republic of Bashkortostan. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Plaud C, Joshi V, Kajevu N, Poüs C, Curmi PA, Burgo A. Functional differences of short and long isoforms of spastin harboring missense mutation. Dis Model Mech 2018; 11:11/9/dmm033704. [PMID: 30213879 PMCID: PMC6177001 DOI: 10.1242/dmm.033704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/03/2018] [Indexed: 01/05/2023] Open
Abstract
Mutations of the SPG4 (SPAST) gene encoding for spastin protein are the main causes of hereditary spastic paraplegia. Spastin binds to microtubules and severs them through the enzymatic activity of its AAA domain. Several missense mutations located in this domain lead to stable, nonsevering spastins that decorate a subset of microtubules, suggesting a possible negative gain-of-function mechanism for these mutants. Of the two main isoforms of spastin, only mutations of the long isoform, M1, are supposed to be involved in the onset of the pathology, leaving the role of the ubiquitously expressed shorter one, M87, not fully investigated and understood. Here, we show that two isoforms of spastin harboring the same missense mutation bind and bundle different subsets of microtubules in HeLa cells, and likely stabilize them by increasing the level of acetylated tubulin. However, only mutated M1 has the ability to interact with wild-type M1, and decorates a subset of perinuclear microtubules associated with the endoplasmic reticulum that display higher resistance to microtubule depolymerization and increased intracellular ionic strength, compared with those decorated by mutated M87. We further show that only mutated M1 decorates microtubules of proximal axons and dendrites, and strongly impairs axonal transport in cortical neurons through a mechanism likely independent of the microtubule-severing activity of this protein. Summary: Long and short isoforms of spastin (SPG4) harboring the same missense mutation show different intracellular localization, resistance to pharmacological treatments and effects on axonal cargo transport.
Collapse
Affiliation(s)
- Clément Plaud
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Vandana Joshi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Natallie Kajevu
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Christian Poüs
- INSERM UMR-S 1193, Faculty of Pharmacy, Univirsité Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Patrick A Curmi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| | - Andrea Burgo
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris Saclay, Université d'Evry, 91000 Evry, France
| |
Collapse
|
29
|
Lim JH, Kang HM, Jung HR, Kim DS, Noh KH, Chang TK, Kim BJ, Sung DH, Cho HS, Chung KS, Kim NS, Jung CR. Missense mutation of SPAST protein (I344K) results in loss of ATPase activity and prolonged the half-life, implicated in autosomal dominant hereditary spastic paraplegia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3221-3233. [PMID: 30006150 DOI: 10.1016/j.bbadis.2018.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023]
Abstract
The spastin protein (SPAST) contains an ATPase with diverse cellular activities (AAA) domain and regulates microtubule dynamics. Missense mutations of the SPAST gene are frequently detected in patients with hereditary spastic paraplegias (HSPs) and represent the main reason of loss of SPAST function; however, the pathogenicity of mutant SPAST is heterogeneous. Here, SPAST variant with an I344K mutation (I344K-SPAST) was identified in a Korean family with autosomal dominant-type HSP. We investigated the role of the I344K-SPAST in HSP to provide a therapeutic mechanism. The I344K-SPAST mutation prolonged the half-life of the protein compared to wild-type SPAST (WT-SPAST) in cells by modulating post-translational modifications for proteasomal degradation. I344K-SPAST was localized in microtubule but defective in microtubule severing and ATPase activity compared to WT-SPAST in vitro and in cells. Mutant M87 isoform harboring the same mutation with I344K-M1 SPAST also increased protein stability and loss of MT severing activity, but the pathogenicity was not stronger than I344K-M1 SPAST in neurite outgrowth. Overexpression of I344K-SPAST resulted in microtubule accumulation following inhibited neurite growth in neuroblastoma, neural progenitor cells and mouse primary cortical neurons. Conversely, these pathogenic effects of I344K-SPAST were reduced by overexpression of WT-M1 SPAST in a dose dependent manner since WT-SPAST could interact with I344K-SPAST. Our data therefore provide proof-of-concept that gene transfer of WT-M1 SPAST may serve as a valid therapeutic option for HSPs.
Collapse
Affiliation(s)
- Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Hyun Mi Kang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Hong-Ryul Jung
- New Drug Development Center, Daegu- Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Kyung Hee Noh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Tae Kyung Chang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Neuroscience Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Duk Hyun Sung
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnamgu, Seoul 06351, Republic of Korea
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Kyung-Sook Chung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Nam-Soon Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology (UST), 217 Gajeong-ro, Daejeon, Republic of Korea.
| |
Collapse
|