1
|
Wang Y, Yemelyanov A, Go CD, Kim SK, Quinn JM, Flozak AS, Le PM, Liang S, Gingras AC, Ikura M, Ishiyama N, Gottardi CJ. α-Catenin force-sensitive binding and sequestration of LZTS2 leads to cytokinesis failure. J Cell Biol 2025; 224:e202308124. [PMID: 39786338 PMCID: PMC11716113 DOI: 10.1083/jcb.202308124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin. We show that LZTS2 enriches not only at midbody/intercellular bridges but also at apical adhering junctions. α-Catenin mutants with persistent M-domain opening show elevated junctional enrichment of LZTS2 compared with wild-type cells. LZTS2 knock-down leads to elevated rates of binucleation. These data implicate LZTS2 as a mechanosensitive effector of α-catenin that is critical for cytokinetic fidelity. This model rationalizes how persistent mechanoactivation of α-catenin may drive tension-induced polyploidization of epithelia after injury and suggests an underlying mechanism for how pathogenic α-catenin M-domain mutations drive macular dystrophy.
Collapse
Affiliation(s)
- Yuou Wang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alex Yemelyanov
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher D. Go
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sun K. Kim
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeanne M. Quinn
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Phuong M. Le
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shannon Liang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mitsu Ikura
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
| | - Noboru Ishiyama
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Le S, Yu M, Fu C, Heier JA, Martin S, Hardin J, Yan J. Single-molecule force spectroscopy reveals intra- and intermolecular interactions of Caenorhabditis elegans HMP-1 during mechanotransduction. Proc Natl Acad Sci U S A 2024; 121:e2400654121. [PMID: 39236238 PMCID: PMC11406289 DOI: 10.1073/pnas.2400654121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
The Caenorhabditis elegans HMP-2/HMP-1 complex, akin to the mammalian [Formula: see text]-catenin-[Formula: see text]-catenin complex, serves as a critical mechanosensor at cell-cell adherens junctions, transducing tension between HMR-1 (also known as cadherin in mammals) and the actin cytoskeleton. Essential for embryonic development and tissue integrity in C. elegans, this complex experiences tension from both internal actomyosin contractility and external mechanical microenvironmental perturbations. While offering a valuable evolutionary comparison to its mammalian counterpart, the impact of tension on the mechanical stability of HMP-1 and HMP-2/HMP-1 interactions remains unexplored. In this study, we directly quantified the mechanical stability of full-length HMP-1 and its force-bearing modulation domains (M1-M3), as well as the HMP-2/HMP-1 interface. Notably, the M1 domain in HMP-1 exhibits significantly higher mechanical stability than its mammalian analog, attributable to interdomain interactions with M2-M3. Introducing salt bridge mutations in the M3 domain weakens the mechanical stability of the M1 domain. Moreover, the intermolecular HMP-2/HMP-1 interface surpasses its mammalian counterpart in mechanical stability, enabling it to support the mechanical activation of the autoinhibited M1 domain for mechanotransduction. Additionally, the phosphomimetic mutation Y69E in HMP-2 weakens the mechanical stability of the HMP-2/HMP-1 interface, compromising the force-transmission molecular linkage and its associated mechanosensing functions. Collectively, these findings provide mechanobiological insights into the C. elegans HMP-2/HMP-1 complex, highlighting the impact of salt bridges on mechanical stability in [Formula: see text]-catenin and demonstrating the evolutionary conservation of the mechanical switch mechanism activating the HMP-1 modulation domain for protein binding at the single-molecule level.
Collapse
Affiliation(s)
- Shimin Le
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, Xiamen University, Xiamen 361000, China
| | - Miao Yu
- Department of Biochemistry and Division of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jonathon A Heier
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Sterling Martin
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jeff Hardin
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
3
|
Quinn JM, Wang Y, Wood M, Flozak AS, Le PM, Yemelyanov A, Oakes PW, Gottardi CJ. α-catenin middle- and actin-binding domain unfolding mutants differentially impact epithelial strength and sheet migration. Mol Biol Cell 2024; 35:ar65. [PMID: 38507238 PMCID: PMC11151094 DOI: 10.1091/mbc.e23-01-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
α-catenin (α-cat) displays force-dependent unfolding and binding to actin filaments through direct and indirect means, but features of adherens junction structure and function most vulnerable to loss of these allosteric mechanisms have not been directly compared. By reconstituting an α-cat F-actin-binding domain unfolding mutant known to exhibit enhanced binding to actin (α-cat-H0-FABD+) into α-cat knockout Madin Darby Canine Kidney (MDCK) cells, we show that partial loss of the α-cat catch bond mechanism (via an altered H0 α-helix) leads to stronger epithelial sheet integrity with greater colocalization between the α-cat-H0-FABD+ mutant and actin. α-cat-H0-FABD+ -expressing cells are less efficient at closing scratch-wounds, suggesting reduced capacity for more dynamic cell-cell coordination. Evidence that α-cat-H0-FABD+ is equally accessible to the conformationally sensitive α18 antibody epitope as WT α-cat and shows similar vinculin recruitment suggests this mutant engages lower tension cortical actin networks, as its M-domain is not persistently open. Conversely, α-cat-M-domain salt-bridge mutants with persistent recruitment of vinculin and phosphorylated myosin light chain show only intermediate monolayer adhesive strengths, but display less directionally coordinated and thereby slower migration speeds during wound-repair. These data show α-cat M- and FABD-unfolding mutants differentially impact cell-cell cohesion and migration properties, and suggest signals favoring α-cat-cortical actin interaction without persistent M-domain opening may improve epithelial monolayer strength through enhanced coupling to lower tension actin networks.
Collapse
Affiliation(s)
- Jeanne M. Quinn
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Yuou Wang
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Megan Wood
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Phuong M. Le
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Alex Yemelyanov
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
- Cell & Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
4
|
Guo Y, Yan J, Goult BT. Mechanotransduction through protein stretching. Curr Opin Cell Biol 2024; 87:102327. [PMID: 38301379 DOI: 10.1016/j.ceb.2024.102327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Cells sense and respond to subtle changes in their physicality, and via a myriad of different mechanosensitive processes, convert these physical cues into chemical and biochemical signals. This process, called mechanotransduction, is possible due to a highly sophisticated machinery within cells. One mechanism by which this can occur is via the stretching of mechanosensitive proteins. Stretching proteins that contain force-dependent regions results in altered geometry and dimensions of the connections, as well as differential spatial organization of signals bound to the stretched protein. The purpose of this mini-review is to discuss some of the intense recent activity in this area of mechanobiology that strives to understand how protein stretching can influence signaling outputs and cellular responses.
Collapse
Affiliation(s)
- Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK; Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
5
|
Zhang M, Xiong S, Gao D, Liu C, Xiao L. Tension regulates the cartilage phenotypic expression of endplate chondrocytes through the α-catenin/actin skeleton/Hippo pathway. J Cell Mol Med 2024; 28:e18133. [PMID: 38332509 PMCID: PMC10853574 DOI: 10.1111/jcmm.18133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
The study aimed to investigate the regulatory mechanism of intracellular tension signaling in endplate chondrocytes and its impact on extracellular matrix synthesis. Human endplate chondrocytes were subjected to tension load using Flexcell FX-5000™, and changes in phenotype, morphology, and the expression of Hippo signaling pathway and α-Catenin were assessed through various techniques. Through the overexpression of YAP and inhibition of α-Catenin, the study clarified the intracellular tension signaling pathway and its regulation of extracellular matrix synthesis in endplate cartilage. In vitro-cultured human endplate chondrocytes significantly suppressed phenotype-related genes and proteins, accompanied by distinct changes in cytoskeleton morphology. Tension activation resulted in the substantial activation of the Hippo pathway, increased phosphorylation of YAP, and reduced nuclear translocation of YAP. YAP overexpression alleviated the inhibitory effect of tension on extracellular matrix synthesis in endplate chondrocytes. Tension also upregulated the expression of α-Catenin in endplate chondrocytes, which was attenuated by inhibiting α-Catenin expression, thereby reducing the impact of tension on cytoskeletal morphology and YAP nuclear translocation. Taken together, the α-Catenin/actin skeleton/Hippo-coupled network is a crucial signaling pathway for tension signaling in endplate chondrocytes, providing potential therapeutic targets for the treatment of endplate cartilage degeneration.
Collapse
Affiliation(s)
- Min Zhang
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Shouliang Xiong
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Daokuan Gao
- Department of Spine SurgeryYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Chen Liu
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Liang Xiao
- Department of Spine SurgeryYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| |
Collapse
|
6
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
7
|
Wang Y, Yemelyanov A, Go CD, Kim S, Quinn JM, Flozak AS, Le PM, Liang S, Claude-Gingras A, Ikura M, Ishiyama N, Gottardi CJ. α-catenin mechanosensitivity as a route to cytokinesis failure through sequestration of LZTS2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554884. [PMID: 37662204 PMCID: PMC10473746 DOI: 10.1101/2023.08.25.554884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using α-catenin (α-cat) knock-out Madin Darby Canine Kidney (MDCK) cells reconstituted with wild-type and mutant forms of α-cat as a model system, we find that an established α-cat actin-binding domain unfolding mutant designed to reduce force-sensitive binding to F-actin (α-cat-H0-FABD+) can promote cytokinesis failure, particularly along epithelial wound-fronts. Enhanced α-cat coupling to cortical actin is neither sufficient nor mitotic cell-autonomous for cytokinesis failure, but critically requires the mechanosensitive Middle-domain (M1-M2-M3) and neighboring cells. Disease relevant α-cat M-domain missense mutations known to cause a form of retinal pattern dystrophy (α-cat E307K or L436P) are associated with elevated binucleation rates via cytokinesis failure. Similar binucleation rates are seen in cells expressing an α-cat salt-bridge destabilizing mutant (R551A) designed to promote M2-M3 domain unfurling at lower force thresholds. Since binucleation is strongly enhanced by removal of the M1 as opposed to M2-M3 domains, cytokinetic fidelity is most sensitive to α-cat M2-M3 domain opening. To identify α-cat conformation-dependent proximity partners that contribute to cytokinesis, we used a biotin-ligase approach to distinguished proximity partners that show enhanced recruitment upon α-cat M-domain unfurling (R551A). We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), an abscission factor previously implicated in cytokinesis. We confirm that LZTS2 enriches at the midbody, but discover it also localizes to tight and tricellular junctions. LZTS2 knock-down promotes binucleation in both MDCK and Retinal Pigmented Epithelial (RPE) cells. α-cat mutants with persistent M2-M3 domain opening showed elevated junctional enrichment of LZTS2 from the cytosol compared α-cat wild-type cells. These data implicate LZTS2 as a mechanosensitive effector of α-cat that is critical for cytokinetic fidelity. This model rationalizes how persistent mechano-activation of α-cat may drive tension-induced polyploidization of epithelia post-injury and suggests an underlying mechanism for how pathogenic α-cat mutations drive macular dystrophy.
Collapse
Affiliation(s)
- Yuou Wang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alex Yemelyanov
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Christopher D. Go
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Sun Kim
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
| | - Jeanne M. Quinn
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Phuong M. Le
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Shannon Liang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Anne Claude-Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Mitsu Ikura
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Noboru Ishiyama
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
8
|
Deng Y, Yan J. Force-Dependent Structural Changes of Filamin C Rod Domains Regulated by Filamin C Dimer. J Am Chem Soc 2023; 145:14670-14678. [PMID: 37369984 PMCID: PMC10348313 DOI: 10.1021/jacs.3c02303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 06/29/2023]
Abstract
Filamin C (FLNC), a large dimeric actin-binding protein in muscle cells, plays a critical role in transmitting force in the cytoskeleton and that between membrane receptors and the cytoskeleton. It performs crucial mechanosensing and downstream mechanotransduction functions via force-dependent interactions with signaling proteins. Mutations in FLNC have been linked to muscle and heart diseases. The mechanical responses of the force-bearing elements in FLNC have not been determined. This study investigated the mechanical responses of FLNC domains and their dimerization interface using magnetic tweezers. Results showed high stability of the N-terminal domains in the rod-1 segment but significant changes in the rod-2 domains in response to forces of a few piconewtons (pN). The dimerization interface, formed by the R24 domain, has a lifetime of seconds to tens of seconds at pN forces, and it dissociates within 1 s at forces greater than 14 pN. The findings suggest the FLNC dimerization interface provides sufficient mechanical stability that enables force-dependent structural changes in rod-2 domains for signaling protein binding and maintains structural integrity of the rod-1 domains.
Collapse
Affiliation(s)
- Yunxin Deng
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
9
|
Serre JM, Slabodnick MM, Goldstein B, Hardin J. SRGP-1/srGAP and AFD-1/afadin stabilize HMP-1/⍺-catenin at rosettes to seal internalization sites following gastrulation in C. elegans. PLoS Genet 2023; 19:e1010507. [PMID: 36867663 PMCID: PMC10016700 DOI: 10.1371/journal.pgen.1010507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/15/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
A hallmark of gastrulation is the establishment of germ layers by internalization of cells initially on the exterior. In C. elegans the end of gastrulation is marked by the closure of the ventral cleft, a structure formed as cells internalize during gastrulation, and the subsequent rearrangement of adjacent neuroblasts that remain on the surface. We found that a nonsense allele of srgp-1/srGAP leads to 10-15% cleft closure failure. Deletion of the SRGP-1/srGAP C-terminal domain led to a comparable rate of cleft closure failure, whereas deletion of the N-terminal F-BAR region resulted in milder defects. Loss of the SRGP-1/srGAP C-terminus or F-BAR domain results in defects in rosette formation and defective clustering of HMP-1/⍺-catenin in surface cells during cleft closure. A mutant form of HMP-1/⍺-catenin with an open M domain can suppress cleft closure defects in srgp-1 mutant backgrounds, suggesting that this mutation acts as a gain-of-function allele. Since SRGP-1 binding to HMP-1/⍺-catenin is not favored in this case, we sought another HMP-1 interactor that might be recruited when HMP-1/⍺-catenin is constitutively open. A good candidate is AFD-1/afadin, which genetically interacts with cadherin-based adhesion later during embryonic elongation. AFD-1/afadin is prominently expressed at the vertex of neuroblast rosettes in wildtype, and depletion of AFD-1/afadin increases cleft closure defects in srgp-1/srGAP and hmp-1R551/554A/⍺-catenin backgrounds. We propose that SRGP-1/srGAP promotes nascent junction formation in rosettes; as junctions mature and sustain higher levels of tension, the M domain of HMP-1/⍺-catenin opens, allowing maturing junctions to transition from recruitment of SRGP-1/srGAP to AFD-1/afadin. Our work identifies new roles for ⍺-catenin interactors during a process crucial to metazoan development.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
| | - Mark M. Slabodnick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Knox University, Galesburg, Illinois, United States of America
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Hardin
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin-Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Liu J, Le S, Yao M, Huang W, Tio Z, Zhou Y, Yan J. Tension Gauge Tethers as Tension Threshold and Duration Sensors. ACS Sens 2023; 8:704-711. [PMID: 36731861 PMCID: PMC9973368 DOI: 10.1021/acssensors.2c02218] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Mechanotransduction, the process by which cells respond to tension transmitted through various supramolecular linkages, is important for understanding cellular behavior. Tension gauge tethers (TGTs), short fragments of double-stranded DNA that irreversibly break under shear-stretch conditions, have been used in live cell experiments to study mechanotransduction. However, our current understanding of TGTs' mechanical responses is limited, which limits the information that can be gleaned from experimental observations. In this study, we quantified the tension-dependent lifetime of TGTs to better understand their mechanical stability under various physiologically relevant stretching conditions. This work has broad applications for using TGTs as tension threshold and duration sensors and also suggests the need to revisit previous interpretations of experimental observations.
Collapse
Affiliation(s)
- Jingzhun Liu
- Mechanobiology
Institute, National University of Singapore, 117411Singapore
| | - Shimin Le
- Department
of Physics, Xiamen University, Xiamen361005, People’s Repbulic of China
| | - Mingxi Yao
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen518055, People’s Repbulic of China
| | - Wenmao Huang
- Department
of Physics, National University of Singapore, 117546Singapore
| | - Zhikai Tio
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 117585Singapore
| | - Yu Zhou
- Mechanobiology
Institute, National University of Singapore, 117411Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, 117411Singapore
- Department
of Physics, National University of Singapore, 117546Singapore
| |
Collapse
|
11
|
Beedle AEM, Garcia-Manyes S. The role of single protein elasticity in mechanobiology. NATURE REVIEWS. MATERIALS 2023; 8:10-24. [PMID: 37469679 PMCID: PMC7614781 DOI: 10.1038/s41578-022-00488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 07/21/2023]
Abstract
In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. Yet the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are comparatively not so well understood. With the advent, development and refining of single molecule nanomechanical techniques, enabling to exquisitely probe the conformational dynamics of individual proteins under the effect of a calibrated force, we have begun to acquire a comprehensive knowledge on the rich plethora of physicochemical principles that regulate the elasticity of single proteins. Here we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of such a prolific and burgeoning field.
Collapse
Affiliation(s)
- Amy EM Beedle
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
| |
Collapse
|
12
|
Serre JM, Lucas B, Martin SCT, Heier JA, Shao X, Hardin J. C. elegans srGAP is an α-catenin M domain-binding protein that strengthens cadherin-dependent adhesion during morphogenesis. Development 2022; 149:dev200775. [PMID: 36125129 PMCID: PMC10655919 DOI: 10.1242/dev.200775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bethany Lucas
- Department of Biology, Regis University, 3333 Regis Blvd., Denver, CO 80221, USA
| | - Sterling C. T. Martin
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jonathon A. Heier
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiangqiang Shao
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Wang Y, Yao M, Baker KB, Gough RE, Le S, Goult BT, Yan J. Force-Dependent Interactions between Talin and Full-Length Vinculin. J Am Chem Soc 2021; 143:14726-14737. [PMID: 34463480 DOI: 10.1021/jacs.1c06223] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Talin and vinculin are part of a multicomponent system involved in mechanosensing in cell-matrix adhesions. Both exist in autoinhibited forms, and activation of vinculin requires binding to mechanically activated talin, yet how forces affect talin's interaction with vinculin has not been investigated. Here by quantifying the kinetics of force-dependent talin-vinculin interactions using single-molecule analysis, we show that mechanical exposure of a single vinculin binding site (VBS) in talin is sufficient to relieve the autoinhibition of vinculin, resulting in high-affinity binding. We provide evidence that the vinculin undergoes dynamic fluctuations between an autoinhibited closed conformation and an open conformation that is stabilized upon binding to the VBS. Furthermore, we discover an additional level of regulation in which the mechanically exposed VBS binds vinculin significantly more tightly than the isolated VBS alone. Molecular dynamics simulations reveal the basis of this new regulatory mechanism, identifying a sensitive force-dependent change in the conformation of an exposed VBS that modulates binding. Together, these results provide a comprehensive understanding of how the interplay between force and autoinhibition provides exquisite complexity within this major mechanosensing axis.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Physics, National University of Singapore, Singapore 117546, Singapore
| | - Mingxi Yao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Karen B Baker
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | | | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117546, Singapore
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore 117546, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
15
|
Heier JA, Pokutta S, Dale IW, Kim SK, Hinck AP, Weis WI, Kwiatkowski AV. Distinct intramolecular interactions regulate autoinhibition of vinculin binding in αT-catenin and αE-catenin. J Biol Chem 2021; 296:100582. [PMID: 33771561 PMCID: PMC8091058 DOI: 10.1016/j.jbc.2021.100582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
α-Catenin binds directly to β-catenin and connects the cadherin–catenin complex to the actin cytoskeleton. Tension regulates α-catenin conformation. Actomyosin-generated force stretches the middle (M)-region to relieve autoinhibition and reveal a binding site for the actin-binding protein vinculin. It is not known whether the intramolecular interactions that regulate epithelial (αE)-catenin binding are conserved across the α-catenin family. Here, we describe the biochemical properties of testes (αT)-catenin, an α-catenin isoform critical for cardiac function and how intramolecular interactions regulate vinculin-binding autoinhibition. Isothermal titration calorimetry showed that αT-catenin binds the β-catenin–N-cadherin complex with a similar low nanomolar affinity to that of αE-catenin. Limited proteolysis revealed that the αT-catenin M-region adopts a more open conformation than αE-catenin. The αT-catenin M-region binds the vinculin N-terminus with low nanomolar affinity, indicating that the isolated αT-catenin M-region is not autoinhibited and thereby distinct from αE-catenin. However, the αT-catenin head (N- and M-regions) binds vinculin 1000-fold more weakly (low micromolar affinity), indicating that the N-terminus regulates the M-region binding to vinculin. In cells, αT-catenin recruitment of vinculin to cell–cell contacts requires the actin-binding domain and actomyosin-generated tension, indicating that force regulates vinculin binding. Together, our results show that the αT-catenin N-terminus is required to maintain M-region autoinhibition and modulate vinculin binding. We postulate that the unique molecular properties of αT-catenin allow it to function as a scaffold for building specific adhesion complexes.
Collapse
Affiliation(s)
- Jonathon A Heier
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sabine Pokutta
- Department of Structural Biology, Stanford University, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Ian W Dale
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sun Kyung Kim
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - William I Weis
- Department of Structural Biology, Stanford University, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Adam V Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
16
|
Biswas R, Banerjee A, Lembo S, Zhao Z, Lakshmanan V, Lim R, Le S, Nakasaki M, Kutyavin V, Wright G, Palakodeti D, Ross RS, Jamora C, Vasioukhin V, Jie Y, Raghavan S. Mechanical instability of adherens junctions overrides intrinsic quiescence of hair follicle stem cells. Dev Cell 2021; 56:761-780.e7. [PMID: 33725480 DOI: 10.1016/j.devcel.2021.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/24/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Vinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin. Mechanistically, we demonstrate that vinculin functions by keeping α-catenin in a stretched/open conformation, which in turn regulates the retention of YAP1, another potent mechanotransducer and regulator of cell proliferation, at the AJs. Altogether, our data provide mechanistic insights into the hitherto-unexplored regulatory link between the mechanical stability of cell junctions and contact-inhibition-mediated maintenance of BuSC quiescence.
Collapse
Affiliation(s)
- Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Avinanda Banerjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Sergio Lembo
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | - Zhihai Zhao
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Vairavan Lakshmanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Ryan Lim
- Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | | | | | - Graham Wright
- A∗STAR Microscopy Platform, Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | - Robert S Ross
- University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin Jamora
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India
| | | | - Yan Jie
- Department of Physics, National University of Singapore, Singapore 117542, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore 560065, India; Skin Research Institute of Singapore (A∗STAR), Singapore 138648, Singapore.
| |
Collapse
|
17
|
Fungal Wound Healing through Instantaneous Protoplasmic Gelation. Curr Biol 2021; 31:271-282.e5. [DOI: 10.1016/j.cub.2020.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
|
18
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
19
|
Angulo-Urarte A, van der Wal T, Huveneers S. Cell-cell junctions as sensors and transducers of mechanical forces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183316. [PMID: 32360073 DOI: 10.1016/j.bbamem.2020.183316] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Epithelial and endothelial monolayers are multicellular sheets that form barriers between the 'outside' and 'inside' of tissues. Cell-cell junctions, made by adherens junctions, tight junctions and desmosomes, hold together these monolayers. They form intercellular contacts by binding their receptor counterparts on neighboring cells and anchoring these structures intracellularly to the cytoskeleton. During tissue development, maintenance and pathogenesis, monolayers encounter a range of mechanical forces from the cells themselves and from external systemic forces, such as blood pressure or tissue stiffness. The molecular landscape of cell-cell junctions is diverse, containing transmembrane proteins that form intercellular bonds and a variety of cytoplasmic proteins that remodel the junctional connection to the cytoskeleton. Many junction-associated proteins participate in mechanotransduction cascades to confer mechanical cues into cellular responses that allow monolayers to maintain their structural integrity. We will discuss force-dependent junctional molecular events and their role in cell-cell contact organization and remodeling.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Location AMC, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
20
|
Petersen AP, Cho N, Lyra-Leite DM, Santoso JW, Gupta D, Ariyasinghe NR, McCain ML. Regulation of calcium dynamics and propagation velocity by tissue microstructure in engineered strands of cardiac tissue. Integr Biol (Camb) 2020; 12:34-46. [PMID: 32118279 PMCID: PMC11956900 DOI: 10.1093/intbio/zyaa003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/13/2023]
Abstract
Disruptions to cardiac tissue microstructure are common in diseased or injured myocardium and are known substrates for arrhythmias. However, we have a relatively coarse understanding of the relationships between myocardial tissue microstructure, propagation velocity and calcium cycling, due largely to the limitations of conventional experimental tools. To address this, we used microcontact printing to engineer strands of cardiac tissue with eight different widths, quantified several structural and functional parameters and established correlation coefficients. As strand width increased, actin alignment, nuclei density, sarcomere index and cell aspect ratio decreased with unique trends. The propagation velocity of calcium waves decreased and the rise time of calcium transients increased with increasing strand width. The decay time constant of calcium transients decreased and then slightly increased with increasing strand width. Based on correlation coefficients, actin alignment was the strongest predictor of propagation velocity and calcium transient rise time. Sarcomere index and cell aspect ratio were also strongly correlated with propagation velocity. Actin alignment, sarcomere index and cell aspect ratio were all weak predictors of the calcium transient decay time constant. We also measured the expression of several genes relevant to propagation and calcium cycling and found higher expression of the genes that encode for connexin 43 (Cx43) and a subunit of L-type calcium channels in thin strands compared to isotropic tissues. Together, these results suggest that thinner strands have higher values of propagation velocity and calcium transient rise time due to a combination of favorable tissue microstructure and enhanced expression of genes for Cx43 and L-type calcium channels. These data are important for defining how microstructural features regulate intercellular and intracellular calcium handling, which is needed to understand mechanisms of propagation in physiological situations and arrhythmogenesis in pathological situations.
Collapse
Affiliation(s)
- Andrew P. Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Davi M. Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Jeffrey W. Santoso
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Divya Gupta
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Nethika R. Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA
| |
Collapse
|
21
|
Merkel CD, Li Y, Raza Q, Stolz DB, Kwiatkowski AV. Vinculin anchors contractile actin to the cardiomyocyte adherens junction. Mol Biol Cell 2019; 30:2639-2650. [PMID: 31483697 PMCID: PMC6761764 DOI: 10.1091/mbc.e19-04-0216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adherens junction (AJ) couples the actin cytoskeletons of neighboring cells to allow mechanical integration and tissue organization. The physiological demands of intercellular adhesion require that the AJ be responsive to dynamic changes in force while maintaining mechanical load. These demands are tested in the heart, where cardiomyocyte AJs must withstand repeated cycles of actomyosin-mediated contractile force. Here we show that force-responsive cardiomyocyte AJs recruit actin-binding ligands to selectively couple actin networks. We employed a panel of N-cadherin-αE-catenin fusion proteins to rebuild AJs with specific actin linkages in N-cadherin-null cardiomyocytes. In this system, vinculin recruitment was required to rescue myofibril integration at nascent contacts. In contrast, loss of vinculin from the AJ disrupted junction morphology and blocked myofibril integration at cell–cell contacts. Our results identify vinculin as a critical link to contractile actomyosin and offer insight to how actin integration at the AJ is regulated to provide stability under mechanical load.
Collapse
Affiliation(s)
- Chelsea D Merkel
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yang Li
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Qanber Raza
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Donna B Stolz
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Adam V Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|