1
|
Kujirai T, Kato J, Yamamoto K, Hirai S, Fujii T, Maehara K, Harada A, Negishi L, Ogasawara M, Yamaguchi Y, Ohkawa Y, Takizawa Y, Kurumizaka H. Multiple structures of RNA polymerase II isolated from human nuclei by ChIP-CryoEM analysis. Nat Commun 2025; 16:4724. [PMID: 40436841 PMCID: PMC12119854 DOI: 10.1038/s41467-025-59580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
RNA polymerase II (RNAPII) is a central transcription enzyme that exists as multiple forms with or without accessory factors, and transcribes the genomic DNA packaged in chromatin. To understand how RNAPII functions in the human genome, we isolate transcribing RNAPII complexes from human nuclei by chromatin immunopurification, and determine the cryo-electron microscopy structures of RNAPII elongation complexes (ECs) associated with genomic DNA in distinct forms, without or with the elongation factors SPT4/5, ELOF1, and SPT6. This ChIP-cryoEM method also reveals the two EC-nucleosome complexes corresponding nucleosome disassembly/reassembly processes. In the structure of EC-downstream nucleosome, EC paused at superhelical location (SHL) -5 in the nucleosome, suggesting that SHL(-5) pausing occurs in a sequence-independent manner during nucleosome disassembly. In the structure of the EC-upstream nucleosome, EC directly contacts the nucleosome through the nucleosomal DNA-RPB4/7 stalk and the H2A-H2B dimer-RPB2 wall interactions, suggesting that EC may be paused during nucleosome reassembly. These representative EC structures transcribing the human genome provide mechanistic insights into understanding RNAPII transcription on chromatin.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Junko Kato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kyoka Yamamoto
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, Japan
- Department of Multi-Omics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, Japan
- Department of Multi-Omics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta, Yokohama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Delvaux de Fenffe CM, Govers J, Mattiroli F. Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes. Biochemistry 2025; 64:2138-2153. [PMID: 40312022 PMCID: PMC12096440 DOI: 10.1021/acs.biochem.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Our genome is organized into chromatin, a dynamic and modular structure made of nucleosomes. Chromatin organization controls access to the DNA sequence, playing a fundamental role in cell identity and function. How nucleosomes enable these processes is an active area of study. In this review, we provide an overview of chromatin dynamics, its properties, mechanisms, and functions. We highlight the diverse ways by which chromatin dynamics is controlled during transcription, DNA replication, and repair. Recent technological developments have promoted discoveries in this area, to which we provide an outlook on future research directions.
Collapse
Affiliation(s)
| | - Jolijn Govers
- Hubrecht Institute-KNAW & University
Medical Center Utrecht, Uppsalalaan 8, 3584 CTUtrecht, The Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University
Medical Center Utrecht, Uppsalalaan 8, 3584 CTUtrecht, The Netherlands
| |
Collapse
|
3
|
Hou Z, Zhang P. In-cell chromatin structure by Cryo-FIB and Cryo-ET. Curr Opin Struct Biol 2025; 92:103060. [PMID: 40349511 DOI: 10.1016/j.sbi.2025.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
Chromatin, the complex of DNA and proteins that organises genetic material in eukaryotic cells, has been a focal point of biological research for over a century. Its structure determines critical functions such as gene regulation, DNA replication and chromosome segregation. Early models of chromatin were limited by technological constraints, but advancements in imaging, particularly X-ray and electron microscopy (EM), gradually unveiled its hierarchical organisation. The recent emergence of cryo-electron tomography (cryo-ET) coupled with cryo-focused ion beam (cryo-FIB) milling has revolutionised our understanding of chromatin organisation by providing native, three-dimensional (3D) views of various macromolecules and architectures of chromatin at unprecedented resolution. This review traces the historical progression of chromatin structural studies, from early EM and fluorescence microscopy to the transformative insights offered by cryo-ET, culminating in a synthesis of current knowledge and future directions.
Collapse
Affiliation(s)
- Zhen Hou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Peijun Zhang
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
4
|
Chen JK, Liu T, Cai S, Ruan W, Ng CT, Shi J, Surana U, Gan L. Nanoscale analysis of human G1 and metaphase chromatin in situ. EMBO J 2025; 44:2658-2694. [PMID: 40097852 PMCID: PMC12048539 DOI: 10.1038/s44318-025-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
The structure of chromatin at the nucleosome level inside cells is still incompletely understood. Here we present in situ electron cryotomography analyses of chromatin in both G1 and metaphase RPE-1 cells. G1 nucleosomes are concentrated in globular chromatin domains, and metaphase nucleosomes are concentrated in the chromatids. Classification analysis reveals that canonical mononucleosomes, and in some conditions ordered stacked dinucleosomes and mononucleosomes with a disordered gyre-proximal density, are abundant in both cell-cycle states. We do not detect class averages that have more than two stacked nucleosomes or side-by-side dinucleosomes, suggesting that groups of more than two nucleosomes are heterogeneous. Large multi-megadalton structures are abundant in G1 nucleoplasm, but not found in G1 chromatin domains and metaphase chromatin. The macromolecular phenotypes studied here represent a starting point for the comparative analysis of compaction in normal vs. unhealthy human cells, in other cell-cycle states, other organisms, and in vitro chromatin assemblies.
Collapse
Affiliation(s)
- Jon Ken Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Weimei Ruan
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
5
|
Maeshima K. The shifting paradigm of chromatin structure: from the 30-nm chromatin fiber to liquid-like organization. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025:pjab.101.020. [PMID: 40301047 DOI: 10.2183/pjab.101.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The organization and dynamics of chromatin are critical for genome functions such as transcription and DNA replication/repair. Historically, chromatin was assumed to fold into the 30-nm fiber and progressively arrange into larger helical structures, as described in the textbook model. However, over the past 15 years, extensive evidence including our studies has dramatically transformed the view of chromatin from a static, regular structure to one that is more variable and dynamic. In higher eukaryotic cells, chromatin forms condensed yet liquid-like domains, which appear to be the basic unit of chromatin structure, replacing the 30-nm fiber. These domains maintain proper accessibility, ensuring the regulation of DNA reaction processes. During mitosis, these domains assemble to form more gel-like mitotic chromosomes, which are further constrained by condensins and other factors. Based on the available evidence, I discuss the physical properties of chromatin in live cells, emphasizing its viscoelastic nature-balancing local fluidity with global stability to support genome functions.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, ROIS
- Graduate Institute for Advanced Studies, SOKENDAI
| |
Collapse
|
6
|
Ou HD, Phan S, Deerinck TJ, Inagaki A, Ellisman MH, O'Shea CC. ChromEMT: visualizing and reconstructing chromatin ultrastructure and 3D organization in situ. Nat Protoc 2025; 20:934-966. [PMID: 39613943 DOI: 10.1038/s41596-024-01071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Structure determines function. The discovery of the DNA double-helix structure revealed how genetic information is stored and copied. In the mammalian cell nucleus, up to two meters of DNA is compacted by histones to form nucleosome/DNA particle chains that form euchromatin and heterochromatin domains, chromosome territories and mitotic chromosomes upon cell division. A critical question is what are the structures, interactions and 3D organization of DNA as chromatin in the nucleus and how do they determine DNA replication timing, gene expression and ultimately cell fate. To visualize genomic DNA across these different length scales in the nucleus, we developed ChromEMT, a method that selectively enhances the electron density and contrast of DNA and interacting nucleosome particles, which enables nucleosome chains, chromatin domains, chromatin ultrastructure and 3D organization to be imaged and reconstructed by using multi-tilt electron microscopy tomography (EMT). ChromEMT exploits a membrane-permeable, fluorescent DNA-binding dye, DRAQ5, which upon excitation drives the photo-oxidation and precipitation of diaminobenzidine polymers on the surface of DNA/nucleosome particles that are visible in the electron microscope when stained with osmium. Here, we describe a detailed protocol for ChromEMT, including DRAQ5 staining, photo-oxidation, sample preparation and multi-tilt EMT that can be applied broadly to reconstruct genomic DNA structure and 3D interactions in cells and tissues and different kingdoms of life. The entire procedure takes ~9 days and requires expertise in electron microscopy sample sectioning and acquisition of multi-tilt EMT data sets.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Akiko Inagaki
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA.
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
7
|
Tan ZY, Cai 蔡舒君 S, Paithankar SA, Liu T, Nie X, Shi J, Gan 甘露 L. Macromolecular and cytological changes in fission yeast G0 nuclei. J Cell Sci 2025; 138:jcs263654. [PMID: 40013339 DOI: 10.1242/jcs.263654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
When starved of nitrogen, cells of the fission yeast Schizosaccharomyces pombe enter a quiescent 'G0' state with smaller nuclei and transcriptional repression. The genomics of S. pombe G0 cells has been well studied, but much of its nuclear cell biology remains unknown. Here, we use confocal microscopy, immunoblots and electron cryotomography to investigate the cytological, biochemical and ultrastructural differences between S. pombe proliferating, G1-arrested and G0 cell nuclei, with an emphasis on the histone acetylation, RNA polymerase II fates and macromolecular complex packing. Compared to proliferating cells, G0 cells have lower levels of histone acetylation, nuclear RNA polymerase II and active transcription. The G0 nucleus has similar macromolecular crowding yet fewer chromatin-associated multi-megadalton globular complexes. Induced histone hyperacetylation during nitrogen starvation results in cells that have larger nuclei and therefore chromatin that is less compact. However, these histone-hyperacetylated cells remain transcriptionally repressed with similar nuclear crowding. Canonical nucleosomes - those that resemble the crystal structure - are rare in proliferating, G1-arrested and G0 cells. Our study therefore shows that extreme changes in nucleus physiology are possible without extreme reorganization at the macromolecular level.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Shujun Cai 蔡舒君
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Saayli A Paithankar
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Xin Nie
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Lu Gan 甘露
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| |
Collapse
|
8
|
Kixmoeller K, Tarasovetc EV, Mer E, Chang YW, Black BE. Centromeric chromatin clearings demarcate the site of kinetochore formation. Cell 2025; 188:1280-1296.e19. [PMID: 39855195 PMCID: PMC11890969 DOI: 10.1016/j.cell.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20- to 25-nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing. We find that CENP-C is required in mitosis, not just for kinetochore assembly, likely reflecting its role in organizing the inner kinetochore during chromosome segregation. We further visualize the scaffold of the fibrous corona, a structure amplified at unattached kinetochores, revealing crescent-shaped parallel arrays of fibrils extending >1 μm. Thus, we reveal how the organization of centromeric chromatin creates a clearing at the site of kinetochore formation as well as the nature of kinetochore amplification mediated by corona fibrils.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry, Biophysics, Chemical Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ekaterina V Tarasovetc
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elie Mer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry, Biophysics, Chemical Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry, Biophysics, Chemical Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry, Biophysics, Chemical Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Fulcher AJ, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. Nat Struct Mol Biol 2025; 32:520-530. [PMID: 39815045 PMCID: PMC11919719 DOI: 10.1038/s41594-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organization and dynamics of chromatin compacted by gene-repressing factors are unknown. Here, using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the polycomb repressive complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilized through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provide a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
Affiliation(s)
- Michael Uckelmann
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vita Levina
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Cyntia Taveneau
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Xiao Han Ng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Varun Pandey
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Martinez
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shweta Mendiratta
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin Houx
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Marion Boudes
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Monash, Victoria, Australia
| | - Sylvain Trépout
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Monash, Victoria, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Sarena Flanigan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Minrui Li
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Faculty of Information Technology, Monash University, Clayton, Victoria, Australia
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Science and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Partha Pratim Das
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Oliver Bell
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alex de Marco
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
- EMBL-Australia, Clayton, Victoria, Australia.
| |
Collapse
|
10
|
Nho S, Kim H. Dynamics of nucleosomes and chromatin fibers revealed by single-molecule measurements. BMB Rep 2025; 58:24-32. [PMID: 39757199 PMCID: PMC11788527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
The nucleosome is the fundamental structural unit of chromosome fibers. DNA wraps around a histone octamer to form a nucleosome while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region and provide regulatory controls of gene expression. Biochemical and physical cues stimulate wrapping-unwrapping and condensation-decondensation dynamics of nucleosomes and nucleosome arrays. Nucleosome dynamics and chromatin fiber organization are influenced by changes in the ionic background within the nucleus, post-translational modifications of histone proteins, and DNA sequence characteristics, such as histone-binding motifs and nucleosome spacing. Biochemical and biophysical measurements, along with in silico simulations, have been extensively used to study the regulatory effects on chromatin dynamics. In particular, single-molecule measurements have revealed novel mechanistic details of nucleosome and chromatin dynamics. This minireview elucidates recent findings on chromatin dynamics from these approaches. [BMB Reports 2025; 58(1): 24-32].
Collapse
Affiliation(s)
- Sihyeong Nho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
11
|
Chen L, Maristany MJ, Farr SE, Luo J, Gibson BA, Doolittle LK, Espinosa JR, Huertas J, Redding S, Collepardo-Guevara R, Rosen MK. Nucleosome Spacing Can Fine-Tune Higher Order Chromatin Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.627571. [PMID: 39763792 PMCID: PMC11703229 DOI: 10.1101/2024.12.23.627571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Cellular chromatin displays heterogeneous structure and dynamics, properties that control diverse nuclear processes. Models invoke phase separation of conformational ensembles of chromatin fibers as a mechanism regulating chromatin organization in vivo. Here we combine biochemistry and molecular dynamics simulations to examine, at single base-pair resolution, how nucleosome spacing controls chromatin phase separation. We show that as DNA linkers extend from 25 bp to 30 bp, as examplars of 10N+5 and 10N (integer N) bp lengths, chromatin condensates become less thermodynamically stable and nucleosome mobility increases. Simulations reveal that this is due to trade-offs between inter- and intramolecular nucleosome stacking, favored by rigid 10N+5 and 10N bp linkers, respectively. A remodeler can induce or inhibit phase separation by moving nucleosomes, changing the balance between intra- and intermolecular stacking. The intrinsic phase separation capacity of chromatin enables fine tuning of compaction and dynamics, likely contributing to heterogeneous chromatin organization in vivo.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - M. Julia Maristany
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Equal contributions
| | - Stephen E. Farr
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Equal contributions
| | - Jinyue Luo
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bryan A. Gibson
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Current address: Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN. 38105-3678, USA
| | - Lynda K. Doolittle
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jorge R. Espinosa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sy Redding
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Michael K. Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Marine Biological Laboratory Chromatin Collaborative, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
12
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
13
|
Zheng T, Cai S. Recent technical advances in cellular cryo-electron tomography. Int J Biochem Cell Biol 2024; 175:106648. [PMID: 39181502 DOI: 10.1016/j.biocel.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Understanding the in situ structure, organization, and interactions of macromolecules is essential for elucidating their functions and mechanisms of action. Cellular cryo-electron tomography (cryo-ET) is a cutting-edge technique that reveals in situ molecular-resolution architectures of macromolecules in their lifelike states. It also provides insights into the three-dimensional distribution of macromolecules and their spatial relationships with various subcellular structures. Thus, cellular cryo-ET bridges the gap between structural biology and cell biology. With rapid advancements, this technique achieved substantial improvements in throughput, automation, and resolution. This review presents the fundamental principles and methodologies of cellular cryo-ET, highlighting recent developments in sample preparation, data collection, and image processing. We also discuss emerging trends and potential future directions. As cellular cryo-ET continues to develop, it is set to play an increasingly vital role in structural cell biology.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shujun Cai
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
14
|
Saunders HS, Chio US, Moore CM, Ramani V, Cheng Y, Narlikar GJ. HMGB1 restores a dynamic chromatin environment in the presence of linker histone by deforming nucleosomal DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609244. [PMID: 39229246 PMCID: PMC11370580 DOI: 10.1101/2024.08.23.609244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The essential architectural protein HMGB1 increases accessibility of nucleosomal DNA and counteracts the effects of linker histone H1. However, HMGB1 is less abundant than H1 and binds nucleosomes more weakly raising the question of how HMGB1 effectively competes with H1. Here, we show that HMGB1 rescues H1's inhibition of nucleosomal DNA accessibility without displacing H1. HMGB1 also increases the dynamics of condensed, H1-bound chromatin. Cryo-EM shows that HMGB1 binds at internal locations on a nucleosome and locally distorts the DNA. These sites, which are away from the binding site of H1, explain how HMGB1 and H1 co-occupy a nucleosome. Our findings lead to a model where HMGB1 counteracts the activity of H1 by distorting nucleosomal DNA and by contacting the H1 C-terminal tail. Compared to direct competition, nucleosome co-occupancy by HMGB1 and H1 allows a greater diversity of dynamic chromatin states and may be generalizable to other chromatin regulators.
Collapse
Affiliation(s)
- Hayden S. Saunders
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Camille M. Moore
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Vijay Ramani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute for Data Science & Biotechnology, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
15
|
Clerkin AB, Pagane N, West DW, Spakowitz AJ, Risca VI. Determining mesoscale chromatin structure parameters from spatially correlated cleavage data using a coarse-grained oligonucleosome model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605011. [PMID: 39131347 PMCID: PMC11312488 DOI: 10.1101/2024.07.28.605011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The three-dimensional structure of chromatin has emerged as an important feature of eukaryotic gene regulation. Recent technological advances in DNA sequencing-based assays have revealed locus- and chromatin state-specific structural patterns at the length scale of a few nucleosomes (~1 kb). However, interpreting these data sets remains challenging. Radiation-induced correlated cleavage of chromatin (RICC-seq) is one such chromatin structure assay that maps DNA-DNA-contacts at base pair resolution by sequencing single-stranded DNA fragments released from irradiated cells. Here, we develop a flexible modeling and simulation framework to enable the interpretation of RICC-seq data in terms of oligonucleosome structure ensembles. Nucleosomes are modeled as rigid bodies with excluded volume and adjustable DNA wrapping, connected by linker DNA modeled as a worm-like chain. We validate the model's parameters against cryo-electron microscopy and sedimentation data. Our results show that RICC-seq is sensitive to nucleosome spacing, nucleosomal DNA wrapping, and the strength of inter-nucleosome interactions. We show that nucleosome repeat lengths consistent with orthogonal assays can be extracted from experimental RICC-seq data using a 1D convolutional neural net trained on RICC-seq signal predicted from simulated ensembles. We thus provide a suite of analysis tools that add quantitative structural interpretability to RICC-seq experiments.
Collapse
Affiliation(s)
- Ariana Brenner Clerkin
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
- Tri-Institutional PhD Program in Computational Biology and Medicine, Cornell University, New York, NY
| | - Nicole Pagane
- Present affiliation: Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA
| | - Devany W. West
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | | | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
16
|
Uckelmann M, Levina V, Taveneau C, Ng XH, Pandey V, Martinez J, Mendiratta S, Houx J, Boudes M, Venugopal H, Trépout S, Zhang Q, Flanigan S, Li M, Sierecki E, Gambin Y, Das PP, Bell O, de Marco A, Davidovich C. Dynamic PRC1-CBX8 stabilizes a porous structure of chromatin condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.08.539931. [PMID: 38405976 PMCID: PMC10888862 DOI: 10.1101/2023.05.08.539931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The compaction of chromatin is a prevalent paradigm in gene repression. Chromatin compaction is commonly thought to repress transcription by restricting chromatin accessibility. However, the spatial organisation and dynamics of chromatin compacted by gene-repressing factors are unknown. Using cryo-electron tomography, we solved the three-dimensional structure of chromatin condensed by the Polycomb Repressive Complex 1 (PRC1) in a complex with CBX8. PRC1-condensed chromatin is porous and stabilised through multivalent dynamic interactions of PRC1 with chromatin. Mechanistically, positively charged residues on the internally disordered regions (IDRs) of CBX8 mask negative charges on the DNA to stabilize the condensed state of chromatin. Within condensates, PRC1 remains dynamic while maintaining a static chromatin structure. In differentiated mouse embryonic stem cells, CBX8-bound chromatin remains accessible. These findings challenge the idea of rigidly compacted polycomb domains and instead provides a mechanistic framework for dynamic and accessible PRC1-chromatin condensates.
Collapse
|
17
|
Lakadamyali M. From feulgen to modern methods: marking a century of DNA imaging advances. Histochem Cell Biol 2024; 162:13-22. [PMID: 38753186 PMCID: PMC11227465 DOI: 10.1007/s00418-024-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/07/2024]
Abstract
The mystery of how human DNA is compactly packaged into a nucleus-a space a hundred thousand times smaller-while still allowing for the regulation of gene function, has long been one of the greatest enigmas in cell biology. This puzzle is gradually being solved, thanks in part to the advent of new technologies. Among these, innovative genome-labeling techniques combined with high-resolution imaging methods have been pivotal. These methods facilitate the visualization of DNA within intact nuclei and have significantly contributed to our current understanding of genome organization. This review will explore various labeling and imaging approaches that are revolutionizing our understanding of the three-dimensional organization of the genome, shedding light on the relationship between its structure and function.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
18
|
Zhang M, Díaz-Celis C, Liu J, Tao J, Ashby PD, Bustamante C, Ren G. Angle between DNA linker and nucleosome core particle regulates array compaction revealed by individual-particle cryo-electron tomography. Nat Commun 2024; 15:4395. [PMID: 38782894 PMCID: PMC11116431 DOI: 10.1038/s41467-024-48305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The conformational dynamics of nucleosome arrays generate a diverse spectrum of microscopic states, posing challenges to their structural determination. Leveraging cryogenic electron tomography (cryo-ET), we determine the three-dimensional (3D) structures of individual mononucleosomes and arrays comprising di-, tri-, and tetranucleosomes. By slowing the rate of condensation through a reduction in ionic strength, we probe the intra-array structural transitions that precede inter-array interactions and liquid droplet formation. Under these conditions, the arrays exhibite irregular zig-zag conformations with loose packing. Increasing the ionic strength promoted intra-array compaction, yet we do not observe the previously reported regular 30-nanometer fibers. Interestingly, the presence of H1 do not induce array compaction; instead, one-third of the arrays display nucleosomes invaded by foreign DNA, suggesting an alternative role for H1 in chromatin network construction. We also find that the crucial parameter determining the structure adopted by chromatin arrays is the angle between the entry and exit of the DNA and the corresponding tangents to the nucleosomal disc. Our results provide insights into the initial stages of intra-array compaction, a critical precursor to condensation in the regulation of chromatin organization.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - César Díaz-Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Ashby
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carlos Bustamante
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Department of Physics, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
19
|
Gambogi CW, Birchak GJ, Mer E, Brown DM, Yankson G, Kixmoeller K, Gavade JN, Espinoza JL, Kashyap P, Dupont CL, Logsdon GA, Heun P, Glass JI, Black BE. Efficient formation of single-copy human artificial chromosomes. Science 2024; 383:1344-1349. [PMID: 38513017 PMCID: PMC11059994 DOI: 10.1126/science.adj3566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024]
Abstract
Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125-base pair DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. We describe an approach that efficiently forms single-copy HACs. It employs a ~750-kilobase construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.
Collapse
Affiliation(s)
- Craig W. Gambogi
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | - Gabriel J. Birchak
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Graduate Program in Cell and Molecular Biology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Elie Mer
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | | | - George Yankson
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | - Janardan N. Gavade
- Department of Biochemistry and Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | | | - Prakriti Kashyap
- Department of Biochemistry and Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | | | - Glennis A. Logsdon
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | - Patrick Heun
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Ben E. Black
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
- Graduate Program in Cell and Molecular Biology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
20
|
Palao L, Murakami K, Chang YW. Combining per-particle cryo-ET and cryo-EM single particle analysis to elucidate heterogeneous DNA-protein organization. Curr Opin Struct Biol 2024; 84:102765. [PMID: 38181688 PMCID: PMC10922635 DOI: 10.1016/j.sbi.2023.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Cryo-electron microscopy single particle analysis (cryo-EM SPA) and cryo-electron tomography (cryo-ET) have historically been employed as distinct approaches for investigating molecular structures of disparate sample types, focusing on highly purified biological macromolecules and in situ cellular contexts, respectively. However, these techniques offer inherently complementary structural insights that, when combined, provide a more comprehensive understanding of complex biological systems. For example, if both techniques are applied to the same purified biological macromolecules, cryo-ET has the ability to resolve highly flexible yet strong signal features on an individual target molecule which will not be preserved in the high-resolution cryo-EM SPA results. In this review, we highlight recent achievements utilizing such applications to unveil new insights into the chromatin assembly and activities of DNA-protein assemblies. This convergence of cryo-EM SPA and cryo-ET holds great promise for elucidating new structural aspects of these essential molecular processes.
Collapse
Affiliation(s)
- Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Lin X, Zhang B. Explicit ion modeling predicts physicochemical interactions for chromatin organization. eLife 2024; 12:RP90073. [PMID: 38289342 PMCID: PMC10945522 DOI: 10.7554/elife.90073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Molecular mechanisms that dictate chromatin organization in vivo are under active investigation, and the extent to which intrinsic interactions contribute to this process remains debatable. A central quantity for evaluating their contribution is the strength of nucleosome-nucleosome binding, which previous experiments have estimated to range from 2 to 14 kBT. We introduce an explicit ion model to dramatically enhance the accuracy of residue-level coarse-grained modeling approaches across a wide range of ionic concentrations. This model allows for de novo predictions of chromatin organization and remains computationally efficient, enabling large-scale conformational sampling for free energy calculations. It reproduces the energetics of protein-DNA binding and unwinding of single nucleosomal DNA, and resolves the differential impact of mono- and divalent ions on chromatin conformations. Moreover, we showed that the model can reconcile various experiments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy between existing estimations. We predict the interaction strength at physiological conditions to be 9 kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. Our study strongly supports the contribution of physicochemical interactions to the phase behavior of chromatin aggregates and chromatin organization inside the nucleus.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
22
|
Gan L. Positive directions from negative results. J Cell Sci 2023; 136:jcs261594. [PMID: 38095679 DOI: 10.1242/jcs.261594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Affiliation(s)
- Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore117543
| |
Collapse
|
23
|
Cleri F, Giordano S, Blossey R. Nucleosome Array Deformation in Chromatin is Sustained by Bending, Twisting and Kinking of Linker DNA. J Mol Biol 2023; 435:168263. [PMID: 37678705 DOI: 10.1016/j.jmb.2023.168263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Chromatin in the nucleus undergoes mechanical stresses from different sources during the various stages of cell life. Here a trinucleosome array is used as the minimal model to study the mechanical response to applied stress at the molecular level. By using large-scale, all-atom steered-molecular dynamics simulations, we show that the largest part of mechanical stress in compression is accommodated by the DNA linkers joining pairs of nucleosomes, which store the elastic energy accumulated by the applied force. Different mechanical instabilities (Euler bending, Brazier kinking, twist-bending) can deform the DNA canonical structure, as a function of the increasing force load. An important role of the histone tails in assisting the DNA deformation is highlighted. The overall response of the smallest chromatin fragment to compressive stress leaves the nucleosome assembly with a substantial plastic deformation and localised defects, which can have a potential impact on DNA transcription, downstream signaling pathways, the regulation of gene expression, and DNA repair.
Collapse
Affiliation(s)
- Fabrizio Cleri
- Université de Lille, Institut d'Electronique Microelectronique et Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, 59652 Villeneuve d'Ascq, France.
| | - Stefano Giordano
- University of Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Électronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| | - Ralf Blossey
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
24
|
Hou Z, Nightingale F, Zhu Y, MacGregor-Chatwin C, Zhang P. Structure of native chromatin fibres revealed by Cryo-ET in situ. Nat Commun 2023; 14:6324. [PMID: 37816746 PMCID: PMC10564948 DOI: 10.1038/s41467-023-42072-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
The structure of chromatin plays pivotal roles in regulating gene transcription, DNA replication and repair, and chromosome segregation. This structure, however, remains elusive. Here, using cryo-FIB and cryo-ET, we delineate the 3D architecture of native chromatin fibres in intact interphase human T-lymphoblasts and determine the in situ structures of nucleosomes in different conformations. These chromatin fibres are not structured as uniform 30 nm one-start or two-start filaments but are composed of relaxed, variable zigzag organizations of nucleosomes connected by straight linker DNA. Nucleosomes with little H1 and linker DNA density are distributed randomly without any spatial preference. This work will inspire future high-resolution investigations on native chromatin structures in situ at both a single-nucleosome level and a population level under many different cellular conditions in health and disease.
Collapse
Affiliation(s)
- Zhen Hou
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frank Nightingale
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Jentink N, Purnell C, Kable B, Swulius MT, Grigoryev SA. Cryoelectron tomography reveals the multiplex anatomy of condensed native chromatin and its unfolding by histone citrullination. Mol Cell 2023; 83:3236-3252.e7. [PMID: 37683647 PMCID: PMC10566567 DOI: 10.1016/j.molcel.2023.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Nucleosome chains fold and self-associate to form higher-order structures whose internal organization is unknown. Here, cryoelectron tomography (cryo-ET) of native human chromatin reveals intrinsic folding motifs such as (1) non-uniform nucleosome stacking, (2) intermittent parallel and perpendicular orientations of adjacent nucleosome planes, and (3) a regressive nucleosome chain path, which deviates from the direct zigzag topology seen in reconstituted nucleosomal arrays. By examining the self-associated structures, we observed prominent nucleosome stacking in cis and anti-parallel nucleosome interactions, which are consistent with partial nucleosome interdigitation in trans. Histone citrullination strongly inhibits nucleosome stacking and self-association with a modest effect on chromatin folding, whereas the reconstituted arrays undergo a dramatic unfolding into open zigzag chains induced by histone citrullination. This study sheds light on the internal structure of compact chromatin nanoparticles and suggests a mechanism for how epigenetic changes in chromatin folding are retained across both open and condensed forms.
Collapse
Affiliation(s)
- Nathan Jentink
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Carson Purnell
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Brianna Kable
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | - Matthew T Swulius
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA.
| | - Sergei A Grigoryev
- Penn State University College of Medicine, Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
26
|
Tan ZY, Cai S, Noble AJ, Chen JK, Shi J, Gan L. Heterogeneous non-canonical nucleosomes predominate in yeast cells in situ. eLife 2023; 12:RP87672. [PMID: 37503920 PMCID: PMC10382156 DOI: 10.7554/elife.87672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Nuclear processes depend on the organization of chromatin, whose basic units are cylinder-shaped complexes called nucleosomes. A subset of mammalian nucleosomes in situ (inside cells) resembles the canonical structure determined in vitro 25 years ago. Nucleosome structure in situ is otherwise poorly understood. Using cryo-electron tomography (cryo-ET) and 3D classification analysis of budding yeast cells, here we find that canonical nucleosomes account for less than 10% of total nucleosomes expected in situ. In a strain in which H2A-GFP is the sole source of histone H2A, class averages that resemble canonical nucleosomes both with and without GFP densities are found ex vivo (in nuclear lysates), but not in situ. These data suggest that the budding yeast intranuclear environment favors multiple non-canonical nucleosome conformations. Using the structural observations here and the results of previous genomics and biochemical studies, we propose a model in which the average budding yeast nucleosome's DNA is partially detached in situ.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Shujun Cai
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Alex J Noble
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Jon K Chen
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Jian Shi
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Lu Gan
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| |
Collapse
|
27
|
McCarthy RL, Zhang J, Zaret KS. Diverse heterochromatin states restricting cell identity and reprogramming. Trends Biochem Sci 2023; 48:513-526. [PMID: 36990958 PMCID: PMC10182259 DOI: 10.1016/j.tibs.2023.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Heterochromatin is defined as a chromosomal domain harboring repressive H3K9me2/3 or H3K27me3 histone modifications and relevant factors that physically compact the chromatin. Heterochromatin can restrict where transcription factors bind, providing a barrier to gene activation and changes in cell identity. While heterochromatin thus helps maintain cell differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical purposes. Recent findings have revealed complexity in the composition and regulation of heterochromatin, and shown that transiently disrupting the machinery of heterochromatin can enhance reprogramming. Here, we discuss how heterochromatin is established and maintained during development, and how our growing understanding of the mechanisms regulating H3K9me3 heterochromatin can be leveraged to improve our ability to direct changes in cell identity.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
29
|
Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023:10.1007/s00412-023-00791-w. [PMID: 36917245 DOI: 10.1007/s00412-023-00791-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.
Collapse
|
30
|
Portillo-Ledesma S, Li Z, Schlick T. Genome modeling: From chromatin fibers to genes. Curr Opin Struct Biol 2023; 78:102506. [PMID: 36577295 PMCID: PMC9908845 DOI: 10.1016/j.sbi.2022.102506] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 12/27/2022]
Abstract
The intricacies of the 3D hierarchical organization of the genome have been approached by many creative modeling studies. The specific model/simulation technique combination defines and restricts the system and phenomena that can be investigated. We present the latest modeling developments and studies of the genome, involving models ranging from nucleosome systems and small polynucleosome arrays to chromatin fibers in the kb-range, chromosomes, and whole genomes, while emphasizing gene folding from first principles. Clever combinations allow the exploration of many interesting phenomena involved in gene regulation, such as nucleosome structure and dynamics, nucleosome-nucleosome stacking, polynucleosome array folding, protein regulation of chromatin architecture, mechanisms of gene folding, loop formation, compartmentalization, and structural transitions at the chromosome and genome levels. Gene-level modeling with full details on nucleosome positions, epigenetic factors, and protein binding, in particular, can in principle be scaled up to model chromosomes and cells to study fundamental biological regulation.
Collapse
Affiliation(s)
- Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA
| | - Zilong Li
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, 10003, NY, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, 10012, NY, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Room 340, Geography Building, 3663 North Zhongshan Road, Shanghai, 200122, China; Simons Center for Computational Physical Chemistry, 24 Waverly Place, Silver Building, New York University, New York, 10003, NY, USA.
| |
Collapse
|
31
|
Zhang M, Celis CD, Liu J, Bustamante C, Ren G. Conformational Change of Nucleosome Arrays prior to Phase Separation. RESEARCH SQUARE 2023:rs.3.rs-2460504. [PMID: 36711774 PMCID: PMC9882673 DOI: 10.21203/rs.3.rs-2460504/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chromatin phase transition serves as a regulatory mechanism for eukaryotic transcription. Understanding this process requires the characterization of the nucleosome array structure in response to external stimuli prior to phase separation. However, the intrinsic flexibility and heterogeneity hinders the arrays' structure determination. Here we exploit advances in cryogenic electron tomography (cryo-ET) to determine the three-dimensional (3D) structure of each individual particle of mono-, di-, tri-, and tetranucleosome arrays. Statistical analysis reveals the ionic strength changes the angle between the DNA linker and nucleosome core particle (NCP), which regulate the overall morphology of nucleosome arrays. The finding that one-third of the arrays in the presence of H1 contain an NCP invaded by foreign DNA suggests an alternative function of H1 in constructing nucleosomal networks. The new insights into the nucleosome conformational changes prior to the intermolecular interaction stage extends our understanding of chromatin phase separation regulation.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
- Applied Science and Technology Graduate Group, University of California, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, USA
| | - César-Díaz Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, USA
- Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Carlos Bustamante
- Applied Science and Technology Graduate Group, University of California, Berkeley, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, USA
- Howard Hughes Medical Institute, University of California, Berkeley, USA
- Department of Chemistry, University of California, Berkeley, USA
- Department of Physics, University of California, Berkeley, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, USA
- Kavli Energy Nanoscience Institute, University of California, Berkeley, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, USA
| |
Collapse
|
32
|
Takizawa Y, Kurumizaka H. Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194851. [PMID: 35952957 DOI: 10.1016/j.bbagrm.2022.194851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Chromatin is a dynamic molecular complex composed of DNA and proteins that package the DNA in the nucleus of eukaryotic cells. The basic structural unit of chromatin is the nucleosome core particle, composed of ~150 base pairs of genomic DNA wrapped around a histone octamer containing two copies each of four histones, H2A, H2B, H3, and H4. Individual nucleosome core particles are connected by short linker DNAs, forming a nucleosome array known as a beads-on-a-string fiber. Higher-order structures of chromatin are closely linked to nuclear events such as replication, transcription, recombination, and repair. Recently, a variety of chromatin structures have been determined by single-particle cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), and their structural details have provided clues about the chromatin architecture functions in the cell. In this review, we highlight recent cryo-EM structural studies of a fundamental chromatin unit to clarify the functions of chromatin.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
33
|
Liu S, Lin X, Zhang B. Chromatin fiber breaks into clutches under tension and crowding. Nucleic Acids Res 2022; 50:9738-9747. [PMID: 36029149 PMCID: PMC9508854 DOI: 10.1093/nar/gkac725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The arrangement of nucleosomes inside chromatin is of extensive interest. While in vitro experiments have revealed the formation of 30 nm fibers, most in vivo studies have failed to confirm their presence in cell nuclei. To reconcile the diverging experimental findings, we characterized chromatin organization using a residue-level coarse-grained model. The computed force–extension curve matches well with measurements from single-molecule experiments. Notably, we found that a dodeca-nucleosome in the two-helix zigzag conformation breaks into structures with nucleosome clutches and a mix of trimers and tetramers under tension. Such unfolded configurations can also be stabilized through trans interactions with other chromatin chains. Our study suggests that unfolding from chromatin fibers could contribute to the irregularity of in vivo chromatin configurations. We further revealed that chromatin segments with fibril or clutch structures engaged in distinct binding modes and discussed the implications of these inter-chain interactions for a potential sol–gel phase transition.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
34
|
Zhang M, Díaz-Celis C, Onoa B, Cañari-Chumpitaz C, Requejo KI, Liu J, Vien M, Nogales E, Ren G, Bustamante C. Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography. Mol Cell 2022; 82:3000-3014.e9. [PMID: 35907400 DOI: 10.1016/j.molcel.2022.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022]
Abstract
It has been proposed that the intrinsic property of nucleosome arrays to undergo liquid-liquid phase separation (LLPS) in vitro is responsible for chromatin domain organization in vivo. However, understanding nucleosomal LLPS has been hindered by the challenge to characterize the structure of the resulting heterogeneous condensates. We used cryo-electron tomography and deep-learning-based 3D reconstruction/segmentation to determine the molecular organization of condensates at various stages of LLPS. We show that nucleosomal LLPS involves a two-step process: a spinodal decomposition process yielding irregular condensates, followed by their unfavorable conversion into more compact, spherical nuclei that grow into larger spherical aggregates through accretion of spinodal materials or by fusion with other spherical condensates. Histone H1 catalyzes more than 10-fold the spinodal-to-spherical conversion. We propose that this transition involves exposure of nucleosome hydrophobic surfaces causing modified inter-nucleosome interactions. These results suggest a physical mechanism by which chromatin may transition from interphase to metaphase structures.
Collapse
Affiliation(s)
- Meng Zhang
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - César Díaz-Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | | | - Katherinne I Requejo
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Vien
- Department of Physics, University of California, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos Bustamante
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, CA, USA; Department of Physics, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
35
|
Dombrowski M, Engeholm M, Dienemann C, Dodonova S, Cramer P. Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory. Nat Struct Mol Biol 2022; 29:493-501. [PMID: 35581345 PMCID: PMC9113941 DOI: 10.1038/s41594-022-00768-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/01/2022] [Indexed: 01/17/2023]
Abstract
Throughout the genome, nucleosomes often form regular arrays that differ in nucleosome repeat length (NRL), occupancy of linker histone H1 and transcriptional activity. Here, we report cryo-EM structures of human H1-containing tetranucleosome arrays with four physiologically relevant NRLs. The structures show a zig-zag arrangement of nucleosomes, with nucleosomes 1 and 3 forming a stack. H1 binding to stacked nucleosomes depends on the NRL, whereas H1 always binds to the non-stacked nucleosomes 2 and 4. Short NRLs lead to altered trajectories of linker DNA, and these altered trajectories sterically impair H1 binding to the stacked nucleosomes in our structures. As the NRL increases, linker DNA trajectories relax, enabling H1 contacts and binding. Our results provide an explanation for why arrays with short NRLs are depleted of H1 and suited for transcription, whereas arrays with long NRLs show full H1 occupancy and can form transcriptionally silent heterochromatin regions. Cryo-EM structures of human H1-containing tetranucleosome arrays with distinct, physiological nucleosome repeat lengths reveal that nucleosomes assume a zig-zag arrangement and H1 binds to stacked nucleosomes with longer linker DNA.
Collapse
Affiliation(s)
- Marco Dombrowski
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Maik Engeholm
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Svetlana Dodonova
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
36
|
Ma OX, Chong WG, Lee JKE, Cai S, Siebert CA, Howe A, Zhang P, Shi J, Surana U, Gan L. Cryo-ET detects bundled triple helices but not ladders in meiotic budding yeast. PLoS One 2022; 17:e0266035. [PMID: 35421110 PMCID: PMC9009673 DOI: 10.1371/journal.pone.0266035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/13/2022] [Indexed: 11/19/2022] Open
Abstract
In meiosis, cells undergo two sequential rounds of cell division, termed meiosis I and meiosis II. Textbook models of the meiosis I substage called pachytene show that nuclei have conspicuous 100-nm-wide, ladder-like synaptonemal complexes and ordered chromatin loops. It remains unknown if these cells have any other large, meiosis-related intranuclear structures. Here we present cryo-ET analysis of frozen-hydrated budding yeast cells before, during, and after pachytene. We found no cryo-ET densities that resemble dense ladder-like structures or ordered chromatin loops. Instead, we found large numbers of 12-nm-wide triple-helices that pack into ordered bundles. These structures, herein called meiotic triple helices (MTHs), are present in meiotic cells, but not in interphase cells. MTHs are enriched in the nucleus but not enriched in the cytoplasm. Bundles of MTHs form at the same timeframe as synaptonemal complexes (SCs) in wild-type cells and in mutant cells that are unable to form SCs. These results suggest that in yeast, SCs coexist with previously unreported large, ordered assemblies.
Collapse
Affiliation(s)
- Olivia X. Ma
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Wen Guan Chong
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Joy K. E. Lee
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - C. Alistair Siebert
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Andrew Howe
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Peijun Zhang
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire, United Kingdom
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, Singapore
- Bioprocessing Technology Institute, A*STAR, Singapore, Singapore
- Biotransformation Innovation Platform, A*STAR, Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
37
|
Harastani M, Eltsov M, Leforestier A, Jonic S. TomoFlow: Analysis of Continuous Conformational Variability of Macromolecules in Cryogenic Subtomograms based on 3D Dense Optical Flow. J Mol Biol 2021; 434:167381. [PMID: 34848215 DOI: 10.1016/j.jmb.2021.167381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023]
Abstract
Cryogenic Electron Tomography (cryo-ET) allows structural and dynamics studies of macromolecules in situ. Averaging different copies of imaged macromolecules is commonly used to obtain their structure at higher resolution and discrete classification to analyze their dynamics. Instrumental and data processing developments are progressively equipping cryo-ET studies with the ability to escape the trap of classification into a complete continuous conformational variability analysis. In this work, we propose TomoFlow, a method for analyzing macromolecular continuous conformational variability in cryo-ET subtomograms based on a three-dimensional dense optical flow (OF) approach. The resultant lower-dimensional conformational space allows generating movies of macromolecular motion and obtaining subtomogram averages by grouping conformationally similar subtomograms. The animations and the subtomogram group averages reveal accurate trajectories of macromolecular motion based on a novel mathematical model that makes use of OF properties. This paper describes TomoFlow with tests on simulated datasets generated using different techniques, namely Normal Mode Analysis and Molecular Dynamics Simulation. It also shows an application of TomoFlow on a dataset of nucleosomes in situ, which provided promising results coherent with previous findings using the same dataset but without imposing any prior knowledge on the analysis of the conformational variability. The method is discussed with its potential uses and limitations.
Collapse
Affiliation(s)
- Mohamad Harastani
- IMPMC - UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France; Laboratoire de Physique des Solides (LPS), UMR 8502 CNRS, Université Paris-Saclay, Orsay, France. https://twitter.com/moh_harastani
| | - Mikhail Eltsov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France. https://twitter.com/EltsovMikhail
| | - Amélie Leforestier
- Laboratoire de Physique des Solides (LPS), UMR 8502 CNRS, Université Paris-Saclay, Orsay, France
| | - Slavica Jonic
- IMPMC - UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
38
|
Arimura Y, Shih RM, Froom R, Funabiki H. Structural features of nucleosomes in interphase and metaphase chromosomes. Mol Cell 2021; 81:4377-4397.e12. [PMID: 34478647 PMCID: PMC8571072 DOI: 10.1016/j.molcel.2021.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.
Collapse
Affiliation(s)
- Yasuhiro Arimura
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Rochelle M Shih
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ruby Froom
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
39
|
Beel AJ, Azubel M, Matteï PJ, Kornberg RD. Structure of mitotic chromosomes. Mol Cell 2021; 81:4369-4376.e3. [PMID: 34520722 DOI: 10.1016/j.molcel.2021.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
Chromatin fibers must fold or coil in the process of chromosome condensation. Patterns of coiling have been demonstrated for reconstituted chromatin, but the actual trajectories of fibers in condensed states of chromosomes could not be visualized because of the high density of the material. We have exploited partial decondensation of mitotic chromosomes to reveal their internal structure at sub-nucleosomal resolution by cryo-electron tomography, without the use of stains, fixatives, milling, or sectioning. DNA gyres around nucleosomes were visible, allowing the nucleosomes to be identified and their orientations to be determined. Linker DNA regions were traced, revealing the trajectories of the chromatin fibers. The trajectories were irregular, with almost no evidence of coiling and no short- or long-range order of the chromosomal material. The 146-bp core particle, long known as a product of nuclease digestion, is identified as the native state of the nucleosome, with no regular spacing along the chromatin fibers.
Collapse
Affiliation(s)
- Andrew J Beel
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Maia Azubel
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.
| | - Pierre-Jean Matteï
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
41
|
Lin X, Qi Y, Latham AP, Zhang B. Multiscale modeling of genome organization with maximum entropy optimization. J Chem Phys 2021; 155:010901. [PMID: 34241389 PMCID: PMC8253599 DOI: 10.1063/5.0044150] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) organization of the human genome plays an essential role in all DNA-templated processes, including gene transcription, gene regulation, and DNA replication. Computational modeling can be an effective way of building high-resolution genome structures and improving our understanding of these molecular processes. However, it faces significant challenges as the human genome consists of over 6 × 109 base pairs, a system size that exceeds the capacity of traditional modeling approaches. In this perspective, we review the progress that has been made in modeling the human genome. Coarse-grained models parameterized to reproduce experimental data via the maximum entropy optimization algorithm serve as effective means to study genome organization at various length scales. They have provided insight into the principles of whole-genome organization and enabled de novo predictions of chromosome structures from epigenetic modifications. Applications of these models at a near-atomistic resolution further revealed physicochemical interactions that drive the phase separation of disordered proteins and dictate chromatin stability in situ. We conclude with an outlook on the opportunities and challenges in studying chromosome dynamics.
Collapse
Affiliation(s)
- Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew P. Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
42
|
Adhireksan Z, Sharma D, Lee PL, Bao Q, Padavattan S, Shum WK, Davey GE, Davey CA. Engineering nucleosomes for generating diverse chromatin assemblies. Nucleic Acids Res 2021; 49:e52. [PMID: 33590100 PMCID: PMC8136823 DOI: 10.1093/nar/gkab070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/09/2021] [Accepted: 02/04/2021] [Indexed: 01/01/2023] Open
Abstract
Structural characterization of chromatin is challenging due to conformational and compositional heterogeneity in vivo and dynamic properties that limit achievable resolution in vitro. Although the maximum resolution for solving structures of large macromolecular assemblies by electron microscopy has recently undergone profound increases, X-ray crystallographic approaches may still offer advantages for certain systems. One such system is compact chromatin, wherein the crystalline state recapitulates the crowded molecular environment within the nucleus. Here we show that nucleosomal constructs with cohesive-ended DNA can be designed that assemble into different types of circular configurations or continuous fibers extending throughout crystals. We demonstrate the utility of the method for characterizing nucleosome compaction and linker histone binding at near-atomic resolution but also advance its application for tackling further problems in chromatin structural biology and for generating novel types of DNA nanostructures. We provide a library of cohesive-ended DNA fragment expression constructs and a strategy for engineering DNA-based nanomaterials with a seemingly vast potential variety of architectures and histone chemistries.
Collapse
Affiliation(s)
- Zenita Adhireksan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Deepti Sharma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Phoi Leng Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Qiuye Bao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Sivaraman Padavattan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Wayne K Shum
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Gabriela E Davey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Curt A Davey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
43
|
Michael AK, Thomä NH. Reading the chromatinized genome. Cell 2021; 184:3599-3611. [PMID: 34146479 DOI: 10.1016/j.cell.2021.05.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Eukaryotic DNA-binding proteins operate in the context of chromatin, where nucleosomes are the elementary building blocks. Nucleosomal DNA is wrapped around a histone core, thereby rendering a large fraction of the DNA surface inaccessible to DNA-binding proteins. Nevertheless, first responders in DNA repair and sequence-specific transcription factors bind DNA target sites obstructed by chromatin. While early studies examined protein binding to histone-free DNA, it is only now beginning to emerge how DNA sequences are interrogated on nucleosomes. These readout strategies range from the release of nucleosomal DNA from histones, to rotational/translation register shifts of the DNA motif, and nucleosome-specific DNA binding modes that differ from those observed on naked DNA. Since DNA motif engagement on nucleosomes strongly depends on position and orientation, we argue that motif location and nucleosome positioning co-determine protein access to DNA in transcription and DNA repair.
Collapse
Affiliation(s)
- Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
44
|
Interphase epichromatin: last refuge for the 30-nm chromatin fiber? Chromosoma 2021; 130:91-102. [PMID: 34091761 DOI: 10.1007/s00412-021-00759-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 01/08/2023]
Abstract
"Interphase epichromatin" describes the surface of chromatin located adjacent to the interphase nuclear envelope. It was discovered in 2011 using a bivalent anti-nucleosome antibody (mAb PL2-6), now known to be directed against the nucleosome acidic patch. The molecular structure of interphase epichromatin is unknown, but is thought to be heterochromatic with a high density of "exposed" acidic patches. In the 1960s, transmission electron microscopy of fixed, dehydrated, sectioned, and stained inactive chromatin revealed "unit threads," frequently organized into parallel arrays at the nuclear envelope, which were interpreted as regular helices with ~ 30-nm center-to-center distance. Also observed in certain cell types, the nuclear envelope forms a "sandwich" around a layer of closely packed unit threads (ELCS, envelope-limited chromatin sheets). Discovery of the nucleosome in 1974 led to revised helical models of chromatin. But these models became very controversial and the existence of in situ 30-nm chromatin fibers has been challenged. Development of cryo-electron microscopy (Cryo-EM) gave hope that in situ chromatin fibers, devoid of artifacts, could be structurally defined. Combining a contrast-enhancing phase plate and cryo-electron tomography (Cryo-ET), it is now possible to visualize chromatin in a "close-to-native" situation. ELCS are particularly interesting to study by Cryo-ET. The chromatin sheet appears to have two layers of ~ 30-nm chromatin fibers arranged in a criss-crossed pattern. The chromatin in ELCS is continuous with adjacent interphase epichromatin. It appears that hydrated ~ 30-nm chromatin fibers are quite rare in most cells, possibly confined to interphase epichromatin at the nuclear envelope.
Collapse
|
45
|
Brouwer T, Pham C, Kaczmarczyk A, de Voogd WJ, Botto M, Vizjak P, Mueller-Planitz F, van Noort J. A critical role for linker DNA in higher-order folding of chromatin fibers. Nucleic Acids Res 2021; 49:2537-2551. [PMID: 33589918 PMCID: PMC7969035 DOI: 10.1093/nar/gkab058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.
Collapse
Affiliation(s)
- Thomas Brouwer
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Chi Pham
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Artur Kaczmarczyk
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Willem-Jan de Voogd
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Margherita Botto
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Petra Vizjak
- Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Felix Mueller-Planitz
- Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.,Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
46
|
Understanding transcription across scales: From base pairs to chromosomes. Mol Cell 2021; 81:1601-1616. [PMID: 33770487 DOI: 10.1016/j.molcel.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
The influence of genome organization on transcription is central to our understanding of cell type specification. Higher-order genome organization is established through short- and long-range DNA interactions. Coordination of these interactions, from single atoms to entire chromosomes, plays a fundamental role in transcriptional control of gene expression. Loss of this coupling can result in disease. Analysis of transcriptional regulation typically involves disparate experimental approaches, from structural studies that define angstrom-level interactions to cell-biological and genomic approaches that assess mesoscale relationships. Thus, to fully understand the mechanisms that regulate gene expression, it is critical to integrate the findings gained across these distinct size scales. In this review, I illustrate fundamental ways in which cells regulate transcription in the context of genome organization.
Collapse
|
47
|
Phengchat R, Malac M, Hayashida M. Chromosome inner structure investigation by electron tomography and electron diffraction in a transmission electron microscope. Chromosome Res 2021; 29:63-80. [PMID: 33733375 DOI: 10.1007/s10577-021-09661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Our understanding of the inner structure of metaphase chromosomes remains inconclusive despite intensive studies using multiple imaging techniques. Transmission electron microscopy has been extensively used to visualize chromosome ultrastructure. This review summarizes recent results obtained using two transmission electron microscopy-based techniques: electron tomography and electron diffraction. Electron tomography allows advanced three-dimensional imaging of chromosomes, while electron diffraction detects the presence of periodic structures within chromosomes. The combination of these two techniques provides results contributing to the understanding of local structural organization of chromatin fibers within chromosomes.
Collapse
Affiliation(s)
- Rinyaporn Phengchat
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, 657-8501, Japan.
| | - Marek Malac
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2 M9, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Misa Hayashida
- Nanotechnology Research Centre, National Research of Council, 11421 Saskatchewan Drive, T6G 2 M9, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Woods DC, Rodríguez-Ropero F, Wereszczynski J. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. J Mol Biol 2021; 433:166902. [PMID: 33667509 DOI: 10.1016/j.jmb.2021.166902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Linker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.
Collapse
Affiliation(s)
- Dustin C Woods
- Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Francisco Rodríguez-Ropero
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Jeff Wereszczynski
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States.
| |
Collapse
|
49
|
Ding X, Lin X, Zhang B. Stability and folding pathways of tetra-nucleosome from six-dimensional free energy surface. Nat Commun 2021; 12:1091. [PMID: 33597548 PMCID: PMC7889939 DOI: 10.1038/s41467-021-21377-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
The three-dimensional organization of chromatin is expected to play critical roles in regulating genome functions. High-resolution characterization of its structure and dynamics could improve our understanding of gene regulation mechanisms but has remained challenging. Using a near-atomistic model that preserves the chemical specificity of protein-DNA interactions at residue and base-pair resolution, we studied the stability and folding pathways of a tetra-nucleosome. Dynamical simulations performed with an advanced sampling technique uncovered multiple pathways that connect open chromatin configurations with the zigzag crystal structure. Intermediate states along the simulated folding pathways resemble chromatin configurations reported from in situ experiments. We further determined a six-dimensional free energy surface as a function of the inter-nucleosome distances via a deep learning approach. The zigzag structure can indeed be seen as the global minimum of the surface. However, it is not favored by a significant amount relative to the partially unfolded, in situ configurations. Chemical perturbations such as histone H4 tail acetylation and thermal fluctuations can further tilt the energetic balance to stabilize intermediate states. Our study provides insight into the connection between various reported chromatin configurations and has implications on the in situ relevance of the 30 nm fiber. The three-dimensional organization of chromatin plays critical roles in regulating genome function. Here the authors apply a near atomistic model to study the structure and dynamics of the chromatin folding unit - the tetra-nucleosome - to provide insight into how chromatin folds.
Collapse
Affiliation(s)
- Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
CENP-A nucleosome-a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Essays Biochem 2021; 64:205-221. [PMID: 32720682 PMCID: PMC7475651 DOI: 10.1042/ebc20190074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
The centromere is a chromosome locus that directs equal segregation of chromosomes during cell division. A nucleosome containing the histone H3 variant CENP-A epigenetically defines the centromere. Here, we summarize findings from recent structural biology studies, including several CryoEM structures, that contributed to elucidate specific features of the CENP-A nucleosome and molecular determinants of its interactions with CENP-C and CENP-N, the only two centromere proteins that directly bind to it. Based on those findings, we propose a role of the CENP-A nucleosome in the organization of centromeric chromatin beyond binding centromeric proteins.
Collapse
|