1
|
Beauregard LH, Bazarian JJ, Johnson BD, Cheng H, Ellis G, Kronenberger W, Calder PC, Chen Z, Silveyra P, Quinn PD, Newman SD, Mickleborough TD, Kawata K. Investigating omega-3 fatty acids' neuroprotective effects in repetitive subconcussive neural injury: Study protocol for a randomized placebo-controlled trial. PLoS One 2025; 20:e0321808. [PMID: 40273177 PMCID: PMC12021223 DOI: 10.1371/journal.pone.0321808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/26/2025] Open
Abstract
Soccer (football) is the most popular sport globally, with 265 million players across all ages and sexes. Repetitive subconcussive head impacts due to heading of the soccer ball can pose threats to healthy brain development and aging. Omega-3 fatty acids, especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), may have neuroprotective effects, but it remains unclear what aspects of neural health benefit from DHA+EPA when faced with subconcussive head impacts. In a randomized placebo-controlled trial, 208 soccer players will complete baseline measures including demographics, blood sampling, dietary recalls, and psychological assessment. Participants will be randomly assigned to ingest DHA+EPA [3.4g/d: DHA 2.4g+EPA 1.0g] or placebo daily for 8 weeks followed by a subconcussion intervention phase. During the subconcussion intervention, participants will perform a session of 20 controlled soccer headings, with a second session 24 hours later. Blood samples, neuroimaging data, autonomic reactivity, and clinical measures (symptoms, oculomotor, cognition) will be collected pre-heading and 24-hour post-1st session, 24-hour post-2nd session, and 7-day post-2nd session. The primary hypothesis is that DHA+EPA pretreatment will promote neuronal and astrocyte resiliency to subconcussive head impacts, as assessed by blood biomarkers of brain injury, axonal microstructure measured by diffusion tensor imaging, and whole-brain resting-state connectivity. It is proposed that pretreatment will preserve autonomic function, as assessed by the cold pressor test (CPT), as well as oculomotor and cognitive function, even after head impacts. Data from this trial will help clarify the combined effect of DHA+EPA on brain molecular, cellular, and physiological health in response to subconcussive head impacts. If the hypotheses are confirmed, the findings will support a highly practical intervention for mitigating the neurodegenerative cascade triggered by head impacts. Trial registration: ClinicalTrials.gov NCT06736925.
Collapse
Affiliation(s)
- Lauren H. Beauregard
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Blair D. Johnson
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Hu Cheng
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, Indiana, United States of America
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Gage Ellis
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - William Kronenberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Zhongxue Chen
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States of America
| | - Patrick D. Quinn
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, Indiana, United States of America
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana, United States of America
| | - Sharlene D. Newman
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, Alabama, United States of America
| | - Timothy D. Mickleborough
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Tian S, Guo T, Qian F, Qiu Z, Lu Q, Li R, Zhu K, Li L, Yu H, Li R, Ou Y, Pan A, Liu G. Fish Oil, Plasma n-3 PUFAs, and Risk of Macro- and Microvascular Complications Among Individuals With Type 2 Diabetes. J Clin Endocrinol Metab 2025; 110:e1687-e1696. [PMID: 38994586 DOI: 10.1210/clinem/dgae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE To evaluate associations of fish oil supplementation and plasma omega 3 polyunsaturated fatty acids (n-3 PUFAs) with risks of macrovascular and microvascular complications among people with type 2 diabetes and to further explore the potential mediating role of metabolism-related biomarkers. RESEARCH DESIGN AND METHODS This study included 20 338 participants with type 2 diabetes from the UK Biobank. Diabetic complications were identified through hospital inpatient records. RESULTS During 13.2 years of follow-up, 5396 people developed macrovascular complications, and 4868 people developed microvascular complications. After multivariable adjustment, hazard ratios (HRs) and 95% confidence intervals (CIs) for patients with fish oil were 0.90 (0.85, 0.97) for composite macrovascular complications, 0.91 (0.84, 0.98) for coronary heart disease (CHD), 0.72 (0.61, 0.83) for peripheral artery disease and 0.89 (0.83, 0.95) for composite microvascular complications, 0.87 (0.79, 0.95) for diabetic kidney disease, and 0.88 (0.80, 0.97) for diabetic retinopathy. In addition, higher n-3 PUFA levels, especially docosahexaenoic acid (DHA), were associated with lower risks of macrovascular and microvascular complications. Comparing extreme quartiles of plasma DHA, the HRs (95% CIs) were 0.68 (0.57, 0.81) for composite macrovascular complications, 0.63 (0.51, 0.77) for CHD, and 0.59 (0.38, 0.91) for diabetic neuropathy. Moreover, biomarkers including lipid profile and inflammatory markers collectively explained 54.4% and 63.1% of associations of plasma DHA with risks of composite macrovascular complications and CHD. CONCLUSION Habitual use of fish oil supplementation and higher plasma n-3 PUFA levels, especially DHA, were associated with lower risks of macrovascular and microvascular complications among individuals with type 2 diabetes, and the favorable associations were partially mediated through improving biomarkers of lipid profile and inflammation.
Collapse
Affiliation(s)
- Shufan Tian
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyu Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Frank Qian
- Section of Cardiovascular Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Zixin Qiu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hancheng Yu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunjing Ou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Khalafi M, Habibi Maleki A, Symonds ME, Rosenkranz SK, Ehsanifar M, Mohammadi Dinani S. The combined effects of omega-3 polyunsaturated fatty acid supplementation and exercise training on body composition and cardiometabolic health in adults: A systematic review and meta-analysis. Clin Nutr ESPEN 2025; 66:151-159. [PMID: 39848543 DOI: 10.1016/j.clnesp.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/19/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
INTRODUCTION We performed a systematic review and meta-analysis to investigate the effects of combining omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation with exercise training, as compared to exercise training alone, on body composition measures including body weight, body mass index (BMI), fat mass, body fat percentage, and lean body mass. Additionally, we determined the effects on cardiometabolic health outcomes including lipid profiles, blood pressure, glycemic markers, and inflammatory markers. METHOD Three primary electronic databases including PubMed, Web of Science, and Scopus were searched from inception to April 5th, 2023 to identify original articles comparing n-3 PUFA supplementation plus exercise training versus exercise training alone, that investigated at least one of the following outcomes: fat mass, body fat percentage, lean body mass, triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic (SBP) and diastolic (DBP) blood pressures, fasting glucose and insulin, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Standardized mean differences (SMD) or weighted mean differences (WMD), and 95 % confidence intervals (CIs) were calculated using random-effects models. RESULTS A total of 21 studies involving 673 participants with BMIs ranging from 24 to 37 kg.m2 and ages ranging from 30 to 70 years were included in the meta-analysis. Overall, the results indicated that as compared with exercise training alone, adding omega-3 supplementation to exercise training decreased fat mass [WMD: -1.05 kg (95 % CI: -1.88 to -0.22), p = 0.01], TG [WMD: -0.10 mmol/L (95 % CI: -0.19 to -0.02)], SBP [WMD: -4.09 mmHg (95 % CI: -7.79 to -2.16), p = 0.03], DBP [WMD: -4.26 mmHg (95 % CI: -6.46 to -2.07), p = 0.001], and TNF-α [SMD: -0.35 (95 % CI: -0.70 to -0.00), p = 0.04], and increased LDL [WMD: 0.14 mmol/L (95 % CI: 0.02 to 0.26), p = 0.01] and lower-body muscular strength [SMD: 0.42 (95 % CI: 0.01 to 0.84), p = 0.04]. However, omega-3 supplementation with exercise training had no additional effects compared with training alone, for other body composition or cardiometabolic outcomes. CONCLUSION This systematic review and meta-analyses suggestes that adding omega-3 supplementation to exercise training may augment some effects of exercise training on body composition and cardiometabolic health in adults, although such effects appear to be modest.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Aref Habibi Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Michael E Symonds
- Academic Unit of Population and Lifespan Sciences, Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Mahsa Ehsanifar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
| | - Sanaz Mohammadi Dinani
- Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| |
Collapse
|
4
|
Huang L, Li S, Zhou Q, Ruan X, Wu Y, Wei Q, Xie H, Zhang Z. Associations of erythrocyte membrane fatty acids with blood pressure in children. Clin Nutr 2025; 46:30-36. [PMID: 39864378 DOI: 10.1016/j.clnu.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND & AIMS Different fatty acids may vary in their effect on blood pressure. We tested whether fatty acid classes measured in erythrocytes are associated with blood pressure. METHODS This cross-sectional study included 421 children from Guangzhou, China. Erythrocyte membrane fatty acid concentrations were measured by gas chromatography-mass spectrometry. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured with an electronic sphygmomanometer. Abnormal blood pressure (ABP) was defined as an elevated SBP and/or DBP. Analysis of covariance (ANCOVA) and multivariable logistic regression models were performed to explore the associations of fatty acid subgroups with the risk of blood pressure status. The joint effect of fatty acid subgroups was evaluated using Probit Bayesian Kernel Machine Regression (BKMR). RESULTS ANCOVA analysis showed that children in the higher quartiles of odd-chain saturated fatty acids (OSFAs) had significantly lower levels of both SBP (P-trend = 0.020) and DBP (P-trend = 0.008). In contrast, DBP increased significantly across quartiles of monounsaturated fatty acids (MUFAs). In adjusted models of logistic regression analysis, the higher quartiles of MUFAs concentrations were associated with a higher risk of ABP (P-trend = 0.001). BKMR analysis showed that the risk of ABP increased significantly with increasing total MUFAs mixture levels. Similar associations were observed between MUFAs and DBP. Conversely, OSFAs concentrations were negatively correlated with both SBP and DBP. Additionally, children with higher levels of mixture of n-3 polyunsaturated fatty acids (n-3 PUFAs) exhibited lower SBP. CONCLUSIONS Fatty acid subclasses may differ in their relationship with abnormal blood pressure in children. MUFAs exhibit a positive association with blood pressure, whereas OSFAs and n-3 PUFAs demonstrate an inverse association with blood pressure.
Collapse
Affiliation(s)
- Lan Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaowen Li
- Department of Obstetrics, Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou 510400, China
| | - Qinwen Zhou
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaozhen Ruan
- Department of Obstetrics, Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou 510400, China
| | - Yulin Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qinzhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hairui Xie
- Department of Pediatric Endocrinology and Well Child Care, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Shakiba E, Pasdar Y, Ebrahimi-Mousavi S, Najafi F, Saber A, Shakiba MH, Bagheri A. The associations between dietary omega-6, omega-3, and omega 6 to omega 3 ratio fatty acids and hypertension risk among adults: A prospective cohort study. Clin Nutr ESPEN 2025; 65:418-423. [PMID: 39732396 DOI: 10.1016/j.clnesp.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND AND AIMS Previous studies have yielded mixed results on the connection between dietary omega-3 and omega-6 intakes and the risk of hypertension (HTN) incidents. Therefore, we conducted a study to survey the connection between baseline dietary intake of omega-3, omega-6, and omega-6 to omega 3 (omega-6/3) fatty acids (FA) and the risk of hypertension. METHODS We conducted a prospective cohort study and assessed dietary intake through a 118-item food frequency questionnaire (FFQ). To determine the relationship between dietary omega-3, omega-6, and omega-6/3 ratio intake and the risk of developing hypertension, we applied Cox proportional hazards analysis to determine hazard ratios (HR) and 95 % confidence intervals (CIs). RESULTS After following 7359 participants who did not have hypertension at the beginning of the study for 6.4 ± 1.33 years, we identified 597 new cases of hypertension (8.11 %). Our analysis, which controlled for all confounders, did not identify any significant link among the highest versus lowest quartile of dietary omega-3 intake (HR: 0.87, 95 % CI: 0.63, 1.18; P trend: 0.34), omega-6 intake (HR: 1.04; 95 % CI: 0.81, 1.34; P trend: 0.82), and omega-6/3 ratio intakes (HR: 1.06, 95 % CI: 0.82, 1.36; P trend: 0.66) and HTN risk. CONCLUSIONS To sum up, our study revealed that dietary omega-3, omega-6, and omega-6/3 ratio were not associated with the hypertension risk.
Collapse
Affiliation(s)
- Ebrahim Shakiba
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Pasdar
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Ebrahimi-Mousavi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Najafi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Saber
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Amir Bagheri
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Brosolo G, Da Porto A, Marcante S, Capilupi F, Bertin N, Vivarelli C, Bulfone L, Vacca A, Catena C, Sechi LA. The role for ω-3 polyunsaturated and short chain fatty acids in hypertension: An updated view on the interaction with gut microbiota. Eur J Pharmacol 2024; 985:177107. [PMID: 39515560 DOI: 10.1016/j.ejphar.2024.177107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As of 2024, arterial hypertension is still considered the leading modifiable cardiovascular risk factor and, due to high rates of undertreatment and poor blood pressure control, the major contributor to human morbidity and mortality. Development of new treatment options and better interventions in lifestyle correction have become a priority of experimental and clinical research. In the last decades, dietary supplementation of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and generation of gut microbiota-derived short chain fatty acids (SCFAs) have surged as potential and promising interventions for hypertension and cardiovascular prevention. ω-3 PUFAs are considered "essential" fatty acids that can be obtained only from dietary sources. Although previous intervention trials were not consistent in reporting a significant benefit of ω-3 PUFAs, the recent REDUCE-IT trial has provided robust evidence in support of their role in cardiovascular prevention. Recent studies have also identified the intestinal microbiota as a potential player in the pathophysiology and progression of hypertension. Although this might occur through many pathways, generation of SCFAs that is highly dependent on dietary fiber intake is primarily involved, providing an additional target for the development of novel therapeutic strategies. For these reasons, some scientific societies currently recommend dietary supplementation of ω-3 PUFAs and fiber-containing foods in patients with hypertension. In this narrative review, we summarize the results of studies that examined the effects of ω-3 PUFAs and SCFAs on blood pressure, highlighting the mechanisms of action on the vascular system and their possible impact on hypertension, hypertension-related organ damage and, ultimately, cardiovascular outcomes.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100, Udine, Italy; Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100, Udine, Italy; Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy.
| | - Leonardo A Sechi
- Department of Medicine, University of Udine, 33100, Udine, Italy; European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100, Udine, Italy; Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100, Udine, Italy; Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
7
|
Li ZH, Song WQ, Qiu CS, Li HM, Tang XL, Shen D, Zhang PD, Zhang XR, Ren JJ, Gao J, Zhong WF, Liu D, Chen YJ, Chen PL, Huang QM, Mao C. Fish oil supplementation, genetic susceptibility and risk of new-onset hypertension. Prev Med 2024; 189:108152. [PMID: 39423956 DOI: 10.1016/j.ypmed.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES The risk of new-onset hypertension is influenced by habitual fish oil supplementation, but whether the association is modified by genetic predisposition is unknown. METHODS A total of 213,604 participants without hypertension were identified at baseline from the UK Biobank between 2006 and 2010. The weighted polygenetic risk score (PRS) comprising 118 identified single-nucleotide polymorphisms (SNPs) was used to quantify genetic susceptibility. Cox regression models were applied to determine the association between fish oil supplementation, PRS, and hypertension and evaluate the effect modification of genetic susceptibility. RESULTS During a median follow-up of 13.8 years, 18,498 new-onset hypertension cases were identified. Approximately 30.6 % (65,452) of participants were habitual fish oil users. The hazard ratio (HR) of habitual fish oil users for hypertension was 0.94 (95 % confidence interval [CI], 0.91-0.98). Fish oil nonusers with a high genetic risk had an increased risk of hypertension (HR, 1.52; 95 % CI, 1.41-1.64) compared to fish oil users with a low genetic risk. In addition, an interaction on the additive scale between the fish oil use and intermediate or high levels of genetic susceptibility was observed. The interactive effects accounted for approximately 7 % and 22 % of the risk of developing hypertension, respectively. CONCLUSIONS This cohort study indicates regular fish oil supplementation could be beneficial in preventing hypertension, particularly among individuals with intermediate or high genetic susceptibility on an additive scale.
Collapse
Affiliation(s)
- Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Qi Song
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng-Shen Qiu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Min Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu-Lian Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Shen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei-Dong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xi-Ru Zhang
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiao-Jiao Ren
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Fang Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Pei-Liang Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing-Mei Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Miró-Colmenárez PJ, Illán-Marcos E, Díaz-Cruces E, Rocasolano MM, Martínez-Hernandez JM, Zamora-Ledezma E, Zamora-Ledezma C. Current Insights into Industrial Trans Fatty Acids Legal Frameworks and Health Challenges in the European Union and Spain. Foods 2024; 13:3845. [PMID: 39682917 DOI: 10.3390/foods13233845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The presence of industrial trans-fatty acids (iTFAs) in processed foods poses significant public health concerns, necessitating comprehensive regulatory frameworks. In this study, the current legal landscape governing iTFA in the European Union and Spain is analyzed, with a particular focus on regulatory effectiveness and implementation challenges. The research methodology combines a systematic review of existing regulations, including EU Regulation No. 1169/2011 and Spanish Law 17/2011, with the analysis of the scientific literature on iTFA health impacts. The results reveal significant regulatory gaps, particularly in enforcement mechanisms and iTFA detection methods. Key challenges are also identified in the present study, including inconsistent compliance monitoring, varying analytical methods for iTFA detection, and contradictions between EU and Spanish regulatory frameworks. Additionally, in this work, the need for harmonized approaches to ultra-processed food regulation is emphasized. Further, the conclusion is that despite the current regulations providing a foundation for iTFA control, it is compulsory to enhance the monitoring systems, and clearer regulatory guidelines are necessary. These would contribute valuable insights for policymakers, food industry stakeholders, and public health professionals working towards effective iTFA regulation.
Collapse
Affiliation(s)
- Pablo Javier Miró-Colmenárez
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Esther Illán-Marcos
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - María Méndez Rocasolano
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Manuel Martínez-Hernandez
- Department of Nutrition and Food Technology, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ezequiel Zamora-Ledezma
- Ecosystem Functioning & Climate Change Team-FAGROCLIM, Faculty of Agriculture Engineering, Universidad Técnica de Manabí (UTM), Lodana 13132, Ecuador
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Cañada, 28691 Madrid, Spain
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
9
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
10
|
Chen G, Qian Z(M, Zhang J, Zhang S, Zhang Z, Vaughn MG, Aaron HE, Wang C, Lip GYH, Lin H. Regular use of fish oil supplements and course of cardiovascular diseases: prospective cohort study. BMJ MEDICINE 2024; 3:e000451. [PMID: 38800667 PMCID: PMC11116879 DOI: 10.1136/bmjmed-2022-000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
Objective To examine the effects of fish oil supplements on the clinical course of cardiovascular disease, from a healthy state to atrial fibrillation, major adverse cardiovascular events, and subsequently death. Design Prospective cohort study. Setting UK Biobank study, 1 January 2006 to 31 December 2010, with follow-up to 31 March 2021 (median follow-up 11.9 years). Participants 415 737 participants, aged 40-69 years, enrolled in the UK Biobank study. Main outcome measures Incident cases of atrial fibrillation, major adverse cardiovascular events, and death, identified by linkage to hospital inpatient records and death registries. Role of fish oil supplements in different progressive stages of cardiovascular diseases, from healthy status (primary stage), to atrial fibrillation (secondary stage), major adverse cardiovascular events (tertiary stage), and death (end stage). Results Among 415 737 participants free of cardiovascular diseases, 18 367 patients with incident atrial fibrillation, 22 636 with major adverse cardiovascular events, and 22 140 deaths during follow-up were identified. Regular use of fish oil supplements had different roles in the transitions from healthy status to atrial fibrillation, to major adverse cardiovascular events, and then to death. For people without cardiovascular disease, hazard ratios were 1.13 (95% confidence interval 1.10 to 1.17) for the transition from healthy status to atrial fibrillation and 1.05 (1.00 to 1.11) from healthy status to stroke. For participants with a diagnosis of a known cardiovascular disease, regular use of fish oil supplements was beneficial for transitions from atrial fibrillation to major adverse cardiovascular events (hazard ratio 0.92, 0.87 to 0.98), atrial fibrillation to myocardial infarction (0.85, 0.76 to 0.96), and heart failure to death (0.91, 0.84 to 0.99). Conclusions Regular use of fish oil supplements might be a risk factor for atrial fibrillation and stroke among the general population but could be beneficial for progression of cardiovascular disease from atrial fibrillation to major adverse cardiovascular events, and from atrial fibrillation to death. Further studies are needed to determine the precise mechanisms for the development and prognosis of cardiovascular disease events with regular use of fish oil supplements.
Collapse
Affiliation(s)
- Ge Chen
- Department of Epidemiology, Sun Yat-Sen University, Guangzhou, China
| | - Zhengmin (Min) Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Junguo Zhang
- Department of Epidemiology, Sun Yat-Sen University, Guangzhou, China
| | - Shiyu Zhang
- Department of Epidemiology, Sun Yat-Sen University, Guangzhou, China
| | - Zilong Zhang
- Department of Epidemiology, Sun Yat-Sen University, Guangzhou, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Hannah E Aaron
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, Missouri, USA
| | - Chuangshi Wang
- Medical Research and Biometrics Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, Peking Union Medical College, Beijing, China
| | - Gregory YH Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hualiang Lin
- Department of Epidemiology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Breeze P, Sworn K, McGrane E, Abraham S, Cantrell A. Relationships between sodium, fats and carbohydrates on blood pressure, cholesterol and HbA1c: an umbrella review of systematic reviews. BMJ Nutr Prev Health 2024; 7:191-203. [PMID: 38966118 PMCID: PMC11221289 DOI: 10.1136/bmjnph-2023-000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/06/2023] [Indexed: 07/06/2024] Open
Abstract
Background The relationship between nutrition and health is complex and the evidence to describe it broad and diffuse. This review brings together evidence for the effect of nutrients on cardiometabolic risk factors. Methods An umbrella review identified systematic reviews of randomised controlled trials and meta-analyses estimating the effects of fats, carbohydrates and sodium on blood pressure, cholesterol and haemoglobin A1c (HbA1c). Medline, Embase, Cochrane Library and Science Citation Index were search through 26 May 2020, with supplementary searches of grey literature and websites. English language systematic reviews and meta-analyses were included that assessed the effect of sodium, carbohydrates or fat on blood pressure, cholesterol and HbA1c. Reviews were purposively selected using a sampling framework matrix. The quality of evidence was assessed with A MeaSurement Tool to Assess systematic Reviews 2 (AMSTAR2) checklist, evidence synthesised in a narrative review and causal pathways diagram. Results Forty-three systematic reviews were included. Blood pressure was significantly associated with sodium, fibre and fat. Sodium, fats and carbohydrates were significantly associated with cholesterol. Monounsaturated fat, fibre and sugars were associated with HbA1c. Conclusion Multiple relationships between nutrients and cardiometabolic risk factors were identified and summarised in an accessible way for public health researchers. The review identifies associations, inconsistencies and gaps in evidence linking nutrition to cardiometabolic health.
Collapse
Affiliation(s)
- Penny Breeze
- Division of Population Health, The University of Sheffield, Sheffield, UK
| | - Katie Sworn
- Institute of Nursing Science Clinical-Theoretical Institute of the University Hospital, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Baden-Württemberg, Germany
| | | | | | | |
Collapse
|
12
|
Torfadottir JE, Ulven SM. Fish - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10485. [PMID: 38571914 PMCID: PMC10989230 DOI: 10.29219/fnr.v68.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 04/05/2024] Open
Abstract
The aim of this scoping review was to conduct evidence-based documentation between fish intake and health outcomes for food-based dietary guidelines (FBDGs) in the Nordic Nutrition Recommendations (NNR) 2023. For most health outcomes, the evidence for fish oil and n-3 long chain (LC) polyunsaturated fatty acids (PUFA) supplementation was included when examining evidence between fish intake and health. In this review, conclusions from qualified systematic reviews (qSR) approved by NNR2023 are included. In addition, conclusions of a de novo systematic reviews on the topic of n-3 LC-PUFA, asthma, and allergy are included. Finally, a systematic literature search was performed limited to systematic reviews and meta-analysis published between 2011 and September 2021. In total, 21 papers from the systematic literature search, four qSR, and eight reports were included addressing the association between fish intake, fish oil, and n-3 LC-PUFA supplementation on several health outcomes. These included cardiovascular disease (CVD), type 2 diabetes, cancers (colorectal, breast, and prostate), metabolic syndrome, obesity, mortality, cognition and mental health, pregnancy-related outcomes (preterm birth and birth weight), and outcomes specific for children (neurodevelopment, and risk of food allergies, and asthma). In addition, intermediate risk factors such as blood lipids, glucose, C-reactive protein, and blood pressure were reviewed. Based on current evidence, fish consumption can have beneficial effects to prevent coronary heart disease (CHD) and stroke incidence, and lower mortality from CVD, CHD, myocardial infarction (MI), and stroke, as well as total mortality risk. In addition, fish consumption is beneficial for preventing cognitive decline in adults (e.g. dementia and Alzheimer's disease). Fish intake may also prevent metabolic syndrome, supported by an observed association between fish intake and reduction in plasma triglycerides and increase in high-density lipoprotein (HDL) cholesterol levels. Data from fish oil and n-3 LC-PUFA supplementation studies supports the conclusions on the effects of fish consumption on most of the health outcomes.
Collapse
Affiliation(s)
- Johanna E. Torfadottir
- Centre of Public Health Sciences, University of Iceland, Reykjavik, Iceland
- Directorate of Health, Reykjavik, Iceland
| | - Stine M. Ulven
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Zeinalabedini M, Ladaninezhad M, Mobarakeh KA, Hoshiar-Rad A, Shekari S, Askarpour SA, Ardekanizadeh NH, Esmaeili M, Abdollahi M, Doaei S, Khoshdooz S, Ajami M, Gholamalizadeh M. Association of dietary fats with ischemic heart disease (IHD): a case-control study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:19. [PMID: 38303014 PMCID: PMC10832209 DOI: 10.1186/s41043-023-00489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND This study aimed to investigate the association between different types of dietary fats with ischemic heart disease (IHD). METHODS This case-control study was conducted on 443 cases and 453 controls aged 40-80 years in Tehran, Iran. The semi-quantitative 237-item food frequency questionnaire (FFQ) was used to assess the amount of food intake. Nutritionist IV was applied to test the amount of consumption of dietary fats. RESULTS The case group had a lower intake of docosahexaenoic acid (DHA) (11.36 ± 12.58 vs. 14.19 ± 19.57, P = 0.01) than the control group. A negative association was found between IHD and DHA (OR 0.98, CI 95% 0.97-0.99, P = 0.01). No significant association was observed between IHD with the intake of cholesterol, trans fatty acids (TFA), saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), eicosatetraenoic acid (EPA), and α-Linolenic acid (ALA). CONCLUSION It was found that DHA may reduce the risk of IHD, whereas there was no significant association between other types of dietary fats with the odds of IHD. If the results of this study are confirmed in future research, a higher intake of DHA in diet can be recommended as a strategy to prevent IHD events.
Collapse
Affiliation(s)
- Mobina Zeinalabedini
- Department of Community Nutrition, School of Nutritional Sciences and dietetic, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ladaninezhad
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi Mobarakeh
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan, Iran
| | - Anahita Hoshiar-Rad
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Askarpour
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mina Esmaeili
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Abdollahi
- Social Determinants of Health Research Center, and National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Department of Community Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Aljuraiban GS, Gibson R, Chan DS, Van Horn L, Chan Q. The Role of Diet in the Prevention of Hypertension and Management of Blood Pressure: An Umbrella Review of Meta-Analyses of Interventional and Observational Studies. Adv Nutr 2024; 15:100123. [PMID: 37783307 PMCID: PMC10831905 DOI: 10.1016/j.advnut.2023.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
High blood pressure (BP) is a major pathological risk factor for the development of several cardiovascular diseases. Diet is a key modifier of BP, but the underlying relationships are not clearly demonstrated. This is an umbrella review of published meta-analyses to critically evaluate the wide range of dietary evidence from bioactive compounds to dietary patterns on BP and risk of hypertension. PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials were searched from inception until October 31, 2021, for relevant meta-analyses of randomized controlled trials or meta-analyses of observational studies. A total of 175 publications reporting 341 meta-analyses of randomized controlled trials (145 publications) and 70 meta-analyses of observational studies (30 publications) were included in the review. The methodological quality of the included publications was assessed using Assessment of Multiple Systematic Reviews 2 and the evidence quality of each selected meta-analysis was assessed using NutriGrade. This umbrella review supports recommended public health guidelines for prevention and control of hypertension. Dietary patterns including the Dietary Approaches to Stop Hypertension and the Mediterranean-type diets that further restrict sodium, and moderate alcohol intake are advised. To produce high-quality evidence and substantiate strong recommendations, future research should address areas where the low quality of evidence was observed (for example, intake of dietary fiber, fish, egg, meat, dairy products, fruit juice, and nuts) and emphasize focus on dietary factors not yet conclusively investigated.
Collapse
Affiliation(s)
- Ghadeer S Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Rachel Gibson
- Department of Nutritional Sciences, King's College London, London, United Kingdom; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.
| | - Doris Sm Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, IL, United States.
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
15
|
Narimani B, Amini MR, Sheikhhossein F, Akhgarjand C, Gholizadeh M, Askarpour M, Hekmatdoost A. The effects of purslane consumption on blood pressure, body weight, body mass index, and waist circumference: a systematic review and meta-analysis of randomised controlled. J Nutr Sci 2023; 12:e129. [PMID: 38155802 PMCID: PMC10753486 DOI: 10.1017/jns.2023.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
The effects of purslane consumption on anthropometric measurements and blood pressure have been studied in numerous experiments. However, the research findings conflict with one another. In order to assess the impact of purslane on weight, body mass index (BMI), waist circumference (WC), systolic blood pressure (SBP), and diastolic blood pressure (DBP), this meta-analysis was carried out. Up until February 2023, PubMed, Web of Science, Scopus, Google Scholar, and the reference lists of the identified pertinent randomised controlled trials (RCTs) were all searched. The random-effects model was used to calculate the effect size and then to describe it as a weighted mean difference (WMD) and 95 % confidence interval (CI) (CRD42023427955). The systematic review was able to incorporate seven RCTs. Meta-analysis showed that purslane significantly decreased body weight (WMD): -0⋅73 kg, 95 % confidence interval (CI): -1⋅37, -0⋅09, P=0⋅025), BMI (WMD: -0⋅35 kg/m2, 95 % CI: -0⋅64, -0⋅07, P=0⋅016), and SBP (WMD: -3⋅64 mmHg, 95 % CI: -6⋅42, -0⋅87, P = 0⋅01), and for WC, there was no discernible effect (WMD: -0⋅86 cm; 95 % CI, -1⋅80 to 0⋅07; P = 0⋅06) and DBP (WMD: -0⋅36 mmHg; 95 % CI, -1⋅75 to 1⋅03; P = 0⋅61). Purslane consumption, especially in participants with a BMI of <30, might play a role in decreasing SBP, body weight, BMI, and WC. Purslane consumption significantly reduced body weight, BMI, and SBP; however, WC and DBP did not experience a reduction. More investigation is needed to verify the impact of purslane consumption on anthropometric parameters and blood pressure.
Collapse
Affiliation(s)
- Behnaz Narimani
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Gholizadeh
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Lewis JI, Lind MV, Møller G, Hansen T, Pedersen H, Christensen MMB, Laursen JC, Nielsen S, Ottendahl CB, Larsen CVL, Stark KD, Bjerregaard P, Jørgensen ME, Lauritzen L. The effect of traditional diet on glucose homoeostasis in carriers and non-carriers of a common TBC1D4 variant in Greenlandic Inuit: a randomised crossover study. Br J Nutr 2023; 130:1871-1884. [PMID: 37129117 PMCID: PMC10632723 DOI: 10.1017/s000711452300106x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Consumption of traditional foods is decreasing amid a lifestyle transition in Greenland as incidence of type 2 diabetes (T2D) increases. In homozygous carriers of a TBC1D4 variant, conferring postprandial insulin resistance, the risk of T2D is markedly higher. We investigated the effects of traditional marine diets on glucose homoeostasis and cardio-metabolic health in Greenlandic Inuit carriers and non-carriers of the variant in a randomised crossover study consisting of two 4-week dietary interventions: Traditional (marine-based, low-carbohydrate) and Western (high in imported meats and carbohydrates). Oral glucose tolerance test (OGTT, 2-h), 14-d continuous glucose and cardio-metabolic markers were assessed to investigate the effect of diet and genotype. Compared with the Western diet, the Traditional diet reduced mean and maximum daily blood glucose by 0·17 mmol/l (95 % CI 0·05, 0·29; P = 0·006) and 0·26 mmol/l (95 % CI 0·06, 0·46; P = 0·010), respectively, with dose-dependency. Furthermore, it gave rise to a weight loss of 0·5 kg (95 % CI; 0·09, 0·90; P = 0·016) relative to the Western diet and 4 % (95 % CI 1, 9; P = 0·018) lower LDL:HDL-cholesterol, which after adjustment for weight loss appeared to be driven by HDL elevation (0·09 mmol/l (0·03, 0·15), P = 0·006). A diet-gene interaction was indicated on insulin sensitivity in the OGTT (p = 0·093), which reflected a non-significant increase of 1·4 (-0·6, 3·5) mmol/l in carrier 2-h glucose. A Traditional diet marginally improved daily glycaemic control and plasma lipid profile compared with a Westernised diet in Greenlandic Inuit. Possible adverse effects on glucose tolerance in carriers of the TBC1D4 variant warrant further studies.
Collapse
Affiliation(s)
- Jack Ivor Lewis
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads Vendelbo Lind
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Grith Møller
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Sara Nielsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ken D. Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| | - Peter Bjerregaard
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
- SDU, Copenhagen, Denmark
| | - Marit E. Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Ilisimatusarfik, The University of Greenland, Nuuk, Greenland
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Kelsey MD, Pagidipati NJ. Should We "RESPECT EPA" More Now? EPA and DHA for Cardiovascular Risk Reduction. Curr Cardiol Rep 2023; 25:1601-1609. [PMID: 37812346 DOI: 10.1007/s11886-023-01972-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW There has been much debate surrounding the use of omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for cardiovascular (CV) risk reduction. RECENT FINDINGS Recent trials of EPA and DHA have offered conflicting evidence. Some demonstrate reduction in CV risk using EPA alone in select populations. Others have demonstrated no benefit, with potential for side effects, such as new-onset atrial fibrillation. Both EPA and DHA have favorable impact on lipids and inflammation, suggesting some biological plausibility for CV risk reduction. However, clinical trials of these agents have produced mixed results. Based on available evidence, EPA may work better for CV risk than DHA and EPA combined. The benefit of EPA seems to be dose dependent, though higher doses may have more side effects. Further research is needed to define the role of EPA and DHA in the landscape of CV risk reduction.
Collapse
Affiliation(s)
- Michelle D Kelsey
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, 300 W Morgan St, Durham, NC, 27710, USA.
| | - Neha J Pagidipati
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, 300 W Morgan St, Durham, NC, 27710, USA
| |
Collapse
|
18
|
Vajdi M, Noshadi N, Hassanizadeh S, Bonyadian A, Seyedhosseini-Ghaheh H, Askari G. The effects of alpha lipoic acid (ALA) supplementation on blood pressure in adults: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Front Cardiovasc Med 2023; 10:1272837. [PMID: 37942070 PMCID: PMC10628535 DOI: 10.3389/fcvm.2023.1272837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction There have been various clinical studies on the effect of Alpha lipoic acid (ALA) supplementation on blood pressure (BP), but the findings from these are contradictory. Therefore, we performed a systematic review and dose-response meta-analysis to summarize the relation of ALA supplementation and systolic blood pressure (SBP) and diastolic blood pressure (DBP) in adults. Methods A comprehensive search was conducted in Medline (PubMed), Embase, Scopus, and ProQuest up to July 2023. Randomized controlled trials (RCTs) evaluating the effect of ALA on SBP and DBP were included. The pooled weighted mean difference (WMD) of included trials was estimated using a random-effects model. The dose-dependent effect was also assessed. Results and discussion A total of 11 RCTs with the participation of 674 patients were included. The result of the meta-analysis indicated that using ALA supplementation significantly reduced the SBP (WMD = -5.46 mmHg; 95% CI: -9.27, -1.65; p < 0.001) and DBP (WMD = -3.36 mmHg, 95% CI: -4.99, -1.74; p < 0.001). The ALA administrations significantly reduced SBP and DBP at the dosages of <800 mg/day, when administered for ≤12 weeks. The present meta-analysis revealed that ALA supplementation could exert favorable effects on SBP and DBP. Further well-designed studies with larger samples are needed to ascertain the long-term effects of ALA on BP. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=447658, identifier PROSPERO: CRD42023447658.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nooshin Noshadi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Bonyadian
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Kadokura K, Tomita T, Suruga K. Consumption of fish balls "tsumire" may help prevent liver function deterioration in aged rats. Nutr Health 2023; 29:383-387. [PMID: 36514304 DOI: 10.1177/02601060221142071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Possible health benefits of fish balls tsumire consumption on human health have been deduced based on the results of our earlier study investigating tsumire consumption by young (6-weeks-old) Sprague-Dawley rats. Aim: The objectives of this study were to evaluate the effect of tsumire intake on aged rats by feeding them a diet containing 5% dried tsumire. Methods: Biomarker levels and organ weight of 80-weeks-old Sprague-Dawley rats that were fed with tsumire were examined for potential health benefits. Results: Following 84 days of administering tsumire-containing diet, we found a decrease in some liver function parameters, such as the levels of AST, ALT, ALP and LAP, in the tsumire-fed rats compared to control rats provided with normal diet. In particular, significantly reduced LDH levels were observed in the experimental group. Conclusions: The results can be extrapolated to possible beneficial effects of consumption of tsumire on human health.
Collapse
Affiliation(s)
- Kazunari Kadokura
- Research & Development Division, Products Development Department, Kibun Foods Inc., Tokyo, Japan
| | - Tsuyoshi Tomita
- Research & Development Division, Products Development Department, Kibun Foods Inc., Tokyo, Japan
| | - Kohei Suruga
- Research & Development Division, Products Development Department, Kibun Foods Inc., Tokyo, Japan
| |
Collapse
|
20
|
Basdeki ED, Karatzi K, Arnaoutis G, Makrilakis K, Liatis S, Cardon G, De Craemer M, Iotova V, Tsochev K, Tankova T, Kivelä J, Wikström K, Rurik I, Radó S, Miguel-Berges ML, Gimenez-Legarre N, Moreno-Aznar L, Manios Y. A lifestyle pattern characterised by high consumption of sweet and salty snacks, sugar sweetened beverages and sedentary time is associated with blood pressure in families at risk for type 2 diabetes mellitus in Europe. The Feel4Diabetes Study. J Hum Nutr Diet 2023; 36:1564-1575. [PMID: 36719056 DOI: 10.1111/jhn.13145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Individuals from families at high-risk for type 2 diabetes mellitus (T2DM) are also at high risk for hypertension (HTN) and cardiovascular disease. Studies identifying lifestyle patterns (LPs) combining dietary, physical activity or sedentary variables and examining their possible role with respect to developing blood pressure (BP) are limited. The present study aimed to examine the association of different LPs with BP levels in families at high risk for T2DM in Europe. METHODS In total, 1844 adults (31.6% males) at high-risk for T2DM across six European countries were included in this cross-sectional study using data from the baseline assessment of the Feel4Diabetes Study. BP measurements and dietary and physical activity assessments were conducted, and screen times were surveyed. LPs were revealed with principal component analysis of various data regarding diet, physical activity, screen time and smoking. RESULTS Three LPs were identified. LP3 (high consumption of sweet and salty snacks, sugar sweetened soft drinks and juices, and high amount of screen time) was positively associated with diastolic BP (B, 0.52; 95% confidence interval = 0.05-0.99) and the existence of HTN (odds ratio = 1.12; 95% confidence interval = 1.00-1.25). Participants in the highest tertile of LP3 spent mean 3 h of screen time, consumed 1.5 portions of sweet and/or salty snacks and 1 L of soft drinks on a daily basis, were associated with 12% higher risk of HTN. CONCLUSIONS Focusing on the combination of eating and lifestyle behaviours may more accurately identify, and therefore guide preventive measures tailored to the specific needs of high-risk populations.
Collapse
Affiliation(s)
- Eirini D Basdeki
- Cardiovascular Prevention & Research Unit, Clinic & Laboratory of Pathophysiology, Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Kalliopi Karatzi
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Giannis Arnaoutis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Konstantinos Makrilakis
- National and Kapodistrian University of Athens Medical School, First Department of Propaedeutic Medicine, Laiko General Hospital, Athens, Greece
| | - Stavros Liatis
- National and Kapodistrian University of Athens Medical School, First Department of Propaedeutic Medicine, Laiko General Hospital, Athens, Greece
| | - Greet Cardon
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Marieke De Craemer
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
- Research Foundation Flanders, Brussels, Belgium
| | - Violeta Iotova
- Departemnt of Pediatrics, Medical University of Varna, Varna, Bulgaria
| | - Kaloyan Tsochev
- Departemnt of Pediatrics, Medical University of Varna, Varna, Bulgaria
| | - Tsvetalina Tankova
- Clinical Center of Endocrinology and Gerontology, Medical University of Sofia, Sofia, Bulgaria
| | - Jemina Kivelä
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Katja Wikström
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Imre Rurik
- Department of Family and Occupational Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándorné Radó
- Faculty of Health, Doctoral School of Health Science, University of Debrecen, Debrecen, Hungary
| | - María L Miguel-Berges
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Facultad de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Gimenez-Legarre
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Facultad de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Moreno-Aznar
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Facultad de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Yannis Manios
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
- Institute of Agri-food and Life Sciences, Hellenic Mediterranean University Research Centre(Agro-Health), Heraklion, Greece
| |
Collapse
|
21
|
Qian F, Tintle N, Jensen PN, Lemaitre RN, Imamura F, Feldreich TR, Nomura SO, Guan W, Laguzzi F, Kim E, Virtanen JK, Steur M, Bork CS, Hirakawa Y, O'Donoghue ML, Sala-Vila A, Ardisson Korat AV, Sun Q, Rimm EB, Psaty BM, Heckbert SR, Forouhi NG, Wareham NJ, Marklund M, Risérus U, Lind L, Ärnlöv J, Garg P, Tsai MY, Pankow J, Misialek JR, Gigante B, Leander K, Pester JA, Albert CM, Kavousi M, Ikram A, Voortman T, Schmidt EB, Ninomiya T, Morrow DA, Bayés-Genís A, O'Keefe JH, Ong KL, Wu JHY, Mozaffarian D, Harris WS, Siscovick DS. Omega-3 Fatty Acid Biomarkers and Incident Atrial Fibrillation. J Am Coll Cardiol 2023; 82:336-349. [PMID: 37468189 DOI: 10.1016/j.jacc.2023.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The relationship between omega-3 fatty acids and atrial fibrillation (AF) remains controversial. OBJECTIVES This study aimed to determine the prospective associations of blood or adipose tissue levels of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) with incident AF. METHODS We used participant-level data from a global consortium of 17 prospective cohort studies, each with baseline data on blood or adipose tissue omega-3 fatty acid levels and AF outcomes. Each participating study conducted a de novo analyses using a prespecified analytical plan with harmonized definitions for exposures, outcome, covariates, and subgroups. Associations were pooled using inverse-variance weighted meta-analysis. RESULTS Among 54,799 participants from 17 cohorts, 7,720 incident cases of AF were ascertained after a median 13.3 years of follow-up. In multivariable analysis, EPA levels were not associated with incident AF, HR per interquintile range (ie, the difference between the 90th and 10th percentiles) was 1.00 (95% CI: 0.95-1.05). HRs for higher levels of DPA, DHA, and EPA+DHA, were 0.89 (95% CI: 0.83-0.95), 0.90 (95% CI: 0.85-0.96), and 0.93 (95% CI: 0.87-0.99), respectively. CONCLUSIONS In vivo levels of omega-3 fatty acids including EPA, DPA, DHA, and EPA+DHA were not associated with increased risk of incident AF. Our data suggest the safety of habitual dietary intakes of omega-3 fatty acids with respect to AF risk. Coupled with the known benefits of these fatty acids in the prevention of adverse coronary events, our study suggests that current dietary guidelines recommending fish/omega-3 fatty acid consumption can be maintained.
Collapse
Affiliation(s)
- Frank Qian
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan Tintle
- Department of Mathematics and Statistics, Dordt University, Sioux Center, Iowa, USA; Fatty Acid Research Institute, Sioux Falls, South Dakota, USA
| | - Paul N Jensen
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Tobias Rudholm Feldreich
- School of Health and Social Sciences, Dalarna University, Falun, Sweden; Center for Clinical Research Dalarna, Region Dalarna, Falun, Sweden
| | - Sarah Oppeneer Nomura
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eunjung Kim
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marinka Steur
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Christian S Bork
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Yoichiro Hirakawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michelle L O'Donoghue
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Aleix Sala-Vila
- Fatty Acid Research Institute, Sioux Falls, South Dakota, USA; Cardiovascular Risk and Nutrition - Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Andres V Ardisson Korat
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, Washington, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Matti Marklund
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden; Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA; The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Ärnlöv
- Center for Clinical Research Dalarna, Region Dalarna, Falun, Sweden; School of Health and Social Studies, Dalarna University, Falun, Sweden; Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Stockholm, Sweden
| | - Parveen Garg
- Division of Cardiology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Michael Y Tsai
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey R Misialek
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruna Gigante
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julie A Pester
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands; Division of Human Nutrition and Health, Wageningen University and Research, Wageningenn, the Netherlands
| | - Erik B Schmidt
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - David A Morrow
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Antoni Bayés-Genís
- Department of Cardiology, Heart Institute, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Kwok Leung Ong
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Jason H Y Wu
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA; Division of Cardiology, Tufts Medical Center, Boston, Massachusetts, USA
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, South Dakota, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | | |
Collapse
|
22
|
Nikrad N, Shakarami A, Rahimi Z, Janghorbanian-Poodeh R, Farhangi MA, Hosseini B, Jafarzadeh F. Dietary pro-oxidant score (POS) and cardio-metabolic panel among obese individuals: a cross-sectional study. BMC Endocr Disord 2023; 23:144. [PMID: 37430312 PMCID: PMC10332071 DOI: 10.1186/s12902-023-01395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Oxidative stress is a disturbance in the natural balance between oxidative and anti-oxidative processes, which is the major effective factor in cardiovascular disorders and metabolic syndrome (MetS), due to the role of pro-oxidants in inducing oxidative stress, and as a result, the occurrence and exacerbation of components of metabolic syndrome and cardiovascular risk factors, this cross-sectional study was conducted with the aim of investigating the relationship between the status of dietary pro-oxidants score (POS) and metabolic parameters including serum lipids, glycemic markers and blood pressure among obese adults. METHODS 338 individuals with obesity (BMI ≥ 30 kg/m 2), aged between 20 and 50 years were recruited in the present cross-sectional study. A validated food frequency questionnaire (FFQ) was used to determine the dietary pro-oxidant score (POS). Analysis of variance (ANOVA) with Tukey's post-hoc comparisons after adjustment for confounders and multivariable logistic regression analysis were performed to determine the association of cardiometabolic risk factors among the tertiles of POS. RESULTS Participants with higher POS had lower levels of body mass index (BMI), weight and waist circumference (WC). There were no significant associations between metabolic parameters including glycemic markers and lipid profile in one-way ANOVA and multivariate multinomial logistic regression models. CONCLUSIONS The findings of this study revealed that greater dietary pro-oxidant intake might be associated with lower BMI, body weight, and WC in Iranian obese individuals. Further studies with interventional or longitudinal approaches will help to better elucidate the causality of the observed associations.
Collapse
Affiliation(s)
- Negin Nikrad
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Shakarami
- Department of Cardiovascular Medicine, Assistant Professor of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Rahimi
- Teaching Experimental Sciences Group, Teachers Training Center, Pardis Bahonar Faculty of Farhangian University, Isfahan, Iran
| | - Raheleh Janghorbanian-Poodeh
- Coronary Angiography Group, Heart Department of Chamran Sub-Speciality Heart Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Abbasalizad Farhangi
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Hosseini
- Department of Surgery, School of Medicine, Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Faria Jafarzadeh
- Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran.
| |
Collapse
|
23
|
Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bertin N, Vivarelli C, Bulfone L, Vacca A, Catena C, Sechi LA. Omega-3 Fatty Acids in Arterial Hypertension: Is There Any Good News? Int J Mol Sci 2023; 24:9520. [PMID: 37298468 PMCID: PMC10253816 DOI: 10.3390/ijms24119520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including alpha-linolenic acid (ALA) and its derivatives eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are "essential" fatty acids mainly obtained from diet sources comprising plant oils, marine blue fish, and commercially available fish oil supplements. Many epidemiological and retrospective studies suggested that ω-3 PUFA consumption decreases the risk of cardiovascular disease, but results of early intervention trials have not consistently confirmed this effect. In recent years, some large-scale randomized controlled trials have shed new light on the potential role of ω-3 PUFAs, particularly high-dose EPA-only formulations, in cardiovascular prevention, making them an attractive tool for the treatment of "residual" cardiovascular risk. ω-3 PUFAs' beneficial effects on cardiovascular outcomes go far beyond the reduction in triglyceride levels and are thought to be mediated by their broadly documented "pleiotropic" actions, most of which are directed to vascular protection. A considerable number of clinical studies and meta-analyses suggest the beneficial effects of ω-3 PUFAs in the regulation of blood pressure in hypertensive and normotensive subjects. These effects occur mostly through regulation of the vascular tone that could be mediated by both endothelium-dependent and independent mechanisms. In this narrative review, we summarize the results of both experimental and clinical studies that evaluated the effect of ω-3 PUFAs on blood pressure, highlighting the mechanisms of their action on the vascular system and their possible impact on hypertension, hypertension-related vascular damage, and, ultimately, cardiovascular outcomes.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Alessandro Picci
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Patrizio Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Leonardo A. Sechi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| |
Collapse
|
24
|
Pipingas A, Reddan JM, Gauci S, Young LM, Kennedy G, Rowsell R, King R, Spiteri S, Minihane AM, Scholey A. Post-Prandial Cognitive and Blood Pressure Effects of a DHA-Rich Omega-3 Powder in Middle-Aged Males: A Pilot Study. Nutrients 2023; 15:2198. [PMID: 37432363 DOI: 10.3390/nu15092198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
The use of omega-3 polyunsaturated fatty acid (ω-3 PUFA) supplements is increasingly common among middle-aged and older adults. Users of ω-3 PUFA supplements often report using such supplements to support cognitive health, despite mixed findings reported within the ω-3 PUFA literature. To date, very few studies have explored cognitive effects in distinctly middle-aged (40 to 60 years) adults, and none have examined the acute effects (in the hours following a single dose) on cognitive performance. The current study evaluated whether a single dose of ω-3 PUFA (4020 mg docosahexaenoic acid and 720 mg eicosapentaenoic acid) influences cognitive performance and cardiovascular function in middle-aged males. Cognitive performance and cardiovascular function were assessed before and 3.5-4 h after consumption of a high dose of ω-3 PUFA (DHA + EPA) or placebo, incorporated into a standardized meal (i.e., single serve of Greek yogurt). In this study of middle-aged males, no significant differential treatment effects were observed for cognitive performance. However, a significant reduction in aortic systolic blood pressure (pre-dose to post-dose) was apparent following consumption of the ω-3 PUFA (DHA + EPA) treatment (mean difference = -4.11 mmHg, p = 0.004) but not placebo (mean difference = -1.39 mmHg, p = 0.122). Future replication in a sample comprising females, as well as patients with hypertension, is merited.
Collapse
Affiliation(s)
- Andrew Pipingas
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jeffery Michael Reddan
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sarah Gauci
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Lauren M Young
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Greg Kennedy
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Renee Rowsell
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Rebecca King
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sam Spiteri
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Andrew Scholey
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia
| |
Collapse
|
25
|
Kim Y. The association between red, processed and white meat consumption and risk of pancreatic cancer: a meta-analysis of prospective cohort studies. Cancer Causes Control 2023; 34:569-581. [PMID: 37071321 DOI: 10.1007/s10552-023-01698-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE The association between meat consumption and the risk of pancreatic cancer has not been comprehensively investigated by different types of meat. The current study was conducted to evaluate this association. METHODS PubMed and Web of Science databases were used to search for prospective cohort studies on meat consumption and pancreatic cancer risk through May 2022. A meta-analysis was performed using random-effects models to combine study-specific relative risks (RR). The quality of the included studies was evaluated using the Newcastle-Ottawa quality assessment scale. RESULTS Twenty prospective cohort studies including 3,934,909 participants and 11,315 pancreatic cancer cases were identified. The pooled RR of pancreatic cancer for the highest versus lowest white meat intake category was 1.14 (95% CI: 1.03-1.27). There was no significant association between consumption of red meat and processed meat and pancreatic cancer risk in the highest versus lowest analysis. In dose-response analyses, pooled RRs were 1.14 (95% CI: 1.01-1.28) for an increase in red meat consumption of 120 g per day and 1.26 (95% CI: 1.08-1.47) for an increase in white meat consumption of 100 g per day, respectively. Processed meat consumption showed neither a linear nor a non-linear association with pancreatic cancer risk. CONCLUSION Findings from this meta-analysis suggested that high consumption of red meat and white meat is associated with an increased risk of pancreatic cancer. Future prospective studies are warranted to confirm the association between meat consumption and the risk of pancreatic cancer.
Collapse
Affiliation(s)
- Youngyo Kim
- Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinjudairo 501, Jinju, 52828, South Korea.
| |
Collapse
|
26
|
Sui K, Yasrebi A, Malonza N, Jaffri ZH, Fisher SE, Seelenfreund I, McGuire BD, Martinez SA, MacDonell AT, Tveter KM, Longoria CR, Shapses SA, Campbell SC, Roopchand DE, Roepke TA. Saturated Fatty Acids and Omega-3 Polyunsaturated Fatty Acids Improve Metabolic Parameters in Ovariectomized Female Mice. Endocrinology 2023; 164:bqad059. [PMID: 37029960 DOI: 10.1210/endocr/bqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
In menopausal and postmenopausal women, the risk for obesity, cardiovascular disease, osteoporosis, and gut dysbiosis are elevated by the depletion of 17β-estradiol. A diet that is high in omega-6 polyunsaturated fatty acids (PUFAs), particularly linoleic acid (LA), and low in saturated fatty acids (SFAs) found in coconut oil and omega-3 PUFAs may worsen symptoms of estrogen deficiency. To investigate this hypothesis, ovariectomized C57BL/6J and transgenic fat-1 mice, which lower endogenous omega-6 polyunsaturated fatty acids, were treated with either a vehicle or estradiol benzoate (EB) and fed a high-fat diet with a high or low PUFA:SFA ratio for ~15 weeks. EB treatment reversed obesity, glucose intolerance, and bone loss in ovariectomized mice. fat-1 mice fed a 1% LA diet experienced reduced weight gain and adiposity, while those fed a 22.5% LA diet exhibited increased energy expenditure and activity in EB-treated ovariectomized mice. Coconut oil SFAs and omega-3 FAs helped protect against glucose intolerance without EB treatment. Improved insulin sensitivity was observed in wild-type and fat-1 mice fed 1% LA diet with EB treatment, while fat-1 mice fed 22.5% LA diet was protected against insulin resistance without EB treatment. The production of short-chain fatty acids by gut microbial microbiota was linked to omega-3 FAs production and improved energy homeostasis. These findings suggest that a balanced dietary fatty acid profile containing SFAs and a lower ratio of omega-6:omega-3 FAs is more effective in alleviating metabolic disorders during E2 deficiency.
Collapse
Affiliation(s)
- Ke Sui
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ali Yasrebi
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Natasha Malonza
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zehra H Jaffri
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Samuel E Fisher
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Isaac Seelenfreund
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Brandon D McGuire
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Savannah A Martinez
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Avery T MacDonell
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Candace R Longoria
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sara C Campbell
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Troy A Roepke
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
27
|
Peña-de-la-Sancha P, Muñoz-García A, Espínola-Zavaleta N, Bautista-Pérez R, Mejía AM, Luna-Luna M, López-Olmos V, Rodríguez-Pérez JM, Fragoso JM, Carreón-Torres E, Pérez-Méndez Ó. Eicosapentaenoic and Docosahexaenoic Acid Supplementation Increases HDL Content in n-3 Fatty Acids and Improves Endothelial Function in Hypertriglyceridemic Patients. Int J Mol Sci 2023; 24:5390. [PMID: 36982461 PMCID: PMC10049536 DOI: 10.3390/ijms24065390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
High-density lipoproteins (HDLs) are known to enhance vascular function through different mechanisms, including the delivery of functional lipids to endothelial cells. Therefore, we hypothesized that omega-3 (n-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content of HDLs would improve the beneficial vascular effects of these lipoproteins. To explore this hypothesis, we performed a placebo-controlled crossover clinical trial in 18 hypertriglyceridemic patients without clinical symptoms of coronary heart disease who received highly purified EPA 460 mg and DHA 380 mg, twice a day for 5 weeks or placebo. After 5 weeks of treatment, patients followed a 4-week washout period before crossover. HDLs were isolated using sequential ultracentrifugation for characterization and determination of fatty acid content. Our results showed that n-3 supplementation induced a significant decrease in body mass index, waist circumference as well as triglycerides and HDL-triglyceride plasma concentrations, whilst HDL-cholesterol and HDL-phospholipids significantly increased. On the other hand, HDL, EPA, and DHA content increased by 131% and 62%, respectively, whereas 3 omega-6 fatty acids significantly decreased in HDL structures. In addition, the EPA-to-arachidonic acid (AA) ratio increased more than twice within HDLs suggesting an improvement in their anti-inflammatory properties. All HDL-fatty acid modifications did not affect the size distribution or the stability of these lipoproteins and were concomitant with a significant increase in endothelial function assessed using a flow-mediated dilatation test (FMD) after n-3 supplementation. However, endothelial function was not improved in vitro using a model of rat aortic rings co-incubated with HDLs before or after treatment with n-3. These results suggest a beneficial effect of n-3 on endothelial function through a mechanism independent of HDL composition. In conclusion, we demonstrated that EPA and DHA supplementation for 5 weeks improved vascular function in hypertriglyceridemic patients, and induced enrichment of HDLs with EPA and DHA to the detriment of some n-6 fatty acids. The significant increase in the EPA-to-AA ratio in HDLs is indicative of a more anti-inflammatory profile of these lipoproteins.
Collapse
Affiliation(s)
- Paola Peña-de-la-Sancha
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Adolfo Muñoz-García
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Nilda Espínola-Zavaleta
- Department of Nuclear Medicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Department of Echocardiography, ABC Medical Center, I.A.P, Mexico City 01120, Mexico
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Ana María Mejía
- Blood Bank, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - María Luna-Luna
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Victoria López-Olmos
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - José-Manuel Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - José-Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Mexico City 14380, Mexico
| |
Collapse
|
28
|
Djuricic I, Calder PC. Pros and Cons of Long-Chain Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Health. Annu Rev Pharmacol Toxicol 2023; 63:383-406. [PMID: 36662586 DOI: 10.1146/annurev-pharmtox-051921-090208] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood, supplements, and concentrated pharmaceutical preparations. Prospective cohort studies demonstrate an association between higher intakes of EPA+DHA or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease and myocardial infarction, and of cardiovascular mortality in the general population. The cardioprotective effect of EPA and DHA is due to the beneficial modulation of a number of risk factors for CVD. Some large trials support the use of EPA+DHA (or EPA alone) in high-risk patients, although the evidence is inconsistent. This review presents key studies of EPA and DHA in the primary and secondary prevention of CVD, briefly describes potential mechanisms of action, and discusses recently published RCTs and meta-analyses. Potential adverse aspects of long-chain omega-3 fatty acids in relation to CVD are discussed.
Collapse
Affiliation(s)
- Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom;
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
29
|
Chronic docosahexaenoic acid supplementation improves metabolic plasticity in subcutaneous adipose tissue of aged obese female mice. J Nutr Biochem 2023; 111:109153. [PMID: 36150680 DOI: 10.1016/j.jnutbio.2022.109153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to characterize the potential beneficial effects of chronic docosahexaenoic acid (DHA) supplementation on restoring subcutaneous white adipose tissue (scWAT) plasticity in obese aged female mice. Two-month-old female C57BL/6J mice received a control (CT) or a high fat diet (HFD) for 4 months. Then, 6-month-old diet-induced obese (DIO) mice were distributed into the DIO and the DIOMEG group (fed with a DHA-enriched HFD) up to 18 months. In scWAT, the DHA-enriched diet reduced the mean adipocyte size and reversed the upregulation of lipogenic genes induced by the HFD, reaching values even lower than those observed in CT animals. DIO mice exhibited an up-regulation of lipolytic and fatty oxidation gene expressions that was reversed in DHA-supplemented mice except for Cpt1a mRNA levels, which were higher in DIOMEG as compared to CT mice. DHA restored the increase of proinflammatory genes observed in scWAT of DIO mice. While no changes were observed in total macrophage F4/80+/CD11b+ content, the DHA treatment switched scWAT macrophages profile by reducing the M1 marker Cd11c and increasing the M2 marker CD206. These events occurred alongside with a stimulation of beige adipocyte specific genes, the restoration of UCP1 and pAKT/AKT ratio, and a recovery of the HFD-induced Fgf21 upregulation. In summary, DHA supplementation induced a metabolic remodeling of scWAT to a healthier phenotype in aged obese mice by modulating genes controlling lipid accumulation in adipocytes, reducing the inflammatory status, and inducing beige adipocyte markers in obese aged mice.
Collapse
|
30
|
Bercea C, Limbu R, Behnam K, Ng KE, Aziz Q, Tinker A, Tamagnini F, Cottrell GS, McNeish AJ. Omega-3 polyunsaturated fatty acid-induced vasodilation in mouse aorta and mesenteric arteries is not mediated by ATP-sensitive potassium channels. Front Physiol 2022; 13:1033216. [PMID: 36589427 PMCID: PMC9797959 DOI: 10.3389/fphys.2022.1033216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.
Collapse
Affiliation(s)
- Cristiana Bercea
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Roshan Limbu
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Kamila Behnam
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Keat-Eng Ng
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Qadeer Aziz
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Andrew Tinker
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Francesco Tamagnini
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Graeme S Cottrell
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Alister J McNeish
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| |
Collapse
|
31
|
Li JJ, Dou KF, Zhou ZG, Zhao D, Ye P, Zhao JJ, Guo LX. Role of omega-3 fatty acids in the prevention and treatment of cardiovascular Diseases: A consensus statement from the Experts' Committee Of National Society Of Cardiometabolic Medicine. Front Pharmacol 2022; 13:1069992. [PMID: 36578548 PMCID: PMC9791266 DOI: 10.3389/fphar.2022.1069992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) has been considered as the primary target for the prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). However, there are still residual cardiovascular risks in some patients even if LDL-C achieves the target level. Emerging evidence suggestes that elevated triglyceride (TG) level or triglyceride-rich lipoprotein (TRL) cholesterol (TRL-C) is one of the important components of the residual cardiovascular risks. Omega-3 fatty acids have been shown to be one of the effective drugs for reducing TG. However, its efficacy in reducing the risk of ASCVD is inconsistent in large randomized clinical trials. There is lack of consensus among Experts regarding the application of omega-3 fatty acids in cardiovascular diseases including heart failure, arrhythmia, cardiomyopathy, hypertension, and sudden death. Hence, the current consensus will comprehensively and scientifically present the detailed knowledge about the omega-3 fatty acids from a variety of aspects to provide a reference for its management of omega-3 fatty acids application in the Chinese population.
Collapse
Affiliation(s)
- Jian-Jun Li
- Cardiometabolic Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ke-Fei Dou
- Cardiometabolic Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi-Guang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dong Zhao
- Department of Epidemiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ping Ye
- Department of Cardiology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia-Jun Zhao
- Endocrine Department, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Li-Xin Guo
- Endocrine Department, Beijing Hospital, Beijing, China
| |
Collapse
|
32
|
Borges MC, Haycock P, Zheng J, Hemani G, Howe LJ, Schmidt AF, Staley JR, Lumbers RT, Henry A, Lemaitre RN, Gaunt TR, Holmes MV, Davey Smith G, Hingorani AD, Lawlor DA. The impact of fatty acids biosynthesis on the risk of cardiovascular diseases in Europeans and East Asians: a Mendelian randomization study. Hum Mol Genet 2022; 31:4034-4054. [PMID: 35796550 PMCID: PMC9703943 DOI: 10.1093/hmg/ddac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk.
Collapse
Affiliation(s)
- Maria-Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Phillip Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Laurence J Howe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - A Floriaan Schmidt
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Department of Cardiology, Division Heart and Lungs, UMC Utrecht, Utrecht 3584 CX, The Netherlands
| | - James R Staley
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London NW1 2DA, UK
- Health Data Research UK London, University College London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Albert Henry
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Institute of Health Informatics, University College London, London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA WA 98101, USA
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford OX3 7LF, UK
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
| | - Aroon D Hingorani
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London WC1E 6DD, UK
- Health Data Research UK London, University College London NW1 2DA, UK
- UCL British Heart Foundation Research Accelerator, London NW1 2DA, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PN, UK
- NIHR Bristol Biomedical Research Centre, Bristol BS8 2BN, UK
| |
Collapse
|
33
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
34
|
Associations of baseline use of fish oil with progression of cardiometabolic multimorbidity and mortality among patients with hypertension: a prospective study of UK Biobank. Eur J Nutr 2022; 61:3461-3470. [PMID: 35589868 PMCID: PMC9119234 DOI: 10.1007/s00394-022-02889-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The role of fish oil in the prognosis of hypertensive patients is unknown. This study investigated the associations of fish oil supplementation with the progression of cardiometabolic multimorbidity (CMM) and mortality among patients with hypertension. METHODS Based on UK Biobank, we enrolled participants with hypertension and free of other cardiometabolic diseases. The exposure was baseline use of fish oil derived from questionnaires at baseline. The primary outcomes were the incidence of CMM and all-cause mortality. Competing risk models and flexible parametric proportion-hazards models were fitted to assess the adjusted hazard ratios (HRs) for the risk of CMM and mortality outcomes, respectively. RESULTS Among 81,579 participants involved [50.37%, men; mean age, 59.38 years (standard deviation, 7.23 years)], 15,990 CMM events and 6456 all-cause deaths were reported (median follow-up, 12.23 years). In multivariable-adjusted models, baseline use of fish oil was associated with 8% lower risk of CMM [95% confidence interval (95% CI) 0.89-0.96, P < 0.001] and 10% lower risk of all-cause mortality (95% CI 0.85-0.95, P < 0.001). CONCLUSION In individuals with hypertension, baseline use of fish oil was associated with a reduced risk of CMM and all-cause mortality, and further clinical trials are needed to prove this hypothesis.
Collapse
|
35
|
Shinto LH, Raber J, Mishra A, Roese N, Silbert LC. A Review of Oxylipins in Alzheimer's Disease and Related Dementias (ADRD): Potential Therapeutic Targets for the Modulation of Vascular Tone and Inflammation. Metabolites 2022; 12:826. [PMID: 36144230 PMCID: PMC9501361 DOI: 10.3390/metabo12090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
There is now a convincing body of evidence from observational studies that the majority of modifiable Alzheimer's disease and related dementia (ADRD) risk factors are vascular in nature. In addition, the co-existence of cerebrovascular disease with AD is more common than AD alone, and conditions resulting in brain ischemia likely promote detrimental effects of AD pathology. Oxylipins are a class of bioactive lipid mediators derived from the oxidation of long-chain polyunsaturated fatty acids (PUFAs) which act as modulators of both vascular tone and inflammation. In vascular cognitive impairment (VCI), there is emerging evidence that oxylipins may have both protective and detrimental effects on brain structure, cognitive performance, and disease progression. In this review, we focus on oxylipin relationships with vascular and inflammatory risk factors in human studies and animal models pertinent to ADRD. In addition, we discuss future research directions with the potential to impact the trajectory of ADRD risk and disease progression.
Collapse
Affiliation(s)
- Lynne H. Shinto
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Departments of Behavioral Neuroscience and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anusha Mishra
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie Roese
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
| | - Lisa C. Silbert
- Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., CR120, Portland, OR 97239, USA
- Veterans Affairs Medical Center, Portland, OR 97239, USA
| |
Collapse
|
36
|
Role of natural fatty acids in prophylaxis and treatment of cardiovascular diseases. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Summary
Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) known as omega-3 polyunsaturated fatty acids (FAs), commonly called fish oils, on the occurrence of cardiovascular diseases. In a living organism, omega-3 FA (EPA and DHA) and omega-6 FA (arachidonic acid [AA]) are also involved in the formation of key regulators of platelet aggregation, vasodilation and inflammation. It is important to know that EPA and DHA act in different ways on membrane structure and lipid metabolism. For this reason, combining DHA with EPA may modify the clinical effects of only EPA treatment. The effects of omega-3 FAs on cardiovascular system remain uncertain. Two recent negative trials of EPA + DHA, STRENGTH and OMEMI, have put the utility of omega-3 FAs in preventing atherosclerotic cardiovascular events under debate. This paper presents the actual knowledge on the role of polyunsaturated acids in cardiovascular diseases.
Collapse
|
37
|
Musazadeh V, Kavyani Z, Naghshbandi B, Dehghan P, Vajdi M. The beneficial effects of omega-3 polyunsaturated fatty acids on controlling blood pressure: An umbrella meta-analysis. Front Nutr 2022; 9:985451. [PMID: 36061895 PMCID: PMC9435313 DOI: 10.3389/fnut.2022.985451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Several meta-analyses have revealed that n-3 PUFAs can lower blood pressure, but the findings are conflicting. In this regard, the present umbrella meta-analysis aimed was performed to clarify whether n-3 PUFAs have effects on blood pressure. PubMed, Scopus, Embase, Web of Science, and Google Scholar were used as international databases from inception to May 2022. To examine the effects of n-3 PUFA supplementation on blood pressure, a random-effects model was applied. The leave-one-out method was performed for the sensitivity analysis. The pooled estimate of 10 meta-analyses with 20 effect sizes revealed significant reductions in both systolic (ES = -1.19 mmHg; 95% CI: -1.76, -0.62, p < 0.001) and diastolic blood pressure (ES = -0.91 mmHg, 95% CI: -1.35, -0.47; p < 0.001) following n-3 PUFAs supplementation. In studies with a sample size of ≤ 400 participants and a mean age over 45, SBP and DBP were found to be substantially reduced. Overall, this umbrella meta-analysis indicates that n-3 PUFAs supplementation might play a role in improving DBP and SBP.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Naghshbandi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
38
|
Zhang X, Ritonja JA, Zhou N, Chen BE, Li X. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2022; 11:e025071. [PMID: 35647665 PMCID: PMC9238708 DOI: 10.1161/jaha.121.025071] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023]
Abstract
Background Current evidence might support the use of omega-3 fatty acids (preferably docosahexaenoic acid and eicosapentaenoic acid) for lowering blood pressure (BP), but the strength and shape of the dose-response relationship remains unclear. Methods and Results This study included randomized controlled trials published before May 7, 2021, that involved participants aged ≥18 years, and examined an association between omega-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, or both) and BP. A random-effects 1-stage cubic spline regression model was used to predict the average dose-response association between daily omega-3 fatty acid intake and changes in BP. We also conducted stratified analyses to examine differences by prespecified subgroups. Seventy-one trials were included, involving 4973 individuals with a combined docosahexaenoic acid+eicosapentaenoic acid dose of 2.8 g/d (interquartile range, 1.3 g/d to 3.6 g/d). A nonlinear association was found overall or in most subgroups, depicted as J-shaped dose-response curves. The optimal intake in both systolic BP and diastolic BP reductions (mm Hg) were obtained by moderate doses between 2 g/d (systolic BP, -2.61 [95% CI, -3.57 to -1.65]; diastolic BP, -1.64 [95% CI, -2.29 to -0.99]) and 3 g/d (systolic BP, -2.61 [95% CI, -3.52 to -1.69]; diastolic BP, -1.80 [95% CI, -2.38 to -1.23]). Subgroup studies revealed stronger and approximately linear dose-response relations among hypertensive, hyperlipidemic, and older populations. Conclusions This dose-response meta-analysis demonstrates that the optimal combined intake of omega-3 fatty acids for BP lowering is likely between 2 g/d and 3 g/d. Doses of omega-3 fatty acid intake above the recommended 3 g/d may be associated with additional benefits in lowering BP among groups at high risk for cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| | - Jennifer A. Ritonja
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen's UniversityKingstonOntarioCanada
| | - Na Zhou
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| | - Bingshu E. Chen
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen's UniversityKingstonOntarioCanada
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| |
Collapse
|
39
|
Frampton DJA, Choudhury K, Nikesjö J, Delemotte L, Liin SI. Subtype-specific responses of hKv7.4 and hKv7.5 channels to polyunsaturated fatty acids reveal an unconventional modulatory site and mechanism. eLife 2022; 11:77672. [PMID: 35642964 PMCID: PMC9159753 DOI: 10.7554/elife.77672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The KV7.4 and KV7.5 subtypes of voltage-gated potassium channels play a role in important physiological processes such as sound amplification in the cochlea and adjusting vascular smooth muscle tone. Therefore, the mechanisms that regulate KV7.4 and KV7.5 channel function are of interest. Here, we study the effect of polyunsaturated fatty acids (PUFAs) on human KV7.4 and KV7.5 channels expressed in Xenopus oocytes. We report that PUFAs facilitate activation of hKV7.5 by shifting the V50 of the conductance versus voltage (G(V)) curve toward more negative voltages. This response depends on the head group charge, as an uncharged PUFA analogue has no effect and a positively charged PUFA analogue induces positive V50 shifts. In contrast, PUFAs inhibit activation of hKV7.4 by shifting V50 toward more positive voltages. No effect on V50 of hKV7.4 is observed by an uncharged or a positively charged PUFA analogue. Thus, the hKV7.5 channel's response to PUFAs is analogous to the one previously observed in hKV7.1-7.3 channels, whereas the hKV7.4 channel response is opposite, revealing subtype-specific responses to PUFAs. We identify a unique inner PUFA interaction site in the voltage-sensing domain of hKV7.4 underlying the PUFA response, revealing an unconventional mechanism of modulation of hKV7.4 by PUFAs.
Collapse
Affiliation(s)
- Damon J A Frampton
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Koushik Choudhury
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Johan Nikesjö
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
40
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
41
|
Overview of Nutraceuticals and Cardiometabolic Diseases following Socio-Economic Analysis. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The importance of functional food and nutraceutical products to deal with cardiometabolic diseases (CMDs) and metabolic syndrome (MetS) has gained attention in the past few years. The aim of this narrative review is to highlight the potential and effectiveness of nutraceutical in the improvement of CMDs and MetS biomarkers, alongside their burden of disease and economic health expenditure. A science database search was conducted between May and June 2021. A total of 35 studies were included in this paper. We included male and female subjects, children, and adults, in good health or with cardiovascular or metabolic disease. CMDs and MetS have gradually become worldwide health problems, becoming two of the major causes of morbidity and mortality in western countries. The results indicate a positive link between daily consumption of nutraceutical products and an improvement in cardiometabolic and anthropometric biomarkers. In this paper we included a wide range of nutraceutical products. Most of them showed promising data, indicating that nutraceuticals could provide a new therapeutic treatment to reduce prevalence and pharmaceutical expenditures attributed to CMDs and MetS. Unfortunately, there is a huge vacuum of data on nutraceutical usage, savings, and burden reduction. Therefore, further clinical and pharmaco-economic research in the field is highly required.
Collapse
|
42
|
Borghi C, Fogacci F, Agnoletti D, Cicero AFG. Hypertension and Dyslipidemia Combined Therapeutic Approaches. High Blood Press Cardiovasc Prev 2022; 29:221-230. [PMID: 35334087 PMCID: PMC9050771 DOI: 10.1007/s40292-022-00507-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Treating blood pressure (BP) alone may provide only limited benefits while it is recommendable to manage the total cardiovascular risk. To date, several studies have shown that concomitant treatment of hypertension and dyslipidemia with non-pharmacological approaches and/or metabolically neutral antihypertensive drugs and statins produce a significantly greater reduction of the risk of developing cardiovascular disease. Thus, in this review article, we summarize the available evidence regarding non-pharmacological and pharmacological approaches with a favourable effect on both BP and lipids.
Collapse
Affiliation(s)
- Claudio Borghi
- Medical and Surgical Sciences Department, Hypertension and Cardiovascular Risk Factors Research Center, Sant'Orsola-Malpighi University Hospital, U.O. Medicina Interna Cardiovascolare, Alma Mater Studiorum University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy. .,IRCCS AOU S. Orsola-Malpighi, Bologna, Italy.
| | - Federica Fogacci
- Medical and Surgical Sciences Department, Hypertension and Cardiovascular Risk Factors Research Center, Sant'Orsola-Malpighi University Hospital, U.O. Medicina Interna Cardiovascolare, Alma Mater Studiorum University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.,IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| | - Davide Agnoletti
- Medical and Surgical Sciences Department, Hypertension and Cardiovascular Risk Factors Research Center, Sant'Orsola-Malpighi University Hospital, U.O. Medicina Interna Cardiovascolare, Alma Mater Studiorum University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.,IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| | - Arrigo F G Cicero
- Medical and Surgical Sciences Department, Hypertension and Cardiovascular Risk Factors Research Center, Sant'Orsola-Malpighi University Hospital, U.O. Medicina Interna Cardiovascolare, Alma Mater Studiorum University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.,IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
43
|
Remila L, Guenday-Tuereli N, Houngue U, Belcastro E, Bruckert C, Vandamme T, Tuereli E, Kerth P, Auger C, Schini-Kerth V. Intake of coated EPA:DHA 6:1 nanoparticles improves age-related endothelial dysfunction by restoring the endothelial formation of NO and improving oxidative stress: Role of the local angiotensin system. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Bellien J, Bozec E, Bounoure F, Khettab H, Malloizel-Delaunay J, Skiba M, Iacob M, Donnadieu N, Coquard A, Morio B, Laillet B, Rigaudière JP, Chardigny JM, Monteil C, Vendeville C, Mercier A, Cailleux AF, Blanchard A, Amar J, Fezeu LK, Pannier B, Bura-Rivière A, Boutouyrie P, Joannidès R. The effect of camelina oil on vascular function in essential hypertensive patients with metabolic syndrome: a randomized, placebo-controlled, double-blind study. Am J Clin Nutr 2022; 115:694-704. [PMID: 34791007 DOI: 10.1093/ajcn/nqab374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The effects of a dietary supplementation with the vegetable ω-3 α-linolenic acid (ALA) on cardiovascular homeostasis are unclear. In this context, it would be interesting to assess the effects of camelina oil. OBJECTIVE This study aimed to assess the cardiovascular and metabolic effects of camelina oil in hypertensive patients with metabolic syndrome. METHODS In a double-blind, placebo-controlled randomized study, treated essential hypertensive patients with metabolic syndrome received, during 6 mo, either cyclodextrin-complexed camelina oil containing ≈ 1.5 g ALA/d (n = 40) or an isocaloric placebo (n = 41), consisting of the same quantity of cyclodextrins and wheat starch. Anthropometric data, plasma lipids, glycemia, insulinemia, creatininemia, TBARs, high-sensitivity C-reactive protein, and n-3, n-6, and n-9 fatty acids in erythrocyte membranes were measured. Peripheral and central blood pressures, arterial stiffness, carotid intima-media thickness, and brachial artery endothelium-dependent flow-mediated dilatation (FMD) and endothelium-independent dilatation were assessed. RESULTS Compared with placebo, camelina oil increased ALA (mean ± SD: 0 ± 0.04 compared with 0.08 ± 0.06%, P <0.001), its elongation product EPA (0 ± 0.5 compared with 0.16 ± 0.65%, P <0.05), and the n-9 gondoic acid (GA; 0 ± 0.04 compared with 0.08 ± 0.04%, P <0.001). No between-group difference was observed for cardiovascular parameters. However, changes in FMD were associated with the magnitude of changes in EPA (r = 0.26, P = 0.03). Compared with placebo, camelina oil increased fasting glycemia (-0.2 ± 0.6 compared with 0.3 ± 0.5 mmol/L, P <0.001) and HOMA-IR index (-0.8 ± 2.5 compared with 0.5 ± 0.9, P <0.01), without affecting plasma lipids, or inflammatory and oxidative stress markers. Changes in HOMA-IR index were correlated with the magnitude of changes in GA (r = 0.32, P <0.01). Nutritional intake remained similar between groups. CONCLUSION ALA supplementation with camelina oil did not improve vascular function but adversely affected glucose metabolism in hypertensive patients with metabolic syndrome. Whether this adverse effect on insulin sensitivity is related to GA enrichment, remains to be elucidated.
Collapse
Affiliation(s)
- Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital, Rouen, France.,Normandie Université, Rouen Normandy University (UNIROUEN), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire CArdiac Research Network on Aortic VAlve and heart faiLure (FHU CARNAVAL), Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, Rouen, France
| | - Erwan Bozec
- Université de Paris, Service de Pharmacologie, INSERM U970, équipe 7, Paris, France.,Université de Lorraine, Centre d'Investigations Cliniques-Plurithématique, INSERM 1433, CHRU Nancy, Inserm DCAC, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Frédéric Bounoure
- Normandie Université, UNIROUEN, INSERM U1239, Pharmacie Galénique, Rouen France
| | - Hakim Khettab
- Université de Paris, Service de Pharmacologie, INSERM U970, équipe 7, Paris, France.,Service de Pharmacologie, AP-HP, HEGP, Paris, France
| | | | - Mohamed Skiba
- Service de Pharmacologie, AP-HP, HEGP, Paris, France
| | - Michèle Iacob
- Department of Pharmacology, Rouen University Hospital, Rouen, France.,Normandie Université, Rouen Normandy University (UNIROUEN), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire CArdiac Research Network on Aortic VAlve and heart faiLure (FHU CARNAVAL), Rouen, France
| | | | - Aude Coquard
- Department of Pharmacy, Rouen University Hospital, Rouen, France
| | - Béatrice Morio
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | - Brigitte Laillet
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | - Jean-Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | - Jean-Michel Chardigny
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | | | | | - Alain Mercier
- Department of General Practice, University of Paris 13, SMBH, Bobigny, France
| | | | - Anne Blanchard
- Centre d'Investigation Clinique INSERM CIC-1418, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Jacques Amar
- Department of Arterial Hypertension, Toulouse University III, Toulouse, France
| | - Léopold K Fezeu
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Bruno Pannier
- Department of Nephrology, Centre Hospitalier FH Manhès, Fleury-Mérogis, France
| | | | - Pierre Boutouyrie
- Université de Paris, Service de Pharmacologie, INSERM U970, équipe 7, Paris, France.,Service de Pharmacologie, AP-HP, HEGP, Paris, France
| | - Robinson Joannidès
- Department of Pharmacology, Rouen University Hospital, Rouen, France.,Normandie Université, Rouen Normandy University (UNIROUEN), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire CArdiac Research Network on Aortic VAlve and heart faiLure (FHU CARNAVAL), Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, Rouen, France
| |
Collapse
|
45
|
Liao J, Xiong Q, Yin Y, Ling Z, Chen S. The Effects of Fish Oil on Cardiovascular Diseases: Systematical Evaluation and Recent Advance. Front Cardiovasc Med 2022; 8:802306. [PMID: 35071366 PMCID: PMC8767101 DOI: 10.3389/fcvm.2021.802306] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Fish oil is rich in unsaturated fatty acids, i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both of which are widely distributed in the body such as heart and brain. In vivo and in vitro experiments showed that unsaturated fatty acids may have effects of anti-inflammation, anti-oxidation, protecting vascular endothelial cells, thrombosis inhibition, modifying autonomic nerve function, improving left ventricular remodeling, and regulating blood lipid. Given the relevance to public health, there has been increasing interest in the research of potential cardioprotective effects of fish oil. Accumulated evidence showed that fish oil supplementation may reduce the risk of cardiovascular events, and, in specific, it may have potential benefits in improving the prognosis of patients with hypertension, coronary heart disease, cardiac arrhythmias, or heart failure; however, some studies yielded inconsistent results. In this article, we performed an updated systematical review in order to provide a contemporary understanding with regard to the effects of fish oil on cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Liao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China
| | - Qingsong Xiong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China
| | - Zhiyu Ling
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China
| | - Shaojie Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University (CQMU), Chongqing, China.,Cardioangiologisches Centrum Bethanien (CCB)/Kardiologie, Medizinische Klinik III, Agaplesion Markus Krankenhaus, Akademisches Lehrkrankenhaus der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Magoni C, Bertacchi S, Giustra CM, Guzzetti L, Cozza R, Ferrari M, Torelli A, Marieschi M, Porro D, Branduardi P, Labra M. Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Abstract
Cardiovascular disease is the leading cause of death globally The past few decades have shown that especially low- and middle-income countries have undergone rapid industrialization, urbanization, economic development and market globalization. Although these developments led to many positive changes in health outcomes and increased life expectancies, they all also caused inappropriate dietary patterns, physical inactivity and obesity. Evidence shows that a large proportion of the cardiovascular disease burden can be explained by behavioural factors such as low physical activity, unhealthy diet and smoking. Controlling these risk factors from early ages is important for maintaining cardiovascular health. Even in patients with genetic susceptibility to cardiovascular disease, risk factor modification is beneficial.Despite the tremendous advances in the medical treatment of cardiovascular risk factors to reduce overall cardiovascular risk, the modern lifestyle which has led to greater sedentary time, lower participation in active transport and time spent in leisure or purposeful physical activity, unhealthy diets and increased exposure to stress, noise and pollution have diminished the beneficial effects of contemporary medical cardiovascular prevention strategies. Therefore attenuating or eliminating these health risk behaviours and risk factors is imperative in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Vedat Hekimsoy
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilaria Calabrese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
48
|
Xu B, Xu Z, Xu D, Tan X. Effect of n-3 polyunsaturated fatty acids on ischemic heart disease and cardiometabolic risk factors: a two-sample Mendelian randomization study. BMC Cardiovasc Disord 2021; 21:532. [PMID: 34749668 PMCID: PMC8576934 DOI: 10.1186/s12872-021-02342-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The cardioprotective ability of n-3 polyunsaturated fatty acids (PUFAs) is controversial. Most studies suggest a specific role for PUFAs in cardioprotection from ischemic heart disease (IHD). However, few studies have used genetic biomarkers of n-3 PUFAs to examine their potential relationships with IHD. This study aimed to use Mendelian randomization to evaluate whether genetically-predicted n-3 PUFAs affect IHD and cardiometabolic risk factors (CRFs). METHODS Genetic variants strongly (p < 5 × 10-8) and independently (r2 > 0.1) associated with n-3 PUFAs were derived from the CHARGE Consortium (including 8,866 subjects of European ancestry) and were used as instrumental variables (IVs) for evaluating the effect of n-3 PUFAs, including α-linolenic acid (ALA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). Data on the associations between the IVs and IHD, myocardial infarction, and CRFs (including diabetes, lipids, blood pressure, body mass index, and waist-to-hip ratio (WHR)) were obtained from the UK Biobank SOFT CAD GWAS with the CARDIoGRAMplusC4D 1000 Genomes-based GWAS (113,937 IHD cases and 339,115 controls), the Myocardial Infarction Genetics and CARDIoGRAM Exome consortia (42,335 MI cases and 78,240 controls), the DIAbetes Genetics Replication And Meta-analysis consortium (26,676 diabetes mellitus cases and 132,532 controls), the Global Lipids Genetics Consortium (n = 196,475), the International Consortium for Blood Pressure (n = 69,395), and the meta-analysis of GWAS for body fat distribution in the UK Biobank and Genetic Investigation of Anthropometric Traits (n = 694,649). RESULTS Genetically-predicted higher ALA was associated with lower risk of IHD, type 2 diabetes (T2D), and lower serum lipids. The effect size per 0.05-unit increase (about 1 standard deviation) in plasma ALA level) was - 1.173 (95% confidence interval - 2.214 to - 0.133) for IHD. DPA and EPA had no association with IHD but were associated with a higher risk of T2D, higher levels of lipids or WHR. DHA had no association with IHD or CRFs. CONCLUSIONS Our study suggests a benefit of ALA for IHD and its main risk factors. DHA, DPA, and EPA had no association with IHD but were partly associated with increasing cardiometabolic risk factors.
Collapse
Affiliation(s)
- Bayi Xu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhixia Xu
- Department of Medical Service, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Duanmin Xu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xuerui Tan
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
49
|
Ramalingam L, Menikdiwela KR, Spainhour S, Eboh T, Moustaid-Moussa N. Sex Differences in Early Programming by Maternal High Fat Diet Induced-Obesity and Fish Oil Supplementation in Mice. Nutrients 2021; 13:3703. [PMID: 34835957 PMCID: PMC8625698 DOI: 10.3390/nu13113703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022] Open
Abstract
Pre-pregnancy obesity is a contributing factor for impairments in offspring metabolic health. Interventional strategies during pregnancy are a potential approach to alleviate and/or prevent obesity and obesity related metabolic alterations in the offspring. Fish oil (FO), rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) exerts metabolic health benefits. However, the role of FO in early life remains still unknown. Hence, this study objective was to determine the effect of FO supplementation in mice from pre-pregnancy through lactation, and to study the post-natal metabolic health effects in gonadal fat and liver of offspring fed high fat (HF) diet with or without FO. Female C57BL6J mice aged 4-5 weeks were fed a HF (45% fat) diet supplemented with or without FO (30 g/kg of diet) and low fat (LF; 10% fat) pre-pregnancy through lactation. After weaning, offspring (male and female) from HF or FO dams either continued the same diet (HF-HF and FO-FO) or switched to the other diet (HF-FO and FO-HF) for 13 weeks, creating four groups of treatment, and LF-LF was used as a control group. Serum, gonadal fat and liver tissue were collected at termination for metabolic analyses. Offspring of both sexes fed HF with or without fish oil gained (p < 0.05) more weight post weaning, compared to LF-LF-fed mice. All the female offspring groups supplemented with FO had reduced body weight compared to the respective male groups. Further, FO-FO supplementation in both sexes (p < 0.05) improved glucose clearance and insulin sensitivity compared to HF-HF. All FO-FO fed mice had significantly reduced adipocyte size compared to HF-HF group in both male and females. Inflammation, measured by mRNA levels of monocyte chemoattractant protein 1 (Mcp1), was reduced (p < 0.05) with FO supplementation in both sexes in gonadal fat and in the liver. Markers of fatty acid synthesis, fatty acid synthase (Fasn) showed no sex specific differences in gonadal fat and liver of mice supplemented with HF. Female mice had lower liver triglycerides than male counterparts. Supplementation of FO in mice improved metabolic health of offspring by lowering markers of lipid synthesis and inflammation.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA
| | - Kalhara R. Menikdiwela
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
| | - Stephani Spainhour
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
| | - Tochi Eboh
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX 74909, USA; (L.R.); (K.R.M.); (S.S.); (T.E.)
| |
Collapse
|
50
|
Doi T, Langsted A, Nordestgaard BG. A possible explanation for the contrasting results of REDUCE-IT vs. STRENGTH: cohort study mimicking trial designs. Eur Heart J 2021; 42:4807-4817. [PMID: 34455435 DOI: 10.1093/eurheartj/ehab555] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
AIMS We tested the hypothesis that the contrasting results for the effect of high-dose, purified omega-3 fatty acids on the prevention of atherosclerotic cardiovascular disease (ASCVD) in two randomized trials, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) vs. Long-Term Outcomes Study to Assess Statin Residual Risk with Epanova in High Cardiovascular Risk Patients with Hypertriglyceridaemia (STRENGTH), can be explained by differences in the effect of active and comparator oils on lipid traits and C-reactive protein. METHODS AND RESULTS In the Copenhagen General Population Study (CGPS) with 106 088 individuals, to mimic trial designs we analysed those who met key inclusion criteria in REDUCE-IT (n = 5684; ASCVD = 852) and STRENGTH (n = 6862; ASCVD = 697). Atherosclerotic cardiovascular disease incidence was followed for the median durations of REDUCE-IT and STRENGTH (4.9 and 3.5 years), respectively. When combining changes in plasma triglycerides, low-density lipoprotein cholesterol, and C-reactive protein observed in the active oil groups of the original studies, estimated hazard ratios for ASCVD in the CGPS were 0.96 [95% confidence interval 0.93-0.99] mimicking REDUCE-IT and 0.94 (0.91-0.98) mimicking STRENGTH. In the comparator oil groups, corresponding hazard ratios were 1.07 (1.04-1.10) and 0.99 (0.98-0.99). Combining these results, the active oil vs. comparator oil hazard ratio was 0.88 (0.84-0.93) in the CGPS mimicking REDUCE-IT compared to 0.75 (0.68-0.83) in the REDUCE-IT. The corresponding hazard ratio was 0.96 (0.93-0.99) in the CGPS mimicking STRENGTH compared to 0.99 (0.90-1.09) in STRENGTH. CONCLUSION The contrasting results of REDUCE-IT vs. STRENGTH can partly be explained by a difference in the effect of comparator oils (mineral vs. corn), but not of active oils [eicosapentaenoic acid (EPA) vs. EPA + docosahexaenoic acid], on lipid traits and C-reactive protein. The unexplained additional 13% risk reduction in REDUCE-IT likely is through other effects of EPA or mineral oil.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev 2730, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev 2730, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev 2730, Denmark.,The Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|