1
|
Marwaha S, Agarwal R, Tripathi M, Tripathi S. Unlocking the Vitamin Puzzle: Investigating Levels in People With Alzheimer's Disease Versus Healthy Controls Through Systematic Review and Network Meta-Analysis. J Hum Nutr Diet 2025; 38:e70007. [PMID: 39763154 DOI: 10.1111/jhn.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The progression of Alzheimer's disease (AD) is intricately tied to the impairment of neurons, crucial for neurological functions. Despite extensive research, the precise mechanism underlying AD development remains elusive due to its multifaceted aetiology. Vitamin deficiency has emerged as a notable contributor to AD onset and progression, exerting a significant influence on brain function. To explore this link, we conducted a thorough review using PubMed, Web of Science and MEDLINE databases to gather literature on average vitamin concentrations in people with AD and healthy controls. Applying frequentist network meta-analysis techniques, we calculated standardised mean differences (SMDs) in vitamin concentrations between AD and control groups, both directly and indirectly. Our analysis, based on 67 articles, revealed statistically significant findings for various vitamins. Notably, vitamin C displayed the most substantial difference in average concentration between AD and control groups, supported by a high p-score of 0.92. Other vitamins that showed significant differences included vitamin D, folate, vitamin E, vitamin A and vitamin B12. Moreover, by considering alternative reference groups of vitamins, we derived indirect estimates, which further emphasised the role of vitamins in AD pathology. The ranking of vitamins based on their discrepancy in concentration between AD and control groups underscored the importance of vitamin C, followed by vitamin D, vitamin E, folate, vitamin A and vitamin B12. In conclusion, our comprehensive analysis highlights the potential significance of vitamin levels in understanding AD pathology. This underscores avenues for further research and potential therapeutic interventions targeting vitamin deficiencies in people with AD, potentially offering new strategies for managing the disease. Trial Registration: CRD42023447203.
Collapse
Affiliation(s)
- Sagar Marwaha
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rachna Agarwal
- Department of Neurochemistry, Institute of Human Behavior and Allied Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Tripathi
- Department of Biostatistics and Medical Informatics, University College of Medical Sciences, Delhi, India
| |
Collapse
|
2
|
Twitto-Greenberg R, Liraz-Zaltsman S, Michaelson DM, Liraz O, Lubitz I, Atrakchi-Baranes D, Shemesh C, Ashery U, Cooper I, Harari A, Harats D, Schnaider-Beeri M, Shaish A. 9-cis beta-carotene-enriched diet significantly improved cognition and decreased Alzheimer's disease neuropathology and neuroinflammation in Alzheimer's disease-like mouse models. Neurobiol Aging 2024; 133:16-27. [PMID: 38381472 DOI: 10.1016/j.neurobiolaging.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 02/22/2024]
Abstract
A significant progressive decline in beta-carotene (βC) levels in the brain is associated with cognitive impairment and a higher prevalence of Alzheimer's disease (AD). In this study, we investigated whether the administration of 9-cis beta-carotene (9CBC)-rich powder of the alga Dunaliella bardawil, the best-known source of βC in nature, inhibits the development of AD-like neuropathology and cognitive deficits. We demonstrated that in 3 AD mouse models, Tg2576, 5xFAD, and apoE4, 9CBC treatment improved long- and short-term memory, decreased neuroinflammation, and reduced the prevalence of β-amyloid plaques and tau hyperphosphorylation. These findings suggest that 9CBC has the potential to be an effective preventive and symptomatic AD therapy.
Collapse
Affiliation(s)
- Rachel Twitto-Greenberg
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel; Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel; Institutes for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kyrat-Ono, Israel
| | - Daniel M Michaelson
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ori Liraz
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Irit Lubitz
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | | | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Uri Ashery
- The Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel; Institutes for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kyrat-Ono, Israel
| | - Ayelet Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Dror Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Aviv Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Ramat-Gan, Israel; Department of Life Sciences, Achva Academic College, Be'er-Tuvia Regional Council, Israel.
| |
Collapse
|
3
|
Pappolla MA, Martins RN, Poeggeler B, Omar RA, Perry G. Oxidative Stress in Alzheimer's Disease: The Shortcomings of Antioxidant Therapies. J Alzheimers Dis 2024; 101:S155-S178. [PMID: 39422961 DOI: 10.3233/jad-240659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual and progressive cognitive decline leading to dementia. At its core, the neuropathological features of AD include hallmark accumulations of amyloid-β and hyperphosphorylated tau proteins. Other harmful processes, such as oxidative stress and inflammation, contribute to the disease's neuropathological progression. This review evaluates the role of oxidative stress in AD, placing a spotlight on the disappointing outcomes of various antioxidant clinical trials. Several hypotheses are discussed that might elucidate the failures of these therapies in AD. Specifically: 1) The paradoxical and overlooked harmful implications of prooxidant intermediates, particularly stemming from conventional antioxidants like vitamins E and C; 2) The challenges and failure to appreciate the issue of bioavailability-epitomized by the dictum "no on-site protection, no protection"-and the preeminent, yet often ignored, role played by endogenous antioxidant enzymes in combating oxidative stress; 3) The influence of unrecognized etiologies, such as latent infectious agents and others, as foundational drivers of oxidative stress in AD; 4) The underestimation of the complexity of oxidative mechanisms and the necessity of multi-targeted therapeutic approaches, such as those provided by various diets; and 5) The limitations of clinical trial designs in fully capturing the effects of antioxidants on AD progression. This article also examines the outcomes of select clinical trials while highlighting the challenges and barriers these therapies pose, offering insights into potential mechanisms to overcome their marginal success.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ralph N Martins
- Aging and Alzheimer's Disease Centre, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University, Gottingen, Germany
| | - Rawhi A Omar
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Est CB, Murphy RM. An in vitro model for vitamin A transport across the human blood-brain barrier. eLife 2023; 12:RP87863. [PMID: 37934575 PMCID: PMC10629827 DOI: 10.7554/elife.87863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Vitamin A, supplied by the diet, is critical for brain health, but little is known about its delivery across the blood-brain barrier (BBB). Brain microvascular endothelial-like cells (BMECs) differentiated from human-derived induced pluripotent stem cells (iPSCs) form a tight barrier that recapitulates many of the properties of the human BBB. We paired iPSC-derived BMECs with recombinant vitamin A serum transport proteins, retinol-binding protein (RBP), and transthyretin (TTR), to create an in vitro model for the study of vitamin A (retinol) delivery across the human BBB. iPSC-derived BMECs display a strong barrier phenotype, express key vitamin A metabolism markers, and can be used for quantitative modeling of retinol accumulation and permeation. Manipulation of retinol, RBP, and TTR concentrations, and the use of mutant RBP and TTR, yielded novel insights into the patterns of retinol accumulation in, and permeation across, the BBB. The results described herein provide a platform for deeper exploration of the regulatory mechanisms of retinol trafficking to the human brain.
Collapse
Affiliation(s)
- Chandler B Est
- Department of Chemical and Biological Engineering, University of WisconsinMadisonUnited States
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of WisconsinMadisonUnited States
| |
Collapse
|
5
|
Almaguer J, Hindle A, Lawrence JJ. The Contribution of Hippocampal All-Trans Retinoic Acid (ATRA) Deficiency to Alzheimer's Disease: A Narrative Overview of ATRA-Dependent Gene Expression in Post-Mortem Hippocampal Tissue. Antioxidants (Basel) 2023; 12:1921. [PMID: 38001775 PMCID: PMC10669734 DOI: 10.3390/antiox12111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogenesis and progression of Alzheimer's disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR), including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity. However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear. Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly, transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and addressed as part of VA supplementation.
Collapse
Affiliation(s)
- Joey Almaguer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ashly Hindle
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, and Center of Excellence for Integrated Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Est CB, Murphy RM. An in vitro model for vitamin A transport across the human blood-brain barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536348. [PMID: 37090623 PMCID: PMC10120720 DOI: 10.1101/2023.04.11.536348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Vitamin A, supplied by the diet, is critical for brain health, but little is known about its delivery across the blood-brain barrier (BBB). Brain microvascular endothelial-like cells (BMECs) differentiated from human-derived induced pluripotent stem cells (iPSC) form a tight barrier that recapitulates many of the properties of the human BBB. We paired iPSC-derived BMECs with recombinant vitamin A serum transport proteins, retinol binding protein (RBP) and transthyretin (TTR), to create an in vitro model for the study of vitamin A (retinol) delivery across the human BBB. iPSC-derived BMECs display a strong barrier phenotype, express key vitamin A metabolism markers and can be used for quantitative modeling of retinol accumulation and permeation. Manipulation of retinol, RBP and TTR concentrations, and the use of mutant RBP and TTR, yielded novel insights into the patterns of retinol accumulation in, and permeation across, the BBB. The results described herein provide a platform for deeper exploration of the regulatory mechanisms of retinol trafficking to the human brain.
Collapse
Affiliation(s)
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison 1415 Engineering Dr., Madison, WI 53706
| |
Collapse
|
7
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
8
|
Dorey CK, Gierhart D, Fitch KA, Crandell I, Craft NE. Low Xanthophylls, Retinol, Lycopene, and Tocopherols in Grey and White Matter of Brains with Alzheimer's Disease. J Alzheimers Dis 2023; 94:1-17. [PMID: 35988225 PMCID: PMC10357197 DOI: 10.3233/jad-220460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxidative stress contributes to pathogenesis and progression of Alzheimer's disease (AD). Higher levels of the dietary antioxidants- carotenoids and tocopherols- are associated with better cognitive functions and lower risk for AD, and lower levels of multiple carotenoids are found in serum and plasma of patients with AD. Although brains donated by individuals with mild cognitive impairment had significantly lower levels of lutein and beta-carotene, previous investigators found no significant difference in carotenoid levels of brains with AD and cognitively normal brains. OBJECTIVE This study tested the hypothesis that micronutrients are significantly lower in donor brains with AD than in healthy elderly brains. METHODS Samples of donor brains with confirmed AD or verified health were dissected into grey and white matter, extracted with organic solvents and analyzed by HPLC. RESULTS AD brains had significantly lower levels of lutein, zeaxanthin, anhydrolutein, retinol, lycopene, and alpha-tocopherol, and significantly increased levels of XMiAD, an unidentified xanthophyll metabolite. No meso-zeaxanthin was detected. The overlapping protective roles of xanthophylls, carotenes, α- and γ-tocopherol are discussed. CONCLUSION Brains with AD had substantially lower concentrations of some, but not all, xanthophylls, carotenes, and tocopherols, and several-fold higher concentrations of an unidentified xanthophyll metabolite increased in AD (XMiAD).
Collapse
Affiliation(s)
| | | | - Karlotta A. Fitch
- Alzheimer’s Disease Research Center, Massachusetts General Hospital Boston, MA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Tech, Roanoke, VA, USA
| | | |
Collapse
|
9
|
Zhang Q, Li Q, Zhao H, Shu M, Luo M, Li Y, Ding Y, Shi S, Cheng X, Niu Q. Neurodegenerative disease and antioxidant biomarkers: A bidirectional Mendelian randomization study. Front Neurol 2023; 14:1158366. [PMID: 37034095 PMCID: PMC10076659 DOI: 10.3389/fneur.2023.1158366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Previous observational studies have suggested that antioxidant imbalance is correlated with neurodegenerative diseases, while its cause-effect remains unclear. Thus, the goal of the present study is to explore the causal relationship between 11 antioxidant biomarkers and 3 most common neurodegenerative diseases [Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Parkinson's disease (PD)]. Methods A bidirectional Mendelian randomization (MR) study was performed to investigate the causal effects by using 3 main methods (Variance Weighted (IVW), Weighted Median (WM), and MR-Egger regression) in the European population. The data of 11 antioxidant biomarkers were obtained from the open database by the most up-to-date Genome-Wide Association Studies (GWAS), the summary statistics of PD and ALS were obtained from the International Parkinson's Disease Genomics Consortium (IPDGC) (33,674 cases, and 449,056 controls), and the International Amyotrophic Lateral Sclerosis Genomics Consortium (IALSC) (20,806 cases and 59,804 controls), respectively. For AD, we specifically used two recently published GWAS data, one from the International Genomics of Alzheimer's Project (IGAP) (21,982 cases and 41,944 controls), and the other from a large meta-analysis (71,880 cases and 383,378 controls) as validation data. Results Based on the Bonferroni correction p < 0.0015, there was no significant causal evidence for the antioxidant biomarkers on neurodegenerative diseases, however, the reverse analysis found that AD was significantly related to the decrease in retinol (IVW: beta = -0.023, p = 0.0007; WM: beta = -0.025, p = 0.0121), while the same analysis was carried out between the AD validation database and retinol, the results were consistent (IVW: beta = -0.064, p = 0.025). Moreover, AD on Glutathione S-transferase (GST), PD on Glutathione Peroxidase (GPX) as well as PD on uric acid (UA) also indicated potential causal-and-effect associations (IVW: p = 0.025; p = 0.027; p = 0.021, respectively). Conclusions There was no sufficient evidence that antioxidant imbalance has a significant causal effect on neurodegenerative diseases. However, this study revealed that genetically predicted AD was significantly related to the decrease in retinol, which provides a new insight into previous research and indicates the possibility to regard retinol as potential biomarker for the diagnosis and progress of AD.
Collapse
|
10
|
Calderaro A, Patanè GT, Tellone E, Barreca D, Ficarra S, Misiti F, Laganà G. The Neuroprotective Potentiality of Flavonoids on Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms232314835. [PMID: 36499159 PMCID: PMC9736131 DOI: 10.3390/ijms232314835] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD), due to its spread, has become a global health priority, and is characterized by senile dementia and progressive disability. The main cause of AD and other neurodegenerations (Huntington, Parkinson, Amyotrophic Lateral Sclerosis) are aggregated protein accumulation and oxidative damage. Recent research on secondary metabolites of plants such as polyphenols demonstrated that they may slow the progression of AD. The flavonoids' mechanism of action in AD involved the inhibition of acetylcholinesterase, butyrylcholinesterase, Tau protein aggregation, β-secretase, oxidative stress, inflammation, and apoptosis through modulation of signaling pathways which are implicated in cognitive and neuroprotective functions, such as ERK, PI3-kinase/Akt, NFKB, MAPKs, and endogenous antioxidant enzymatic systems. This review focuses on flavonoids and their role in AD, in terms of therapeutic potentiality for human health, antioxidant potential, and specific AD molecular targets.
Collapse
Affiliation(s)
- Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (E.T.); (D.B.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 3043 Cassino, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
11
|
Metibemu DS, Ogungbe IV. Carotenoids in Drug Discovery and Medicine: Pathways and Molecular Targets Implicated in Human Diseases. Molecules 2022; 27:6005. [PMID: 36144741 PMCID: PMC9503763 DOI: 10.3390/molecules27186005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Carotenoids are isoprenoid-derived natural products produced in plants, algae, fungi, and photosynthetic bacteria. Most animals cannot synthesize carotenoids because the biosynthetic machinery to create carotenoids de novo is absent in animals, except arthropods. Carotenoids are biosynthesized from two C20 geranylgeranyl pyrophosphate (GGPP) molecules made from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) via the methylerythritol 4-phosphate (MEP) route. Carotenoids can be extracted by a variety of methods, including maceration, Soxhlet extraction, supercritical fluid extraction (SFE), microwave-assisted extraction (MAE), accelerated solvent extraction (ASE), ultrasound-assisted extraction (UAE), pulsed electric field (PEF)-assisted extraction, and enzyme-assisted extraction (EAE). Carotenoids have been reported to exert various biochemical actions, including the inhibition of the Akt/mTOR, Bcl-2, SAPK/JNK, JAK/STAT, MAPK, Nrf2/Keap1, and NF-κB signaling pathways and the ability to increase cholesterol efflux to HDL. Carotenoids are absorbed in the intestine. A handful of carotenoids and carotenoid-based compounds are in clinical trials, while some are currently used as medicines. The application of metabolic engineering techniques for carotenoid production, whole-genome sequencing, and the use of plants as cell factories to produce specialty carotenoids presents a promising future for carotenoid research. In this review, we discussed the biosynthesis and extraction of carotenoids, the roles of carotenoids in human health, the metabolism of carotenoids, and carotenoids as a source of drugs and supplements.
Collapse
Affiliation(s)
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217-0095, USA
| |
Collapse
|
12
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
13
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
14
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Takahashi A, Takahashi R, Hiromori K, Shibasaki‐Kitakawa N. Quantitative Evaluation of Oxidative Stability of Biomembrane Lipids in the Presence of Vitamin E. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Atsushi Takahashi
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | - Ryota Takahashi
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | - Kousuke Hiromori
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | | |
Collapse
|
16
|
Endres K. Retinoic Acid and the Gut Microbiota in Alzheimer's Disease: Fighting Back-to-Back? Curr Alzheimer Res 2020; 16:405-417. [PMID: 30907321 DOI: 10.2174/1567205016666190321163705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is growing evidence that the gut microbiota may play an important role in neurodegenerative diseases such as Alzheimer's disease. However, how these commensals influence disease risk and progression still has to be deciphered. OBJECTIVE The objective of this review was to summarize current knowledge on the interplay between gut microbiota and retinoic acid. The latter one represents one of the important micronutrients, which have been correlated to Alzheimer's disease and are used in initial therapeutic intervention studies. METHODS A selective overview of the literature is given with the focus on the function of retinoic acid in the healthy and diseased brain, its metabolism in the gut, and the potential influence that the bioactive ligand may have on microbiota, gut physiology and, Alzheimer's disease. RESULTS Retinoic acid can influence neuronal functionality by means of plasticity but also by neurogenesis and modulating proteostasis. Impaired retinoid-signaling, therefore, might contribute to the development of diseases in the brain. Despite its rather direct impact, retinoic acid also influences other organ systems such as gut by regulating the residing immune cells but also factors such as permeability or commensal microbiota. These in turn can also interfere with retinoid-metabolism and via the gutbrain- axis furthermore with Alzheimer's disease pathology within the brain. CONCLUSION Potentially, it is yet too early to conclude from the few reports on changed microbiota in Alzheimer's disease to a dysfunctional role in retinoid-signaling. However, there are several routes how microbial commensals might affect and might be affected by vitamin A and its derivatives.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
17
|
Baranowski BJ, Marko DM, Fenech RK, Yang AJT, MacPherson REK. Healthy brain, healthy life: a review of diet and exercise interventions to promote brain health and reduce Alzheimer's disease risk. Appl Physiol Nutr Metab 2020; 45:1055-1065. [PMID: 32717151 DOI: 10.1139/apnm-2019-0910] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the world's population aging at a rapid rate, the prevalence of Alzheimer's disease (AD) has significantly increased. These statistics are alarming given recent evidence that a third of dementia cases may be preventable. The role of lifestyle factors, such as diet and exercise, can directly alter the risk of disease development. However, an understanding of the effectiveness of dietary patterns and exercise strategies to reduce AD risk or improve brain function is not fully understood. The aim of this review is to discuss the effects of diet and exercise on AD risk. Key components of the Western and Mediterranean diets are discussed in relation to AD progression, as well as how physical activity promotes brain health. Components of the Western diet (saturated fatty acids and simple carbohydrates) are detrimental to the brain, impair cognition, and increase AD pathologies. While components of the Mediterranean diet (polyunsaturated fatty acids, polyphenols, and antioxidants) are considered to be neuroprotective. Exercise can significantly reduce the risk of AD; however, specific exercise recommendations for older adults are limited and optimal intensity, duration, and type remains unknown. This review highlights important modifiable risk factors for AD and points out potential avenues for future research. Novelty Diet and exercise are modifiable factors that can improve brain health and reduce the risk of AD. Polyunsaturated fatty acids, polyphenols, and antioxidants are neuroprotective. Exercise reduces neuroinflammation, improves brain insulin sensitivity, and increases brain derived neurotrophic factor.
Collapse
Affiliation(s)
- Bradley J Baranowski
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rachel K Fenech
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alex J T Yang
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
18
|
Huang X, Guo Y, Li P, Ma X, Dong S, Hu H, Li Y, Yuan L. Association of Circulating Retinol and α-TOH Levels with Cognitive Function in Aging Subject with Type 2 Diabetes Mellitus. J Nutr Health Aging 2020; 24:290-299. [PMID: 32115610 DOI: 10.1007/s12603-020-1328-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Malnutrition of vitamin A (retinol) and vitamin E (α-tocopherol, α-TOH) was observed in type 2 diabetes mellitus (T2DM) or dementia patients. However, how these vitamins affect cognitive function of subjects with T2DM was seldom reported. The objective of this study was to determine the association of circulating retinol and α-TOH with cognition in aging subjects with T2DM. METHODS A total of 448 T2DM subjects and 448 age, gender and education matched control subjects (aged 55-75 years) were included in the study. Demographic characters of the participants were collected. Food frequency questionnaire (FFQ) method was used to collect dietary intake information. To assess the status of cognition, the MoCA test was used. Circulating retinol and α-TOH levels were compared between T2DM and non-T2DM subjects. Correlation of circulating retinol and α-TOH levels with cognitive function was analyzed in T2DM subjects. The effect of serum retinol and α-TOH levels on the risk of MCI in T2DM patients was explored. RESULTS We found that T2DM-MCI subjects demonstrate lower serum retinol level than T2DM-nonMCI subjects (P < 0.01). Serum retinol level was positively correlated to cognitive function in T2DM subject (P < 0.05). T2DM subjects with higher circulating retinol level demonstrate higher cognitive scores in visual and executive, attention, language, memory and delayed recall domains (P < 0.05). CONCLUSION Diminished circulating retinol predicts an increased risk of MCI in T2DM patients. Our findings provide suggestions that optimal retinol nutritional status might benefit cognition and decrease the risk of MCI in aging subjects with T2DM.
Collapse
Affiliation(s)
- X Huang
- Linhong Yuan, School of Public Health, Capital Medical University, Beijing 100069, P.R. China, E-mail: , Tel: +86-010-83911652; Fax: +86-010-83911512
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ashley S, Bradburn S, Murgatroyd C. A meta-analysis of peripheral tocopherol levels in age-related cognitive decline and Alzheimer’s disease. Nutr Neurosci 2019; 24:795-809. [DOI: 10.1080/1028415x.2019.1681066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephanie Ashley
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Steven Bradburn
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Chris Murgatroyd
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
20
|
Mullan K, Cardwell CR, McGuinness B, Woodside JV, McKay GJ. Plasma Antioxidant Status in Patients with Alzheimer's Disease and Cognitively Intact Elderly: A Meta-Analysis of Case-Control Studies. J Alzheimers Dis 2019; 62:305-317. [PMID: 29439339 DOI: 10.3233/jad-170758] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Serum antioxidants may afford neuroprotection against Alzheimer's disease (AD) via correction of the pro-oxidative imbalance but findings reported have been inconsistent. We compared the pooled mean difference in serum levels of ten dietary antioxidants between patients with AD and cognitively intact controls from 52 studies in meta-analyses using random-effects models. Patients with AD had significantly lower plasma levels of α-carotene, β-carotene, lycopene, lutein, vitamin A, C, and E, and uric acid. No significant difference was observed for plasma levels of β-cryptoxanthin and zeaxanthin. Considerable heterogeneity was detected across studies. The lower serum levels of dietary antioxidants from the carotene and vitamin subclasses observed in individuals with AD suggest reduced systemic availability of these subclasses in this prevalent form of dementia. To our knowledge, these are the first meta-analyses to demonstrate lower serum lycopene and to evaluate β-cryptoxanthin, lutein, and zeaxanthin levels in AD. In light of the significant heterogeneity detected across studies, caution should be exercised in the interpretation of the data and therapeutic intervention approaches considered through supplementation measures. Our data may better inform interventions to improve antioxidant status in a condition of major public health importance.
Collapse
Affiliation(s)
- Kathryn Mullan
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Chris R Cardwell
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | | | - Jayne V Woodside
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Gareth J McKay
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
21
|
Wang W, Li J, Zhang H, Wang X, Zhang X. Effects of vitamin E supplementation on the risk and progression of AD: a systematic review and meta-analysis. Nutr Neurosci 2019; 24:13-22. [PMID: 30900960 DOI: 10.1080/1028415x.2019.1585506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: The association between vitamin E supplementation and Alzheimer's disease (AD) was controversial because of conflicting data in the literature. This study was designed to systematically evaluate evidence about the efficacy of vitamin E supplementation not only on the risk but also on the progression of AD. Design: Five electronic databases were searched for studies published up to June 2017. Articles reporting vitamin E supplementation and AD were included, and the random-effect model was performed for the meta-analysis about the relationship between vitamin E supplementation and AD. Results: Five cohort studies and three randomized controlled trial (RCT) studies (total n = 14,262) involving 1313 cases about vitamin E effects on the risk of AD and 244 cases about effects on progression of AD. The pooled RR for vitamin E supplemental and risk of AD was 0.81 [95% CI: 0.50-1.33, I 2 = 69.2%]. Suitable data could not be extracted to do meta-analysis as there was no unified standard of outcome measure for studies on AD progression. We carefully analyzed and evaluated the authenticity and accuracy of every single trial, while reliable evidence could not be obtained. Conclusions: From what we do, neither the synthetic data on risk of AD nor the critical review on progression of AD could provide enough evidence on our research. Thus, we cannot draw a specific conclusion on the association or correlation between Vitamin E and AD.
Collapse
Affiliation(s)
- Wanyu Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiao Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Huizhen Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaokai Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
22
|
The Effectiveness of Vitamin E Treatment in Alzheimer's Disease. Int J Mol Sci 2019; 20:ijms20040879. [PMID: 30781638 PMCID: PMC6412423 DOI: 10.3390/ijms20040879] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Vitamin E was proposed as treatment for Alzheimer’s disease many years ago. However, the effectiveness of the drug is not clear. Vitamin E is an antioxidant and neuroprotector and it has anti-inflammatory and hypocholesterolemic properties, driving to its importance for brain health. Moreover, the levels of vitamin E in Alzheimer’s disease patients are lower than in non-demented controls. Thus, vitamin E could be a good candidate to have beneficial effects against Alzheimer’s. However, evidence is consistent with a limited effectiveness of vitamin E in slowing progression of dementia; the information is mixed and inconclusive. The question is why does vitamin E fail to treat Alzheimer’s disease? In this paper we review the studies with and without positive results in Alzheimer’s disease and we discuss the reasons why vitamin E as treatment sometimes has positive results on cognition but at others, it does not.
Collapse
|
23
|
Huang X, Zhang H, Zhen J, Dong S, Guo Y, Van Halm-Lutterodt N, Yuan L. Diminished circulating retinol and elevated α-TOH/retinol ratio predict an increased risk of cognitive decline in aging Chinese adults, especially in subjects with ApoE2 or ApoE4 genotype. Aging (Albany NY) 2018; 10:4066-4083. [PMID: 30573705 PMCID: PMC6326676 DOI: 10.18632/aging.101694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The current study evaluated the relationship between circulating fat soluble vitamin status and cognition in aging Chinese population. METHODS A cross-sectional study was carried out in 1754 community residents aged 55-80 years aiming to evaluate the relationship between circulating α-tocopherol and retinol status and cognition. The effect of ApoE genetic polymorphism on the relationship between vitamins and cognition was also explored. RESULTS Our results indicated that serum retinol status positively correlated with cognitive performance; while, serum α-tocopherol (α-TOH)/retinol ratio negatively correlated with cognitive performance. Mild cognitive impairment (MCI) subject demonstrated higher serum α-TOH status (P < 0.05), α-TOH/retinol ratio (P < 0.01) and lower retinol status (P < 0.01) than normal subjects. Subjects with ApoE4 genotype have lower serum retinol level (P < 0.05) and higher α-TOH/retinol ratio (P < 0.01) than subjects with ApoE3 genotype. MCI-ApoE4 carriers demonstrated the worst cognitive performance (P < 0.05) and exhibited higher serum TC, α-TOH and α-TOH/retinol ratio levels (P < 0.05), and lower LDL-C, retinol and lipid-adjusted retinol status (P < 0.05). MCI-ApoE2 subjects showed higher serum TC, HDL-C content and α-TOH/retinol ratio (P < 0.05); and lower serum retinol and lipid-adjusted retinol status (P < 0.05). CONCLUSION Lower circulating retinol and higher α-TOH/retinol ratio potentially predicts an increased risk for the development of cognitive decline in aging Chinese adults. ApoE2 or E4 carriers with higher circulating α-TOH/retinol ratio infer poor cognitive performance and an increased risk of developing MCI.
Collapse
Affiliation(s)
- Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Huiqiang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Jie Zhen
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Shengqi Dong
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Yujie Guo
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Nicholas Van Halm-Lutterodt
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
- Department of Orthopaedics and Neurosurgery, University of Southern California, Keck Medical Center, Los Angeles, CA 90033, USA
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
24
|
Ayromlou H, Pourvahed P, Jahanjoo F, Dolatkhah H, Shakouri SK, Dolatkhah N. Dietary and Serum Level of Antioxidants in the Elderly with Mild Impaired and Normal Cognitive Function: A Case-Control Study. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.64847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
25
|
Chang KH, Cheng ML, Chiang MC, Chen CM. Lipophilic antioxidants in neurodegenerative diseases. Clin Chim Acta 2018; 485:79-87. [DOI: 10.1016/j.cca.2018.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
|
26
|
Moutinho M, Codocedo JF, Puntambekar SS, Landreth GE. Nuclear Receptors as Therapeutic Targets for Neurodegenerative Diseases: Lost in Translation. Annu Rev Pharmacol Toxicol 2018; 59:237-261. [PMID: 30208281 DOI: 10.1146/annurev-pharmtox-010818-021807] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a progressive loss of neurons that leads to a broad range of disabilities, including severe cognitive decline and motor impairment, for which there are no effective therapies. Several lines of evidence support a putative therapeutic role of nuclear receptors (NRs) in these types of disorders. NRs are ligand-activated transcription factors that regulate the expression of a wide range of genes linked to metabolism and inflammation. Although the activation of NRs in animal models of neurodegenerative disease exhibits promising results, the translation of this strategy to clinical practice has been unsuccessful. In this review we discuss the role of NRs in neurodegenerative diseases in light of preclinical and clinical studies, as well as new findings derived from the analysis of transcriptomic databases from humans and animal models. We discuss the failure in the translation of NR-based therapeutic approaches and consider alternative and novel research avenues in the development of effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel Moutinho
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Juan F Codocedo
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Shweta S Puntambekar
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| | - Gary E Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA;
| |
Collapse
|
27
|
Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4120458. [PMID: 29849893 PMCID: PMC5926482 DOI: 10.1155/2018/4120458] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Carotenoids, symmetrical tetraterpenes with a linear C40 hydrocarbon backbone, are natural pigment molecules produced by plants, algae, and fungi. Carotenoids have important functions in the organisms (including animals) that obtain them from food. Due to their characteristic structure, carotenoids have bioactive properties, such as antioxidant, anti-inflammatory, and autophagy-modulatory activities. Given the protective function of carotenoids, their levels in the human body have been significantly associated with the treatment and prevention of various diseases, including neurodegenerative diseases. In this paper, we review the latest studies on the effects of carotenoids on neurodegenerative diseases in humans. Furthermore, animal and cellular model studies on the beneficial effects of carotenoids on neurodegeneration are also reviewed. Finally, we discuss the possible mechanisms and limitations of carotenoids in the treatment and prevention of neurological diseases.
Collapse
|
28
|
Dong Y, Chen X, Liu Y, Shu Y, Chen T, Xu L, Li M, Guan X. Do low-serum vitamin E levels increase the risk of Alzheimer disease in older people? Evidence from a meta-analysis of case-control studies. Int J Geriatr Psychiatry 2018; 33:e257-e263. [PMID: 28833475 DOI: 10.1002/gps.4780] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Whether low-serum vitamin E increases the risk of Alzheimer disease (AD) in older people remains inconclusive. This meta-analysis aims to synthesize evidence-based case-control studies to evaluate the association between serum vitamin E and the risk of AD. METHODS Potentially relevant studies were selected through PubMed, Embase, Wanfang, Chongqing VIP, and China National Knowledge Infrastructure databases by using the core terms Vitamin E/alpha-tocopherol and Alzheime's disease/senile dementia/AD in the titles, abstracts, and keywords of the articles. The association between serum vitamin E levels and AD was estimated by using the weighted mean difference (WMD) and 95% confidence interval by adopting a random effects model. Heterogeneity was assessed by using Cochran Q test and I2 statistic. Forest plot was used to present the results graphically from meta-analysis. Publication bias was evaluated by using funnel plots and Egger test. RESULTS We identified 17 studies that met the eligibility criteria. The studies included 2057 subjects with 904 AD patients and 1153 controls. The results indicated that AD patients had a lower concentration of serum vitamin E compared with healthy controls among older people (WMD = -6.811 μmol/L, 95% confidence interval -8.998 to -4.625; Z = -6.105, P < .001). Publication bias was not detected and sensitivity analysis performed by omitting each study, and calculating the pooled WMD again for the remaining studies indicated the results stable. CONCLUSIONS Alzheimer disease is associated with a low concentration of serum vitamin E in older people. However, necessary prospective cohort studies should be conducted to determine the risk of serum vitamin E for AD in the future.
Collapse
Affiliation(s)
- Yonghai Dong
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Xiaodan Chen
- Jiangxi Provincial Cancer Hospital, Nanchang, China
| | - Yun Liu
- Cadre Wards of Neurology Medicine, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Yan Shu
- The First Hospital of Nanchang, Jiangxi Province, Nanchang, China
| | - Ting Chen
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Lei Xu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Meng Li
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, China
| | - Xihong Guan
- Remote Diagnosis Center, Jiangxi Provincial People's Hospital, Nanchang, China
| |
Collapse
|
29
|
Karlíková R, Mičová K, Najdekr L, Gardlo A, Adam T, Majerová P, Friedecký D, Kováč A. Metabolic status of CSF distinguishes rats with tauopathy from controls. ALZHEIMERS RESEARCH & THERAPY 2017; 9:78. [PMID: 28934963 PMCID: PMC5609022 DOI: 10.1186/s13195-017-0303-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Background Tauopathies represent heterogeneous groups of neurodegenerative diseases that are characterised by abnormal deposition of the microtubule-associated protein tau. Alzheimer’s disease is the most prevalent tauopathy, affecting more than 35 million people worldwide. In this study we investigated changes in metabolic pathways associated with tau-induced neurodegeneration. Methods Cerebrospinal fluid (CSF), plasma and brain tissue were collected from a transgenic rat model for tauopathies and from age-matched control animals. The samples were analysed by targeted and untargeted metabolomic methods using high-performance liquid chromatography coupled to mass spectrometry. Unsupervised and supervised statistical analysis revealed biochemical changes associated with the tauopathy process. Results Energy deprivation and potentially neural apoptosis were reflected in increased purine nucleotide catabolism and decreased levels of citric acid cycle intermediates and glucose. However, in CSF, increased levels of citrate and aconitate that can be attributed to glial activation were observed. Other significant changes were found in arginine and phosphatidylcholine metabolism. Conclusions Despite an enormous effort invested in development of biomarkers for tauopathies during the last 20 years, there is no clinically used biomarker or assay on the market. One of the most promising strategies is to create a panel of markers (e.g., small molecules, proteins) that will be continuously monitored and correlated with patients’ clinical outcome. In this study, we identified several metabolic changes that are affected during the tauopathy process and may be considered as potential markers of tauopathies in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0303-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radana Karlíková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic.,Department of Clinical Biochemistry, University Hospital Olomouc, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Kateřina Mičová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic.,Department of Clinical Biochemistry, University Hospital Olomouc, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Lukáš Najdekr
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic.,Department of Clinical Biochemistry, University Hospital Olomouc, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Alžběta Gardlo
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic.,Department of Clinical Biochemistry, University Hospital Olomouc, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Tomáš Adam
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic.,Department of Clinical Biochemistry, University Hospital Olomouc, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.,Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Petra Majerová
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovak Republic.,AXON Neuroscience R&D, Dvořákovo nábrežie 10, 811 02, Bratislava, Slovak Republic
| | - David Friedecký
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 779 00, Olomouc, Czech Republic.,Department of Clinical Biochemistry, University Hospital Olomouc, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.,Laboratory for Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovak Republic. .,AXON Neuroscience R&D, Dvořákovo nábrežie 10, 811 02, Bratislava, Slovak Republic.
| |
Collapse
|
30
|
Cervantes B, Ulatowski LM. Vitamin E and Alzheimer's Disease-Is It Time for Personalized Medicine? Antioxidants (Basel) 2017; 6:antiox6030045. [PMID: 28672782 PMCID: PMC5618073 DOI: 10.3390/antiox6030045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
For the last two decades, it has been hotly debated whether vitamin E-the major lipid-soluble antioxidant, which functions to maintain neurological integrity-is efficacious as a therapy for Alzheimer's disease. Several factors key to the debate, include (1) which of the eight naturally-occurring vitamin E forms should be used; (2) how combination treatments affect vitamin E efficacy; and (3) safety concerns that most-recently resurfaced after the results of the Selenium and vitamin E Cancer prevention trial SELECT prostate cancer trial. However, with the advent of new genetic technologies and identifications of vitamin E-modulating single nucleotide polymorphisms (SNPs), we propose that clinical trials addressing the question "Is vitamin E an effective treatment for Alzheimer's disease" should consider a more focused and personalized medicine approach to designing experiments. An individual's naturally-occurring SNP variants may indeed influence vitamin E's therapeutic effect on Alzheimer's disease.
Collapse
|
31
|
Farina N, Llewellyn D, Isaac MGEKN, Tabet N. Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane Database Syst Rev 2017; 4:CD002854. [PMID: 28418065 PMCID: PMC6478142 DOI: 10.1002/14651858.cd002854.pub5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vitamin E occurs naturally in the diet. It has several biological activities, including functioning as an antioxidant to scavenge toxic free radicals. Evidence that free radicals may contribute to the pathological processes behind cognitive impairment has led to interest in the use of vitamin E supplements to treat mild cognitive impairment (MCI) and Alzheimer's disease (AD). This is an update of a Cochrane Review first published in 2000, and previously updated in 2006 and 2012. OBJECTIVES To assess the efficacy of vitamin E in the treatment of MCI and dementia due to AD. SEARCH METHODS We searched the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources on 22 April 2016 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA We included all double-blind, randomised trials in which treatment with any dose of vitamin E was compared with placebo in people with AD or MCI. DATA COLLECTION AND ANALYSIS We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the quality of the evidence using the GRADE approach. Where appropriate we attempted to contact authors to obtain missing information. MAIN RESULTS Four trials met the inclusion criteria, but we could only extract outcome data in accordance with our protocol from two trials, one in an AD population (n = 304) and one in an MCI population (n = 516). Both trials had an overall low to unclear risk of bias. It was not possible to pool data across studies owing to a lack of comparable outcome measures.In people with AD, we found no evidence of any clinically important effect of vitamin E on cognition, measured with change from baseline in the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) over six to 48 months (mean difference (MD) -1.81, 95% confidence interval (CI) -3.75 to 0.13, P = 0.07, 1 study, n = 272; moderate quality evidence). There was no evidence of a difference between vitamin E and placebo groups in the risk of experiencing at least one serious adverse event over six to 48 months (risk ratio (RR) 0.86, 95% CI 0.71 to 1.05, P = 0.13, 1 study, n = 304; moderate quality evidence), or in the risk of death (RR 0.84, 95% CI 0.52 to 1.34, P = 0.46, 1 study, n = 304; moderate quality evidence). People with AD receiving vitamin E showed less functional decline on the Alzheimer's Disease Cooperative Study/Activities of Daily Living Inventory than people receiving placebo at six to 48 months (mean difference (MD) 3.15, 95% CI 0.07 to 6.23, P = 0.04, 1 study, n = 280; moderate quality evidence). There was no evidence of any clinically important effect on neuropsychiatric symptoms measured with the Neuropsychiatric Inventory (MD -1.47, 95% CI -4.26 to 1.32, P = 0.30, 1 study, n = 280; moderate quality evidence).We found no evidence that vitamin E affected the probability of progression from MCI to probable dementia due to AD over 36 months (RR 1.03, 95% CI 0.79 to 1.35, P = 0.81, 1 study, n = 516; moderate quality evidence). Five deaths occurred in each of the vitamin E and placebo groups over the 36 months (RR 1.01, 95% CI 0.30 to 3.44, P = 0.99, 1 study, n = 516; moderate quality evidence). We were unable to extract data in accordance with the review protocol for other outcomes. However, the study authors found no evidence that vitamin E differed from placebo in its effect on cognitive function, global severity or activities of daily living . There was also no evidence of a difference between groups in the more commonly reported adverse events. AUTHORS' CONCLUSIONS We found no evidence that the alpha-tocopherol form of vitamin E given to people with MCI prevents progression to dementia, or that it improves cognitive function in people with MCI or dementia due to AD. However, there is moderate quality evidence from a single study that it may slow functional decline in AD. Vitamin E was not associated with an increased risk of serious adverse events or mortality in the trials in this review. These conclusions have changed since the previous update, however they are still based on small numbers of trials and participants and further research is quite likely to affect the results.
Collapse
Affiliation(s)
- Nicolas Farina
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | - David Llewellyn
- University of ExeterMedical SchoolExeterUK+44 (0) 1392 726018
| | | | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | | |
Collapse
|
32
|
Abstract
BACKGROUND Vitamin E occurs naturally in the diet. It has several biological activities, including functioning as an antioxidant to scavenge toxic free radicals. Evidence that free radicals may contribute to the pathological processes behind cognitive impairment has led to interest in the use of vitamin E supplements to treat mild cognitive impairment (MCI) and Alzheimer's disease (AD). This is an update of a Cochrane Review first published in 2000, and previously updated in 2006 and 2012. OBJECTIVES To assess the efficacy of vitamin E in the treatment of MCI and dementia due to AD. SEARCH METHODS We searched the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources on 22 April 2016 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA We included all double-blind, randomised trials in which treatment with any dose of vitamin E was compared with placebo in people with AD or MCI. DATA COLLECTION AND ANALYSIS We used standard methodological procedures according to the Cochrane Handbook for Systematic Reviews of Interventions. We rated the quality of the evidence using the GRADE approach. Where appropriate we attempted to contact authors to obtain missing information. MAIN RESULTS Four trials met the inclusion criteria, but we could only extract outcome data in accordance with our protocol from two trials, one in an AD population (n = 304) and one in an MCI population (n = 516). Both trials had an overall low to unclear risk of bias. It was not possible to pool data across studies owing to a lack of comparable outcome measures.In people with AD, we found no evidence of any clinically important effect of vitamin E on cognition, measured with change from baseline in the Alzheimer's Disease Assessment Scale - Cognitive subscale (ADAS-Cog) over six to 48 months (mean difference (MD) -1.81, 95% confidence interval (CI) -3.75 to 0.13, P = 0.07, 1 study, n = 272; moderate quality evidence). There was no evidence of a difference between vitamin E and placebo groups in the risk of experiencing at least one serious adverse event over six to 48 months (risk ratio (RR) 0.86, 95% CI 0.71 to 1.05, P = 0.13, 1 study, n = 304; moderate quality evidence), or in the risk of death (RR 0.84, 95% CI 0.52 to 1.34, P = 0.46, 1 study, n = 304; moderate quality evidence). People with AD receiving vitamin E showed less functional decline on the Alzheimer's Disease Cooperative Study/Activities of Daily Living Inventory than people receiving placebo at six to 48 months (mean difference (MD) 3.15, 95% CI 0.07 to 6.23, P = 0.04, 1 study, n = 280; moderate quality evidence). There was no evidence of any clinically important effect on neuropsychiatric symptoms measured with the Neuropsychiatric Inventory (MD -1.47, 95% CI -4.26 to 1.32, P = 0.30, 1 study, n = 280; moderate quality evidence).We found no evidence that vitamin E affected the probability of progression from MCI to probable dementia due to AD over 36 months (RR 1.03, 95% CI 0.79 to 1.35, P = 0.81, 1 study, n = 516; moderate quality evidence). Five deaths occurred in each of the vitamin E and placebo groups over the 36 months (RR 1.01, 95% CI 0.30 to 3.44, P = 0.99, 1 study, n = 516; moderate quality evidence). We were unable to extract data in accordance with the review protocol for other outcomes. However, the study authors found no evidence that vitamin E differed from placebo in its effect on cognitive function, global severity or activities of daily living . There was also no evidence of a difference between groups in the more commonly reported adverse events. AUTHORS' CONCLUSIONS We found no evidence that the alpha-tocopherol form of vitamin E given to people with MCI prevents progression to dementia, or that it improves cognitive function in people with MCI or dementia due to AD. However, there is moderate quality evidence from a single study that it may slow functional decline in AD. Vitamin E was not associated with an increased risk of serious adverse events or mortality in the trials in this review. These conclusions have changed since the previous update, however they are still based on small numbers of trials and participants and further research is quite likely to affect the results.
Collapse
Affiliation(s)
- Nicolas Farina
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| | - David Llewellyn
- University of ExeterMedical SchoolExeterUK+44 (0) 1392 726018
| | | | - Naji Tabet
- Brighton and Sussex Medical SchoolCentre for Dementia StudiesBrightonUKBN1 9QH
| |
Collapse
|
33
|
Zeng J, Li T, Gong M, Jiang W, Yang T, Chen J, Liu Y, Chen L. Marginal Vitamin A Deficiency Exacerbates Memory Deficits Following Aβ1-42 Injection in Rats. Curr Alzheimer Res 2017; 14:562-570. [PMID: 28017127 PMCID: PMC5421133 DOI: 10.2174/1567205013666161223162110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although clinical vitamin A deficiency (VAD), which is a public health problem developing throughout the world, has been well controlled, marginal vitamin A deficiency (MVAD) is far more prevalent, especially among pregnant women and preschool children in China. Increasing evidence suggests that VAD is involved in the pathogenesis of Alzheimer's disease (AD). However, whether MVAD, beginning early in life, increases the risk of developing AD has yet to be determined. OBJECTIVE The goal of this study was to investigate the long-term effects of MVAD on the pathogenesis of AD in rats. METHOD An MVAD model was generated from maternal MVAD rats and maintained with an MVAD diet after weaning. The males were bilaterally injected with aggregated amyloid β (Aβ)1-42 into the CA3 area of the hippocampus, and the AD-associated cognitive and neuropathological phenotypes were examined. RESULTS We found that MVAD feeding significantly aggravated Aβ1-42-induced learning and memory deficits in the Morris water maze test. MVAD did not induce the mRNA expression of retinoic acid receptors (RARs), a disintegrin and metalloprotease 10 (ADAM10) or insulin-degrading enzyme (IDE) in Aβ1-42-injected rats. Moreover, RARα and RARγ mRNA were positively correlated with ADAM10 mRNA, whereas RARβ mRNA was positively correlated with IDE mRNA. CONCLUSION Our study suggests that MVAD beginning from the embryonic period perturbs the ADassociated genes, resulting in an enhanced risk of developing AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Chen
- Address correspondence to this author at the No.136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014 P.R. China; Tel: 86-23-61966251; Fax: 86-23-61966253; E-mail:
| |
Collapse
|
34
|
Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ. Biomarkers for the Early Detection and Progression of Alzheimer's Disease. Neurotherapeutics 2017; 14:35-53. [PMID: 27738903 PMCID: PMC5233625 DOI: 10.1007/s13311-016-0481-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The recent failures of potential disease-modifying drugs for Alzheimer's disease (AD) may reflect the fact that the enrolled participants in clinical trials are already too advanced to derive a clinical benefit. Thus, well-validated biomarkers for the early detection and accurate diagnosis of the preclinical stages of AD will be crucial for therapeutic advancement. The combinatorial use of biomarkers derived from biological fluids, such as cerebrospinal fluid (CSF), with advanced molecular imaging and neuropsychological testing may eventually achieve the diagnostic sensitivity and specificity necessary to identify people in the earliest stages of the disease when drug modification is most likely possible. In this regard, positive amyloid or tau tracer retention on positron emission tomography imaging, low CSF concentrations of the amyloid-β 1-42 peptide, high CSF concentrations in total tau and phospho-tau, mesial temporal lobe atrophy on magnetic resonance imaging, and temporoparietal/precuneus hypometabolism or hypoperfusion on 18F-fluorodeoxyglucose positron emission tomography have all emerged as biomarkers for the progression to AD. However, the ultimate AD biomarker panel will likely involve the inclusion of novel CSF and blood biomarkers more precisely associated with confirmed pathophysiologic mechanisms to improve its reliability for detecting preclinical AD. This review highlights advancements in biological fluid and imaging biomarkers that are moving the field towards achieving the goal of a preclinical detection of AD.
Collapse
Affiliation(s)
- Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Natosha Mercado
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Irving E Vega
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA.
| |
Collapse
|
35
|
Höhn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, Kehm R, König J, Grune T, Castro JP. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol 2016; 11:482-501. [PMID: 28086196 PMCID: PMC5228102 DOI: 10.1016/j.redox.2016.12.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
Aging is a complex phenomenon and its impact is becoming more relevant due to the rising life expectancy and because aging itself is the basis for the development of age-related diseases such as cancer, neurodegenerative diseases and type 2 diabetes. Recent years of scientific research have brought up different theories that attempt to explain the aging process. So far, there is no single theory that fully explains all facets of aging. The damage accumulation theory is one of the most accepted theories due to the large body of evidence found over the years. Damage accumulation is thought to be driven, among others, by oxidative stress. This condition results in an excess attack of oxidants on biomolecules, which lead to damage accumulation over time and contribute to the functional involution of cells, tissues and organisms. If oxidative stress persists, cellular senescence is a likely outcome and an important hallmark of aging. Therefore, it becomes crucial to understand how senescent cells function and how they contribute to the aging process. This review will cover cellular senescence features related to the protein pool such as morphological and molecular hallmarks, how oxidative stress promotes protein modifications, how senescent cells cope with them by proteostasis mechanisms, including antioxidant enzymes and proteolytic systems. We will also highlight the nutritional status of senescent cells and aged organisms (including human clinical studies) by exploring trace elements and micronutrients and on their importance to develop strategies that might increase both, life and health span and postpone aging onset.
Collapse
Affiliation(s)
- Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany
| | - Martin Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Bastian Kochlik
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
36
|
Lei SF, Yang DH, Wang MW. A historic study that opened a new chapter in nutritional science. Acta Pharmacol Sin 2016; 37:1641-1644. [PMID: 27867188 DOI: 10.1038/aps.2016.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
|
37
|
Guest J, Grant R. Carotenoids and Neurobiological Health. ADVANCES IN NEUROBIOLOGY 2016; 12:199-228. [DOI: 10.1007/978-3-319-28383-8_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Wang R, Chen S, Liu Y, Diao S, Xue Y, You X, Park EA, Liao FF. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J Biol Chem 2015; 290:22532-42. [PMID: 26240147 DOI: 10.1074/jbc.m115.662908] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 11/06/2022] Open
Abstract
Insulin resistance and neuroinflammation have emerged as two likely key contributors in the pathogenesis of Alzheimer disease (AD), especially in those sporadic AD cases compromised by diabetes or cardiovascular disease. Amyloid-β (Aβ) deposition and its associated inflammatory response are hallmarks in sporadic AD brains. Elevated expression and activity of β-secretase 1 (BACE1), the rate-limiting enzyme responsible for the β-cleavage of amyloid precursor proteins to Aβ peptides, are also observed in sporadic AD brains. Previous studies have suggested that there is therapeutic potential for retinoic acid in treating neurodegeneration based on decreased Aβ. Here we discovered that BACE1 expression is elevated in the brains of both Tg2576 transgenic mice and mice on high fat diets. These conditions are associated with a neuroinflammatory response. We found that administration of all-trans-retinoic acid (atRA) down-regulated the expression of BACE1 in the brains of Tg2576 mice and in mice fed a high fat diet. Moreover, in LPS-treated mice and cultured neurons, BACE1 expression was repressed by the addition of atRA, correlating with the anti-inflammatory efficacy of atRA. Mutations of the NFκB binding site in BACE1 promoter abolished the suppressive effect of atRA. Furthermore, atRA disrupted LPS-induced nuclear translocation of NFκB and its binding to BACE1 promoter as well as promoting the recruitment of the corepressor NCoR. Our findings indicate that atRA represses BACE1 gene expression under inflammatory conditions via the modulation of NFκB signaling.
Collapse
Affiliation(s)
- Ruishan Wang
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163,
| | - Shaoya Chen
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Yingchun Liu
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shiyong Diao
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Yueqiang Xue
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Xiaoqing You
- the Division of Cell Biology and Genetics, Fujian Medical University, Fuzhou 350004, China
| | - Edwards A Park
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, the Department of Veterans Affairs Medical Center, Memphis, Tennessee 38163, and
| | - Francesca-Fang Liao
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163,
| |
Collapse
|
39
|
Jayasena T, Poljak A, Braidy N, Smythe G, Raftery M, Hill M, Brodaty H, Trollor J, Kochan N, Sachdev P. Upregulation of glycolytic enzymes, mitochondrial dysfunction and increased cytotoxicity in glial cells treated with Alzheimer's disease plasma. PLoS One 2015; 10:e0116092. [PMID: 25785936 PMCID: PMC4364672 DOI: 10.1371/journal.pone.0116092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each) from healthy controls, individuals with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ) found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia.
Collapse
Affiliation(s)
- Tharusha Jayasena
- Bioanalytical Mass Spectrometry Facility, MW Analytical Centre, University of New South Wales, Sydney, Australia
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, MW Analytical Centre, University of New South Wales, Sydney, Australia
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - George Smythe
- Bioanalytical Mass Spectrometry Facility, MW Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Mark Raftery
- Bioanalytical Mass Spectrometry Facility, MW Analytical Centre, University of New South Wales, Sydney, Australia
| | - Mark Hill
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney, Australia
| | - Julian Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, the Prince of Wales Hospital, Sydney, Australia
| | - Nicole Kochan
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, the Prince of Wales Hospital, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, the Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
40
|
Lee SL, Thomas P, Fenech M. Genome instability biomarkers and blood micronutrient risk profiles associated with mild cognitive impairment and Alzheimer's disease. Mutat Res 2015; 776:54-83. [PMID: 26364206 DOI: 10.1016/j.mrfmmm.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/06/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
Successful maintenance of metabolic systems relating to accurate DNA replication and repair is critical for optimal lifelong human health. Should this homeostatic balance become impaired, genomic instability events can arise, compromising the integrity of the genome, which may result in gene expression and human disease. Both genome instability and micronutrient imbalance have been identified and implicated in diseases associated with accelerated ageing which potentially leads to an increased risk for the future development of clinically defined neurodegenerative disorders. Cognitive decline leading to the clinical diagnosis of mild cognitive impairment (MCI) has been shown to predict an increased risk in later life of developing Alzheimer's disease (AD). Knowledge on the impact of dietary factors in relation to MCI and AD risk is improving but incomplete; in particular the role of nutrient combinations (i.e. nutriomes) has not been thoroughly investigated. Currently, there is a need for preventative strategies as well as the identification of robust and reproducible diagnostic biomarkers that will allow identification of those individuals with increased risk for neurodegenerative diseases. Growing evidence suggests cells originating from different somatic tissues derived from individuals that have been clinically diagnosed with neurodegenerative disorders exhibit elevated frequencies of DNA damage compared to tissues of cognitively normal individuals which could be due to malnutrition. The objective of this review is to discuss current evidence and identify knowledge gaps relating to genome instability biomarkers and blood micronutrient profiles from human studies of MCI and AD that may be specific to and contribute to the increased risk of these diseases. This is a vital step in order to create research strategies for the future development of diagnostics that are indicative of dementia risk and to inform preventative therapies.
Collapse
Affiliation(s)
- Sau Lai Lee
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia; Discipline of Physiology, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Philip Thomas
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia.
| |
Collapse
|
41
|
Behairi N, Belkhelfa M, Mesbah-Amroun H, Rafa H, Belarbi S, Tazir M, Touil-Boukoffa C. All-trans-retinoic acid modulates nitric oxide and interleukin-17A production by peripheral blood mononuclear cells from patients with Alzheimer's disease. Neuroimmunomodulation 2015; 22:385-93. [PMID: 26278415 DOI: 10.1159/000435885] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most common form of dementia in the elderly, is a neurodegenerative disorder associated with a complex pathophysiology. It is accepted that inflammation contributes to the pathogenesis of AD. All-trans-retinoic acid (ATRA) is a bioactive derivative of vitamin A that has shown immunomodulatory effects in many immune disorders. OBJECTIVES In our study, we aimed to investigate in vitro immunomodulatory effects of ATRA on inducible nitric oxide synthase (iNOS) expression and interleukin-17A production during AD. METHODS Peripheral blood mononuclear cells (PBMCs) isolated from 30 Algerian AD patients and 14 age-matched nondemented controls were treated (or not) with ATRA. Production of NO and IL-17A in culture media was measured by the modified Griess method and enzyme-linked immunosorbent assay, respectively. Expression of iNOS in PBMCs was examined by fluorescence immunostaining. RESULTS Our results showed higher spontaneous in vitro production of NO related to overexpression of iNOS in AD patients compared to controls. Remarkably, ATRA treatment showed an important downregulatory effect on NO production and iNOS expression in patients. This effect was associated with a reduction in IL-17A production and increased IL-10 release. CONCLUSIONS Taken together, our results indicate that ATRA exerts anti-inflammatory effects in AD. Furthermore, ATRA represents a promising tool for monitoring inflammatory responses associated with disease progression.
Collapse
Affiliation(s)
- Nassima Behairi
- Cytokines and NO Synthases, Immunity and Pathogeny Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | | | | | | | | | | | | |
Collapse
|
42
|
González-Domínguez R, García-Barrera T, Gómez-Ariza JL. Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease. Anal Bioanal Chem 2014; 406:7137-48. [DOI: 10.1007/s00216-014-8102-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 12/15/2022]
|
43
|
The roles of biomarkers of oxidative stress and antioxidant in Alzheimer's disease: a systematic review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182303. [PMID: 24949424 PMCID: PMC4053273 DOI: 10.1155/2014/182303] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
Abstract
Purpose. Oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). This paper aims to examine whether biomarkers of oxidative stress and antioxidants could be useful biomarkers in AD, which might form the bases of future clinical studies. Methods. PubMed, SCOPUS, and Web of Science were systematically queried to obtain studies with available data regarding markers of oxidative stress and antioxidants from subjects with AD. Results and Conclusion. Although most studies show elevated serum markers of lipid peroxidation in AD, there is no sufficient evidence to justify the routine use of biomarkers as predictors of severity or outcome in AD.
Collapse
|
44
|
Sultana R, Baglioni M, Cecchetti R, Cai J, Klein JB, Bastiani P, Ruggiero C, Mecocci P, Butterfield DA. Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med 2013; 65:595-606. [PMID: 23933528 PMCID: PMC3849349 DOI: 10.1016/j.freeradbiomed.2013.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/23/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022]
Abstract
Alzheimer disease (AD) is an age-related neurodegenerative condition. AD is histopathologically characterized by the presence of three main hallmarks: senile plaques (rich in amyloid-β peptide), neuronal fibrillary tangles (rich in phosphorylated tau protein), and synapse loss. However, definitive biomarkers for this devastating disease in living people are still lacking. In this study, we show that levels of oxidative stress markers are significantly increased in the mitochondria isolated from lymphocytes of subjects with mild cognitive impairment (MCI) compared to cognitively normal individuals. Further, an increase in mitochondrial oxidative stress in MCI is associated with MMSE score, vitamin E components, and β-carotene. Further, a proteomics approach showed that alterations in the levels of thioredoxin-dependent peroxide reductase, myosin light polypeptide 6, and ATP synthase subunit β might be important in the progression and pathogenesis of AD. Increased understanding of oxidative stress and protein alterations in easily obtainable peripheral tissues will be helpful in developing biomarkers to combat this devastating disorder.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Mauro Baglioni
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, KY 40292, USA
| | - Patrizia Bastiani
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy.
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
45
|
Schrag M, Mueller C, Zabel M, Crofton A, Kirsch W, Ghribi O, Squitti R, Perry G. Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: A meta-analysis. Neurobiol Dis 2013; 59:100-10. [DOI: 10.1016/j.nbd.2013.07.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022] Open
|
46
|
Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T. Plasma nutrient status of patients with Alzheimer's disease: Systematic review and meta-analysis. Alzheimers Dement 2013; 10:485-502. [PMID: 24144963 DOI: 10.1016/j.jalz.2013.05.1771] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/02/2013] [Accepted: 05/21/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Alzheimer disease (AD) patients are at risk of nutritional insufficiencies because of physiological and psychological factors. Nutritional compounds are postulated to play a role in the pathophysiological processes that are affected in AD. We here provide the first systematic review and meta-analysis that compares plasma levels of micronutrients and fatty acids in AD patients to those in cognitively intact elderly controls. A secondary objective was to explore the presence of different plasma nutrient levels between AD and control populations that did not differ in measures of protein/energy nourishment. METHODS We screened literature published after 1990 in the Cochrane Central Register of Controlled Trials, Medline, and Embase electronic databases using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines for AD patients, controls, micronutrient, vitamins, and fatty acids, resulting in 3397 publications, of which 80 met all inclusion criteria. Status of protein/energy malnutrition was assessed by body mass index, mini nutritional assessment score, or plasma albumin. Meta-analysis, with correction for differences in mean age between AD patients and controls, was performed when more than five publications were retrieved for a specific nutrient. RESULTS We identified five or more studies for folate, vitamin A, vitamin B12, vitamin C, vitamin D, vitamin E, copper, iron, and zinc but fewer than five studies for vitamins B1 and B6, long-chain omega-3 fatty acids, calcium, magnesium, manganese, and selenium (the results of the individual publications are discussed). Meta-analysis showed significantly lower plasma levels of folate and vitamin A, vitamin B12, vitamin C, and vitamin E (P < .001), whereas nonsignificantly lower levels of zinc (P = .050) and vitamin D (P = .075) were found in AD patients. No significant differences were observed for plasma levels of copper and iron. A meta-analysis that was limited to studies reporting no differences in protein/energy malnourishment between AD and control populations yielded similar significantly lower plasma levels of folate and vitamin B12, vitamin C, and vitamin E in AD. CONCLUSIONS The lower plasma nutrient levels indicate that patients with AD have impaired systemic availability of several nutrients. This difference appears to be unrelated to the classic malnourishment that is well known to be common in AD, suggesting that compromised micronutrient status may precede protein and energy malnutrition. Contributing factors might be AD-related alterations in feeding behavior and intake, nutrient absorption, alterations in metabolism, and increased utilization of nutrients for AD pathology-related processes. Given the potential role of nutrients in the pathophysiological processes of AD, the utility of nutrition may currently be underappreciated and offer potential in AD management.
Collapse
Affiliation(s)
- Sofia Lopes da Silva
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bruno Vellas
- Gerontopole and UMR INSERM 1027 University Paul Sabatier, Toulouse University Hospital, Toulouse, France
| | - Saskia Elemans
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - José Luchsinger
- Department of Medicine, Columbia University, New York, NY, USA
| | - Patrick Kamphuis
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA
| | - John Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands.
| | - Martine Groenendijk
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Theo Stijnen
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Kapoor A, Wang BJ, Hsu WM, Chang MY, Liang SM, Liao YF. Retinoic acid-elicited RARα/RXRα signaling attenuates Aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci 2013; 4:1093-100. [PMID: 23530929 DOI: 10.1021/cn400039s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA)-elicited signaling has been shown to play critical roles in development, organogenesis, and the immune response. RA regulates expression of Alzheimer's disease (AD)-related genes and attenuates amyloid pathology in a transgenic mouse model. In this study, we investigated whether RA can suppress the production of amyloid-β (Aβ) through direct inhibition of γ-secretase activity. We report that RA treatment of cells results in significant inhibition of γ-secretase-mediated processing of the amyloid precursor protein C-terminal fragment APP-C99, compared with DMSO-treated controls. RA-elicited signaling was found to significantly increase accumulation of APP-C99 and decrease production of secreted Aβ40. In addition, RA-induced inhibition of γ-secretase activity was found to be mediated through significant activation of extracellular signal-regulated kinases (ERK1/2). Treatment of cells with the specific ERK inhibitor PD98059 completely abolished RA-mediated inhibition of γ-secretase. Consistent with these findings, RA was observed to inhibit secretase-mediated proteolysis of full-length APP. Finally, we have established that RA inhibits γ-secretase through nuclear retinoic acid receptor-α (RARα) and retinoid X receptor-α (RXRα). Our findings provide a new mechanistic explanation for the neuroprotective role of RA in AD pathology and add to the previous data showing the importance of RA signaling as a target for AD therapy.
Collapse
Affiliation(s)
- Arun Kapoor
- Molecular and Biological Agricultural Sciences Program,
Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology
and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Bo-Jeng Wang
- Institute of Zoology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | - Yung-Feng Liao
- Graduate Institute of Biotechnology
and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
48
|
Abstract
Alzheimer′s disease (AD) represents a highly common form of dementia, but can be diagnosed in the earlier stages before dementia onset. Early diagnosis is crucial for successful therapeutic intervention. The introduction of new diagnostic biomarkers for AD is aimed at detecting underlying brain pathology. These biomarkers reflect structural or biochemical changes related to AD. Examination of cerebrospinal fluid has many drawbacks; therefore, the search for sensitive and specific blood markers is ongoing. Investigation is mainly focused on upstream processes, among which oxidative stress in the brain is of particular interest. Products of oxidative stress may diffuse into the blood and evaluating them can contribute to diagnosis of AD. However, results of blood oxidative stress markers are not consistent among various studies, as documented in this review. To find a specific biochemical marker for AD, we should concentrate on specific metabolic products formed in the brain. Specific fluorescent intermediates of brain lipid peroxidation may represent such candidates as the composition of brain phospholipids is unique. They are small lipophilic molecules and can diffuse into the blood stream, where they can then be detected. We propose that these fluorescent products are potential candidates for blood biomarkers of AD.
Collapse
Affiliation(s)
- Alice Skoumalová
- Department of Medical Chemistry and Biochemistry, Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.
| | | |
Collapse
|
49
|
Brack M, Brack O, Ménézo Y, Rousselot DB, Dreyfus G, Chapman MJC, Kontush A. Distinct profiles of systemic biomarkers of oxidative stress in chronic human pathologies: Cardiovascular, psychiatric, neurodegenerative, rheumatic, infectious, neoplasmic and endocrinological diseases. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.43043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Farina N, Isaac MGEKN, Clark AR, Rusted J, Tabet N. Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane Database Syst Rev 2012; 11:CD002854. [PMID: 23152215 PMCID: PMC6464798 DOI: 10.1002/14651858.cd002854.pub3] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vitamin E is a dietary compound that functions as an antioxidant scavenging toxic free radicals. Evidence that free radicals may contribute to the pathological processes of cognitive impairment including Alzheimer's disease has led to interest in the use of vitamin E in the treatment of mild cognitive impairment (MCI) and Alzheimer's dementia (AD). OBJECTIVES To assess the efficacy of vitamin E in the treatment of AD and prevention of progression of MCI to dementia. SEARCH METHODS The Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (ALOIS), The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS as well as many trials databases and grey literature sources were searched on 25 June 2012 using the terms: "Vitamin E", vitamin-E, alpha-tocopherol. SELECTION CRITERIA All unconfounded, double-blind, randomised trials in which treatment with vitamin E at any dose was compared with placebo for patients with AD and MCI. DATA COLLECTION AND ANALYSIS Two review authors independently applied the selection criteria and assessed study quality and extracted and analysed the data. For each outcome measure data were sought on every patient randomised. Where such data were not available an analysis of patients who completed treatment was conducted. It was not possible to pool data between studies owing to a lack of comparable outcome measure. MAIN RESULTS Only three studies met the inclusion criteria: two in an AD population and one in an MCI population. In the first of the AD studies (Sano 1996) the authors reported some benefit from vitamin E (2000 IU/day) with fewer participants reaching an end point of death, institutionalisation, change to a Clinical Dementia Rating (CDR) of three, or loss of two basic activities of daily living within two years. Of patients completing treatment, 58% (45/77) on vitamin E compared with 74% (58/78) on placebo reached one of the end points (odds ratio (OR) 0.49; 95% confidence interval (CI) 0.25 to 0.96). The second AD treatment study (Lloret 2009) explored the effects of vitamin E (800 IU/day) on cognitive progression in relation to oxidative stress levels. Patients whose oxidative stress markers were lowered by vitamin E showed no significant difference in the percentage change in Mini-Mental State Examination (MMSE) score, between baseline and six months, compared to the placebo group. The primary aim of the MCI study (Petersen 2005) was to investigate the effect of vitamin E (2000 IU/day) on the time to progression from MCI to possible or probable AD. A total of 214 of the 769 participants progressed to dementia, with 212 being classified as having possible or probable AD. There was no significant difference in the probability of progression from MCI to AD between the vitamin E group and the placebo group (hazard ratio 1.02; 95% CI 0.74 to 1.41; P = 0.91). AUTHORS' CONCLUSIONS No convincing evidence that vitamin E is of benefit in the treatment of AD or MCI. Future trials assessing vitamin E treatment in AD should not be restricted to alpha-tocopherol.
Collapse
|