1
|
Schaffer L, Rau S, Larsen IG, Clasen L, Warling A, Whitman ET, Nadig A, McDermott C, Xenophontos A, Wilson K, Blumenthal J, Torres E, Raznahan A. X- vs. Y-chromosome influences on human behavior: a deep phenotypic comparison of psychopathology in XXY and XYY syndromes. J Neurodev Disord 2024; 16:56. [PMID: 39363182 PMCID: PMC11451104 DOI: 10.1186/s11689-024-09574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Do different genetic disorders impart different psychiatric risk profiles? This question has major implications for biological and translational aspects of psychiatry, but has been difficult to tackle given limited access to shared batteries of fine-grained clinical data across genetic disorders. METHODS Using a new suite of generalizable analytic approaches, we examine gold-standard diagnostic ratings, scores on 66 dimensional measures of psychopathology, and measures of cognition and functioning in two different sex chromosome aneuploidies (SCAs)-Klinefelter (XXY/KS) and XYY syndrome (n = 102 and 64 vs. n = 74 and 60 matched XY controls, total n = 300). We focus on SCAs for their high collective prevalence, informativeness regarding differential X- vs. Y-chromosome effects, and potential relevance for normative sex differences. RESULTS We show that XXY/KS elevates rates for most psychiatric diagnoses as previously reported for XYY, but disproportionately so for anxiety disorders. Fine-mapping across all 66 traits provides a detailed profile of psychopathology in XXY/KS which is strongly correlated with that of XYY (r = .75 across traits) and robust to ascertainment biases, but reveals: (i) a greater penetrance of XYY than KS/XXY for most traits except mood/anxiety problems, and (ii) a disproportionate impact of XYY vs. XXY/KS on social problems. XXY/KS and XYY showed a similar coupling of psychopathology with adaptive function and caregiver strain, but not IQ. CONCLUSIONS This work provides new tools for deep-phenotypic comparisons of genetic disorders in psychiatry and uses these to detail unique and shared effects of the X- and Y-chromosome on human behavior.
Collapse
Affiliation(s)
- Lukas Schaffer
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Srishti Rau
- Center for Autism Spectrum Disorders and Division of Neuropsychology, Children's National Hospital, Washington, DC, USA
| | - Isabella G Larsen
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Liv Clasen
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Allysa Warling
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Ethan T Whitman
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Ajay Nadig
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Cassidy McDermott
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Anastasia Xenophontos
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Kathleen Wilson
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Jonathan Blumenthal
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Erin Torres
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Armin Raznahan
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Keikhosravi A, Almansour F, Bohrer CH, Fursova NA, Guin K, Sood V, Misteli T, Larson DR, Pegoraro G. High-throughput image processing software for the study of nuclear architecture and gene expression. Sci Rep 2024; 14:18426. [PMID: 39117696 PMCID: PMC11310328 DOI: 10.1038/s41598-024-66600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
High-throughput imaging (HTI) generates complex imaging datasets from a large number of experimental perturbations. Commercial HTI software programs for image analysis workflows typically do not allow full customization and adoption of new image processing algorithms in the analysis modules. While open-source HTI analysis platforms provide individual modules in the workflow, like nuclei segmentation, spot detection, or cell tracking, they are often limited in integrating novel analysis modules or algorithms. Here, we introduce the High-Throughput Image Processing Software (HiTIPS) to expand the range and customization of existing HTI analysis capabilities. HiTIPS incorporates advanced image processing and machine learning algorithms for automated cell and nuclei segmentation, spot signal detection, nucleus tracking, nucleus registration, spot tracking, and quantification of spot signal intensity. Furthermore, HiTIPS features a graphical user interface that is open to integration of new analysis modules for existing analysis pipelines and to adding new analysis modules. To demonstrate the utility of HiTIPS, we present three examples of image analysis workflows for high-throughput DNA FISH, immunofluorescence (IF), and live-cell imaging of transcription in single cells. Altogether, we demonstrate that HiTIPS is a user-friendly, flexible, and open-source HTI software platform for a variety of cell biology applications.
Collapse
Affiliation(s)
- Adib Keikhosravi
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Faisal Almansour
- Cell Biology of Genomes, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical School, Washington, DC, 20057, USA
| | - Christopher H Bohrer
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Nadezda A Fursova
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Krishnendu Guin
- Cell Biology of Genomes, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Varun Sood
- Cell Biology of Genomes, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Tom Misteli
- Cell Biology of Genomes, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Daniel R Larson
- System Biology of Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Naghipour A, Oertelt-Prigione S. Geschlechter- und Diskriminierungssensibilität in der ärztlichen Praxis. DIE GYNÄKOLOGIE 2024; 57:437-446. [DOI: 10.1007/s00129-024-05241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 01/03/2025]
|
4
|
Kundakovic M, Tickerhoof M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci 2024; 47:18-35. [PMID: 37968206 PMCID: PMC10841872 DOI: 10.1016/j.tins.2023.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Sex differences are found across brain regions, behaviors, and brain diseases. Sexual differentiation of the brain is initiated prenatally but it continues throughout life, as a result of the interaction of three major factors: gonadal hormones, sex chromosomes, and the environment. These factors are thought to act, in part, via epigenetic mechanisms which control chromatin and transcriptional states in brain cells. In this review, we discuss evidence that epigenetic mechanisms underlie sex-specific neurobehavioral changes during critical organizational periods, across the estrous cycle, and in response to diverse environments throughout life. We further identify future directions for the field that will provide novel mechanistic insights into brain sex differences, inform brain disease treatments and women's brain health in particular, and apply to people across genders.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.
| | - Maria Tickerhoof
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
5
|
Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L, Roychoudhury S. Environmental and Genetic Traffic in the Journey from Sperm to Offspring. Biomolecules 2023; 13:1759. [PMID: 38136630 PMCID: PMC10741607 DOI: 10.3390/biom13121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sulagna Dutta
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Fong Fong Liew
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Vidhu Dhawan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Biprojit Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | |
Collapse
|
6
|
Keikhosravi A, Almansour F, Bohrer CH, Fursova NA, Guin K, Sood V, Misteli T, Larson DR, Pegoraro G. HiTIPS: High-Throughput Image Processing Software for the Study of Nuclear Architecture and Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565366. [PMID: 38076967 PMCID: PMC10705580 DOI: 10.1101/2023.11.02.565366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/14/2024]
Abstract
High-throughput imaging (HTI) generates complex imaging datasets from a large number of experimental perturbations. Commercial HTI software for image analysis workflows does not allow full customization and adoption of new image processing algorithms in the analysis modules. While open-source HTI analysis platforms provide individual modules in the workflow, like nuclei segmentation, spot detection, or cell tracking, they are often limited in integrating novel analysis modules or algorithms. Here, we introduce the High-Throughput Image Processing Software (HiTIPS) to expand the range and customization of existing HTI analysis capabilities. HiTIPS incorporates advanced image processing and machine learning algorithms for automated cell and nuclei segmentation, spot signal detection, nucleus tracking, spot tracking, and quantification of spot signal intensity. Furthermore, HiTIPS features a graphical user interface that is open to integration of new algorithms for existing analysis pipelines and to adding new analysis pipelines through separate plugins. To demonstrate the utility of HiTIPS, we present three examples of image analysis workflows for high-throughput DNA FISH, immunofluorescence (IF), and live-cell imaging of transcription in single cells. Altogether, we demonstrate that HiTIPS is a user-friendly, flexible, and open-source HTI analysis platform for a variety of cell biology applications.
Collapse
|
7
|
Schaffer L, Rau S, Clasen L, Warling A, Whitman ET, Nadig A, McDermott C, Xenophontos A, Wilson K, Blumenthal J, Torres E, Raznahan A. X- vs. Y-Chromosome Influences on Human Behavior: A Deep Phenotypic Comparison of Psychopathology in XXY and XYY Syndromes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.19.23291614. [PMID: 37502878 PMCID: PMC10371113 DOI: 10.1101/2023.06.19.23291614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Do different genetic disorders impart different psychiatric risk profiles? This question has major implications for biological and translational aspects of psychiatry, but has been difficult to tackle given limited access to shared batteries of fine-grained clinical data across genetic disorders. Using a new suite of generalizable analytic approaches, we examine gold-standard diagnostic ratings, scores on 66 dimensional measures of psychopathology, and measures of cognition and functioning in two different sex chromosome aneuploidies (SCAs) - Klinefelter (XXY/KS) and XYY syndrome (n=102 and 64 vs. n=74 and 60 matched XY controls, total n=300). We focus on SCAs for their high collective prevalence, informativeness regarding differential X- vs. Y-chromosome effects, and potential relevance for normative sex differences. We show that XXY/KS elevates rates for most psychiatric diagnoses as previously reported for XYY, but disproportionately so for anxiety disorders. Fine-mapping across all 66 traits provides a detailed profile of psychopathology in XXY/KS which is strongly correlated with that of XYY (r=.75 across traits) and robust to ascertainment biases, but reveals: (i) a greater penetrance of XYY than KS/XXY for most traits except mood/anxiety problems, and (ii) a disproportionate impact of XYY vs. XXY/KS on social problems. XXY/KS and XXY showed a similar coupling of psychopathology with adaptive function and caregiver strain, but not IQ. This work provides new tools for deep-phenotypic comparisons of genetic disorders in psychiatry and uses these to detail unique and shared effects of the X- and Y-chromosome on human behavior.
Collapse
Affiliation(s)
- Lukas Schaffer
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Srishti Rau
- Center for Autism Spectrum Disorders and Division of Neuropsychology, Children’s National Hospital, Washington DC, USA
| | - Liv Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Allysa Warling
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Ethan T. Whitman
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Ajay Nadig
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Cassidy McDermott
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Anastasia Xenophontos
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Kathleen Wilson
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
8
|
Sanchez XC, Montalbano S, Vaez M, Krebs MD, Byberg-Grauholm J, Mortensen PB, Børglum AD, Hougaard DM, Nordentoft M, Geschwind DH, Buil A, Schork AJ, Thompson WK, Raznahan A, Helenius D, Werge T, Ingason A. Associations of psychiatric disorders with sex chromosome aneuploidies in the Danish iPSYCH2015 dataset: a case-cohort study. Lancet Psychiatry 2023; 10:129-138. [PMID: 36697121 PMCID: PMC9976199 DOI: 10.1016/s2215-0366(23)00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Increased prevalence of mental illness has been reported in clinical studies of sex chromosome aneuploidies, but accurate population-based estimates of the prevalence and clinical detection rate of sex chromosome aneuploidies and the associated risks of psychiatric disorders are needed. In this study, we provide such estimates, valid for children and young adults of the contemporary Danish population. METHODS We used the iPSYCH2015 case-cohort dataset, which is based on a source population of single-born individuals born in Denmark between May 1, 1981, and Dec 31, 2008. The case sample comprises all individuals from the source population with a diagnosis of any index psychiatric disorder (schizophrenia spectrum disorder, bipolar disorder, major depressive disorder, autism spectrum disorder, or ADHD) by the end of follow-up (Dec 31, 2015), registered in the hospital-based Danish Psychiatric Central Research Register. The cohort consists of individuals randomly selected from the source population, and overlaps with the case sample. Biobanked blood samples for individuals in the case and cohort samples underwent genotyping and quality-control filtering, after which we analysed microarray data to detect sex chromosome aneuploidy karyotypes (45,X, 47,XXX, 47,XXY, and 47,XYY). We estimated the population-valid prevalence of these karyotypes from the cohort sample. Weighted Cox proportional hazards models were used to estimate the risks of each index psychiatric disorder associated with each sex chromosome aneuploidy karyotype, by use of date of first hospitalisation with the index disorder in the respective case group and the cohort as outcome. The clinical detection rate was determined by comparing records of clinical diagnoses of genetic conditions from the Danish National Patient Register with sex chromosome aneuploidy karyotype determined by our study. FINDINGS The assessed sample comprised 119 481 individuals (78 726 in the case sample and 43 326 in the cohort) who had genotyped and quality-control-filtered blood samples, including 64 533 (54%) people of gonadal male sex and 54 948 (46%) of gonadal female sex. Age during follow-up ranged from 0 to 34·7 years (mean 10·9 years [SD 3·5 years]). Information on ethnicity was not available. We identified 387 (0·3%) individuals as carriers of sex chromosome aneuploidies. The overall prevalence of sex chromosome aneuploidies was 1·5 per 1000 individuals. Each sex chromosome aneuploidy karyotype was associated with an increased risk of at least one index psychiatric disorder, with hazard ratios (HRs) of 2·20 (95% CI 1·42-3·39) for 47,XXY; 2·73 (1·25-6·00) for 47,XXX; 3·56 (1·01-12·53) for 45,X; and 4·30 (2·48-7·55) for 47,XYY. All karyotypes were associated with an increased risk of ADHD (HRs ranging from 1·99 [1·24-3·19] to 6·15 [1·63-23·19]), autism spectrum disorder (2·72 [1·72-4·32] to 8·45 [2·49-28·61]), and schizophrenia spectrum disorder (1·80 [1·15-2·80] to 4·60 [1·57-13·51]). Increased risk of major depressive disorder was found for individuals with 47,XXY (1·88 [1·07-3·33]) and 47,XYY (2·65 [1·12-5·90]), and of bipolar disorder for those with 47,XXX (4·32 [1·12-16·62]). The proportion of sex chromosome aneuploidy carriers who had been clinically diagnosed was 93% for 45,X, but lower for 47,XXY (22%), 47,XXX (15%), and 47,XYY (15%). Among carriers, the risk of diagnosis of at least one index psychiatric disorder did not significantly differ between those who had and had not been clinically diagnosed with sex chromosome aneuploidies (p=0·65). INTERPRETATION Increased risks of psychiatric disorders associated with sex chromosome aneuploidies, combined with low rates of clinical diagnosis of sex chromosome aneuploidies, compromise the adequate provision of necessary health care and counselling to affected individuals and their families, which might be helped by increased application of genetic testing in clinical settings. FUNDING Lundbeck Foundation and National Institutes of Health.
Collapse
Affiliation(s)
- Xabier Calle Sanchez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Simone Montalbano
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Morteza Vaez
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Morten Dybdahl Krebs
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Jonas Byberg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Preben B. Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Department of Biomedicine – Human Genetics and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - David M. Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel H Geschwind
- Department of Neurology, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
- Center for Human Development, University of California, San Diego, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, CA, USA
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew J. Schork
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Neurogenomics Division, The Translational Genomics Research Institute (TGEN), Phoenix, AZ, USA
| | - Wesley K. Thompson
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Laureate Institute for Brain Research, Tulsa, OK USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Dorte Helenius
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Roskilde, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen and Aarhus, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Gerussi A, Paraboschi EM, Cappadona C, Caime C, Binatti E, Cristoferi L, Asselta R, Invernizzi P. The Role of Epigenetics in Primary Biliary Cholangitis. Int J Mol Sci 2022; 23:4873. [PMID: 35563266 PMCID: PMC9105933 DOI: 10.3390/ijms23094873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Primary Biliary Cholangitis (PBC) is a rare autoimmune disease of the liver, affecting mostly females. There is evidence that epigenetic changes have a pathogenic role in PBC. Epigenetic modifications are related to methylation of CpG DNA islands, post-translational modifications of histone proteins, and non-coding RNAs. In PBC, there are data showing a dysregulation of all these levels, especially in immune cells. In addition, epigenetics seems to be involved in complex phenomena such as X monosomy or abnormalities in the process of X chromosome inactivation, which have been reported in PBC and appear to influence its sex imbalance and pathogenesis. We review here historical data on epigenetic modifications in PBC, present new data, and discuss possible links among X-chromosome abnormalities at a genetic and epigenetic level, PBC pathogenesis, and PBC sex imbalance.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Chiara Caime
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy; (E.M.P.); (C.C.); (R.A.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, 20089 Rozzano, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.G.); (C.C.); (E.B.); (L.C.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
10
|
Fang H, Deng X, Disteche CM. X-factors in human disease: Impact of gene content and dosage regulation. Hum Mol Genet 2021; 30:R285-R295. [PMID: 34387327 DOI: 10.1093/hmg/ddab221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The gene content of the X and Y chromosomes has dramatically diverged during evolution. The ensuing dosage imbalance within the genome of males and females has led to unique chromosome-wide regulatory mechanisms with significant and sex-specific impacts on X-linked gene expression. X inactivation or silencing of most genes on one X chromosome chosen at random in females profoundly affects the manifestation of X-linked diseases, as males inherit a single maternal allele, while females express maternal and paternal alleles in a mosaic manner. An additional complication is the existence of genes that escape X inactivation and thus are ubiquitously expressed from both alleles in females. The mosaic nature of X-linked gene expression and the potential for escape can vary between individuals, tissues, cell types, and stages of life. Our understanding of the specialized nature of X-linked genes and of the multilayer epigenetic regulation that influence their expression throughout the organism has been helped by molecular studies conducted by tissue-specific and single-cell-specific approaches. In turn, the definition of molecular events that control X silencing has helped develop new approaches for the treatment of some X-linked disorders. This review focuses on the peculiarities of the X chromosome genetic content and epigenetic regulation in shaping the manifestation of congenital and acquired X-linked disorders in a sex-specific manner.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology
| | | | - Christine M Disteche
- Department of Laboratory Medicine and Pathology.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
11
|
Otter M, Crins PML, Campforts BCM, Stumpel CTRM, van Amelsvoort TAMJ, Vingerhoets C. Social functioning and emotion recognition in adults with triple X syndrome. BJPsych Open 2021; 7:e51. [PMID: 33583482 PMCID: PMC8058878 DOI: 10.1192/bjo.2021.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Triple X syndrome (TXS) is caused by aneuploidy of the X chromosome and is associated with impaired social functioning in children; however, its effect on social functioning and emotion recognition in adults is poorly understood. AIMS The aim of this study was to investigate social functioning and emotion recognition in adults with TXS. METHOD This cross-sectional cohort study was designed to compare social functioning and emotion recognition between adults with TXS (n = 34) and an age-matched control group (n = 31). Social functioning was assessed with the Adult Behavior Checklist and Social Responsiveness Scale for Adults. Emotion recognition was assessed with the Emotion Recognition Task in the Cambridge Neuropsychological Test Automated Battery. Differences were analysed by Mann-Whitney U-test. RESULTS Compared with controls, women with TXS scored higher on the Adult Behavior Checklist, including the Withdrawn scale (P < 0.001, effect size 0.4) and Thought Problems scale (P < 0.001, effect size 0.4); and higher on the Social Responsiveness Scale for Adults, indicating impaired social functioning (P < 0.001, effect size 0.5). In addition, women with TXS performed worse on the Emotion Recognition Task, particularly with respect to recognising sadness (P < 0.005, effect size 0.4), fear (P < 0.01, effect size 0.4) and disgust (P < 0.02, effect size 0.3). CONCLUSIONS Our findings indicate that adults with TXS have a higher prevalence of impaired social functioning and emotion recognition. These results highlight the relevance of sex chromosome aneuploidy as a potential model for studying disorders characterised by social impairments such as autism spectrum disorder, particularly among women.
Collapse
Affiliation(s)
- Maarten Otter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Department of Forensic Psychiatry & Mild Intellectual Disabilities, STEVIG, The Netherlands; and Department of Community Mental Health in Mild Intellectual Disabilities, Trajectum, The Netherlands
| | - Peter M L Crins
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Bea C M Campforts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Thérèse A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Heeren Loo Zorggroep, The Netherlands; and Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, The Netherlands
| |
Collapse
|
12
|
Mahadevaraju S, Fear JM, Akeju M, Galletta BJ, Pinheiro MMLS, Avelino CC, Cabral-de-Mello DC, Conlon K, Dell'Orso S, Demere Z, Mansuria K, Mendonça CA, Palacios-Gimenez OM, Ross E, Savery M, Yu K, Smith HE, Sartorelli V, Yang H, Rusan NM, Vibranovski MD, Matunis E, Oliver B. Dynamic sex chromosome expression in Drosophila male germ cells. Nat Commun 2021; 12:892. [PMID: 33563972 PMCID: PMC7873209 DOI: 10.1038/s41467-021-20897-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Given their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.
Collapse
Affiliation(s)
- Sharvani Mahadevaraju
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Justin M Fear
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miriam Akeju
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Brian J Galletta
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mara M L S Pinheiro
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Camila C Avelino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Diogo C Cabral-de-Mello
- Instituto de Biociências/IB, Departamento de Biologia Geral e Aplicada, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo, 13506-900, Brazil
| | - Katie Conlon
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Stafania Dell'Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zelalem Demere
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Kush Mansuria
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Carolina A Mendonça
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Octavio M Palacios-Gimenez
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
- Department of Evolutionary Biology and Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Eli Ross
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Max Savery
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Yu
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Harold E Smith
- Genomics Core, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haiwang Yang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria D Vibranovski
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP 05508-090, São Paulo, Brazil
| | - Erika Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Kidney and Digestive Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021; 120:28-47. [PMID: 33171144 PMCID: PMC7855816 DOI: 10.1016/j.neubiorev.2020.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Humans show reproducible sex-differences in cognition and psychopathology that may be contributed to by influences of gonadal sex-steroids and/or sex-chromosomes on regional brain development. Gonadal sex-steroids are well known to play a major role in sexual differentiation of the vertebrate brain, but far less is known regarding the role of sex-chromosomes. Our review focuses on this latter issue by bridging together two literatures that have to date been largely disconnected. We first consider "bottom-up" genetic and molecular studies focused on sex-chromosome gene content and regulation. This literature nominates specific sex-chromosome genes that could drive developmental sex-differences by virtue of their sex-biased expression and their functions within the brain. We then consider the complementary "top down" view, from magnetic resonance imaging studies that map sex- and sex chromosome effects on regional brain anatomy, and link these maps to regional gene-expression within the brain. By connecting these top-down and bottom-up approaches, we emphasize the potential role of X-linked genes in driving sex-biased brain development and outline key goals for future work in this field.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, 20892, USA.
| | - Christine M Disteche
- Department of Pathology and Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Sebastian R, Hosogane EK, Sun EG, Tran AD, Reinhold WC, Burkett S, Sturgill DM, Gudla PR, Pommier Y, Aladjem MI, Oberdoerffer P. Epigenetic Regulation of DNA Repair Pathway Choice by MacroH2A1 Splice Variants Ensures Genome Stability. Mol Cell 2020; 79:836-845.e7. [PMID: 32649884 PMCID: PMC7483679 DOI: 10.1016/j.molcel.2020.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
The inactive X chromosome (Xi) is inherently susceptible to genomic aberrations. Replication stress (RS) has been proposed as an underlying cause, but the mechanisms that protect from Xi instability remain unknown. Here, we show that macroH2A1.2, an RS-protective histone variant enriched on the Xi, is required for Xi integrity and female survival. Mechanistically, macroH2A1.2 counteracts its structurally distinct and equally Xi-enriched alternative splice variant, macroH2A1.1. Comparative proteomics identified a role for macroH2A1.1 in alternative end joining (alt-EJ), which accounts for Xi anaphase defects in the absence of macroH2A1.2. Genomic instability was rescued by simultaneous depletion of macroH2A1.1 or alt-EJ factors, and mice deficient for both macroH2A1 variants harbor no overt female defects. Notably, macroH2A1 splice variant imbalance affected alt-EJ capacity also in tumor cells. Together, these findings identify macroH2A1 splicing as a modulator of genome maintenance that ensures Xi integrity and may, more broadly, predict DNA repair outcome in malignant cells.
Collapse
Affiliation(s)
- Robin Sebastian
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Eri K Hosogane
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eric G Sun
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Andy D Tran
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sandra Burkett
- Molecular Cytogenetics Core Facility, National Cancer Institute, Frederick, MD 21702, USA
| | - David M Sturgill
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Prabhakar R Gudla
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Philipp Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Skakkebaek A, Viuff M, Nielsen MM, Gravholt CH. Epigenetics and genomics in Klinefelter syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:216-225. [PMID: 32484281 DOI: 10.1002/ajmg.c.31802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
Since the first description of Klinefelter syndrome (KS) was published in 1942 in The Journal of Clinical Endocrinology, large inter-individual variability in the phenotypic presentation has been demonstrated. However, our understanding of the global impact of the additional X chromosome on the genome remains an enigma. Evidence from the existing literature of KS indicates that not just one single genetic mechanism can explain the phenotype and the variable expressivity, but several mechanisms may be at play concurrently. In this review, we describe different genetic mechanisms and recent advances in the understanding of the genome, epigenome, and transcriptome of KS and the link to the phenotype and clinical heterogeneity. Future studies are needed to unite clinical data, genomic data, and basic research attempting to understand the genetics behind KS. Unraveling the genetics of KS will be of clinical relevance as it may enable the use of polygenic risk scores to predict future disease susceptibility and enable clinical risk stratification of KS patients in the future.
Collapse
Affiliation(s)
- Anne Skakkebaek
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Viuff
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Morten M Nielsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
16
|
Oertelt-Prigione S, Mariman E. The impact of sex differences on genomic research. Int J Biochem Cell Biol 2020; 124:105774. [PMID: 32470538 DOI: 10.1016/j.biocel.2020.105774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/23/2023]
Abstract
Sex and gender differences affect all dimensions of human health ranging from the biological basis of disease to therapeutic access, choice and response. Genomics research has long ignored the role of sex differences as potential modulators and the concept is gaining more attention only recently. In the present review we summarize the current knowledge of the impact of sex differences on genomic and epigenomic research, the potential interaction of genomics and gender and the role of these differences in disease etiopathogenesis. Sex differences can emerge from differences in the sex chromosomes themselves, from their interaction with the genome and from the influence of hormones on genomic processes. The impact of these processes on the incidence of autoimmune and oncologic disease is well documented. The growing field of systems biology, which aims at integrating information from different networks of the human body, could also greatly benefit from this approach. In the present review we summarize the current knowledge and provide recommendations for the future performance of sex-sensitive genomics research.
Collapse
Affiliation(s)
- Sabine Oertelt-Prigione
- Department of Primary and Community Care, Radboud Institute of Health Sciences, Radboudumc, Nijmegen, The Netherlands; Institute of Legal and Forensic Medicine, Charité - Universitätsmedizin, Berlin, Germany.
| | - Edwin Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
17
|
Crosetto N, Bienko M. Radial Organization in the Mammalian Nucleus. Front Genet 2020; 11:33. [PMID: 32117447 PMCID: PMC7028756 DOI: 10.3389/fgene.2020.00033] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, most of the genetic material is contained within a highly specialized organelle-the nucleus. A large body of evidence indicates that, within the nucleus, chromatinized DNA is spatially organized at multiple length scales. The higher-order organization of chromatin is crucial for proper execution of multiple genome functions, including DNA replication and transcription. Here, we review our current knowledge on the spatial organization of chromatin in the nucleus of mammalian cells, focusing in particular on how chromatin is radially arranged with respect to the nuclear lamina. We then discuss the possible mechanisms by which the radial organization of chromatin in the cell nucleus is established. Lastly, we propose a unifying model of nuclear spatial organization, and suggest novel approaches to test it.
Collapse
Affiliation(s)
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Fang H, Disteche CM, Berletch JB. X Inactivation and Escape: Epigenetic and Structural Features. Front Cell Dev Biol 2019; 7:219. [PMID: 31632970 PMCID: PMC6779695 DOI: 10.3389/fcell.2019.00219] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
X inactivation represents a complex multi-layer epigenetic mechanism that profoundly modifies chromatin composition and structure of one X chromosome in females. The heterochromatic inactive X chromosome adopts a unique 3D bipartite structure and a location close to the nuclear periphery or the nucleolus. X-linked lncRNA loci and their transcripts play important roles in the recruitment of proteins that catalyze chromatin and DNA modifications for silencing, as well as in the control of chromatin condensation and location of the inactive X chromosome. A subset of genes escapes X inactivation, raising questions about mechanisms that preserve their expression despite being embedded within heterochromatin. Escape gene expression differs between males and females, which can lead to physiological sex differences. We review recent studies that emphasize challenges in understanding the role of lncRNAs in the control of epigenetic modifications, structural features and nuclear positioning of the inactive X chromosome. Second, we highlight new findings about the distribution of genes that escape X inactivation based on single cell studies, and discuss the roles of escape genes in eliciting sex differences in health and disease.
Collapse
Affiliation(s)
- He Fang
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Joel B. Berletch
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Stavreva DA, Garcia DA, Fettweis G, Gudla PR, Zaki GF, Soni V, McGowan A, Williams G, Huynh A, Palangat M, Schiltz RL, Johnson TA, Presman DM, Ferguson ML, Pegoraro G, Upadhyaya A, Hager GL. Transcriptional Bursting and Co-bursting Regulation by Steroid Hormone Release Pattern and Transcription Factor Mobility. Mol Cell 2019; 75:1161-1177.e11. [PMID: 31421980 PMCID: PMC6754282 DOI: 10.1016/j.molcel.2019.06.042] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.
Collapse
Affiliation(s)
- Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA; Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Prabhakar R Gudla
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - George F Zaki
- High Performance Computing Group, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vikas Soni
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Andrew McGowan
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Geneva Williams
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Anh Huynh
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Murali Palangat
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Matthew L Ferguson
- Department of Physics and Graduate Program in Biomolecular Science, Boise State University, Boise, ID 83725, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA
| | - Arpita Upadhyaya
- Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, 41 Library Drive, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892-5055, USA.
| |
Collapse
|