1
|
Kanata MC, Yanni AE, Koliaki C, Anastasiou IA, Tentolouris N, Karathanos VT. Impact of flour particle size and origin on the bread structure and the postprandial glycemic, insulinemic and appetite responses in healthy adults. Food Funct 2025. [PMID: 40388189 DOI: 10.1039/d5fo00348b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Consumption of bakery products prepared with finely milled flour is associated with elevated postprandial glycemia, increased hunger, and reduced satiety. The milling process disrupts the plant cell walls of cereal grains and legumes, enhancing the accessibility of encapsulated starch to digestive enzymes. This study investigates the effects of flour origin (wheat and chickpea) and particle size in three wholemeal breads on physicochemical properties, postprandial glucose, insulin, glucagon-like peptide-1 (GLP-1) responses, and subjective appetite sensations in healthy individuals. In the test breads, 30% of refined wheat flour was substituted with cracked whole wheat (1.8-2.0 mm) to make whole grain bread (WGB), finely milled chickpea flour (CFM), or larger particle-chickpea flour (1.4-1.8 mm, CLP). Wheat bread (WB) served as the control. In all three test breads, 28% of refined wheat flour was substituted with wholemeal wheat flour. Compared to WB and WGB, CFM and CLP had a harder and more chewy texture, and a lower specific volume (p < 0.05). WGB, CFM, and CLP had reduced porosity and lightness (L*) compared to WB (p < 0.05). In a randomized crossover study (RCT), fifteen normoglycemic individuals participated in four separate sessions. The glucose incremental area under the curve (iAUC) was lower for CLP compared to those of both WB and CFM (p < 0.05). While insulin responses were similar across all breads, GLP-1 iAUC was significantly higher following CLP consumption compared to WB (p < 0.05), whereas no significant differences were observed among the other test breads in the postprandial GLP-1 response. CLP consumption resulted in a lower iAUC for hunger and desire to eat, and a higher iAUC for fullness, as evaluated using Visual Analogue Scales (VAS), compared to WB (p < 0.05). Incorporation of large-particle chickpea flour into bread can effectively reduce postprandial glycemia, increase GLP-1 secretion and contribute to the enhancement of satiety. Such formulations may offer promising dietary strategies for glycemic control and appetite regulation.
Collapse
Affiliation(s)
- Maria-Christina Kanata
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece.
| | - Amalia E Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece.
| | - Chrysi Koliaki
- 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece
| | - Ioanna A Anastasiou
- 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Nikolaos Tentolouris
- 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece.
| |
Collapse
|
2
|
Zhao C, Li M, Jiang J, Li W, Tian W, He Z, Guo B. The impact of starch composition and gluten content on noodle texture and starch digestibility. Carbohydr Polym 2025; 353:123294. [PMID: 39914970 DOI: 10.1016/j.carbpol.2025.123294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 05/07/2025]
Abstract
The role of starch in noodle structure is often underestimated, particularly regarding amylose content, which constitutes over 70 % of the dry mass in fresh noodles. This study investigates the roles of starch amylose and gluten content on the texture and digestibility of noodles using a reconstitution model. Noodle texture and digestibility were examined under six distinct ratios of waxy wheat starch (WWS) and high-amylose wheat starch (HAWS) and two gluten content levels (12 % and 16 %). Noodle hardness initially decreased with increasing HAWS content but subsequently increased at 40 % HAWS level, and the starch digestibility continuously declined with the increasing HAWS content. Gluten content had a minor impact on the noodle texture compared to amylose, and the digestion rate was significantly slowed down in WWS-rich noodle samples. Variations in starch composition, particularly the amylose/amylopectin ratio, affects noodle swelling and granule rigidity, resulting in differences in gluten network formation; The looser structure observed at higher HAWS levels led to reduced hardness and higher digestion rates. This research offers a practical approach to optimizing noodle texture and starch digestibility, which is beneficial for developing of noodles with desired organoleptic and digestion properties.
Collapse
Affiliation(s)
- Cong Zhao
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ming Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Zhongyuan Research Center, CAAS, Xinxiang 453500, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), CAAS, Cangzhou 061019, China
| | - Jikai Jiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wenduan Li
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Wenfei Tian
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing 100081, China
| | - Zhonghu He
- State Key Laboratory of Crop Gene Resource and Breeding/National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China; International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing 100081, China.
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Zhongyuan Research Center, CAAS, Xinxiang 453500, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), CAAS, Cangzhou 061019, China.
| |
Collapse
|
3
|
Kaur J, Manchanda P, Kaur H, Kumar P, Kalia A, Sharma SP, Taggar MS. In-Silico Identification, Characterization and Expression Analysis of Genes Involved in Resistant Starch Biosynthesis in Potato (Solanum tuberosum L.) Varieties. Mol Biotechnol 2025; 67:1222-1239. [PMID: 38509332 DOI: 10.1007/s12033-024-01121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Potato (Solanum tuberosum L.), an important horticultural crop is a member of the family Solanaceae and is mainly grown for consumption at global level. Starch, the principal component of tubers, is one of the significant elements for food and non-food-based applications. The genes associated with biosynthesis of starch have been investigated extensively over the last few decades. However, a complete regulation pathway of constituent of amylose and amylopectin are still not deeply explored. The current in-silico study of genes related to amylose and amylopectin synthesis and their genomic organization in potato is still lacking. In the current study, the nucleotide and amino acid arrangement in genome and twenty-two genes linked to starch biosynthesis pathway in potato were analysed. The genomic structure analysis was also performed to find out the structural pattern and phylogenetic relationship of genes. The genome mining and structure analysis identified ten specific motifs and phylogenetic analysis of starch biosynthesis genes divided them into three different clades on the basis of their functioning and phylogeny. Quantitative real-time PCR (qRT-PCR) of amylose biosynthesis pathway genes in three contrast genotypes revealed the down-gene expression that leads to identify potential cultivar for functional genomic approaches. These potential lines may help to achieve higher content of resistant starch.
Collapse
Affiliation(s)
- Jaspreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Harleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Pankaj Kumar
- Department of Microbiology, Adesh Medical College & Hospital, Mohri, Kurukshetra, Haryana, 136135, India
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sat Pal Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, 141004, India
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
4
|
Garutti M, Sirico M, Noto C, Foffano L, Hopkins M, Puglisi F. Hallmarks of Appetite: A Comprehensive Review of Hunger, Appetite, Satiation, and Satiety. Curr Obes Rep 2025; 14:12. [PMID: 39849268 DOI: 10.1007/s13679-024-00604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/25/2025]
Abstract
PURPOSE OF REVIEW The present review describes the available literature on the physiologic mechanisms that modulate hunger, appetite, satiation, and satiety with a particular focus on well-established and emerging factors involved in the classic satiety cascade model. RECENT FINDING Obesity is a significant risk factor for numerous chronic conditions like cancer, cardiovascular diseases, and diabetes. As excess energy intake is considered by some to be the primary driver of weight gain, tremendous collective effort should be directed toward reducing excessive feeding at the individual and population levels. From this perspective, detailed understanding of physiologic mechanisms that control appetite, and in turn, the design of effective interventions to manage appetite, may represent key strategies in controlling the obesity epidemic. With the obesity's prevalence on the rise worldwide, research on hunger, appetite, satiation and satiety is more relevant than ever. This research aims to provide practical insights for medical practitioners, nutrition professionals, and the broader scientific community in the fight against this global health challenge.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy.
| | - Marianna Sirico
- Medical Oncology and Breast Unit, IRCCS Istituto Romagnolo Per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Forli-Cesena, Italy
| | - Claudia Noto
- Medical Oncology, Azienda Sanitaria Universitaria Integrata Di Trieste, Ospedale Maggiore, Piazza Dell'Ospitale 1, 34125, Trieste, Italy
| | - Lorenzo Foffano
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Mark Hopkins
- School of Food Science & Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, 33100, Udine, Italy
| |
Collapse
|
5
|
Peng X, Fan Z, Wei J, Liu R, Lou X, Hu J, Xing Y. Fresh-Cooked but Not Cold-Stored Millet Exhibited Remarkable Second Meal Effect Independent of Resistant Starch: A Randomized Crossover Trial. Nutrients 2024; 16:4030. [PMID: 39683424 PMCID: PMC11643557 DOI: 10.3390/nu16234030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
It is well established that cold storage results in increased resistant starch and a reduced glycemic index in carbohydrate food. However, the effects of cold storage on the glycemic response of the second meal of cereals remain unclear. The aim of this study was to compare the postprandial glycemic responses between the paired glutinous and non-glutinous grains, either fresh-cooked or refrigerated, after both the first and second meals. In this randomized crossover trial, eighteen healthy female participants consumed eight test meals, each containing 50 g of carbohydrate, including fresh-cooked non-glutinous and glutinous rice, non-glutinous and glutinous millet, and their refrigerated counterparts (4 °C for 24 h). Postprandial blood glucose and insulin were measured at 240 min and 120 min after breakfast. After a standard lunch, the participants' blood glucose concentrations were measured within 180 min. The rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents of the samples were determined by in vitro enzymatic analysis. Cold-stored non-glutinous rice (CR) and cold-stored non-glutinous millet (CM) had a 24.4% and 29.5% lower incremental area under the curve (iAUCglu) of glucose within 240 min compared to the control (fresh-cooked rice non-glutinous, FR), respectively (p < 0.05). There were no significant differences between either the cold or hot glutinous grains and FR with respect to postprandial glycemic and insulinemic parameters. After a standard lunch, the fresh-cooked non-glutinous millet (FM) achieved a 39.1% lower iAUCglu0-180 compared to the FR (p < 0.05). FM had the highest percentage of SDS (64.8%, p < 0.05) among all grain samples. Refrigeration treatment reduced the glycemic excursion only in non-glutinous grains at the first meal, but the FM instead of CM demonstrated a significant second meal effect.
Collapse
Affiliation(s)
- Xiyihe Peng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (J.W.); (R.L.); (X.L.); (J.H.)
| | - Zhihong Fan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (J.W.); (R.L.); (X.L.); (J.H.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jinjie Wei
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (J.W.); (R.L.); (X.L.); (J.H.)
| | - Rui Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (J.W.); (R.L.); (X.L.); (J.H.)
| | - Xinling Lou
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (J.W.); (R.L.); (X.L.); (J.H.)
| | - Jiahui Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.P.); (J.W.); (R.L.); (X.L.); (J.H.)
| | - Yuqing Xing
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100091, China;
| |
Collapse
|
6
|
Li J, Yoshimura K, Sasaki M, Maruyama K. The Consumption of High-Amylose Rice and its Effect on Postprandial Blood Glucose Levels: A Literature Review. Nutrients 2024; 16:4013. [PMID: 39683407 DOI: 10.3390/nu16234013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Rice is a major staple in the diets of East Asian populations. Numerous meta-analyses have shown an association between high white rice consumption and a higher risk of diabetes. High-amylose rice (varieties with over 25% amylose content) is absorbed more slowly in the gut compared to low-amylose rice, and it results in lower levels of postprandial blood glucose. Various intervention studies have investigated the effects of high-amylose rice consumption on postprandial blood glucose and the glycemic index. The quantity of the research suggests that a comprehensive review of these diverse findings is necessary. Methods and Results: We reviewed 17 clinical trials, most of which showed that high-amylose rice ingestion results in lower postprandial blood glucose levels and glycemic index compared to low-amylose rice diets. Although they differed in their sample size, study design, rice type and quantity, and amylose content, most of these studies suggested that there is a reasonable effect of high-amylose rice consumption on postprandial blood glucose. In particular, the effect on blood glucose suppression tended to be related to the amylose content. However, long-term intake studies are still limited and require further investigation. Conclusions: In conclusion, high-amylose rice shows promise for blood glucose management.
Collapse
Affiliation(s)
- Jia Li
- Laboratory of Community Health and Nutrition, Course of Food Science, Department of Applied Bioresource Science, The United Graduate School of Agriculture Sciences, Ehime University, Matsuyama 790-8566, Japan
| | - Kana Yoshimura
- Laboratory of Community Health and Nutrition, Special Course of Food and Health Science, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Minori Sasaki
- Laboratory of Community Health and Nutrition, Special Course of Food and Health Science, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Koutatsu Maruyama
- Laboratory of Community Health and Nutrition, Course of Food Science, Department of Applied Bioresource Science, The United Graduate School of Agriculture Sciences, Ehime University, Matsuyama 790-8566, Japan
- Laboratory of Community Health and Nutrition, Special Course of Food and Health Science, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| |
Collapse
|
7
|
Barone Lumaga R, Tagliamonte S, De Rosa T, Valentino V, Ercolini D, Vitaglione P. Consumption of a Sourdough-Leavened Croissant Enriched with a Blend of Fibers Influences Fasting Blood Glucose in a Randomized Controlled Trial in Healthy Subjects. J Nutr 2024; 154:2976-2987. [PMID: 39179206 DOI: 10.1016/j.tjnut.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/20/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND An incorrect lifestyle, including diet, is responsible for the worldwide dramatic increase in obesity and type 2 diabetes. Increasing dietary fiber consumption may lead to health benefits, and reformulation of bakery products may be a strategy to globally improve the diet. OBJECTIVES This study aimed to assess the impact of a 2-wk breakfast consumption with a sourdough-leavened croissant containing a blend of dietary fiber from 10 sources (4.8 g/100 g, croissant enriched with dietary fibers [FIBCRO]), compared with a control croissant (dietary fibers 1.3 g/100 g, CONCRO) on daily energy intake, appetite, metabolic variables, and the gut microbiome. METHODS Thirty-two healthy participants were randomly allocated to 2 groups consuming FIBCRO or CONCRO. Participants self-recorded their diet and appetite through 7-d weighted food diaries and visual analog scales every day over the 2 wk. At baseline and after the intervention, fasting blood and urine samples, and fecal samples were collected beside blood pressure, anthropometry, and body composition. Serum glucose, lipids, C-reactive protein, and insulin according to the official methods and serum dipeptidyl peptidase-4 (DPPIV) activity by photometric method were measured. Polyphenols and urolithins in urines were analyzed by Liquid chromatography-tandem mass spectrometry (LC/MS/MS), whereas gut microbiome in feces by shotgun metagenomics. RESULTS FIBCRO consumption improved fasting blood glucose compared with CONCRO (mean changes from baseline -2.0 mg/dL in FIBCRO compared with +3.1 mg/dL in CONCRO, P = 0.022), also reducing serum DPPIV activity by 1.7 IU/L (P = 0.01) and increasing urinary excretion of urolithin A-sulfate by 6.9 ng/mg creatinine (P = 0.04) compared with baseline. No further changes in any of the monitored variables or in the gut microbiome were detected. CONCLUSIONS Results suggested that a 2-wk consumption of a sourdough croissant claimed as "source of dietary fiber" improved fasting glycemia compared with a conventional sourdough croissant in healthy subjects. The reduced serum DPPIV activity and increased bioavailability of urolithin likely contributed to determine that effect independently from gut microbiome changes. This trial was registered at clinicaltrials.gov as NCT04999280.
Collapse
Affiliation(s)
- Roberta Barone Lumaga
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
8
|
Nekrasov E, Vita AA, Bradley R, Contractor N, Gunaratne NM, Kuehn M, Kitisin R, Patel D, Woods E, Zhou B. Changes in Digestive Health, Satiety and Overall Well-Being after 14 Days of a Multi-Functional GI Primer Supplement. Nutrients 2024; 16:3173. [PMID: 39339773 PMCID: PMC11434699 DOI: 10.3390/nu16183173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A recent review proposed a role for multi-functional food or supplement products in priming the gut to support both digestive and systemic health. Accordingly, we designed and eva-luated the effect of a multi-functional gastrointestinal (GI) primer supplement on participant-reported measures for digestive health, quality-of-life (e.g., energy/vitality and general health), and reasons for satiation (e.g., attitudes towards food and eating). In this single-arm clinical trial, 68 participants with mild digestive symptoms consumed the GI primer supplement daily for 14 days. Digestive symptoms were evaluated daily from baseline (Day 0) through Day 14. At baseline and Day 14, participants reported their stool consistency, reasons for satiation, and quality-of-life measures using validated questionnaires. At Day 14, participants reported significant improvements in all (13/13) digestive symptom parameters (p-values < 0.05) and an increase in % of stools with normal consistencies. There were significant improvements (p-values < 0.05) in energy/vitality and general health, and in specific attitudes towards food and eating (e.g., physical satisfaction, planned amount, decreased eating priority, decreased food appeal, and self-consciousness). Results suggest the GI primer supplement promotes digestive health, improves quality of life, and impacts attitudes towards food/eating. This study provides preliminary support for the gut priming hypothesis through which multi-functional digestive products may improve GI health.
Collapse
Affiliation(s)
| | - Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Amway Innovation and Science, Buena Park, CA 90621, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, CA 92093, USA
| | | | | | - Marissa Kuehn
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Rick Kitisin
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Deval Patel
- Amway Innovation and Science, Ada, MI 49355, USA
| | - Erin Woods
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Bo Zhou
- Amway Innovation and Science, Buena Park, CA 90621, USA
| |
Collapse
|
9
|
Hammond L, Wurtele M, de Almeida R, Silva C, DeBlasi J, Lu Y, Bellissimo N. The Effect of Allulose on the Attenuation of Glucose Release from Rice in a Static In Vitro Digestion Model. Foods 2024; 13:2308. [PMID: 39123501 PMCID: PMC11312296 DOI: 10.3390/foods13152308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Allulose is a rare sugar that provides <10% of the energy but 70% of the sweetness of sucrose. Allulose has been shown to attenuate glycemic responses to carbohydrate-containing foods in vivo. This study aimed to determine the optimal allulose dose for minimizing in vitro glucose release from rice compared to a rice control and fructose. A triphasic static in vitro digestion method was used to evaluate the in vitro digestion of a rice control compared to the co-digestion of rice with allulose (10 g, 20 g, and 40 g) and fructose (40 g). In vitro glucose release was affected by treatment (p < 0.001), time (p < 0.001), and treatment-by-time interaction (p = 0.002). Allulose (40 g) resulted in a reduction in in vitro glucose release from rice alone and rice digested with allulose (10 g), allulose (20 g), and fructose. The incremental area under the curve (iAUC) for in vitro glucose release was lower after allulose (40 g) (p = 0.005) compared to rice control and allulose (10 g) but did not differ from allulose (20 g) or fructose. This study demonstrates that allulose reduces glucose release from carbohydrates, particularly at higher doses, underscoring its potential as a food ingredient with functional benefits.
Collapse
Affiliation(s)
- Leila Hammond
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Megan Wurtele
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Ricardo de Almeida
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Constança Silva
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Janine DeBlasi
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Yan Lu
- Heilongjiang Green Food Science Research Institute, Harbin 150086, China
| | - Nick Bellissimo
- School of Nutrition, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
10
|
Wu Y, Liu Y, Jia Y, Feng C, Zhang H, Ren F. Strategic exploration of whole grain cereals in modulating the glycaemic response. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38976377 DOI: 10.1080/10408398.2024.2374055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In the current context, diabetes presents itself as a widespread and complex global health issue. This study explores the significant influence of food microstructure and food matrix components interaction (protein, lipid, polyphenols, etc.) on the starch digestibility and the glycaemic response of post-prandial glycemia, focusing on the potential effectiveness of incorporating bioactive components from whole grain cereals into dietary strategies for the management and potential prevention of diabetes. This study aims to integrate the regulation of postprandial glycaemic homeostasis, including the complexities of starch digestion, the significant potential of bioactive whole grain components and the impact of food processing, to develop a comprehensive framework that combines these elements into a strategic approach to diabetes nutrition. The convergence of these nutritional strategies is analyzed in the context of various prevalent dietary patterns, with the objective of creating an accessible approach to mitigate and prevent diabetes. The objective remains to coalesce these nutritional paradigms into a coherent strategy that not only addresses the current public health crisis but also threads a preventative approach to mitigate future prevalence and impact.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
11
|
Liu L, Sun T, Liu H, Li J, Tian L. Carbohydrate quality vs quantity on cancer Risk: Perspective of microbiome mechanisms. J Funct Foods 2024; 118:106246. [DOI: 10.1016/j.jff.2024.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
|
12
|
Kraithong S, Theppawong A, Bunyameen N, Zhang X, Huang R. Advancements in understanding low starch hydrolysis in pigmented rice: A comprehensive overview of mechanisms. Food Chem 2024; 439:138079. [PMID: 38043273 DOI: 10.1016/j.foodchem.2023.138079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
This review explores the health-promoting properties of pigmented rice, focusing on its unique ability to promote slow starch digestion and improve blood sugar regulation. While the impact of slow starch digestibility is widely acknowledged, our current understanding of the underlying mechanisms remains insufficient. Therefore, this review aims to bridge the gap by examining the intricate factors and mechanisms that contribute to the low starch hydrolysis of pigmented rice to better understand how it promotes slower starch digestion and improves blood sugar regulation. This paves the way for future advancements in utilizing pigmented rice by enhancing our understanding of the mechanisms behind low starch hydrolysis. These may include the development of food products aimed at mitigating hyperglycemic symptoms and reducing the risk of diabetes. This research broadens our understanding of pigmented rice and facilitates the development of strategies to promote health outcomes by incorporating pigmented rice into our diets.
Collapse
Affiliation(s)
- Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Atiruj Theppawong
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Nasuha Bunyameen
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Baptista NT, Dessalles R, Illner AK, Ville P, Ribet L, Anton PM, Durand-Dubief M. Harnessing the power of resistant starch: a narrative review of its health impact and processing challenges. Front Nutr 2024; 11:1369950. [PMID: 38571748 PMCID: PMC10987757 DOI: 10.3389/fnut.2024.1369950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Starch is a primary energy storage for plants, making it an essential component of many plant-based foods consumed today. Resistant starch (RS) refers to those starch fractions that escape digestion in the small intestine and reach the colon where they are fermented by the microflora. RS has been repeatedly reported as having benefits on health, but ensuring that its content remains in food processing may be challenging. The present work focuses on the impact RS on health and explores the different processes that may influence its presence in foods, thus potentially interfering with these effects. Clinical evidence published from 2010 to 2023 and studying the effect of RS on health parameters in adult populations, were identified, using PUBMED/Medline and Cochrane databases. The search focused as well on observational studies related to the effect of food processes on RS content. While processes such as milling, fermentation, cooking and heating seem to have a deleterious influence on RS content, other processes, such as cooling, cooking time, storage time, or water content, may positively impact its presence. Regarding the influence on health parameters, there is a body of evidence suggesting an overall significant beneficial effect of RS, especially type 1 and 2, on several health parameters such as glycemic response, insulin resistance index, bowel function or inflammatory markers. Effects are more substantiated in individuals suffering from metabolic diseases. The effects of RS may however be exerted differently depending on the type. A better understanding of the influence of food processes on RS can guide the development of dietary intake recommendations and contribute to the development of food products rich in RS.
Collapse
Affiliation(s)
| | | | - Anne-Kathrin Illner
- Transformations and Agroressources, Institut Polytechnique UniLaSalle, Université d’Artois, Beauvais, France
| | - Patrice Ville
- Department of Regulatory Department, University of Lesaffre International, Marcq-en-Baroeul, France
| | - Léa Ribet
- Transformations and Agroressources, Institut Polytechnique UniLaSalle, Université d’Artois, Beauvais, France
| | - Pauline M. Anton
- Transformations and Agroressources, Institut Polytechnique UniLaSalle, Université d’Artois, Beauvais, France
| | - Mickaël Durand-Dubief
- Discovery and Front-End Innovation, Lesaffre Institute of Science and Technology, Lille, France
| |
Collapse
|
14
|
Gebre BA, Zhang C, Li Z, Sui Z, Corke H. Impact of starch chain length distributions on physicochemical properties and digestibility of starches. Food Chem 2024; 435:137641. [PMID: 37804724 DOI: 10.1016/j.foodchem.2023.137641] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/02/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Changing starch structure at different levels is a promising approach to promote desirable metabolic responses. Chain length distribution (CLD) is among the starch structural characteristics having a potential to determine properties of starch-based products. Therefore, the objective of the current review is to summarize recent findings on CLD and its impact on physicochemical properties and digestion. Investigations undertaken to enhance understanding of starch structure have shown clearly that CLD is a significant determining factor in modulating starch digestibility. Enzymatic modifications and processing treatments alter the CLD of starch, which in turn affects the rate of digestion, but the underlying molecular mechanisms have yet to be fully elucidated. Even though advances have been made in manipulating CLD using different methods and to correlate the changes with various functional properties, in general the area needs further investigations to open new awareness for enhancing healthiness of starchy foods.
Collapse
Affiliation(s)
- Bilatu Agza Gebre
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijun Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 320000, Israel.
| |
Collapse
|
15
|
Rafique H, Hu X, Ren T, Dong R, Aadil RM, Zou L, Sharif MK, Li L. Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish. Nutrients 2023; 16:117. [PMID: 38201947 PMCID: PMC10780882 DOI: 10.3390/nu16010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Neurodegenerative disorders pose a substantial risk to human health, and oxidative stress, cholinergic dysfunction, and inflammation are the major contributors. The purpose of this study was to explore the neuroprotective effects of oat protein hydrolysate (OPH) and identify peptides with neuroprotective potential. This study is the first to isolate and identify OPH peptides with neuroprotective potential, including DFVADHPFLF (DF-10), HGQNFPIL (HL-8), and RDFPITWPW (RW-9), by screening via peptidomes and molecular-docking simulations. These peptides showed positive effects on the activity of antioxidant enzymes and thus reduced oxidative stress through regulation of Nrf2-keap1/HO-1 gene expression in vitro and in vivo. The peptides also significantly ameliorated scopolamine-induced cognitive impairment in the zebrafish model. This improvement was correlated with mitigation of MDA levels, AChE activity, and levels of inflammatory cytokines in the brains of zebrafish. Furthermore, these peptides significantly upregulated the mRNA expression of Bdnf, Nrf2, and Erg1 in the brains of zebrafish with neurodegenerative disorders. Collectively, oat peptides have potential for use as active components in nutraceutical applications for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Lu Li
- Guilin Seamild Food Co., Ltd., Guilin 541000, China
| |
Collapse
|
16
|
Muttakin S, Bakalis S, Fryer PJ, Alshammari NA, Marciani L, Gouseti O. Reducing starch digestibility of white rice by structuring with hydrocolloids. Food Res Int 2023; 174:113490. [PMID: 37986496 DOI: 10.1016/j.foodres.2023.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023]
Abstract
Controlling starch digestion in high glycaemic index staple foods such as white rice is of interest as it has been associated with reduced risk for conditions such as obesity and type-2 diabetes mellitus. Addition of hydrocolloids has been proposed to reduce the rate of post-prandial glucose by controlling the rate of starch hydrolysis. In this work, the potential of a range of hydrocolloids to modify starch digestibility when added (at 1 % maximum concentration) during cooking of white rice was first investigated. Low acyl gellan gum (LAG) showed the highest potential (in-vitro estimated Glycaemic Index reduced by about 20 %, from 94 in the control to 78 in the LAG rice) and was investigated further. While the grains of rice control and rice with LAG appeared similar, SEM images revealed a gel-like layer (a few micrometers in thickness) on the surface of the treated samples. Addition of LAG appeared to also have an effect on the breakdown of a simulated cm-sized bolus. During gastric digestion, bolus breakdown of the rice control was completed after 30 min, while the rice LAG bolus appeared intact after 1 h of observation. This was attributed to strengthening of the LAG gel in the acidic environment of the stomach. During intestinal digestion, rice samples containing 1 % LAG appeared to be less susceptible to breakdown when seen under a microscope and in environmental SEM, while they showed larger rice particle aggregates, compared to rice control. Overall, LAG showed potential to control starch digestion kinetics of white rice with a mechanism that may involve formation of a protective layer on the rice grains (um) that reduces bolus break down (cm) and enzymatic hydrolysis (nm). Outcomes of this work will be used to identify conditions for further relevant in-vitro and in-vivo investigations.
Collapse
Affiliation(s)
- Syahrizal Muttakin
- Indonesian, Ministry of Agriculture, Jakarta, Indonesia; School of Chemical Engineering, University of Birmingham, United Kingdom
| | - Serafim Bakalis
- School of Chemical Engineering, University of Birmingham, United Kingdom; Department of Food Science, University of Copenhagen, Denmark
| | - Peter J Fryer
- School of Chemical Engineering, University of Birmingham, United Kingdom
| | - Norah A Alshammari
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, United Kingdom; Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Luca Marciani
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, United Kingdom
| | - Ourania Gouseti
- Department of Food Science, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Ngo TV, Kunyanee K, Luangsakul N. Insights into Recent Updates on Factors and Technologies That Modulate the Glycemic Index of Rice and Its Products. Foods 2023; 12:3659. [PMID: 37835312 PMCID: PMC10572933 DOI: 10.3390/foods12193659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Rice is a staple food and energy source for half the world's population. Due to its quick digestion and absorption in the gastrointestinal tract, rice is typically regarded as having a high or medium-high glycemic index (GI); however, this can vary depending on the variety, nutrient compositions, processing, and accompanying factors. This report included a table of the glycemic index for rice and rice products in different countries, which could give an overview and fundamental information on the recent GI of different rice varieties. In addition, latest updates about the mechanism effects of rice nutritional profiles and processing techniques on GI were also provided and discussed. The influence of state-of-the-art GI regulation methods was also evaluated. Furthermore, the effectiveness and efficiency of applied technologies were also given. Furthermore, this review offered some aspects about the potential nutraceutical application of rice that food scientists, producers, or consumers might consider. Diverse types of rice are grown under various conditions that could affect the GI of the product. The instinct nutrients in rice could show different effects on the digestion rate of its product. It also revealed that the rice product's digestibility is process-dependent. The postprandial glucose response of the rice products could be changed by modifying processing techniques, which might produce the new less-digestive compound or the inhibition factor in the starch hydrolysis process. Because of the significant importance of rice, this paper also concluded the challenges, as well as some important aspects for future research.
Collapse
Affiliation(s)
| | | | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.V.N.)
| |
Collapse
|
18
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
19
|
Pugh JE, Cai M, Altieri N, Frost G. A comparison of the effects of resistant starch types on glycemic response in individuals with type 2 diabetes or prediabetes: A systematic review and meta-analysis. Front Nutr 2023; 10:1118229. [PMID: 37051127 PMCID: PMC10085630 DOI: 10.3389/fnut.2023.1118229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Background Type 2 diabetes (T2D) diagnoses are predicted to reach 643 million by 2030, increasing incidences of cardiovascular disease and other comorbidities. Rapidly digestible starch elevates postprandial glycemia and impinges glycemic homeostasis, elevating the risk of developing T2D. Starch can escape digestion by endogenous enzymes in the small intestine when protected by intact plant cell walls (resistant starch type 1), when there is a high concentration of amylose (resistant starch type 2) and when the molecule undergoes retrogradation (resistant starch type 3) or chemical modification (resistant starch type 4). Dietary interventions using resistant starch may improve glucose metabolism and insulin sensitivity. However, few studies have explored the differential effects of resistant starch type. This systematic review and meta-analysis aims to compare the effects of the resistant starch from intact plant cell structures (resistant starch type 1) and resistant starch from modified starch molecules (resistant starch types 2-5) on fasting and postprandial glycemia in subjects with T2D and prediabetes. Methods Databases (PubMed, SCOPUS, Ovid MEDLINE, Cochrane, and Web of Science) were systematically searched for randomized controlled trials. Standard mean difference (SMD) with 95% confidence intervals (CI) were determined using random-effects models. Sub-group analyses were conducted between subjects with T2D versus prediabetes and types of resistant starch. Results The search identified 36 randomized controlled trials (n = 982), 31 of which could be included in the meta-analysis. Resistant starch type 1 and type 2 lowered acute postprandial blood glucose [SMD (95% CI) = -0.54 (-1.0, -0.07)] and [-0.96 (-1.61, -0.31)]. Resistant starch type 2 improved acute postprandial insulin response [-0.71 (-1.31, -0.11)]. In chronic studies, resistant starch type 1 and 2 lowered postprandial glucose [-0.38 (-0.73, -0.02), -0.29 (-0.53, -0.04), respectively] and resistant starch type 2 intake improved fasting glucose [-0.39 (-0.66, -0.13)] and insulin [-0.40 (-0.60, -0.21)]. Conclusion Resistant starch types 1 and 2 may influence glucose homeostasis via discrete mechanisms, as they appear to influence glycemia differently. Further research into resistant starch types 3, 4, and 5 is required to elucidate their effect on glucose metabolism. The addition of resistant starch as a dietary intervention for those with T2D or prediabetes may prevent further deterioration of glycemic control.
Collapse
Affiliation(s)
| | | | | | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
20
|
Nadia J, Olenskyj AG, Stroebinger N, Hodgkinson SM, Estevez TG, Subramanian P, Singh H, Singh RP, Bornhorst GM. Cooked rice- and wheat-based food structure influenced digestion kinetics and glycemic response in growing pigs. J Nutr 2023; 153:1373-1388. [PMID: 36906148 DOI: 10.1016/j.tjnut.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND How starch-based food structure can impact the rate and extent of digestion in the small intestine and resulting glycemic response is not properly understood. One possible explanation is that food structure influences gastric digestion, which subsequently determines digestion kinetics in the small intestine and glucose absorption. However, this possibility has not been investigated in detail. OBJECTIVES Using growing pigs as a digestion model for adult humans, this study aimed to investigate how physical structure of starch-rich foods impacts small intestinal digestion and glycemic response. METHODS Male growing pigs (21.7 ± 1.8 kg, Large White × Landrace) were fed one of six cooked diets (250-g starch equivalent) with varying initial structures (rice grain, semolina porridge, wheat or rice couscous, or wheat or rice noodle). The glycemic response, small intestinal content particle size and hydrolyzed starch content, ileal starch digestibility, and portal vein plasma glucose were measured. Glycemic response was measured as plasma glucose collected from an in-dwelling jugular vein catheter for up to 390 min postprandial. Portal vein blood samples and small intestinal content were measured after sedation and euthanasia of the pigs at 30, 60, 120, or 240 min postprandial. Data were analyzed with a mixed-model ANOVA. RESULTS The plasma glucose Δmaxoverall and iAUCoverall for couscous and porridge diets (smaller-sized diets) were higher than intact grain and noodle diets (larger-sized diets); 29.0 ± 3.2 vs. 21.7 ± 2.6 mg/dL and 5659 ± 727 vs. 2704 ± 521 mg/dL.min, for the smaller- and larger-sized diets, respectively (p < 0.05). Ileal starch digestibility was not significantly different between diets (p ≥ 0.05). The iAUCoverall was inversely related to the starch gastric emptying half-time of the diets (r = -0.90, p = 0.015). CONCLUSIONS Starch-based food structure affected the glycemic response and starch digestion kinetics in the small intestine of growing pigs.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand; School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Alexander G Olenskyj
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA
| | - Natascha Stroebinger
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Suzanne M Hodgkinson
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Talia G Estevez
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - R Paul Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand; Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand; Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA.
| |
Collapse
|
21
|
Nutritional Intake Differences in Combinations of Carbohydrate-Rich Foods in Pirapó, Republic of Paraguay. Nutrients 2023; 15:nu15051299. [PMID: 36904296 PMCID: PMC10004760 DOI: 10.3390/nu15051299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
A national strategy for obesity prevention has been promoted in Paraguay, reflecting the situation where half of adults and 23.4% of children (under 5 years old) are overweight. However, the detailed nutritional intake of the population has not yet been studied, especially in rural areas. Therefore, this study aimed to identify obesity-causing factors in Pirapó by analyzing the results from a food frequency questionnaire (FFQ) and one-day weighed food records (WFRs). From June to October 2015, 433 volunteers (200 males and 233 females) completed the FFQ with 36 items and one-day WFRs. Body mass index (BMI) positively correlated with the consumption of sandwiches, hamburgers, and bread and with age and diastolic blood pressure, although pizza and fried bread (pireca) had a negative correlation in males (p < 0.05). BMI positively correlated with systolic blood pressure, whereas it negatively correlated with the consumption of cassava and rice in females (p < 0.05). The FFQ revealed that fried food with wheat flour was consumed once a day. WFRs showed that 40% of meals consisted of two or more carbohydrate-rich dishes, significantly higher in energy, lipids, and sodium than those containing only one carbohydrate-rich dish. These results imply that less oily wheat dish consumption and healthy combinations of dishes should be considered for obesity prevention.
Collapse
|
22
|
Bajka BH, Pinto AM, Perez-Moral N, Saha S, Ryden P, Ahn-Jarvis J, van der Schoot A, Bland C, Berry SE, Ellis PR, Edwards CH. Enhanced secretion of satiety-promoting gut hormones in healthy humans after consumption of white bread enriched with cellular chickpea flour: A randomized crossover study. Am J Clin Nutr 2023; 117:477-489. [PMID: 36811474 PMCID: PMC10131617 DOI: 10.1016/j.ajcnut.2022.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dietary intake of pulses is associated with beneficial effects on body weight management and cardiometabolic health, but some of these effects are now known to depend on integrity of plant cells, which are usually disrupted by flour milling. Novel cellular flours preserve the intrinsic dietary fiber structure of whole pulses and provide a way to enrich preprocessed foods with encapsulated macronutrients. OBJECTIVES This study aimed to determine the effects of replacing wheat flour with cellular chickpea flour on postprandial gut hormones, glucose, insulin, and satiety responses to white bread. METHODS We conducted a double-blind randomized crossover study in which postprandial blood samples and scores were collected from healthy human participants (n = 20) after they consumed bread enriched with 0%, 30%, or 60% (wt/wt) cellular chickpea powder (CCP, 50 g total starch per serving). RESULTS Bread type significantly affected postprandial glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) responses (time × treatment, P = 0.001 for both). The 60% CCP breads elicited significantly elevated and sustained release of these anorexigenic hormones [between 0% and 60% CPP-GLP-1: mean difference incremental area under the curve (iAUC), 3101 pM/min; 95% CI: 1891, 4310; P-adjusted < 0.001; PYY: mean difference iAUC, 3576 pM/min; 95% CI: 1024, 6128; P-adjusted = 0.006] and tended to increase fullness (time × treatment, P = 0.053). Moreover, bread type significantly influenced glycemia and insulinemia (time × treatment, P < 0.001, P = 0.006, and P = 0.001 for glucose, insulin, and C-peptide, respectively), with 30% CCP breads eliciting a >40% lower glucose iAUC (P-adjusted < 0.001) than the 0% CCP bread. Our in vitro studies revealed slow digestion of intact chickpea cells and provide a mechanistic explanation for the physiologic effects. CONCLUSIONS The novel use of intact chickpea cells to replace refined flours in a white bread stimulates an anorexigenic gut hormone response and has potential to improve dietary strategies for prevention and treatment of cardiometabolic diseases. This study was registered at clinicaltrials.gov as NCT03994276.
Collapse
Affiliation(s)
- Balazs H Bajka
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
| | - Ana M Pinto
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Natalia Perez-Moral
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Shikha Saha
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Peter Ryden
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Jennifer Ahn-Jarvis
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Alice van der Schoot
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Catherine Bland
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Sarah E Berry
- Diet and Cardiometabolic Group, Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Peter R Ellis
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Cathrina H Edwards
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
23
|
Ribet L, Dessalles R, Lesens C, Brusselaers N, Durand-Dubief M. Nutritional benefits of sourdoughs: A systematic review. Adv Nutr 2023; 14:22-29. [PMID: 36811591 PMCID: PMC10103004 DOI: 10.1016/j.advnut.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Food fermentation using sourdough-i.e., consortia of lactic bacteria and yeasts-is increasingly considered among the public as a natural transformation yielding nutritional benefits; however, it is unclear whether its alleged properties are validated by science. The aim of this study was to systematically review the clinical evidence related to the effect of sourdough bread on health. Bibliographic searches were performed in 2 different databases (The Lens and PubMed) up to February 2022. Eligible studies were randomized controlled trials involving adults, healthy or not, given any type of sourdough bread compared with those given any type of yeast bread. A total of 573 articles were retrieved and investigated, of which 25 clinical trials met the inclusion criteria. The 25 clinical trials included a total of 542 individuals. The main outcomes investigated in the retrieved studies were glucose response (N = 15), appetite (N = 3), gastrointestinal markers (N = 5), and cardiovascular markers (N = 2). Overall, it is currently difficult to establish a clear consensus with regards to the beneficial effects of sourdough per se on health when compared with other types of bread because a variety of factors, such as the microbial composition of sourdough, fermentation parameters, cereals, and flour types potentially influence the nutritional properties of bread. Nonetheless, in studies using specific strains and fermentation conditions, significant improvements were observed in parameters related to glycemic response, satiety, or gastrointestinal comfort after bread ingestion. The reviewed data suggest that sourdough has great potential to produce a variety of functional foods; however, its complex and dynamic ecosystem requires further standardization to conclude its clinical health benefits.
Collapse
Affiliation(s)
- Léa Ribet
- Baking Science, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France
| | | | - Corinne Lesens
- Baking Science, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium; Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden; Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mickaël Durand-Dubief
- Discovery & Front End Innovation, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France.
| |
Collapse
|
24
|
Costabile G, Vetrani C, Calabrese I, Vitale M, Cipriano P, Salamone D, Testa R, Paparo L, Russo R, Rivellese AA, Giacco R, Riccardi G. High Amylose Wheat Bread at Breakfast Increases Plasma Propionate Concentrations and Reduces the Postprandial Insulin Response to the Following Meal in Overweight Adults. J Nutr 2023; 153:131-137. [PMID: 36913446 DOI: 10.1016/j.tjnut.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High amylose starchy foods modulate the postprandial metabolic response in humans. However, the mechanisms of their metabolic benefits and their impact on the subsequent meal have not been fully elucidated. OBJECTIVE We aimed to evaluate whether glucose and insulin responses to a standard lunch are influenced by the consumption of amylose-rich bread at breakfast in overweight adults and whether changes in plasma short chain fatty acids (SCFAs) concentrations contribute to their metabolic effects. METHODS Using a randomized crossover design, 11 men and 9 women, BMI 30 ± 3 kg/m2, 48 ± 19 y, consumed at breakfast 2 breads made with high amylose flour (HAF): 85%-HAF (180 g) and 75%-HAF (170 g), and control bread (120 g) containing 100% conventional flour. Plasma samples were collected at fasting, 4 h after breakfast, and 2 h after a standard lunch to measure glucose, insulin, and SCFA concentrations. ANOVA posthoc analyses were used for comparisons. RESULTS Postprandial plasma glucose responses were 27% and 39% lower after breakfasts with 85%- and 70%-HAF breads than control bread (P = 0.026 and P = 0.003, respectively), with no difference after lunch. Insulin responses were not different between the 3 breakfasts, whereas there was a 28% lower response after the lunch following breakfast with 85%-HAF bread than the control (P = 0.049). Propionate concentrations increased from fasting by 9% and 12% 6 h after breakfasts with 85%- and 70%-HAF breads and decreased by 11% with control bread (P < 0.05). At 6 h after breakfast with 70%-HAF bread, plasma propionate and insulin were inversely correlated (r = -0.566; P = 0.044). CONCLUSIONS Amylose-rich bread reduces the postprandial glucose response after breakfast and insulin concentrations after the subsequent lunch in overweight adults. This second meal effect may be mediated by the elevation of plasma propionate due to intestinal fermentation of resistant starch. High amylose products could be a promising tool in a dietary prevention strategy for type 2 diabetes. THIS TRIAL WAS REGISTERED AT CLINICAL TRIAL REGISTRY AS NCT03899974 (https://www. CLINICALTRIALS gov/ct2/show/NCT03899974).
Collapse
Affiliation(s)
- Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy; Task Force on Microbiome Studies, Federico II University, Naples, Italy.
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilaria Calabrese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Paola Cipriano
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Dominic Salamone
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Roberta Testa
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Lorella Paparo
- Task Force on Microbiome Studies, Federico II University, Naples, Italy; Department of Translational Medical Science, Federico II University, Naples, Italy; ImmunoNutritionLab at CEINGE Advanced Biotechnologies, Federico II University, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, Federico II University, Naples, Italy
| | - Angela A Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy; Task Force on Microbiome Studies, Federico II University, Naples, Italy
| | - Rosalba Giacco
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy; Task Force on Microbiome Studies, Federico II University, Naples, Italy
| |
Collapse
|
25
|
Giuntini EB, Sardá FAH, de Menezes EW. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods 2022; 11:foods11233934. [PMID: 36496742 PMCID: PMC9736284 DOI: 10.3390/foods11233934] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The properties of each food, composition, and structure affect the digestion and absorption of nutrients. Dietary fiber (DF), especially viscous DF, can contribute to a reduction in the glycemic response resulting from the consumption of carbohydrate-rich foods. Target and control of postprandial glycemic values are critical for diabetes prevention and management. Some mechanisms have been described for soluble DF action, from the increase in chyme viscosity to the production of short-chain fatty acids resulting from fermentation, which stimulates gastrointestinal motility and the release of GLP-1 and PYY hormones. The postprandial glycemic response due to inulin and resistant starch ingestion is well established. However, other soluble dietary fibers (SDF) can also contribute to glycemic control, such as gums, β-glucan, psyllium, arabinoxylan, soluble corn fiber, resistant maltodextrin, glucomannan, and edible fungi, which can be added alone or together in different products, such as bread, beverages, soups, biscuits, and others. However, there are technological challenges to be overcome, despite the benefits provided by the SDF, as it is necessary to consider the palatability and maintenance of their proprieties during production processes. Studies that evaluate the effect of full meals with enriched SDF on postprandial glycemic responses should be encouraged, as this would contribute to the recommendation of viable dietary options and sustainable health goals.
Collapse
Affiliation(s)
- Eliana Bistriche Giuntini
- Food Research Center (FoRC/CEPID/FAPESP), University of São Paulo (USP) Rua do Lago, 250 Cidade Universitária CEP, São Paulo 05508-080, Brazil
- Correspondence:
| | - Fabiana Andrea Hoffmann Sardá
- Faculty of Science & Engineering, University of Limerick (UL), V94XD21 Limerick, Ireland
- Health Research Institute (UL), V94T9PX Limerick, Ireland
- Bernal Institute (UL), V94T9PX Limerick, Ireland
| | - Elizabete Wenzel de Menezes
- Food Research Center (FoRC/CEPID/FAPESP), University of São Paulo (USP) Rua do Lago, 250 Cidade Universitária CEP, São Paulo 05508-080, Brazil
| |
Collapse
|
26
|
Chen Y, Stieger M, Capuano E, Forde CG, van der Haar S, Ummels M, van den Bosch H, de Wijk R. Influence of oral processing behaviour and bolus properties of brown rice and chickpeas on in vitro starch digestion and postprandial glycaemic response. Eur J Nutr 2022; 61:3961-3974. [PMID: 35773354 PMCID: PMC9596526 DOI: 10.1007/s00394-022-02935-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Oral processing behaviour may contribute to individual differences in glycaemic response to foods, especially in plant tissue where chewing behaviour can modulate release of starch from the cellular matrix. The aim of this study was to assess the impact of chewing time of two starch based foods (brown rice and chickpeas) on bolus properties, in vitro starch digestion and postprandial glycaemic excursion in healthy subjects. METHODS In a cross-over trial participants (n = 26) consumed two carbohydrates-identical test meals (brown rice: 233 g; chickpeas: 323 g) with either long (brown rice: 41 s/bite; chickpeas: 37 s/bite) or short (brown rice: 23 s/bite; chickpeas: 20 s/bite) chewing time in duplicate while glycaemic responses were monitored using a continuous glucose monitoring device. Expectorated boli were collected, then bolus properties (number, mean area, saliva amylase activity) and in vitro starch digestion were determined. RESULTS Longer chewing resulted in significantly (p < 0.05) more and smaller bolus particles, higher bolus saliva uptake and higher in vitro degree of intestinal starch hydrolysis (DH_Schewing time%) than shorter chewing for both foods (brown rice: DH_S%23 s = 84 ± 4% and DH_%S41s = 90 ± 6%; chickpeas: DH_S%20 s = 27 ± 3% and DH_%S37s = 34 ± 5%, p < 0.001). No significant effect of chewing time on glycaemic response (iAUC) (p > 0.05) was found for both meals. Brown rice showed significantly and considerably higher in vitro degree of intestinal starch hydrolysis and glycaemic response (iAUC) than chickpeas regardless of chewing time. No significant correlations were observed between bolus properties and in vitro starch hydrolysis or glycaemic response (p > 0.05). CONCLUSION Differences in the innate structure of starch based foods (brown rice compared to chickpeas) have a larger effect on postprandial glucose response than differences in mastication behaviour although oral processing behaviour showed consistent effects on bolus properties and in vitro starch digestion. Trial registration ClinicalTrials.gov identifier: NCT04648397 (First posted: December 1, 2020).
Collapse
Affiliation(s)
- Yao Chen
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands.
| | - Markus Stieger
- Division of Human Nutrition and Health, Sensory Science and Eating Behaviour, Wageningen University & Research, Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Ciarán G Forde
- Division of Human Nutrition and Health, Sensory Science and Eating Behaviour, Wageningen University & Research, Wageningen, The Netherlands
| | - Sandra van der Haar
- Food & Biobased Research, Fresh Food Chains, Food, Health & Consumer Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Meeke Ummels
- Food & Biobased Research, Fresh Food Chains, Food, Health & Consumer Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Heleen van den Bosch
- Food & Biobased Research, Fresh Food Chains, Food, Health & Consumer Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Rene de Wijk
- Food & Biobased Research, Fresh Food Chains, Food, Health & Consumer Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Yaregal Z, Baye K, Solomon WK. The influence of dough kneading time and flour particle size distribution on white bread structure, glycemic response and aspects of appetite. Clin Nutr ESPEN 2022; 52:68-77. [PMID: 36513488 DOI: 10.1016/j.clnesp.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS White bread is widely consumed in many countries despite being a high-glycemic index (GI) food. It has been shown that the "food matrix effect" may help with diabetes and obesity management through lowering GI and appetite. This study aimed at investigating the effects of dough kneading time and flour particle size on white bread structure, glycemic response, and aspects of appetite. METHODS A two-phase randomized cross-over design was used in 10 healthy subjects over the course of 2 h. In phase 1, Texture Profile Analysis (TPA) attributes, Scanning Electron Microscope (SEM) image, glycemic response, and appetite aspects of white bread made with a 15-min dough kneading time (K15) were compared with white bread made with a 10-min dough kneading time (K10). In phase 2, TPA, SEM image, glycemic response, and satiety score of white bread made with coarse flour (CF) were compared to white bread made with fine flour (FF). RESULT With increasing hardness (force required to compress a food between the molars to a given deformation), total blood glucose IAUC in K15 (IAUC = 119 ± 12; GI = 66) was significantly (p < 0.05) lower than in K10 (IAUC = 154 ± 10; GI = 81). No marked difference was observed between K15 and K10 on aspects of appetite except for hunger. There was no significant (p > 0.05) difference in glycemic response between CF (IAUC = 126 ± 18; GI = 64) and FF (IAUC = 147 ± 12; GI = 81). Similarly, no discernible difference in satiety between CF and FF. CONCLUSION Changes in processing conditions can improve blood glucose response relalated to white bread consumption.
Collapse
Affiliation(s)
- Zemenu Yaregal
- College of Natural and Computational Sciences, Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Kaleab Baye
- College of Natural and Computational Sciences, Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia.
| | - W K Solomon
- Department of Food and Nutrition Sciences, Faculty of Consumer Sciences, University of Eswatini, Eswatini.
| |
Collapse
|
28
|
Xu X, Bean S, Wu X, Shi YC. Effects of protein digestion on in vitro digestibility of starch in sorghum differing in endosperm hardness and flour particle size. Food Chem 2022; 383:132635. [PMID: 35413766 DOI: 10.1016/j.foodchem.2022.132635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
Abstract
In vitro digestibility of starch in sorghum grains differing in endosperm hardness and flour particle size was investigated. The starch digestibility increased as the particle size of flour decreased, but no clear trend was observed in digestibility of starch in sorghum flours milled from grains with different hardness. The protein matrix affected the digestion of starch. The pH value (2.0 vs. 1.3) was a critical factor affecting protein digestion. Optimum pH (pH 2.0 for pepsin) digested more protein, resulting in a greater digestion of starch. Resistant starch (RS) content was 8.5-26.3% in isolated sorghum starch but higher (10.6-29.5%) in sorghum flours. Protein digestibility decreased after cooking while starch digestibility increased compared to native sorghum flours; disulfide bonds formed between protein molecules. RS content of cooked sorghum flour was much higher without pepsin treatment (16.93-23.99%) than that of cooked sorghum flour with pepsin treatment (4.86-12.53%).
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Scott Bean
- Grain Quality & Structure Research Unit, Center for Grain and Animal Health Research, USADA-ARS, Manhattan, KS 66502, USA
| | - Xiaorong Wu
- Grain Quality & Structure Research Unit, Center for Grain and Animal Health Research, USADA-ARS, Manhattan, KS 66502, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
29
|
Yaregal Z, Baye K, Fardet A. Compared with fresh
injera
, stale
injera
increases satiety in healthy subjects, but does not decrease the glycemic index. Cereal Chem 2022. [DOI: 10.1002/cche.10556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zemenu Yaregal
- Center for Food Science and Nutrition, College of Natural and Computational Sciences Addis Ababa University PO box 1176 Addis Ababa Ethiopia
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational Sciences Addis Ababa University PO box 1176 Addis Ababa Ethiopia
| | - Anthony Fardet
- INRAE, Université Clermont Auvergne, UNH Human Nutrition Unit, CRNH Auvergne F‐63000 Clermont‐Ferrand France
| |
Collapse
|
30
|
Su L, Zhang SZ, Zhu J, Wu J, Jiao YZ. Effect of partial and total sleep deprivation on serum testosterone in healthy males: a systematic review and meta-analysis. Sleep Med 2021; 88:267-273. [PMID: 34801825 DOI: 10.1016/j.sleep.2021.10.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Currently, there is no consensus on the effect of sleep deprivation on male serum testosterone. This systematic review and meta-analysis aimed to determine the association between partial/total sleep deprivation and male serum testosterone level. METHODS The literature related to sleep deprivation and male serum testosterone in the PubMed, Embase, and Cochrane Library databases were searched from their inception to July 15, 2021. Data were pooled using the Stata 15 software. The results were presented as standard mean differences (SMDs) with their 95% confidence intervals (CIs). RESULTS Eighteen studies involving 252 men were included in the systematic review and meta-analysis. The findings revealed that short-term partial sleep deprivation had no significant effect on male serum testosterone (SMD = -0.22; 95% CI: -0.5, 0.06; P = 0.13), while total sleep deprivation reduced the male testosterone levels (SMD = -0.64; 95% CI: -0.87, -0.42; P < 0.001). According to the intervention duration of total sleep deprivation, subgroup analysis was conducted by a fixed-effects model. The results revealed that the serum testosterone was significantly decreased after 24 h total sleep deprivation (SMD = - 0.67; 95% CI = - 0.93, -0.42, P < 0.001), as well as 40-48 h total sleep deprivation (SMD = - 0.74; 95% CI = - 1.22, -0.26, P = 0.002). CONCLUSIONS This meta-analysis revealed that total sleep deprivation (more than or equal to 24 h) reduces the male testosterone levels, while short-term partial sleep deprivation has no significant effect on male serum testosterone. Sleep duration plays a pivotal role in maintaining male serum testosterone levels.
Collapse
Affiliation(s)
- Liang Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Si-Zheng Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yong-Zheng Jiao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|