1
|
Suarez C, Cheang SE, Larke JA, Jiang J, Weng CYC, Stacy A, Couture G, Chen Y, Bacalzo NP, Smilowitz JT, German JB, Mills DA, Lemay DG, Lebrilla CB. Development of a comprehensive food glycomic database and its application: Associations between dietary carbohydrates and insulin resistance. Food Chem 2025; 473:142977. [PMID: 39864179 DOI: 10.1016/j.foodchem.2025.142977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Carbohydrates are an integral part of a healthy diet. The molecular compositions of carbohydrates encompass a very broad range of unique structures with many being ill-defined. This vast structural complexity is distilled into vague categories such as total carbohydrates, sugars, starches, and soluble/insoluble fibers. Structural elucidation of the food glycome is until recently extremely slow and immensely challenging. Dietary carbohydrates, including monosaccharides, oligosaccharides, glycosidic linkages, and polysaccharides were determined for the most consumed foods in the US consisting of 250 common foods using a multiglycomic platform. The food glycome was then correlated with clinical data from the National Health and Nutrition Examination Survey (NHANES) consisting of dietary recalls from 13,550 adults to determine associations between dietary carbohydrates, their structural features and insulin resistance. Several features were more powerful predictors compared to traditional measures indicating the need for molecular fine-scale food carbohydrate data in guiding precision nutrition initiatives and clinical studies.
Collapse
Affiliation(s)
- Christopher Suarez
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Jules A Larke
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Jiani Jiang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Cheng-Yu Charlie Weng
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Aaron Stacy
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | | | - J Bruce German
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - David A Mills
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Danielle G Lemay
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Park HJ, Yun CI, Kim DY, Kim YJ. Optimization, validation, and measurement uncertainty of HPLC-UVD method for quantification of thaumatin in food. Food Sci Biotechnol 2025; 34:1849-1856. [PMID: 40196329 PMCID: PMC11972248 DOI: 10.1007/s10068-025-01823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 04/09/2025] Open
Abstract
Thaumatin is a low-calorie protein sweetener extracted from Thaumatococcus daniellii Benth. Its ADI (Acceptable Daily Intake) was concluded as "not specified" by the EFSA (European Food Safety Authority). This study was conducted to select a sample preparation method and validate the proposed method by applying a matrix-matched calibration curve using HPLC-UVD. In the results, the calibration curve (5-200 mg/L) represented good linearity (r 2 ≥ 0.9995). LOD and LOQ ranged from 1.28 to 2.00 mg/L and from 3.89 to 6.07 mg/L, respectively. The intra- and inter-day accuracies and precisions ranged from 91.5 to 103.0%RSD and from 0.50 to 3.42%RSD, respectively. Furthermore, the relative expanded uncertainty was evaluated and the result satisfied the CODEX guideline (≤ 16%). Additionally, the application of the validated method was confirmed by using thaumatin-containing foods distributed in Korea. Thaumatin intake and exposure assessments for consumers can be conducted based on this study. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-025-01823-0.
Collapse
Affiliation(s)
- Hyeon-Ju Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Choong-In Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon16419, Korea
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Do-Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| | - Young-Jun Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
- Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul, 01811 Korea
| |
Collapse
|
3
|
Taweesap P, Potue P, Khamseekaew J, Iampanichakul M, Jan-O B, Pakdeechote P, Maneesai P. Luteolin Relieves Metabolic Dysfunction-Associated Fatty Liver Disease Caused by a High-Fat Diet in Rats Through Modulating the AdipoR1/AMPK/PPARγ Signaling Pathway. Int J Mol Sci 2025; 26:3804. [PMID: 40332475 PMCID: PMC12028338 DOI: 10.3390/ijms26083804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a significant global public health issue. Luteolin possesses several beneficial biological properties, including antioxidation and anti-inflammation. This study investigated luteolin's effect and potential mechanisms on MAFLD in high-fat diet (HFD)-fed rats. Rats were administered an HFD supplemented with fructose for 12 weeks to induce MAFLD. After that, the HFD-fed rats were given either luteolin (50 or 100 mg/kg/day) or metformin (100 mg/kg/day) for 4 weeks. Luteolin improved metabolic parameters induced by the HFD, since it decreased body weight, blood pressure, fasting blood glucose, serum insulin, free fatty acids, cholesterol, and triglyceride levels (p < 0.05). Luteolin reduced hepatic injury and inflammatory markers in HFD-fed rats (p < 0.05). Additionally, HFD-fed rats treated with luteolin showed reduced malondialdehyde and raised catalase activity in plasma (p < 0.05). Luteolin attenuated hepatic steatosis compared to the untreated rats (p < 0.05). Luteolin also increased plasma adiponectin levels accompanied by upregulation of adiponectin receptor 1 (AdipoR1), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor γ (PPAR-γ) protein expression in liver (p < 0.05). These findings revealed that luteolin ameliorated HFD-induced MAFLD in rats, possibly by reducing metabolic alterations and oxidative stress and restoring AdipoR1, AMPK, and PPARγ protein expression in HFD-fed rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.T.); (P.P.); (J.K.); (M.I.); (B.J.-O.); (P.P.)
| |
Collapse
|
4
|
Elsaman T, Mohamed MA, Elderdery AY, Alsrhani A, Alzahrani B, Ghanem HB, Mills J, Rayzah M, Alzerwi NAN, Al-sultan A, Idrees B, Rayzah F. Pharmacophore-based virtual screening and in silico investigations of small molecule library for discovery of human hepatic ketohexokinase inhibitors for the treatment of fructose metabolic disorders. Front Pharmacol 2025; 16:1531512. [PMID: 40260383 PMCID: PMC12009819 DOI: 10.3389/fphar.2025.1531512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/14/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Excessive fructose consumption is a significant driver of metabolic disorders, including obesity, diabetes, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis primarily by promoting insulin resistance and fat accumulation. Ketohexokinase C (KHK-C), a pivotal enzyme in fructose metabolism, catalyzes the phosphorylation of fructose to fructose-1-phosphate, initiating a cascade of downstream metabolic processes. In contrast to glucose metabolism, KHK-C lacks negative feedback regulation, allowing the continuous phosphorylation of fructose, which leads to heightened levels of glucose, glycogen, and triglycerides in the bloodstream and liver. While targeting KHK-C offers a promising therapeutic avenue, no drugs have yet been approved for clinical use. Pfizer's PF-06835919 has progressed to phase II trials, demonstrating a reduction in liver fat and improved insulin sensitivity, while Eli Lilly's LY-3522348 also shows significant potential. Nonetheless, there remains a critical need for the development of novel KHK-C inhibitors that offer improved pharmacokinetics, enhanced efficacy, and superior safety profiles. Methods In the present study, a comprehensive computational strategy was employed to screen 460,000 compounds from the National Cancer Institute library for potential KHK-C inhibitors. Initially, pharmacophore-based virtual screening was used to identify potential hits, followed by multi-level molecular docking, binding free energy estimation, pharmacokinetic analysis, and molecular dynamics (MD) simulations to further evaluate the compounds. This multi-step approach aimed to identify compounds with strong binding affinity, favorable pharmacokinetic profiles, and high potential for efficacy as KHK-C inhibitors. Results Ten compounds exhibited docking scores ranging from -7.79 to -9.10 kcal/mol, surpassing those of the compounds currently undergoing clinical trials, PF-06835919 (-7.768 kcal/mol) and LY-3522348 (-6.54 kcal/mol). Their calculated binding free energies ranged from -57.06 to -70.69 kcal/mol, further demonstrating their superiority over PF-06835919 (-56.71 kcal/mol) and LY-3522348 (-45.15 kcal/mol). ADMET profiling refined the selection to five compounds (1, 2, and 4-6), and molecular dynamics simulations identified compound 2 as the most stable and promising candidate compared to the clinical candidate PF-06835919. Conclusion These findings highlight compound 2 as a potent KHK-C inhibitor with predicted pharmacokinetics and toxicity profiles supporting its potential for treating fructose-driven metabolic disorders, warranting further validation.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Heba Bassiony Ghanem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Jeremy Mills
- School of Medicine, Pharmacy and Biomedical Sciences, Uinversity of Portsmouth, Portsmouth, United Kingdom
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Nasser A. N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Afnan Al-sultan
- Department of Surgery, King Saud Medical City, Riyadh, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City, As Sulimaniyah, Saudi Arabia
| | - Fares Rayzah
- Department of Surgery, Aseer Central Hospital, Abha, Saudi Arabia
| |
Collapse
|
5
|
Chevalley T, Dübi M, Fumeaux L, Merli MS, Sarre A, Schaer N, Simeoni U, Yzydorczyk C. Sexual Dimorphism in Cardiometabolic Diseases: From Development to Senescence and Therapeutic Approaches. Cells 2025; 14:467. [PMID: 40136716 PMCID: PMC11941476 DOI: 10.3390/cells14060467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The global incidence and prevalence of cardiometabolic disorders have risen significantly in recent years. Although lifestyle choices in adulthood play a crucial role in the development of these conditions, it is well established that events occurring early in life can have an important effect. Recent research on cardiometabolic diseases has highlighted the influence of sexual dimorphism on risk factors, underlying mechanisms, and response to therapies. In this narrative review, we summarize the current understanding of sexual dimorphism in cardiovascular and metabolic diseases in the general population and within the framework of the Developmental Origins of Health and Disease (DOHaD) concept. We explore key risk factors and mechanisms, including the influence of genetic and epigenetic factors, placental and embryonic development, maternal nutrition, sex hormones, energy metabolism, microbiota, oxidative stress, cell death, inflammation, endothelial dysfunction, circadian rhythm, and lifestyle factors. Finally, we discuss some of the main therapeutic approaches, responses to which may be influenced by sexual dimorphism, such as antihypertensive and cardiovascular treatments, oxidative stress management, nutrition, cell therapies, and hormone replacement therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (T.C.); (M.D.); (L.F.); (M.S.M.); (A.S.); (N.S.)
| |
Collapse
|
6
|
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. Fructose-Induced Metabolic Dysfunction Is Dependent on the Baseline Diet, the Length of the Dietary Exposure, and Sex of the Mice. Nutrients 2024; 17:124. [PMID: 39796558 PMCID: PMC11722689 DOI: 10.3390/nu17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others. This study investigates how diet and sex interact with fructose to modulate the metabolic outcomes. Methods: Male and female mice were fed different normal chow diets, Boston chow diet (BCD; 23% protein, 22% fat, 55% carbohydrates), Lexington chow diet (LXD; 24% protein, 18% fat, 58% carbohydrates), and low-fat diet (LFD; 20% protein, 10% fat, 70% carbohydrates), supplemented with 30% fructose in water. Results: Fructose-supplemented male mice on BCD gained weight and developed glucose intolerance and hepatic steatosis. Conversely, male mice given fructose on LXD did not gain weight, remained glucose-tolerant, and had normal hepatic lipid content. Furthermore, fructose-fed male mice on LFD did not gain weight. However, upon switching to BCD, they gained weight, exhibited worsening liver steatosis, and advanced hepatic insulin resistance. The effects of fructose are sex-dependent. Thus, female mice did not gain weight and remained insulin-sensitive with fructose supplementation on BCD, despite developing hepatic steatosis. These differences in metabolic outcomes correlate with the propensity of the baseline diet to suppress hepatic ketohexokinase expression and the de novo lipogenesis pathway. This is likely driven by the dietary fat-to-carbohydrate ratio. Conclusions: Metabolic dysfunction attributed to fructose intake is not a universal outcome. Instead, it depends on baseline diet, dietary exposure length, and sex.
Collapse
Affiliation(s)
- Taghreed Fadhul
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Heba Ali
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Yasir Alsiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Jibran A. Wali
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen J. Simpson
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| |
Collapse
|
7
|
Zhong F, Chen X, Li J. The burden of type 2 diabetes attributable to dietary risks in China: Insights from the global burden of disease study 2021. Public Health 2024; 237:122-129. [PMID: 39368403 DOI: 10.1016/j.puhe.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVES This study aims to comprehensively assess how dietary risk factors have influenced the prevalence of Type 2 Diabetes Mellitus (T2DM) in China from 1990 to 2021. The study seeks to provide robust data and scientific evidence essential for formulating effective preventive and control strategies to combat T2DM in China. STUDY DESIGN This cross-sectional study conducted secondary analyses using data from the Global Burden of Disease 2021 (GBD 2021) to assess the burden of T2DM in China attributable to dietary risks. METHODS The study analyzed age-adjusted metrics related to T2DM, including death counts, Disability-Adjusted Life Years (DALYs), and Age-Standardized Rates (ASRs), using GBD 2021 data, stratified by age and sex. Additionally, Estimated Annual Percentage Changes (EAPCs) were employed to track trends over time. RESULTS In 2021, the results show that 21.43 % of T2DM-related deaths and 23.51 % of DALYs were attributable to dietary risk factors, notably a diet low in whole grains and high in red and processed meats. Over the period from 1990 to 2021, there has been an increasing trend in the EAPCs of death rates and DALYs associated with dietary risks in China, suggesting a substantial impact of dietary factors on the burden of T2DM in the country. CONCLUSION This study highlights the urgent need for targeted public health interventions to promote dietary changes and reduce the burden of T2DM in China.
Collapse
Affiliation(s)
- Feifei Zhong
- School of Public Health and Healthcare Management, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Xiaochen Chen
- School of Public Health and Healthcare Management, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| | - Juan Li
- School of Public Health and Healthcare Management, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
8
|
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. The propensity of fructose to induce metabolic dysfunction is dependent on the baseline diet, length of the dietary exposure, and sex of the mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625441. [PMID: 39651130 PMCID: PMC11623593 DOI: 10.1101/2024.11.26.625441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background/Objectives Numerous studies have implicated high intake of sugar, particularly fructose, with the development of obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This paradox questions how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others. Methods To answer this question, male and female mice were fed different normal chow diets and provided 30% fructose solution in water. Results Fructose-supplemented male mice on the Boston Chow Diet (BCD=23% protein, 22% fat, 55% carbs) gained weight, developed glucose intolerance and hepatic steatosis. In contrast, male mice on the Lexington Chow Diet (LXD=24% protein, 18% fat, 58% carbs) did not gain weight, remained glucose tolerant, and had normal hepatic lipid content when supplemented with fructose. Furthermore, fructose-fed male mice on a Low-Fat Diet (LFD=20% protein, 10% fat, 70% carbs) didn't gain weight, but once switched to the BCD, they gained weight, exhibited worsening liver steatosis, and more advanced hepatic insulin resistance. The effects of fructose are sex-dependent, as female mice didn't gain weight and remained insulin-sensitive when given fructose on BCD, despite developing hepatic steatosis. Conclusions The differences in metabolic outcomes correlate with the propensity of the baseline diet to suppress hepatic ketohexokinase expression and the de novo lipogenesis pathway. This is likely driven by the dietary fat-to-carbohydrate ratio. Thus, metabolic dysfunction attributed to fructose intake is not a universal outcome; rather, it depends on the baseline diet, sex, and exposure length.
Collapse
|
9
|
Agarwal V, Das S, Kapoor N, Prusty B, Das B. Dietary Fructose: A Literature Review of Current Evidence and Implications on Metabolic Health. Cureus 2024; 16:e74143. [PMID: 39712814 PMCID: PMC11663027 DOI: 10.7759/cureus.74143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
With the increasing intake of dietary fructose, primarily from sucrose and sweetened beverages, metabolic illnesses such as type 2 diabetes mellitus, hypertension, fatty liver disease, dyslipidemia, and hyperuricemia have become more prevalent worldwide, and there is also growing concern about the development of malignancies. These negative health impacts have been validated in various meta-analyses and randomized controlled trials. In contrast, the naturally occurring fructose found in fruits and vegetables contains only a minimal amount of fructose and, when consumed in moderation, may be a healthier choice. This review focuses on the biology of fructose, including its dietary sources, the physiology of its metabolism, and the pathological basis of various disorders related to high dietary fructose intake.
Collapse
Affiliation(s)
- Vishal Agarwal
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Sambit Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Nitin Kapoor
- Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore, IND
| | - Binod Prusty
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Bijay Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
10
|
Fu Y, Araki Y, Saito S, Nishitani S, Nishimura N, Mochizuki S, Oda H. High sucrose diet-induced abnormal lipid metabolism in mice is related to the dysbiosis of gut microbiota. Clin Nutr ESPEN 2024; 63:491-500. [PMID: 39018242 DOI: 10.1016/j.clnesp.2024.06.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND & AIMS Excess sucrose intake induces metabolic syndrome. In human, abnormal lipids metabolism like obesity, hyperlipidemia and fatty liver are induced. However, excess sucrose causes different phenotypes in different species. Based on our previous study, excess sucrose induced fatty liver and hyperlipidemia in rats. The phenotypes and mechanism of abnormal lipid metabolism in mice is unclear. We investigated the different phenotypes in 5 strains of mice and the relationship between gut microbiome and abnormal lipid metabolism in C57BL/6N mice. METHODS We examined the effect of a high sucrose diet in 5 different strains of mice. Besides, to find out the relationship between gut microbiome and metabolic disorder induced by excess sucrose, C57BL/6N mice were fed with a high sucrose diet with or without antibiotics cocktail. RESULTS A high sucrose diet induced obesity and fatty liver in inbred mice, whereas did not induce hyperlipidemia in all strains of mice. Moreover, a high sucrose diet changed the composition of gut microbiota in C57BL/6N mice. Antibiotics treatment alleviated the abnormal lipid metabolism induced by high sucrose diet by changing the composition of gut short chain fatty acids. CONCLUSIONS These results indicates that the phenotypes of metabolic syndrome are influenced by genetic factors. Furthermore, the dysbiosis of gut microbiome caused by excess sucrose may contribute to the development of abnormal lipid metabolism via its metabolites.
Collapse
Affiliation(s)
- Yiying Fu
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Yuki Araki
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Shiori Saito
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Shiori Nishitani
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Naomichi Nishimura
- Academic Institute, College of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
11
|
Mierczak K, Garus-Pakowska A. An Overview of Apple Varieties and the Importance of Apple Consumption in the Prevention of Non-Communicable Diseases-A Narrative Review. Nutrients 2024; 16:3307. [PMID: 39408274 PMCID: PMC11478947 DOI: 10.3390/nu16193307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Non-communicable diseases such as cardiovascular diseases, cancers, diabetes, and asthma are increasingly common due to factors like industrialization, urbanization, fast-paced life, stress, sedentary lifestyle, and unbalanced diet in the 21st century. These chronic conditions are a global epidemic, being among the top causes of death worldwide. Preventing these diseases through a nutritious diet is crucial, and scientific studies suggest that appropriate fruit intake, particularly apples, can lower the risk of various health issues. Apples, rich in bioactive compounds, vitamins, minerals, and dietary fiber, offer numerous health benefits. Regular consumption of apples helps reduce the risk of atherosclerosis, coronary artery disease, heart attacks, and diabetes, and also provides anti-asthmatic and anti-allergic effects. Apples aid in detoxification, improve digestion, enhance skin, hair, and nail health, and offer protection against cancers, Alzheimer's, and Parkinson's disease. Apples have been a dietary staple for centuries, consumed in various forms like juices, sauces, and ciders. The reviewed article emphasizes the health benefits of apples, highlighting their role in preventing civilization diseases. It also discusses the characteristics of common apple varieties and the impact of thermal processing on their nutritional content.
Collapse
Affiliation(s)
| | - Anna Garus-Pakowska
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| |
Collapse
|
12
|
Naidoo K, Khathi A. Effects of Gossypetin on Glucose Homeostasis in Diet-Induced Pre-Diabetic Rats. Molecules 2024; 29:4410. [PMID: 39339405 PMCID: PMC11434540 DOI: 10.3390/molecules29184410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Natural flavonoids exert many potential health benefits, including anti-hyperglycaemic effects. However, the effects of gossypetin (GTIN) on glucose homeostasis in pre-diabetes have not yet been investigated. This study examined the effects of GTIN on key markers of glucose homeostasis in a diet-induced pre-diabetic rat model. Pre-diabetes was induced by allowing the animals to feed on a high-fat high-carbohydrate (HFHC) diet supplemented with 15% fructose water for 20 weeks. Following pre-diabetes induction, the pre-diabetic animals were sub-divided into five groups (n = 6), where they were either orally treated with GTIN (15 mg/kg) or metformin (MET) (500 mg/kg), both with and without dietary intervention, over a 12-week period. The results demonstrated that animals in the untreated pre-diabetic (PD) control group exhibited significantly higher fasting and postprandial blood glucose levels, as well as elevated plasma insulin concentrations and increased homeostatic model assessment for insulin resistance (HOMA2-IR) index, relative to the non-pre-diabetic (NPD) group. Similarly, increased caloric intake, body weight and plasma ghrelin levels were observed in the PD control group. Notably, these parameters were significantly reduced in the PD animals receiving GTIN treatment. Additionally, glycogen levels in the liver and skeletal muscle, which were disturbed in the PD control group, showed significant improvement in both GTIN-treated groups. These findings may suggest that GTIN administration, with or without dietary modifications, may offer therapeutic benefits in ameliorating glucose homeostasis disturbances associated with the PD state.
Collapse
Affiliation(s)
- Karishma Naidoo
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
13
|
Yamazaki M, Yamada H, Munetsuna E, Ando Y, Mizuno G, Teshigawara A, Ichikawa H, Nouchi Y, Kageyama I, Wakasugi T, Ishikawa H, Ohgami N, Suzuki K, Ohashi K. Approaches to nutritional research using organoids; fructose treatment induces epigenetic changes in liver organoids. J Nutr Biochem 2024; 131:109671. [PMID: 38768870 DOI: 10.1016/j.jnutbio.2024.109671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Nutritional researches have successfully used animal models to gain new insights into nutrient action. However, comprehensive descriptions of their molecular mechanisms of action remain elusive as appropriate in vitro evaluation systems are lacking. Organoid models can mimic physiological structures and reproduce in vivo functions, making them increasingly utilized in biomedical research for a better understand physiological and pathological phenomena. Therefore, organoid modeling can be a powerful approach for to understand the molecular mechanisms of nutrient action. The present study aims to demonstrate the utility of organoids in nutritional research by further investigating the molecular mechanisms responsible for the negative effects of fructose intake using liver organoids. Here, we treated liver organoids with fructose and analyzed their gene expression profiles and DNA methylation levels. Microarray analysis demonstrated that fructose-treated organoids exhibited increased selenoprotein p (Sepp1) gene expression, whereas pyrosequencing assays revealed reduced DNA methylation levels in the Sepp1 region. These results were consistent with observations using hepatic tissues from fructose-fed rats. Conversely, no differences in Sepp1 mRNA and DNA methylation levels were observed in two-dimensional cells. These results suggest that organoids serve as an ideal in vitro model to recapitulate in vivo tissue responses and help to validate the molecular mechanisms of nutrient action compared to conventional cellular models.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan; Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Eiji Munetsuna
- Department of Animal Science and Biotechnology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Ota, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hayato Ichikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan; Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Takuya Wakasugi
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Nobutaka Ohgami
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
14
|
Kanehara R, Park SY, Okada Y, Iwasaki M, Tsugane S, Sawada N, Inoue M, Haiman CA, Wilkens LR, Le Marchand L. Intake of Sugar and Food Sources of Sugar and Colorectal Cancer Risk in the Multiethnic Cohort Study. J Nutr 2024; 154:2481-2492. [PMID: 38795743 PMCID: PMC11375464 DOI: 10.1016/j.tjnut.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The influence of sugar intake on the risk of colorectal cancer (CRC) remains controversial, and there is a need to investigate the heterogeneity of effects among racial and ethnic groups. OBJECTIVES To examine the association of intake of simple sugars and their food sources with CRC risk according to race/ethnicity in a multiethnic cohort study. METHODS We analyzed data from 192,651 participants who participated in the Multiethnic Cohort Study comprising African American, Japanese American, Latino, Native Hawaiian, and White older adults living in Hawaii and California with an average follow-up of 19 y. Intakes of total and specific types of sugars and sugary foods were estimated from a quantitative food frequency questionnaire completed by the participants in 1993-1996. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for CRC risk according to quintiles (Q) of sugar and food intakes using Cox models adjusted for potential confounders. RESULTS As of December 2017, 4403 incident CRC cases were identified. Among all participants, multivariable-adjusted CRC HRs for Q2, Q3, Q4, and Q5 compared with Q1 for total sugars were 1.03 (95% CI: 0.94, 1.13), 1.05 (95% CI: 0.96, 1.16), 1.12 (95% CI: 1.01, 1.24), and 1.13 (95% CI: 1.01, 1.27), respectively. A similar positive association was observed for total fructose, glucose, fructose, and maltose but not for added sugars and sugary foods. The increased risk appeared to be limited to colon cancer and to be strongest among younger participants (i.e., 45-54 y at baseline); an association with CRC was observed for sugar-sweetened beverages in the latter group. Among racial and ethnic groups, increased risk of CRC was most apparent in Latinos. CONCLUSIONS In this diverse cohort, intakes of total sugar, total fructose, glucose, fructose, and maltose were associated with an increased risk of CRC, and the association was strongest for colon cancer, younger participants, and Latinos.
Collapse
Affiliation(s)
- Rieko Kanehara
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States; Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.
| | - Song-Yi Park
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Yuito Okada
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan; International University of Health and Welfare Graduate School of Public Health, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Manami Inoue
- National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Loïc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, United States
| |
Collapse
|
15
|
Johansen OE, Neutel J, Gupta S, Mariani B, Ufheil G, Perrin E, Rytz A, Lahiry A, Delodder F, Lerea-Antes J, Ocampo N, von Eynatten M. Oligomalt, a New Slowly Digestible Carbohydrate, Reduces Post-Prandial Glucose and Insulin Trajectories Compared to Maltodextrin across Different Population Characteristics: Double-Blind Randomized Controlled Trials in Healthy Individuals, People with Obesity, and People with Type 2 Diabetes. Metabolites 2024; 14:410. [PMID: 39195506 DOI: 10.3390/metabo14080410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
We assessed the glucometabolic effects of oligomalt, a novel fully slowly digestible carbohydrate, compared with maltodextrin, in cross-over randomized controlled trials (NCT05058144; NCT05963594) involving healthy volunteers (HV), people with overweight or obesity (PwO), and people with type 2 diabetes (T2D). We tested 33 g and/or 50 g of oligomalt/maltodextrin, which were dissolved in 300 mL of water and consumed after fasting in the morning. The primary exploratory endpoint was the incremental area under the curve (iAUC) for postprandial glucose, assessed by frequent blood sampling over 3 h. Insulin levels were also assessed. In the HV cohort, a 4 h hydrogen breath test was performed with 15 g of inulin as a positive control. Analysis was performed by a mixed model. Oligomalt elicited a lower post-prandial glucose response compared to maltodextrin in HV (50 g, n = 15 [7 women], mean age/BMI 31 years/22.6 kg/m2), in PwO (33 g and 50 g, n = 26 [10 women], age/BMI 44 years/29.9 kg/m2, mean HbA1c 5.3%), and in people with T2D (50 g, n = 22 [13 women], age/BMI 61 years/31.8 kg/m2, HbA1c 7.4%), with significant reductions observed in PwO and T2D for the 0-1 h window (HV: -19% [p = 0.149]/PwO33g-38% [p = 0.0002]/PwO50g-28% [p = 0.0027]/T2D-38% [p < 0.0001]; the 0-2 h window (HV: -17% [p = 0.311]/PwO33g-34% [p = 0.0057]/PwO50g-21% [p = 0.0415]/T2D-37% [p < 0.0001]), and the 0-3 h window (HV: -15% [p = 0.386]/PwO33g-30% [p = 0.0213]/PwO50g0-19% [p = 0.0686]/T2D-37% [p = 0.0001]). The post-prandial insulin response was significantly lower, by 38-60%, across all populations, dose, and time points, with oligomalt. In HV, the breath-hydrogen pattern was comparable between oligomalt and maltodextrin, but increased significantly with inulin. These data support the glucometabolic advantages of oligomalt over maltodextrin, hence confirming it as a healthier carbohydrate, and underscoring its full digestibility. This therefore opens up the possibility for the incorporation of oligomalt in relevant food products/matrices.
Collapse
Affiliation(s)
| | - Joel Neutel
- Orange County Research Center, Tustin, CA 92780, USA
| | - Sanjay Gupta
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
| | - Barbara Mariani
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
| | - Gerhard Ufheil
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
- Nestlé Research and Development Konolfingen, Société des Produits Nestlé S.A., 3510 Konolfingen, Switzerland
| | | | - Andreas Rytz
- Nestlé Research, Clinical Research Unit, 1000 Lausanne, Switzerland
| | - Anirban Lahiry
- Nestlé Research, Clinical Research Unit, 1000 Lausanne, Switzerland
| | | | - Jaclyn Lerea-Antes
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
- Nestlé Health Science, Bridgewater, NJ 08807, USA
| | - Naomi Ocampo
- Nestlé Health Science, Bridgewater, NJ 08807, USA
| | | |
Collapse
|
16
|
Brianso-Llort L, Saéz-Lopez C, Alvarez-Guaita A, Ramos-Perez L, Hernandez C, Simó R, Selva DM. Recent Advances on Sex Hormone-Binding Globulin Regulation by Nutritional Factors: Clinical Implications. Mol Nutr Food Res 2024; 68:e2400020. [PMID: 38934352 DOI: 10.1002/mnfr.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/26/2024] [Indexed: 06/28/2024]
Abstract
Sex hormone-binding globulin (SHBG) is a homodimeric glycoprotein produced by the human liver and secreted into the systemic circulation where it binds with high affinity sex steroids regulating their availability in blood and accessibility to target tissues. Plasma SHBG levels are altered in metabolic disorders such as obesity, anorexia, and insulin resistance. Several reports have shown that diets in terms of total calories or fat, fiber, or protein content can alter plasma SHBG levels. However, there are many components in a diet that can affect SHBG gene expression in the liver. In order to unravel the molecular mechanisms by which diets regulate SHBG production, it would be necessary to analyze single diet components and/or nutritional factors. This review summarizes the recent advances in identifying different nutritional factors regulating SHBG production and the related molecular mechanism, as well as the clinical implications.
Collapse
Affiliation(s)
- Laura Brianso-Llort
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Cristina Saéz-Lopez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Anna Alvarez-Guaita
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Lorena Ramos-Perez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Cristina Hernandez
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| | - David M Selva
- Diabetes and Metabolism Research Unit, Vall Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and Biomedical Network Research Centre on Diabetes and Metabolic Diseases (CIBERDEM, ISCIII), Barcelona, 08035, Spain
| |
Collapse
|
17
|
Ting KKY. Fructose-induced metabolic reprogramming of cancer cells. Front Immunol 2024; 15:1375461. [PMID: 38711514 PMCID: PMC11070519 DOI: 10.3389/fimmu.2024.1375461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
18
|
Kopec M, Beton-Mysur K. The role of glucose and fructose on lipid droplet metabolism in human normal bronchial and cancer lung cells by Raman spectroscopy. Chem Phys Lipids 2024; 259:105375. [PMID: 38159659 DOI: 10.1016/j.chemphyslip.2023.105375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Fructose is one of the most important monosaccharides in the human diet that the human body needs for proper metabolism. This paper presents an approach to study biochemical changes caused by sugars in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging. Results after supplementation of human bronchial and lung cells with fructose are also discussed and compared with results obtained for pure human bronchial and lung cells. Based on Raman techniques we have proved that peaks at 750 cm-1, 1126 cm-1, 1444 cm-1, 1584 cm-1 and 2845 cm-1 can be treated as biomarkers to monitor fructose changes in cells. Results for fructose have been compared with results for glucose. Raman analysis of the bands at 750 cm-1, 1126 cm-1, 1584 cm-1 and 2845 cm-1 for pure BEpiC and A549 cells and BEpiC and A549 after supplementation with fructose and glucose are higher after supplementation with fructose in comparison to glucose. The obtained results shed light on the uninvestigated influence of glucose and fructose on lipid droplet metabolism by Raman spectroscopy methods.
Collapse
Affiliation(s)
- Monika Kopec
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
19
|
Ndlovu IS, Tshilwane SI, Ngcamphalala PI, Vosloo A, Chaisi M, Mukaratirwa S. Metabolomics (Non-Targeted) of Induced Type 2 Diabetic Sprague Dawley Rats Comorbid with a Tissue-Dwelling Nematode Parasite. Int J Mol Sci 2023; 24:17211. [PMID: 38139040 PMCID: PMC10743009 DOI: 10.3390/ijms242417211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes is a non-communicable metabolic syndrome that is characterized by the dysfunction of pancreatic β-cells and insulin resistance. Both animal and human studies have been conducted, demonstrating that helminth infections are associated with a decreased prevalence of type 2 diabetes mellitus (T2DM). However, there is a paucity of information on the impact that helminths have on the metabolome of the host and how the infection ameliorates T2DM or its progression. Therefore, this study aimed at using a non-targeted metabolomics approach to systematically identify differentiating metabolites from serum samples of T2DM-induced Sprague Dawley (SD) rats infected with a tissue-dwelling nematode, Trichinella zimbabwensis, and determine the metabolic pathways impacted during comorbidity. Forty-five male SD rats with a body weight between 160 g and 180 g were used, and these were randomly selected into control (non-diabetic and not infected with T. zimbabwensis) (n = 15) and T2DM rats infected with T. zimbabwensis (TzDM) (n = 30). The results showed metabolic separation between the two groups, where d-mannitol, d-fructose, and glucose were upregulated in the TzDM group, when compared to the control group. L-tyrosine, glycine, diglycerol, L-lysine, and L-hydroxyproline were downregulated in the TzDM group when compared to the control group. Metabolic pathways which were highly impacted in the TzDM group include biotin metabolism, carnitine synthesis, and lactose degradation. We conclude from our study that infecting T2DM rats with a tissue-dwelling nematode, T. zimbabwensis, causes a shift in the metabolome, causing changes in different metabolic pathways. Additionally, the infection showed the potential to regulate or improve diabetes complications by causing a decrease in the amino acid concentration that results in metabolic syndrome.
Collapse
Affiliation(s)
- Innocent Siyanda Ndlovu
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa; (I.S.N.); (P.I.N.); (A.V.)
| | - Selaelo Ivy Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (S.I.T.); (M.C.)
| | - Philile Ignecious Ngcamphalala
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa; (I.S.N.); (P.I.N.); (A.V.)
| | - Andre’ Vosloo
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa; (I.S.N.); (P.I.N.); (A.V.)
| | - Mamohale Chaisi
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa; (S.I.T.); (M.C.)
- Foundational Biodiversity Science, South African National Biodiversity Institute, Pretoria 0001, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa; (I.S.N.); (P.I.N.); (A.V.)
- One Health Center for Zoonoses and Tropical Veterinary Medicine, School of Veterinary Medicine, Ross University, Basseterre KN0101, Saint Kitts and Nevis
| |
Collapse
|
20
|
Gong Y, Lu Q, Xi L, Liu Y, Yang B, Su J, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Xie S, Han D. F6P/G6P-mediated ChREBP activation promotes the insulin resistance-driven hepatic lipid deposition in zebrafish. J Nutr Biochem 2023; 122:109452. [PMID: 37748621 DOI: 10.1016/j.jnutbio.2023.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Insulin-sensitive lipogenesis dominates the body lipid deposition; however, nonalcoholic fatty liver disease (NAFLD) develops in the insulin-resistant state. The regulation mechanism of insulin resistance-driven NAFLD remains elusive. Using zebrafish model of insulin resistance (ZIR, insrb-/-) and mouse hepatocytes (NCTC 1469), we explored the regulation mechanism of insulin resistance-driven hepatic lipid deposition under the stimulation of carbohydrate diet (CHD). In ZIR model, insulin resistance induced hyperlipidemia and elevated hepatic lipid deposition via elevating the gene/protein expressions of lipogenic enzymes, that was activated by carbohydrate response element binding protein (ChREBP), rather than sterol regulatory element binding proteins 1c (SREBP-1c). The metabolomic analysis in zebrafish and silencing of chrebp in mouse hepatocytes revealed that the increased hepatic frucotose-6-phosphate (F6P) and glucose-6-phosphate (G6P) promoted the ChREBP-mediated lipid deposition. We further identified that F6P alone was sufficient to activate ChREBP-mediated lipid deposition by a SREBP-1c-independent manner. Moreover, we clarified the suppressed hepatic phosphofructokinase/glucose-6-phosphatase functions and the normal glucokinase function preserved by glucose transporter 2 (GLUT2) manipulated the increased F6P/G6P content in ZIR. In conclusion, the present study revealed that insulin resistance promoted hepatic lipid deposition via the F6P/G6P-mediated ChREBP activation. Our findings deciphered the main regulation pathway for the liver lipid deposition in the insulin-resistant state and identified F6P as a new potential regulator for ChREBP.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jingzhi Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
21
|
Koshovyi O, Vlasova I, Laur H, Kravchenko G, Krasilnikova O, Granica S, Piwowarski JP, Heinämäki J, Raal A. Chemical Composition and Insulin-Resistance Activity of Arginine-Loaded American Cranberry ( Vaccinium macrocarpon Aiton, Ericaceae) Leaf Extracts. Pharmaceutics 2023; 15:2528. [PMID: 38004508 PMCID: PMC10675343 DOI: 10.3390/pharmaceutics15112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
One of the key pathogenetic links in type 2 diabetes mellitus (T2DM) is the formation of insulin resistance (IR). Besides a wide selection of synthetic antidiabetic drugs, various plant-origin extracts are also available to support the treatment of T2DM. This study aimed to investigate and gain knowledge of the chemical composition and potential IR correction effect of American cranberry (Vaccinium macrocarpon Aiton) leaf extracts and formulate novel 3D-printed oral dosage forms for such extracts. The bioactivity and IR of L-arginine-loaded cranberry leaf extracts were studied in vivo in rats. The cranberry leaf extracts consisted of quinic, 3-caffeoylquinic (chlorogenic), p-coumaroylquinic acids, quercetin 3-O-galactoside, quercetin-3-O-glucoside, quercetin-3-xyloside, quercetin-3-O-arabino pyranoside, quercetin-3-O-arabinofuranoside, quercetin 3-O-rhamnoside, and quercetin-O-p-coumaroyl hexoside-2 identified by HPLC. In vivo studies with rats showed that the oral administration of the cranberry leaf extracts had a positive effect on insulin sensitivity coefficients under the insulin tolerance test and affected homeostasis model assessment IR levels and liver lipid content with experimental IR. A novel 3D-printed immediate-release dosage form was developed for the oral administration of cranberry leaf extracts using polyethylene oxide as a carrier gel in semi-solid extrusion 3D printing. In conclusion, American cranberry leaf extracts loaded with L-arginine could find uses in preventing health issues associated with IR.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine (G.K.)
| | - Inna Vlasova
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine (G.K.)
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (J.P.P.)
| | - Heleriin Laur
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| | - Ganna Kravchenko
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine (G.K.)
| | - Oksana Krasilnikova
- Department of Pharmacognosy, National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine (G.K.)
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (J.P.P.)
| | - Jakub P. Piwowarski
- Microbiota Lab, Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland (J.P.P.)
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (O.K.); (J.H.)
| |
Collapse
|
22
|
Treskes RW, Clausen J, Marott JL, Jensen GB, Holtermann A, Gyntelberg F, Jensen MT. Use of sugar in coffee and tea and long-term risk of mortality in older adult Danish men: 32 years of follow-up from a prospective cohort study. PLoS One 2023; 18:e0292882. [PMID: 37851689 PMCID: PMC10584177 DOI: 10.1371/journal.pone.0292882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Tea and coffee are the most consumed beverages worldwide and very often sweetened with sugar. However, the association between the use of sugar in tea or coffee and adverse events is currently unclear. OBJECTIVES To investigate the association between the addition of sugar to coffee or tea, and the risk of all-cause mortality, cardiovascular mortality, cancer mortality and incident diabetes mellitus. METHODS Participants from the prospective Copenhagen Male Study, included from 1985 to 1986, without cardiovascular disease, cancer or diabetes mellitus at inclusion, who reported regular coffee or tea consumption were included. Self-reported number of cups of coffee and tea and use of sugar were derived from the study questionnaires. Quantity of sugar use was not reported. Primary outcome was all-cause mortality and secondary endpoints were cardiovascular mortality, cancer mortality and incident diabetes mellitus, all assessed through the Danish national registries. The association between adding sugar and all-cause mortality was analyzed by Cox regression analysis. Age, smoking status, daily alcohol intake, systolic blood pressure, body mass index, number of cups of coffee and/or tea consumed per day and socioeconomic status were included as covariates. Vital status of patients up and until 22.03.2017 was assessed. Sugar could be added to either coffee, tea or both. RESULTS In total, 2923 men (mean age at inclusion: 63±5 years) were included, of which 1007 (34.5%) added sugar. In 32 years of follow-up, 2581 participants (88.3%) died, 1677 in the non-sugar group (87.5%) versus 904 in the sugar group (89.9%). Hazard ratio of the sugar group compared to the non-sugar group was 1.06 (95% CI 0.98;1.16) for all-cause mortality. An interaction term between number of cups of coffee and/or tea per day and adding sugar was 0.99 (0.96;1.01). A subgroup analysis of coffee-only drinkers showed a hazard ratio of 1.11 (0.99;1.26). The interaction term was 0.98 (0.94;1.02). Hazard ratios for the sugar group compared to the non-sugar group were 1.11 (95% CI 0.97;1.26) for cardiovascular disease mortality, 1.01 (95% CI 0.87;1.17) for cancer mortality and 1.04 (95% CI 0.79;1.36) for incident diabetes mellitus. CONCLUSION In the present population of Danish men, use of sugar in tea and/or coffee was not significantly associated with increased risk of mortality or incident diabetes.
Collapse
Affiliation(s)
- Roderick W. Treskes
- Leiden University Medical Center, Department of Cardiology, Leiden, the Netherlands
| | | | | | | | - Andreas Holtermann
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Magnus T. Jensen
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- The Copenhagen Male Study, Copenhagen, Denmark
- William Harvey Research Institute, NIHR Bart’s Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
23
|
Zhu G, Li J, Lin X, Zhang Z, Hu T, Huo S, Li Y. Discovery of a Novel Ketohexokinase Inhibitor with Improved Drug Distribution in Target Tissue for the Treatment of Fructose Metabolic Disease. J Med Chem 2023; 66:13501-13515. [PMID: 37766386 DOI: 10.1021/acs.jmedchem.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Excessive fructose absorption and its subsequent metabolisms are implicated in nonalcoholic fatty liver disease, obesity, and insulin resistance in humans. Ketohexokinase (KHK) is a primary enzyme involved in fructose metabolism via the conversion of fructose to fructose-1-phosphate. KHK inhibition might be a potential approach for the treatment of metabolic disorders. Herein, a series of novel KHK inhibitors were designed, synthesized, and evaluated. Among them, compound 14 exhibited more potent activity than PF-06835919 based on the rat KHK inhibition assay in vivo, and higher drug distribution concentration in the liver. Its good absorption, distribution, metabolism, and excretion and pharmacokinetic properties make it a promising clinical candidate.
Collapse
Affiliation(s)
- Guodong Zhu
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Jiao Li
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Xiaoyan Lin
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Zhen Zhang
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Tao Hu
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Shuhua Huo
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| | - Yunfei Li
- TuoJie Biotech (Shanghai) Co., Ltd., Shanghai 201206, P. R. China
| |
Collapse
|
24
|
Said MA, Nafeh NY, Abdallah HA. Spexin alleviates hypertension, hyperuricaemia, dyslipidemia and insulin resistance in high fructose diet induced metabolic syndrome in rats via enhancing PPAR-ɣ and AMPK and inhibiting IL-6 and TNF-α. Arch Physiol Biochem 2023; 129:1111-1116. [PMID: 33721543 DOI: 10.1080/13813455.2021.1899242] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Spexin is a novel peptide implicated in obesity and energy homeostasis. The objective of the current study was to evaluate the effect of spexin on blood pressure, insulin resistance, and dyslipidemia in rats with metabolic syndrome (MS) induced by high-fructose diet (HFD) and the possible underlying mechanism. Forty adult male rats were randomly assigned into four equal groups; Control, Spexin, HFD and HFD + spexin. Induction of the MS with HFD was associated with increased body mass index, elevated blood pressure, blood glucose, insulin, uric acid, advanced glycation end products and insulin resistance, interlekin-6, tumour necrosis factor-alpha together with dyslipidemia, low-serum spexin, peroxisome proliferator-activated receptors-gamma (PPAR-ɣ) and adenosine monophosphate-activated protein kinase (AMPK). Spexin attenuated MS-induced deleterious effects which can be attributed to activation of PPAR-ɣ and AMPK as well as inhibiting inflammation. These findings indicate that spexin could be a beneficial complementary agent for metabolic syndrome treatment.
Collapse
Affiliation(s)
- Mona A Said
- Physiology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Naglaa Y Nafeh
- Physiology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hend A Abdallah
- Physiology Department, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
25
|
Zandvakili I, Pulaski M, Pickett-Blakely O. A phenotypic approach to obesity treatment. Nutr Clin Pract 2023; 38:959-975. [PMID: 37277855 DOI: 10.1002/ncp.11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 06/07/2023] Open
Abstract
Obesity is a chronic disease that increases morbidity and mortality and adversely affects quality of life. The rapid rise of obesity has outpaced the development and deployment of effective therapeutic interventions, thereby creating a global health crisis. The presentation, complications, and response to obesity treatments vary, yet lifestyle modification, which is the foundational therapeutic intervention for obesity, is often "one size fits all." The concept of personalized medicine uses genetic and phenotypic information as a guide for disease prevention, diagnosis, and treatment and has been successfully applied in diseases such as cancer, but not in obesity. As we gain insight into the pathophysiologic mechanisms of obesity and its phenotypic expression, specific pathways can be targeted to yield a greater, more sustained therapeutic impact in an individual patient with obesity. A phenotype-based pharmacologic treatment approach utilizing objective measures to classify patients into predominant obesity mechanism groups resulted in greater weight loss (compared with a non-phenotype-based approach) in a recent study by Acosta and colleagues. In this review, we discuss the application of lifestyle modifications, behavior therapy and pharmacotherapy using the obesity phenotype-based approach as a framework.
Collapse
Affiliation(s)
- Inuk Zandvakili
- Division of Digestive Diseases, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marya Pulaski
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Octavia Pickett-Blakely
- Division of Gastroenterology and Hepatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Lateef Kadhim B, Abdulkareem Mohammed K. Lipoxygenase-12 Levels and Biochemical Parameters in Iraqi Patients With Type 2 Diabetes With and Without Benign Prostatic Hyperplasia. Cureus 2023; 15:e46745. [PMID: 38022061 PMCID: PMC10631570 DOI: 10.7759/cureus.46745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia caused by a defect in the secretion or action or both of insulin. It has a complex pathogenesis. Benign prostatic hyperplasia (BPH) refers to an increase in the size of the prostate; it is one of the most common health problems in men that manifests with age. Lipoxygenase-12 (Lipox-12) is one of the enzymes in the Lipox 12/15 family, which plays a major role in catalyzing a variety of polyunsaturated fatty acids (PUFAs) that are capable of producing different metabolites. Lipox-12 has a significant effect on arachidonic acid metabolism, with PUFA, a pro- and anti-inflammatory mediator, as one of the enzyme isoforms. It also plays a major role in modulating inflammation at multiple checkpoints as diabetes progresses. The present study aims to measure Lipox-12 levels in patients with DM type 2 (DM2) and patients with DM2 + BPH. Methodology This study was conducted in Musayyib General Hospital, south of Baghdad, where a clinical examination was performed on 50 samples from controls (healthy subjects), 50 patients with DM2, and 50 patients with DM2 + BPH after taking each patient's history. The examinations performed included fasting blood sugar (FBS), hemoglobin A1c (HbA1c), prostate-specific antigen (PSA), triglycerides (TG), cholesterol (Chol), and Lipox-12. Results The results showed that both the DM2 and DM2 + BPH groups had higher FBS, HbA1c, TG, and Chol levels than healthy subjects; in contrast, Lipox-12 levels were the lowest in the DM2 group (sensitivity = 79% and specificity = 81%) but higher in the DM2 + BPH group (sensitivity = 80%; specificity = 82%) compared to the control group. Conclusions Lipox-12 had a high sensitivity and specificity in the DM2 and DM2 + BPH groups compared to the control group, and in both cases, it was used to monitor and diagnose DM2 and BPH.
Collapse
Affiliation(s)
- Bahaa Lateef Kadhim
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, IRQ
| | | |
Collapse
|
27
|
Dong Y, Li W, Yin J. The intestinal-hepatic axis: a comprehensive review on fructose metabolism and its association with mortality and chronic metabolic diseases. Crit Rev Food Sci Nutr 2023; 64:12473-12486. [PMID: 37671898 DOI: 10.1080/10408398.2023.2253468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Fructose is a common ingredient of food industry in the form of sucrose and high fructose corn sirup (HFCS). Due to its unique metabolic properties, excessive intake of fructose has been linked to various diseases, including obesity, nonalcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), chronic renal insufficiency, and even increase the risk of death. Interestingly, although high fructose intake may induce gout, it does not cause hyperuricemia, and the underlying molecular mechanisms remain debated. While previous studies focused on the liver as the primary site of fructose metabolism, recent evidence has suggested a crucial role for the intestine-hepatic axis in fructose metabolism. Low dose fructose is mainly metabolized in the small intestine. Only when the intake exceeds the intestine's metabolic capacity fructose spills over to be metabolized in the liver. High fructose diets also have a significant impact on the diversity of the gut microbiota, leading to alterations in the metabolic byproducts produced by these gut bacteria and thereby inducing endotoxemia. This paper provides a comprehensive review of the epidemiological and pathological studies conducted in recent years, describing the metabolic differences between fructose and glucose and the possible mechanisms underlying the link between excessive fructose intake and chronic metabolic diseases.
Collapse
Affiliation(s)
- Yiling Dong
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| | - Wen Li
- Department of Endocrinology and Metabolism, Haikou Orthopedics and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, China
| | - Jun Yin
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
28
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
29
|
Kim E. Effects of Natural Alternative Sweeteners on Metabolic Diseases. Clin Nutr Res 2023; 12:229-243. [PMID: 37593210 PMCID: PMC10432160 DOI: 10.7762/cnr.2023.12.3.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
The rising prevalence of obesity and diabetes is a significant health concern both in globally and is now regarded as a worldwide epidemic. Added sugars like sucrose and high-fructose corn syrup (HFCS) are a major concern due to their link with an increased incidence of diet-induced obesity and diabetes. The purpose of this review is to provide insight into the effects of natural sweeteners as alternatives to sucrose and HFCS, which are known to have negative impacts on metabolic diseases and to promote further research on sugar consumption with a focus on improving metabolic health. The collective evidences suggest that natural alternative sweeteners have positive impacts on various markers associated with obesity and diabetes, including body weight gain, hepatic fat accumulation, abnormal blood glucose or lipid homeostasis, and insulin resistance. Taken together, natural alternative sweeteners can be useful substitutes to decrease the risk of obesity and diabetes compared with sucrose and HFCS.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
30
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Johansen OE, Curti D, von Eynatten M, Rytz A, Lahiry A, Delodder F, Ufheil G, D'Urzo C, Orengo A, Thorne K, Lerea-Antes JS. Oligomalt, a New Slowly Digestible Carbohydrate, Is Well Tolerated in Healthy Young Men and Women at Intakes Up to 180 Gram per Day: A Randomized, Double-Blind, Crossover Trial. Nutrients 2023; 15:2752. [PMID: 37375656 DOI: 10.3390/nu15122752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In this randomized, double-blind triple-crossover study (NCT05142137), the digestive tolerance and safety of a novel, slowly digestible carbohydrate (SDC), oligomalt, an α-1,3/α-1,6-glucan α-glucose-based polymer, was assessed in healthy adults over three separate 7-day periods, comparing a high dose of oligomalt (180 g/day) or a moderate dose of oligomalt (80 g/day in combination with 100 g maltodextrin/day) with maltodextrin (180 g/day), provided as four daily servings in 300 mL of water with a meal. Each period was followed by a one-week washout. A total of 24 subjects (15 females, age 34 years, BMI 22.2 kg/m2, fasting blood glucose 4.9 mmol/L) were recruited, of whom 22 completed the course. The effects on the primary endpoint (the Gastrointestinal Symptom Rating Score (GSRS)) showed a statistically significant dose dependency, albeit of limited clinical relevance, between a high dose of oligomalt and maltodextrin (mean (95% CI) 2.29 [2.04, 2.54] vs. 1.59 [1.34, 1.83], respectively; difference: [-1.01, -0.4], p < 0.0001), driven by the GSRS-subdomains "Indigestion" and "Abdominal pain". The GSRS difference ameliorated with product exposure, and the GSRS in those who received high-dose oligomalt as their third intervention period was similar to pre-intervention (mean ± standard deviation: 1.6 ± 0.4 and 1.4 ± 0.3, respectively). Oligomalt did not have a clinically meaningful impact on the Bristol Stool Scale, and it did not cause serious adverse events. These results support the use of oligomalt across various doses as an SDC in healthy, normal weight, young adults.
Collapse
Affiliation(s)
| | | | | | - Andreas Rytz
- Nestlé Research, Clinical Research Unit, 1000 Lausanne, Switzerland
| | - Anirban Lahiry
- Nestlé Research, Clinical Research Unit, 1000 Lausanne, Switzerland
| | | | - Gerhard Ufheil
- Nestlé Research and Development Konolfingen, Société des Produits Nestlé S.A., 3510 Konolfingen, Switzerland
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
| | | | - Audrey Orengo
- Société des Produits Nestlé, 1000 Lausanne, Switzerland
| | - Kate Thorne
- Nestlé Health Science, 1000 Lausanne, Switzerland
| | - Jaclyn S Lerea-Antes
- Nestlé Product Technology Center NHS, Société des Produits Nestlé S.A., Bridgewater, NJ 08807, USA
- Nestlé Health Science, Bridgewater, NJ 08807, USA
| |
Collapse
|
32
|
Kanehara R, Katagiri R, Goto A, Yamaji T, Sawada N, Iwasaki M, Inoue M, Tsugane S. Sugar intake and colorectal cancer risk: A prospective Japanese cohort study. Cancer Sci 2023; 114:2584-2595. [PMID: 36851860 PMCID: PMC10236631 DOI: 10.1111/cas.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
The influence of sugar consumption on the risk of colorectal cancer (CRC) remains controversial. Prospective cohort studies focusing on total and specific types of sugar intake among the Asian population who have different patterns of sugar intake sources than American and European populations are scarce. We intended to examine the association of sugar intake with CRC risk among middle-aged adults in a Japanese large-scale population-based cohort study. The participants (42,405 men and 48,600 women) who were 45-74 years old and answered the questionnaire in 1995-1999 in the Japan Public Health Center-based Prospective Study were followed up until December 2013. Total sugars, total fructose, and specific types of sugar intake were estimated using a validated 147-item food frequency questionnaire and divided into quintiles (Q1-Q5). We used Cox proportional hazard regression models adjusted for potential confounders to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). During the follow-up, 2118 CRC cases (1226 men and 892 women) were identified. We did not observe any clear association between all types of sugar intake and an increased risk of CRC. Analyses by tumor sites yielded a positive association of total sugar consumption with rectal cancer in women (1.75 [1.07-2.87] for Q1 vs. Q5; p linear trend = 0.03), but no statistically significant trend was detected among men. Sugar intake was not associated with CRC risk in middle-aged Japanese adults. However, for rectal cancer, the probability of an increased risk among women with a higher total sugar intake cannot be excluded.
Collapse
Affiliation(s)
- Rieko Kanehara
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlTokyoJapan
| | - Ryoko Katagiri
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlTokyoJapan
- National Institute of Health and NutritionNational Institute of Biomedical Innovation, Health and NutritionTokyoJapan
| | - Atsushi Goto
- Division of EpidemiologyNational Cancer Center Institute for Cancer ControlTokyoJapan
- Department of Health Data Science, Graduate School of Data ScienceYokohama City UniversityKanagawaJapan
| | - Taiki Yamaji
- Division of EpidemiologyNational Cancer Center Institute for Cancer ControlTokyoJapan
| | - Norie Sawada
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlTokyoJapan
| | - Motoki Iwasaki
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlTokyoJapan
- Division of EpidemiologyNational Cancer Center Institute for Cancer ControlTokyoJapan
| | - Manami Inoue
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlTokyoJapan
- Division of PreventionNational Cancer Center Institute for Cancer ControlTokyoJapan
| | - Shoichiro Tsugane
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlTokyoJapan
- National Institute of Health and NutritionNational Institute of Biomedical Innovation, Health and NutritionTokyoJapan
| |
Collapse
|
33
|
Otani N, Ouchi M, Mizuta E, Morita A, Fujita T, Anzai N, Hisatome I. Dysuricemia-A New Concept Encompassing Hyperuricemia and Hypouricemia. Biomedicines 2023; 11:biomedicines11051255. [PMID: 37238926 DOI: 10.3390/biomedicines11051255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The importance of uric acid, the final metabolite of purines excreted by the kidneys and intestines, was not previously recognized, except for its role in forming crystals in the joints and causing gout. However, recent evidence implies that uric acid is not a biologically inactive substance and may exert a wide range of effects, including antioxidant, neurostimulatory, proinflammatory, and innate immune activities. Notably, uric acid has two contradictory properties: antioxidant and oxidative ones. In this review, we present the concept of "dysuricemia", a condition in which deviation from the appropriate range of uric acid in the living body results in disease. This concept encompasses both hyperuricemia and hypouricemia. This review draws comparisons between the biologically biphasic positive and negative effects of uric acid and discusses the impact of such effects on various diseases.
Collapse
Affiliation(s)
- Naoyuki Otani
- Department of Cardiology, Dokkyo Medical University Nikkyo Medical Center, Nikko 321-1298, Tochigi, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Einosuke Mizuta
- Department of Cardiology, Sanin Rosai Hospital, Yonago 683-8605, Tottori, Japan
| | - Asuka Morita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Tochigi, Japan
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Chiba, Japan
| | - Ichiro Hisatome
- Yonago Medical Center, National Hospital Organization, Yonago 683-0006, Tottori, Japan
| |
Collapse
|
34
|
Monteiro LM, Barbosa CF, Lichtenecker DCK, Argeri R, Gomes GN. Sex modifies the renal consequences of high fructose consumption introduced after weaning. Front Physiol 2023; 14:1090090. [PMID: 37008005 PMCID: PMC10050681 DOI: 10.3389/fphys.2023.1090090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
After lactation, many children consume fructose-rich processed foods. However, overconsumption of these foods can predispose individuals to non-communicable chronic diseases, which can have different repercussions depending on the sex. Thus, we evaluated the effects of fructose overload introduced after weaning on the renal function of young rats of both sexes.Methods: After weaning, male and female offspring of Wistar rats were assigned to drink water (the male/water and female/water groups) or 20% D-fructose solution (male/fructose and female/fructose groups). Food and water or fructose solution was offered ad libitum. Rats were evaluated at 4 months. Parameters analyzed: blood pressure, body weight, triglyceride levels, glomerular filtration rate, sodium, potassium, calcium, and magnesium excretion, macrophage infiltration, and eNOS and 8OHdG expression in renal tissue. CEUA-UNIFESP: 2757270117.Results: Fructose intake affected the blood pressure, body weight, and plasma triglyceride in all rats. Glomerular filtration rate was significantly reduced in males that received fructose when compared to that of the control group. Sodium and potassium excretion decreased in all fructose-treated rats; however, the excreted load of these ions was significantly higher in females than in males. In the female control group, calcium excretion was higher than that of the male control group. Fructose overload increased magnesium excretion in females, and also increased macrophage infiltration and reduced eNOS expression in both males and females.Conclusion: Fructose overload introduced after weaning caused metabolic and renal changes in rats. Renal function was more affected in males; however, several significant alterations were also observed in the female-fructose group.
Collapse
Affiliation(s)
- Letícia Maria Monteiro
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Celine Farias Barbosa
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | | | - Rogério Argeri
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Guiomar Nascimento Gomes
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Guiomar Nascimento Gomes,
| |
Collapse
|
35
|
Fan Y, Zhang Y, Chen C, Ying Z, Su Q, Li X, Chen Y. Fasting serum fructose is associated with metabolic dysfunction-associated fatty liver disease: A prospective study. Hepatol Res 2023. [PMID: 36745152 DOI: 10.1111/hepr.13888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
AIM The association between sugar-sweetened beverages and metabolic disorders has been well studied. However, it has not been determined whether fasting serum fructose is associated with metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS Participants were enrolled from 2011 to 2012 in Shanghai. Fasting serum fructose concentration was measured with a validated liquid chromatography-tandem mass spectrometry method. RESULTS A total of 954 participants without diabetes were included. They were followed for an average of 3.5 years. A total of 320 (33.5%) participants had MAFLD at baseline. With the increase in fasting serum fructose level by quartile, the MAFLD prevalence was increased by 27.0%, 25.0%, 37.4%, and 44.5%, respectively (p < 0.001). Each SD increase in fasting serum fructose level was associated with a 60% increased risk of MAFLD (odds ratio 1.60; 95% confidence interval [CI], 1.36-1.88; p < 0.001). Fasting serum fructose levels were more closely associated with four components of MAFLD (hepatic steatosis, prediabetes, insulin resistance, and low high-density lipoprotein). We built a diagnostic model named the fructose fat index (FFI). The area under the receiver operating characteristic curve of the FFI was 0.879 (95% CI, 0.850-0.908) in the derivation cohort and 0.827 (95% CI, 0.776-0.878) in the validation cohort. Subsequent prospective studies found that the incidence risk of MAFLD was 2.26 times higher in the high-fructose group than in the low-fructose group among female participants (95% CI, 1.46-3.49; p < 0.001). CONCLUSION Fasting serum fructose concentration, which mostly reflects endogenous fructose, was associated with a higher risk of MAFLD. The FFI derived from fasting serum fructose could be used to predict MAFLD.
Collapse
Affiliation(s)
- Yujuan Fan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuecheng Zhang
- General Practice Department, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Congling Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Ying
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Su
- Department of Endocrinology and Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Ye X, Zhang Y, He Y, Sheng M, Huang J, Lou W. Association between Consumption of Artificial Sweeteners and Breast Cancer Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Cancer 2023; 75:795-804. [PMID: 36795026 DOI: 10.1080/01635581.2023.2178957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
This study intends to conduct a meta-analysis based on existing research results to further investigate their relationship between artificial sweetener exposure and breast cancer risk. An electronic database literature search was performed up to July 2022, using PubMed, Web of Science, Ovid and Scopus. The relationship between artificial sweetener exposure and breast cancer (BC) incidence was evaluated by odds ratio (OR) and 95% confidence interval (CI). Among the five studies (two case-control studies and three cohort studies) that met the inclusion criteria, 314,056 participants were recruited in the cohort study, 4,043 cancer cases and 3,910 controls were recruited in the case-control study. It was found that exposure of artificial sweeteners was not related to the risk of BC (OR = 0.98, 95% CI = [0.94-1.03]). Subgroup analysis showed that compared with the non-exposure/very-low-dose group, the exposure to low, medium and high doses of artificial sweeteners were not associated with the risk of BC, which were OR = 1.01, 95% CI = [0.95-1.07], OR = 0.98, 95% CI = [0.93-1.02], OR = 0.88, 95% CI = [0.74-1.06], respectively. This study confirmed that there was no relationship between the exposure of artificial sweeteners and the incidence of BC.
Collapse
Affiliation(s)
- Xia Ye
- General Family Medicine, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Yeyuan Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mingyuan Sheng
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianing Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenzhu Lou
- General Family Medicine, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
37
|
Spagnuolo MS, Mazzoli A, Nazzaro M, Troise AD, Gatto C, Tonini C, Colardo M, Segatto M, Scaloni A, Pallottini V, Iossa S, Cigliano L. Long-Lasting Impact of Sugar Intake on Neurotrophins and Neurotransmitters from Adolescence to Young Adulthood in Rat Frontal Cortex. Mol Neurobiol 2023; 60:1004-1020. [PMID: 36394711 PMCID: PMC9849314 DOI: 10.1007/s12035-022-03115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.
Collapse
Affiliation(s)
- Maria Stefania Spagnuolo
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Arianna Mazzoli
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Martina Nazzaro
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Antonio Dario Troise
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Cristina Gatto
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Claudia Tonini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy
| | - Mayra Colardo
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Marco Segatto
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Andrea Scaloni
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Valentina Pallottini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy ,grid.417778.a0000 0001 0692 3437Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Susanna Iossa
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Luisa Cigliano
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| |
Collapse
|
38
|
Nguyen M, Jarvis SE, Tinajero MG, Yu J, Chiavaroli L, Mejia SB, Khan TA, Tobias DK, Willett WC, Hu FB, Hanley AJ, Birken CS, Sievenpiper JL, Malik VS. Sugar-sweetened beverage consumption and weight gain in children and adults: a systematic review and meta-analysis of prospective cohort studies and randomized controlled trials. Am J Clin Nutr 2023; 117:160-174. [PMID: 36789935 DOI: 10.1016/j.ajcnut.2022.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sugar-sweetened beverages (SSBs) have been implicated in fueling the obesity epidemic. OBJECTIVES This study aimed to update a synthesis of the evidence on SSBs and weight gain in children and adults. METHODS MEDLINE, Embase, and Cochrane databases were searched through September 8, 2022, for prospective cohort studies and randomized controlled trials (RCTs) that evaluated intake of SSBs in relation to BMI and body weight in children and adults, respectively. Eligible interventions were compared against a noncaloric control. Study-level estimates were pooled using random-effects meta-analysis and presented as β-coefficients with 95% CIs for cohorts and weighted mean differences (MDs) with 95% CIs for RCTs. RESULTS We identified 85 articles including 48 in children (40 cohorts, n = 91,713; 8 RCTs, n = 2783) and 37 in adults (21 cohorts, n = 448,661; 16 RCTs, n = 1343). Among cohort studies, each serving/day increase in SSB intake was associated with a 0.07-kg/m2 (95% CI: 0.04 kg/m2, 0.10 kg/m2) higher BMI in children and a 0.42-kg (95% CI: 0.26 kg, 0.58 kg) higher body weight in adults. RCTs in children indicated less BMI gain with SSB reduction interventions compared with control (MD: -0.21 kg/m2; 95% CI: -0.40 kg/m2, -0.01 kg/m2). In adults, randomization to addition of SSBs to the diet led to greater body weight gain (MD: 0.83 kg; 95% CI: 0.47 kg, 1.19 kg), and subtraction of SSBs led to weight loss (MD: -0.49 kg; 95% CI: -0.66 kg, -0.32 kg) compared with the control groups. A positive linear dose-response association between SSB consumption and weight gain was found in all outcomes assessed. CONCLUSIONS Our updated systematic review and meta-analysis expands on prior evidence to confirm that SSB consumption promotes higher BMI and body weight in both children and adults, underscoring the importance of dietary guidance and public policy strategies to limit intake. This meta-analysis was registered at the International Prospective Register of Systematic Reviews as CRD42020209915.
Collapse
Affiliation(s)
- Michelle Nguyen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sarah E Jarvis
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Maria G Tinajero
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jiayue Yu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anthony J Hanley
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Endocrinology, University of Toronto, Toronto, ON, Canada; Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON, Canada
| | - Catherine S Birken
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Child Health Evaluative Sciences, SickKids Research Institute, Toronto, ON, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Toronto 3D Knowledge Synthesis & Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology & Metabolism, St. Michael's Hospital, Toronto, ON, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Vasanti S Malik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
39
|
Yan R, Choi VWW, Hartono T, Tse IMY, Tse MCL, Zhou Y, Xu J, Sit WH, Wan JMF, Li ETS, Chan CB, Louie JCY. Effect of lifelong sucrose consumption at human-relevant levels on food intake and body composition of C57BL/6N mice. Front Nutr 2022; 9:1076073. [PMID: 36590231 PMCID: PMC9798237 DOI: 10.3389/fnut.2022.1076073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Controversies surround the issue if chronic consumption of a high-sugar diet is detrimental to health or not. This study investigates whether lifelong consumption of a higher sucrose diet will induce overeating, and obesity, and cause metabolic dysfunctions such as hyperglycemia and dyslipidaemia in C57BL/6N mice, compared to a lower sucrose diet. Methods Male C57BL/6N mice at 3 weeks of age were randomized into consuming a diet with 25 or 10% kcal from sucrose for the rest of their lives. Body weight, food and water intake, fasting blood glucose, insulin, and lipid levels were measured at regular intervals. At the end of the study, organs and tissues were collected and gene expression was measured. Results There was no discernible difference in the impact on food intake, body composition, glucose and lipid homeostasis, liver triglyceride content, life expectancy, as well as gene expression related to intermediary metabolism between mice fed a diet with 10 vs. 25% kcal as sucrose over their lifespan. We also showed that switching from a 25% kcal diet to a 10% kcal diet at different life stages, or vice versa, did not appear to affect these outcomes of interest. Discussion The results from our study suggest that lifelong consumption of a higher sugar diet generally did not induce overeating and obesity, disrupt carbohydrate metabolism and lipid homeostasis, and reduce life expectancy compared with a lower sugar diet. Our unorthodox findings disagreed with the popular belief that higher sugar consumption is detrimental to health, which should be confirmed in future studies.
Collapse
Affiliation(s)
- Ruolin Yan
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Vivian Wai Wan Choi
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Tania Hartono
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Iris Mei Ying Tse
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Yunpeng Zhou
- Department of Statistics and Actuarial Sciences, Faculty of Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jinfeng Xu
- Department of Statistics and Actuarial Sciences, Faculty of Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Wai Hung Sit
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jennifer Man Fan Wan
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Edmund Tsz Shing Li
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Chi Bun Chan
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jimmy Chun Yu Louie
- Faculty of Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
40
|
Ouchi Y, Komaki Y, Shimizu K, Fukano N, Sugino T, Shiraishi JI, Chowdhury VS, Bungo T. Comparison of oral administration of fructose and glucose on food intake and physiological parameters in broiler chicks. Poult Sci 2022; 102:102249. [PMID: 36335736 PMCID: PMC9640322 DOI: 10.1016/j.psj.2022.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Like glucose, fructose is a monosaccharide, but the mechanisms of its absorption and metabolism in the body are very different between the 2 molecules. In this study, we investigated the effects of oral administration of glucose and fructose on food intake, diencephalic gene expression, and plasma metabolite concentrations in broiler chicks. The animals used in this study were 4-day-old male broiler chicks (Ross 308). They were given glucose, fructose (200 mg/ 0.5 mL/ bird), or a similar volume of distilled water orally after 6 h fasting. After treatment, measurements of food intake (at 0, 30, and 60 min), and blood glucose as well as insulin concentrations were measured over time; however, diencephalic (hypothalamus) gene expression and plasma metabolites were measured at 30 min. The results showed that glucose administration suppressed food intake, but fructose administration did not suppress food intake and it was at the same level as distilled water administration. In addition, fructose administration did not increase plasma glucose and insulin levels as did glucose administration. In the diencephalon, expression levels of genes related to the melanocortin system were unaffected by the treatment, while gene expression levels related to intracellular energy regulation, such as AMP-activated protein kinase were affected by the glucose treatment in the fasted chicks. These results suggest that fructose administration does not suppress feeding behavior as a result of possible reduction in the energy levels in the diencephalon and associated energy metabolism.
Collapse
Affiliation(s)
- Yoshimitsu Ouchi
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
| | - Yoshinori Komaki
- Graduate School of Bioresource Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Kensuke Shimizu
- Graduate School of Bioresource Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Natsuki Fukano
- Graduate School of Bioresource Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Toshihisa Sugino
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Jun-ichi Shiraishi
- Department of Animal Science, Nippon Veterinary and Life Science University, Musashino 180-8602, Japan
| | - Vishwajit S. Chowdhury
- Faculty of Arts and Science, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Takashi Bungo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan,Corresponding author:
| |
Collapse
|
41
|
Maternal Fructose Intake, Programmed Mitochondrial Function and Predisposition to Adult Disease. Int J Mol Sci 2022; 23:ijms232012215. [DOI: 10.3390/ijms232012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Fructose consumption is now recognised as a major risk factor in the development of metabolic diseases, such as hyperlipidaemia, diabetes, non-alcoholic fatty liver disease and obesity. In addition to environmental, social, and genetic factors, an unfavourable intrauterine environment is now also recognised as an important factor in the progression of, or susceptibility to, metabolic disease during adulthood. Developmental trajectory in the short term, in response to nutrient restriction or excessive nutrient availability, may promote adaptation that serves to maintain organ functionality necessary for immediate survival and foetal development. Consequently, this may lead to decreased function of organ systems when presented with an unfavourable neonatal, adolescent and/or adult nutritional environment. These early events may exacerbate susceptibility to later-life disease since sub-optimal maternal nutrition increases the risk of non-communicable diseases (NCDs) in future generations. Earlier dietary interventions, implemented in pregnant mothers or those considering pregnancy, may have added benefit. Although, the mechanisms by which maternal diets high in fructose and the vertical transmission of maternal metabolic phenotype may lead to the predisposition to adult disease are poorly understood. In this review, we will discuss the potential contribution of excessive fructose intake during pregnancy and how this may lead to developmental reprogramming of mitochondrial function and predisposition to metabolic disease in offspring.
Collapse
|
42
|
Li X, Luan Y, Li Y, Ye S, Wang G, Cai X, Liang Y, Kord Varkaneh H, Luan Y. The effect of high-fructose corn syrup vs. sucrose on anthropometric and metabolic parameters: A systematic review and meta-analysis. Front Nutr 2022; 9:1013310. [PMID: 36238453 PMCID: PMC9551185 DOI: 10.3389/fnut.2022.1013310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
High-fructose corn syrup (HFCS) has been speculated to have stronger negative metabolic effects than sucrose. However, given the current equivocality in the field, the aim of the present study was to determine the impact of HFCS use compared to sucrose on anthropometric and metabolic parameters. We searched PubMed, Scopus, Cochrane Central and web of sciences, from database inception to May 2022. A random effects model and the generic inverse variance method were applied to assess the overall effect size. Heterogeneity analysis was performed using the Cochran Q test and the I2 index. Four articles, with 9 arms, containing 767 participants were included in this meta-analysis. Average HFCS and sucrose usage equated to 19% of daily caloric intake. Combined data from three studies indicated that HFCS intake does not significantly change the weight (weighted mean difference (WMD): −0.29 kg, 95% CI: −1.34, 0.77, I2 = 0%) when compared to the sucrose group. Concordant results were found for waist circumstance, body mass index, fat mass, total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG), systolic blood pressure (SBP), and diastolic blood pressure (DBP). Moreover, overall results from three studies indicated a significant increase in CRP levels (WMD: 0.27 mg/l, 95% CI: 0.02, 0.52, I2 = 23%) in the HFCS group compared to sucrose. In conclusion, analysis of data from the literature suggests that HFCS consumption was associated with a higher level of CRP compared to sucrose, whilst no significant changes between the two sweeteners were evident in other anthropometric and metabolic parameters.
Collapse
Affiliation(s)
- Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yunqi Luan
- Beijing Institute for Drug Control (Beijing Center for Vaccine Control), Beijing, China
| | - Yuejin Li
- The General Surgery Department, The First People's Hospital of Yunnan Province, Kunming, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, China
| | - Guihui Wang
- Department of Endocrinology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Xinlun Cai
- Department of Endocrinology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yucai Liang
- Lairui Biotechnology (Yunnan) Co., Ltd. Yunnan, China
| | | | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
- *Correspondence: Yunpeng Luan
| |
Collapse
|
43
|
Sharma P, Nair J, Sinh A, Shivangi, Velpandian T, Tripathi R, Mathur R. Guava Leaf Extract Suppresses Fructose Mediated Non-Alcoholic Fatty Liver Disease in Growing Rats. Diabetes Metab Syndr Obes 2022; 15:2827-2845. [PMID: 36134391 PMCID: PMC9484835 DOI: 10.2147/dmso.s381102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022]
Abstract
Purpose Fructose is highly lipogenic, and its unhindered ingestion by children and adolescents is understood to induce hypertriglyceridemia and non-alcoholic fatty liver disease (ped-NAFLD) that is till date managed symptomatically or surgically. The aim of the present study was to investigate the potential of hydroethanolic extract of leaves of Guava (PG-HM) to suppress the alterations in the hepatic molecular signals due to unrestricted fructose (15%) drinking by growing rats. Methods Weaned rats (4 weeks old) in control groups had ad libitum access to fructose drinking solution (15%) for four (4FDR) or eight (8FDR) weeks, ie, till puberty or early adulthood, respectively, while treatment groups (4PGR, 8PGR) additionally received PG-HM (500 mg/kg, po). Results The PG-HM suppressed ped-NAFLD through hepatic signalling pathways of 1) leptin-insulin (Akt/FOX-O1/SREBP-1c), 2) hypoxia-inflammation (HIF-1ɑ/VEGF, TNF-ɑ), 3) mitochondrial function (complexes I–V), 4) oxidative stress (MDA, GSH, SOD) and 5) glycolysis/gluconeogenesis/de novo lipogenesis (hexokinase, phosphofructokinase, ketohexokinase, aldehyde dehydrogenase). Parri passu, the insulin sensitizing effect of PG-HM and its ethyl acetate fraction (PG-EA) was elucidated using HepG2 cells grown in media enhanced with fructose. Further, in murine hepatocytes cultured in fructose-rich media, PG-HM (35 µg mL-1) outperformed Pioglitazone (15 µM) and Metformin (5 mM), to suppress hepatic insulin resistance. Conclusion This study established that hydroethanolic extract of leaves of Guava (PG-HM) has potential to suppress hepatic metabolic alteration for the management of the pediatric NAFLD.
Collapse
Affiliation(s)
- Prateek Sharma
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Jayachandran Nair
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anurag Sinh
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Shivangi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology, Dr. R.P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ruchi Tripathi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Rajani Mathur
- Department of Pharmacology, Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| |
Collapse
|
44
|
Pan Q, Zha S, Li J, Guan H, Xia J, Yu J, Cui C, Liu Y, Xu J, Liu J, Chen G, Jiang M, Zhang J, Ding X, Zhao X. Identification of the susceptible subpopulations for wide pulse pressure under long-term exposure to ambient particulate matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155311. [PMID: 35439510 DOI: 10.1016/j.scitotenv.2022.155311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Wide pulse pressure (WPP) is a preclinical indicator for arterial stiffness and cardiovascular diseases. Long-term exposure to ambient particulate matters (PMs) would increase the risk of WPP. Although reducing pollutants emissions and avoiding outdoor activity during a polluted period are effective ways to blunt the adverse effects. Identifying and protecting the susceptible subpopulation is another crucial way to reduce the disease burdens. Therefore, we aimed to identify the susceptible subpopulations of WPP under long-term exposure to PMs. The WPP was defined as pulse pressure over 60 mmHg. Three-year averages of PMs were estimated using random forest approaches. Associations between WPP and PMs exposure were estimated using generalized propensity score weighted logistic regressions. Demographic, socioeconomic characteristics, health-related behaviors, and hematological biomarkers were collected to detect the modification effects on the WPP-PMs associations. Susceptible subpopulations were defined as those with significantly higher risks of WPP under PMs exposures. The PMs-WPP associations were significant with ORs (95%CI) of 1.126 (1.094, 1.159) for PM1, 1.174 (1.140, 1.210) for PM2.5, and 1.111 (1.088, 1.135) for PM10. There were 17 subpopulations more sensitive to WPP under long-term exposure to PMs. The susceptibility was higher in subpopulations with high BMI (Q3-Q4 quartiles), high-intensive physical activity (Q3 or Q4 quartile), insufficient or excessive fruit intake (Q1 or Q5 quartile), insufficient or too long sleep length (<7 or >8 h). Subpopulations with elevated inflammation markers (WBC, LYM, BAS, EOS: Q3-Q4 quartiles) and glucose metabolism indicators (HbA1c, GLU: Q3-Q4 quartiles) were more susceptible. Besides, elder, urban living, low socioeconomic level, and excessive red meat and sodium salt intake were also related to higher susceptibility. Our findings on the susceptibility characteristics would help to develop more targeted disease prevention and therapy strategies. Health resources can be allocated more effectively by putting more consideration to subpopulations with higher susceptibility.
Collapse
Affiliation(s)
- Qing Pan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shun Zha
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Jingzhong Li
- Tibet Center for Disease Control and Prevention, Tibet, China
| | - Han Guan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jingjie Xia
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Jianhong Yu
- Pidu District Center for Disease Control and Prevention, Chengdu, China
| | | | - Yuanyuan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangdong, China
| | - Min Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xianbin Ding
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Campbell GJ, Lucic Fisher SG, Brandon AE, Senior AM, Bell-Anderson KS. Sex-specific effects of maternal dietary carbohydrate quality on fetal development and offspring metabolic phenotype in mice. Front Nutr 2022; 9:917880. [PMID: 35942169 PMCID: PMC9356227 DOI: 10.3389/fnut.2022.917880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives In utero glycemia is an important determinant of fetal growth. Women with gestational diabetes are more likely to deliver large-for-gestational age babies that are at increased risk for obesity. The maternal nutritional state modulates the development of offspring biological systems during the critical periods of gestation and lactation. Carbohydrate typically contributes most of the dietary energy, however, there are very few mechanistic studies investigating the effects of maternal dietary carbohydrate quality on fetal and offspring outcomes. Therefore, we sought to investigate the direct effects of maternal carbohydrate quality on sex-specific offspring metabolic programming. Methods Female C57BL/6 mice were fed one of five isocaloric diets: four high-sugar diets based on glucose, sucrose, isomaltulose or fructose (all containing 60% energy as carbohydrate), or a standard, minimally processed, chow diet, and were mated with chow-fed males. Half of the dams were sacrificed for fetus dissection and placental collection, with the remaining giving live birth. All dams were metabolically profiled before and during pregnancy, and pups were similarly profiled at 12 weeks of age. Results Overall, glucose-fed dams were heavier and fatter than chow or isomaltulose-fed dams. Female fetuses from glucose and isomaltulose-fed mothers weighed less and had smaller livers, than those from chow-fed mothers, with isomaltulose-fed female fetuses also having decreased placental mass. In contrast, male fetuses responded differently to the maternal diets, with heart mass being significantly increased when their mothers were fed fructose-containing diets, that is, sucrose, isomaltulose and fructose. High-sugar fed female offspring weighed the same, but were significantly fatter, than chow-fed offspring at 12 weeks of age, while glucose and isomaltulose-fed male pups displayed a similar phenotype to their mothers’. Conclusion While both glucose and isomaltulose diets constrained fetal growth in females, only placentas from isomaltulose-fed dams were significantly smaller than those from chow-fed mothers, suggesting the mechanisms through which fetal growth is reduced may be different. Female fetuses of isomaltulose-fed mothers were also lighter than sucrose-fed fetuses suggesting the glycemic index, or rate of glucose digestion and absorption, may be an important factor in determining nutrient availability to the growing fetus.
Collapse
Affiliation(s)
- G. Jean Campbell
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sophie G. Lucic Fisher
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Amanda E. Brandon
- Charles Perkins Centre and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Alistair M. Senior
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Kim S. Bell-Anderson
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Kim S. Bell-Anderson,
| |
Collapse
|
46
|
Witek K, Wydra K, Filip M. A High-Sugar Diet Consumption, Metabolism and Health Impacts with a Focus on the Development of Substance Use Disorder: A Narrative Review. Nutrients 2022; 14:2940. [PMID: 35889898 PMCID: PMC9323357 DOI: 10.3390/nu14142940] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/01/2023] Open
Abstract
Carbohydrates are important macronutrients in human and rodent diet patterns that play a key role in crucial metabolic pathways and provide the necessary energy for proper body functioning. Sugar homeostasis and intake require complex hormonal and nervous control to proper body energy balance. Added sugar in processed food results in metabolic, cardiovascular, and nervous disorders. Epidemiological reports have shown enhanced consumption of sweet products in children and adults, especially in reproductive age and in pregnant women, which can lead to the susceptibility of offspring's health to diseases in early life or in adulthood and proneness to mental disorders. In this review, we discuss the impacts of high-sugar diet (HSD) or sugar intake during the perinatal and/or postnatal periods on neural and behavioural disturbances as well as on the development of substance use disorder (SUD). Since several emotional behavioural disturbances are recognized as predictors of SUD, we also present how HSD enhances impulsive behaviour, stress, anxiety and depression. Apart from the influence of HSD on these mood disturbances, added sugar can render food addiction. Both food and addictive substances change the sensitivity of the brain rewarding neurotransmission signalling. The results of the collected studies could be important in assessing sugar intake, especially via maternal dietary patterns, from the clinical perspective of SUD prevention or pre-existing emotional disorders. Methodology: This narrative review focuses on the roles of a high-sugar diet (HSD) and added sugar in foods and on the impacts of glucose and fructose on the development of substance use disorder (SUD) and on the behavioural predictors of drugs abuse. The literature was reviewed by two authors independently according to the topic of the review. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open access scientific journals using the following keyword search strategy depending on the theme of the chapter: "high-sugar diet" OR "high-carbohydrate diet" OR "sugar" OR "glucose" OR "fructose" OR "added sugar" AND keywords. We excluded inaccessible or pay-walled articles, abstracts, conference papers, editorials, letters, commentary, and short notes. Reviews, experimental studies, and epidemiological data, published since 1990s, were searched and collected depending on the chapter structure. After the search, all duplicates are thrown out and full texts were read, and findings were rescreened. After the selection process, appropriate papers were included to present in this review.
Collapse
Affiliation(s)
| | | | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (K.W.); (K.W.)
| |
Collapse
|
47
|
Yang Y, Yuan S, Liu Q, Li F, Dong Y, Dong B, Zou Z, Ma J, Baker JS, Li X, Liang W. Meeting 24-Hour Movement and Dietary Guidelines: Prevalence, Correlates and Association with Weight Status among Children and Adolescents: A National Cross-Sectional Study in China. Nutrients 2022; 14:nu14142822. [PMID: 35889779 PMCID: PMC9317649 DOI: 10.3390/nu14142822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/18/2022] Open
Abstract
China is confronted with a “double burden” of underweight and overweight/obesity in children and adolescents. This study aimed to investigate the prevalence and correlates of meeting 24 h movement and dietary guidelines among Chinese children and adolescents. Further, the study aimed to examine the association of meeting 24 h movement and dietary guidelines with weight status in Chinese children and adolescents. A total of 34,887 Chinese children and adolescents were involved. Only 2.1% of participants met the 24 h movement guidelines. Compared to those who met all three 24 h movement guidelines, those who only met the sleep duration guideline was significantly associated with a higher risk of underweight (p < 0.05), and those who only met the moderate-to-vigorous physical activity, or screen time guidelines were significantly associated with a higher risk of overweight/obesity (p < 0.05). Compared with those meeting the dietary guidelines, those who did not meet the soft drink intake guideline had a significantly lower risk of underweight (p < 0.05), those who did not meet the fruit intake guideline had a significantly lower risk of overweight/obesity (p < 0.05), and those who did not meet the milk intake guideline showed a significantly higher risk of overweight/obesity (p < 0.001). These findings indicate a significant association between meeting the 24 h movement and dietary guidelines and weight status among Chinese children and adolescents.
Collapse
Affiliation(s)
- Yide Yang
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, Changsha 410006, China; (Y.Y.); (S.Y.); (Q.L.)
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410006, China
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (B.D.); (Z.Z.); (J.M.)
| | - Shuqian Yuan
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, Changsha 410006, China; (Y.Y.); (S.Y.); (Q.L.)
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410006, China
| | - Qiao Liu
- Department of Child and Adolescent Health, School of Medicine, Hunan Normal University, Changsha 410006, China; (Y.Y.); (S.Y.); (Q.L.)
| | - Feifei Li
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China; (F.L.); (J.S.B.)
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (B.D.); (Z.Z.); (J.M.)
- Correspondence: (Y.D.); (X.L.); (W.L.)
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (B.D.); (Z.Z.); (J.M.)
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (B.D.); (Z.Z.); (J.M.)
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (B.D.); (Z.Z.); (J.M.)
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China; (F.L.); (J.S.B.)
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Xianxiong Li
- School of Physical Education, Hunan Normal University, Changsha 410081, China
- Correspondence: (Y.D.); (X.L.); (W.L.)
| | - Wei Liang
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China; (F.L.); (J.S.B.)
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
- Correspondence: (Y.D.); (X.L.); (W.L.)
| |
Collapse
|
48
|
Differential Effects of Dietary Macronutrients on the Development of Oncogenic KRAS-Mediated Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14112723. [PMID: 35681705 PMCID: PMC9179355 DOI: 10.3390/cancers14112723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
KRAS mutations are prevalent in patients with pancreatic ductal adenocarcinoma (PDAC) and are critical to fostering tumor growth in part by aberrantly rewiring glucose, amino acid, and lipid metabolism. Obesity is a modifiable risk factor for pancreatic cancer. Corroborating this epidemiological observation, mice harboring mutant KRAS are highly vulnerable to obesogenic high-fat diet (HFD) challenges leading to the development of PDAC with high penetrance. However, the contributions of other macronutrient diets, such as diets rich in carbohydrates that are regarded as a more direct source to fuel glycolysis for cancer cell survival and proliferation than HFD, to pancreatic tumorigenesis remain unclear. In this study, we compared the differential effects of a high-carbohydrate diet (HCD), an HFD, and a high-protein diet (HPD) in PDAC development using a mouse model expressing an endogenous level of mutant KRASG12D specifically in pancreatic acinar cells. Our study showed that although with a lower tumorigenic capacity than chronic HFD, chronic HCD promoted acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) lesions with increased inflammation, fibrosis, and cell proliferation compared to the normal diet (ND) in KrasG12D/+ mice. By contrast, chronic HPD showed no significant adverse effects compared to the ND. Furthermore, ablation of pancreatic acinar cell cyclooxygenase 2 (Cox-2) in KrasG12D/+ mice abrogated the adverse effects induced by HCD, suggesting that diet-induced pancreatic inflammation is critical for promoting oncogenic KRAS-mediated neoplasia. These results indicate that diets rich in different macronutrients have differential effects on pancreatic tumorigenesis in which the ensuing inflammation exacerbates the process. Management of macronutrient intake aimed at thwarting inflammation is thus an important preventive strategy for patients harboring oncogenic KRAS.
Collapse
|
49
|
Yan RR, Chan CB, Louie JCY. Current WHO recommendation to reduce free sugar intake from all sources to below 10% of daily energy intake for supporting overall health is not well supported by available evidence. Am J Clin Nutr 2022; 116:15-39. [PMID: 35380611 PMCID: PMC9307988 DOI: 10.1093/ajcn/nqac084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/01/2022] [Indexed: 01/15/2023] Open
Abstract
Sugar is widely consumed over the world. Although the mainstream view is that high added or free sugar consumption leads to obesity and related metabolic diseases, controversies exist. This narrative review aims to highlight important findings and identify major limitations and gaps in the current body of evidence in relation to the effect of high sugar intakes on health. Previous animal studies have shown that high sucrose or fructose consumption causes insulin resistance in the liver and skeletal muscle and consequent hyperglycemia, mainly because of fructose-induced de novo hepatic lipogenesis. However, evidence from human observational studies and clinical trials has been inconsistent, where most if not all studies linking high sugar intake to obesity focused on sugar-sweetened beverages (SSBs), and studies focusing on sugars from solid foods yielded null findings. In our opinion, the substantial limitations in the current body of evidence, such as short study durations, use of supraphysiological doses of sugar or fructose alone in animal studies, and a lack of direct comparisons of the effects of solid compared with liquid sugars on health outcomes, as well as the lack of appropriate controls, seriously curtail the translatability of the findings to real-world situations. It is quite possible that "high" sugar consumption at normal dietary doses (e.g., 25% daily energy intake) per se-that is, the unique effect of sugar, especially in the solid form-may indeed not pose a health risk for individuals apart from the potential to reduce the overall dietary nutrient density, although newer evidence suggests "low" sugar intake (<5% daily energy intake) is just as likely to be associated with nutrient dilution. We argue the current public health recommendations to encourage the reduction of both solid and liquid forms of free sugar intake (e.g., sugar reformulation programs) should be revised due to the overextrapolation of results from SSBs studies.
Collapse
Affiliation(s)
- Rina Ruolin Yan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | |
Collapse
|
50
|
Dietary Counseling Aimed at Reducing Sugar Intake Yields the Greatest Improvement in Management of Weight and Metabolic Dysfunction in Children with Obesity. Nutrients 2022; 14:nu14071500. [PMID: 35406113 PMCID: PMC9003198 DOI: 10.3390/nu14071500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Pediatric obesity is a significant public health problem, the negative outcomes of which will challenge individual well-being and societal resources for decades to come. The objective of this study was to determine the effects of dietary counseling on weight management and metabolic abnormalities in children with obesity. One hundred and sixty-five patients aged 2−18 years old were studied over a two and a half year period. Data collected included demographic information, anthropometric assessment, laboratory measurements, and self-reported eating behaviors. Dietary counseling was provided at each visit. The data was analyzed from the first and last visits and the subjects were retrospectively divided into responders and non-responders based on a decrease in their BMI. After receiving dietary guidance, BMI decreased in 44% of the children, and these participants were classified as responders (BMI-R; n = 72). However, BMI did not improve in 56% of the participants, and these were classified as non-responders (BMI-NR; n = 93). At the initial visit, anthropometric measurements and dietary habits were similar between the groups. At the time of the last visit, mean change in BMI was −1.47 (SD 1.31) for BMI-R and +2.40 (SD 9.79) for BMI-NR. Analysis of food intake revealed that BMI-R significantly improved their dietary habits (p = 0.002) by reducing the intake of sugar-sweetened beverages (p = 0.019), processed foods (p = 0.002), sweets (p < 0.001), and unhealthy snacks (p = 0.009), as compared with BMI-NR. There was no change in the intake of second helpings, portion sizes, skipping meals, frequency of meals eaten at school, condiment use, intake of fruits and vegetables and consumption of whole grains between the groups. BMI-R also achieved an improvement in fasted glucose (p = 0.021), triglycerides (p < 0.001), and total cholesterol (p = 0.023), as compared to BMI-NR. In conclusion, children with obesity who were able to decrease their BMI implemented a significant reduction in consumption of foods with high sugar content. Focusing on reducing sugar intake may yield the biggest impact in terms of weight management and the improvement of metabolic abnormalities.
Collapse
|