1
|
Akkus E, Karaoğlan BB, Akçadağ B, Bahçekapılı B, Akyol C, Utkan G. Combined preoperative and post-adjuvant-chemotherapy carcinoembryonic antigen levels are prognostic for early recurrence and survival in stage III colon cancer. Am J Surg 2025; 243:116256. [PMID: 40015199 DOI: 10.1016/j.amjsurg.2025.116256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND The definitive treatment of stage-III colon cancer is surgery and adjuvant chemotherapy. A combined assessment of pre-operative and post-adjuvant chemotherapy carcinoembryonic antigen (CEA) levels may better prognosticate early recurrence and survival. METHODS A cohort of patients who underwent surgery and adjuvant chemotherapy was assessed. The CEA-Square (CEA2) score was defined as the multiplication of preoperative and post-adjuvant chemotherapy CEA levels and was grouped as "≤25(ng/mL)2" and ">25(ng/mL)2. RESULTS Among the 432 patients,137 were eligible. CEA2 score (>25 vs ≤ 25 (ng/mL)2) was significantly prognostic for early recurrence (34.5 % vs. 14.3 %, log-rank, p < 0.001). In the multivariable analysis, only the CEA2 score remained associated with early recurrence [HR:3.375, (95 % CI:1.488-7.655), p = 0.004]. In a median follow-up of 37.5 months (2.5-101.0), a high CEA2 score [>25 (ng/mL)2] was significantly associated with a worse OS (log-rank, p < 0.001). CONCLUSION CEA2 is a simple, practical score combining prognostic values of preoperative and post-adjuvant chemotherapy CEA levels.
Collapse
Affiliation(s)
- Erman Akkus
- Ankara University Faculty of Medicine, Department of Medical Oncology, Ankara, Türkiye; Ankara University Cancer Research Institute, Ankara, Türkiye.
| | - Beliz Bahar Karaoğlan
- Ankara University Faculty of Medicine, Department of Medical Oncology, Ankara, Türkiye; Ankara University Cancer Research Institute, Ankara, Türkiye
| | - Barış Akçadağ
- Ankara University Faculty of Medicine, Department of Internal Medicine, Ankara, Türkiye
| | - Barış Bahçekapılı
- Ankara University Faculty of Medicine, Department of Internal Medicine, Ankara, Türkiye
| | - Cihangir Akyol
- Ankara University Faculty of Medicine, Department of General Surgery, Ankara, Türkiye
| | - Güngör Utkan
- Ankara University Faculty of Medicine, Department of Medical Oncology, Ankara, Türkiye; Ankara University Cancer Research Institute, Ankara, Türkiye
| |
Collapse
|
2
|
Wankhede D, Halama N, Kloor M, Edelmann D, Brenner H, Hoffmeister M. Prognostic Value of CD8+ T Cells at the Invasive Margin Is Comparable to the Immune Score in Nonmetastatic Colorectal Cancer: A Prospective Multicentric Cohort Study. Clin Cancer Res 2025; 31:1711-1718. [PMID: 40293274 DOI: 10.1158/1078-0432.ccr-24-3275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/23/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE The Immunoscore predicts colorectal cancer prognosis but faces adoption barriers because of complex software and reimbursement issues. This study used open-source methods to explore a simplified prognostic model in nonmetastatic colorectal cancer by focusing on single T-cell markers. EXPERIMENTAL DESIGN A multicentric prospective cohort study in patients with nonmetastatic colorectal cancer assessed CD3+ and CD8+ tumor-infiltrating lymphocytes (TIL) in the invasive margin (IM) and tumor core (TC) using QuPath. An immune cell score (ICS), based on TIL densities (CD3-IM, CD8-IM, CD3-TC, and CD8-TC), was calculated similarly to the Immunoscore. A split sample approach (70:30) estimated adjusted HRs for cancer-specific survival in training and validation sets. Classification and regression tree analysis identified the most prognostic TIL, and its model was compared with an ICS model for performance (Brier score) and discrimination (concordance probability estimate). RESULTS Over a median follow-up of 9.0 years, 203 colorectal cancer-specific deaths occurred among 1,260 patients. Classification and regression tree-selected CD8-IM was the most prognostic TIL at a cutoff of 231 cells/mm2. Patients with high CD8-IM had better cancer-specific survival than low CD8-IM in both training (HR 0.58, 95% confidence interval, 0.40-0.84) and validation sets (HR 0.35, 95% confidence interval, 0.21-0.60). Brier scores of CD8-IM and ICS survival models were comparable in both training and validation cohorts, whereas the survival discrimination of CD8-IM slightly outperformed the ICS in the validation set (concordance probability estimate: CD8-IM: 0.748; ICS: 0.730). CONCLUSIONS CD8-IM alone provided prognostic information comparable with the ICS. Simplified, cost-effective TIL assessments could improve clinical translation and guide adjuvant therapy in early-stage colorectal cancer.
Collapse
Affiliation(s)
- Durgesh Wankhede
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Department of Translational Immunotherapy (D240), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Wu J, Dong Y, Zhu W, Meng J, Zhang H, Fang C, Lin L. Capecitabine metronomic chemotherapy for metastatic colorectal cancer patients reaching NED: A protocol for a prospective, randomized, controlled trial. PLoS One 2025; 20:e0320591. [PMID: 40258007 PMCID: PMC12011264 DOI: 10.1371/journal.pone.0320591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/19/2025] [Indexed: 04/23/2025] Open
Abstract
INTRODUCTION An increasing number of patients with metastatic colorectal cancer (mCRC) have achieved no evidence of diseases (NED) status after surgery or other treatments. However, the latest guidelines for colorectal cancer do not recommend an appropriate treatment for patients with mCRC who achieve NED status. Capecitabine metronomic chemotherapy has the advantages of significant efficacy and minimal adverse reactions, it is a potential effective method for maintenance treatment for mCRC, but no RCTs have been reported. Therefore, we designed a randomized controlled trial to evaluate the efficacy and safety of capecitabine metronomic chemotherapy for mCRC patients who achieve NED. METHODS/DESIGN This study is a prospective, randomized controlled study that evaluates the efficacy and safety of capecitabine metronomic chemotherapy for patients with mCRC who achieve NED status. 240 eligible participants will be randomly assigned to either a capecitabine metronomic chemotherapy group or a "watch and wait" group at a 1:1 allocation ratio. Eligible patients diagnosed with stage IV mCRC, both the primary tumor and the metastases, are those who have achieved R0 resection (or complete destruction by ablation) and reached NED. Participants who are enrolled in the capecitabine group will receive capecitabine (500 mg/m2 body surface area twice daily) for 2 years. Meanwhile, those who are assigned to the control group will receive regular imaging examination and follow-up only. All participants will follow up for 1 year after receiving 2 years of intervention. The primary outcomes will be disease-free survival (DFS) from randomization, stratified by preoperative chemotherapy, metastatic organs, number of metastases, lenght of previous systemic treatment, response to previous chemotherapy. Secondary outcomes will include overall survival (OS), 1-year,2-year,3-year survival rate and adverse reactions. DISCUSSION As a potentially effective treatment, low-dose capecitabine metronomic chemotherapy has been explored in clinical practice. The results of this trial will provide evidence on the efficacy and safety of capecitabine metronomic chemotherapy for patients with mCRC who have reached NED status. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2100047149, protocol version number F2.0).
Collapse
Affiliation(s)
- Jiaming Wu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Dong
- Clinical Research and Big Data Laboratory, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanshan Zhu
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Jincheng Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Huatang Zhang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Cantu Fang
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Lizhu Lin
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Wu H, Zhang W, Chang J, Wu J, Zhang X, Jia F, Li L, Liu M, Zhu J. Comprehensive analysis of mitochondrial-related gene signature for prognosis, tumor immune microenvironment evaluation, and candidate drug development in colon cancer. Sci Rep 2025; 15:6173. [PMID: 39979377 PMCID: PMC11842742 DOI: 10.1038/s41598-024-85035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
Colon adenocarcinoma (COAD), a common digestive system malignancy, involves crucial alterations in mitochondria-related genes influencing tumor growth, metastasis, and immune evasion. Despite limited studies on prognostic models for these genes in COAD, we established a mitochondrial-related risk prognostic model, including nine genes based on available TCGA and MitoCarta 3.0 databases, and validated its predictive power. We investigated the tumor microenvironment (TME), immune cell infiltration, complex cell communication, tumor mutation burden, and drug sensitivity of COAD patients using R language, CellChat, and additional bioinformatic tools from single-cell and bulk-tissue sequencing data. The risk model revealed significant differences in immune cell infiltration between high-risk and low-risk groups, with the strongest correlation found between tissue stem cells and macrophages in COAD. The risk score exhibited a robust correlation with TME signature genes and immune checkpoint molecules. Integrating the risk score with the immune score, microsatellite status, or TMB through TIDE analysis enhanced the accuracy of predicting immunotherapy benefits. Predicted drug efficacy offered options for both high- and low-risk group patients. Our study established a novel mitochondrial-related nine-gene prognostic signature, providing insights for prognostic assessment and clinical decision-making in COAD patients.
Collapse
Affiliation(s)
- Hao Wu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Wentao Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jingjia Chang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin Wu
- Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Xintong Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Fengfeng Jia
- Taiyuan Technology Transfer Promotion Center, Taiyuan, 030006, China
| | - Li Li
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Ming Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianjun Zhu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Song M, Huang S, Wu X, Zhao Z, Liu X, Wu C, Wang M, Gao J, Ke Z, Ma X, He W. UBR5 mediates colorectal cancer chemoresistance by attenuating ferroptosis via Lys 11 ubiquitin-dependent stabilization of Smad3-SLC7A11 signaling. Redox Biol 2024; 76:103349. [PMID: 39260061 PMCID: PMC11415886 DOI: 10.1016/j.redox.2024.103349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024] Open
Abstract
Chemoresistance remains a principal culprit for the treatment failure in colorectal cancer (CRC), especially for patients with recurrent or metastatic disease. Deciphering the molecular basis of chemoresistance may lead to novel therapeutic strategies for this fatal disease. Here, UBR5, an E3 ubiquitin ligase frequently overexpressed in human CRC, is demonstrated to mediate chemoresistance principally by inhibiting ferroptosis. Paradoxically, UBR5 shields oxaliplatin-activated Smad3 from proteasome-dependent degradation via Lys 11-linked polyubiquitination. This novel chemical modification of Smad3 facilitates the transcriptional repression of ATF3, induction of SLC7A11 and inhibition of ferroptosis, contributing to chemoresistance. Consequently, targeting UBR5 in combination with a ferroptosis inducer synergistically sensitizes CRC to oxaliplatin-induced cell death and control of tumor growth. This study reveals, for the first time, a major clinically relevant chemoresistance mechanism in CRC mediated by UBR5 in sustaining TGFβ-Smad3 signaling and tuning ferroptosis, unveiling its potential as a viable therapeutic target for chemosensitization.
Collapse
Affiliation(s)
- Mei Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Ziyi Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaoting Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Chong Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Mengru Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Jialing Gao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Zunfu Ke
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, NY, 10065, USA
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China; School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, 361000, China.
| |
Collapse
|
6
|
Fan Z, Edelmann D, Yuan T, Köhler BC, Hoffmeister M, Brenner H. Developing survival prediction models in colorectal cancer using epigenome-wide DNA methylation data from whole blood. NPJ Precis Oncol 2024; 8:191. [PMID: 39237753 PMCID: PMC11377733 DOI: 10.1038/s41698-024-00689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
While genome-wide association studies are valuable in identifying CRC survival predictors, the benefit of adding blood DNA methylation (blood-DNAm) to clinical features, including the TNM system, remains unclear. In a multi-site population-based patient cohort study of 2116 CRC patients with baseline blood-DNAm, we analyzed survival predictions using eXtreme Gradient Boosting with a 5-fold nested leave-sites-out cross-validation across four groups: traditional and comprehensive clinical features, blood-DNAm, and their combination. Model performance was assessed using time-dependent ROC curves and calibrations. During a median follow-up of 10.3 years, 1166 patients died. Although blood-DNAm-based predictive signatures achieved moderate performances, predictive signatures based on clinical features outperformed blood-DNAm signatures. The inclusion of blood-DNAm did not improve survival prediction over clinical features. M1 stage, age at blood collection, and N2 stage were the top contributors. Despite some prognostic value, incorporating blood DNA methylation did not enhance survival prediction of CRC patients beyond clinical features.
Collapse
Affiliation(s)
- Ziwen Fan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Edelmann
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bruno Christian Köhler
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- NCT Heidelberg, National Center for Tumor Diseases (NCT) a partnership between DKFZ and University Hospital, Heidelberg, Germany.
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Gu Z, Yin J, Da Silva CG, Liu Q, Cruz LJ, Ossendorp F, Snaar-Jagalska E. Therapeutic liposomal combination to enhance chemotherapy response and immune activation of tumor microenvironment. J Control Release 2024; 373:38-54. [PMID: 38986909 DOI: 10.1016/j.jconrel.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Multiple oxaliplatin-resistance mechanisms have been proposed such as increase of anti-inflammatory M2 macrophages and lack of cytotoxic T-cells. Thereby oxaliplatin chemotherapy promotes an immunosuppressive tumor microenvironment and inhibits anti-tumor efficacy. It has been shown that toll-like receptor (TLR) agonists are capable of triggering broad inflammatory responses, which may potentially reduce oxaliplatin-resistance and improve the efficacy of chemotherapy. In this study, we established colorectal tumor-bearing zebrafish and mice, and investigated the effects of TLR agonists and oxaliplatin in macrophage function and anti-tumor T cell immunity as well as tumor growth control in vivo. To increase the potential of this strategy as well minimize side effects, neutral liposomes carrying oxaliplatin and cationic liposomes co-loaded with TLR agonists Poly I:C and R848 were employed for maximum immune activation. Both of two liposomal systems exhibited good physicochemical properties and excellent biological activities in vitro. The combination strategy delivered by liposomes showed more pronounced tumor regression and correlated with decreased M2 macrophage numbers in both zebrafish and mice. Increasing numbers of dendritic cells, DC maturation and T cell infiltration mediated via immunogenic cell death were observed in treated mice. Our study offers valuable insights into the potential of liposomal combination therapy to improve cancer treatment by reprogramming the tumor microenvironment and enhancing immune responses.
Collapse
Affiliation(s)
- Zili Gu
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Jie Yin
- Institution of Biology Leiden, Leiden University, the Netherlands
| | - Candido G Da Silva
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Qi Liu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luis J Cruz
- Department of Radiology, Leiden University Medical Center, the Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, the Netherlands.
| | | |
Collapse
|
8
|
Xu C, Xia P, Li J, Lewis KB, Ciombor KK, Wang L, Smith JJ, Beauchamp RD, Chen XS. Discovery and validation of a 10-gene predictive signature for response to adjuvant chemotherapy in stage II and III colon cancer. Cell Rep Med 2024; 5:101661. [PMID: 39059386 PMCID: PMC11384724 DOI: 10.1016/j.xcrm.2024.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/30/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Identifying patients with stage II and III colon cancer who will benefit from 5-fluorouracil (5-FU)-based adjuvant chemotherapy is crucial for the advancement of personalized cancer therapy. We employ a semi-supervised machine learning approach to analyze a large dataset with 933 stage II and III colon cancer samples. Our analysis leverages gene regulatory networks to discover an 18-gene prognostic signature and to explore a 10-gene signature that potentially predicts chemotherapy benefits. The 10-gene signature demonstrates strong prognostic power and shows promising potential to predict chemotherapy benefits. We establish a robust clinical assay on the NanoString nCounter platform, validated in a retrospective formalin-fixed paraffin-embedded (FFPE) cohort, which represents an important step toward clinical application. Our study lays the groundwork for improving adjuvant chemotherapy and potentially expanding into immunotherapy decision-making in colon cancer. Future prospective studies are needed to validate and establish the clinical utility of the 10-gene signature in clinical settings.
Collapse
Affiliation(s)
- Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Xia
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jie Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Keeli B Lewis
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen K Ciombor
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J Joshua Smith
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - R Daniel Beauchamp
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - X Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
9
|
Taieb J, Basile D, Seligmann J, Argiles G, André T, Gallois C, Goldberg RM, Yothers G, Sobrero A, Meyerhardt JA, Souglakos J, Labianca R, Iveson T, Church DN, Arnold D, Tie J, Gill S, Laurent-Puig P, Yoshino T, Lonardi S, Shi Q. Standardizing data collection in adjuvant colon cancer trials: A consensus project from the IDEA and ACCENT international consortia and national experts. Eur J Cancer 2024; 206:114118. [PMID: 38810317 DOI: 10.1016/j.ejca.2024.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Despite contributions provided by the recent clinical trials, several issues and challenges still remain unsolved in adjuvant colon cancer (CC). Hence, further studies should be planned to better refine risk assessment as well as to establish the optimal treatment strategy in the adjuvant setting. However, it is necessary to request adequate, contemporary and relevant variables and report them homogeneously in order to bring maximal information when analyzing their prognostic value. MATERIAL AND METHODS The project was devised to gain a consensus from experts engaged in the planning, accrual and analyses of stage II and III CC clinical trials, to identify mandatory and recommended baseline variables in order to i) harmonize future data collection worldwide in clinical trials dedicated to adjuvant treatment of CC; ii) propose guidance for Case Report Forms to be used for clinical trials in this setting. A total of 72 questions related to variables that should be reported and how to report them in adjuvant clinical trials were approved and then voted to reach a final consensus from panelists. RESULTS Data items on patient-related factors, histopathological features, molecular profile, circulating biomarkers and blood analyses were analyzed and discussed by the whole expert panel. For each item, we report data supporting the acquired consensus and the relevant issues that were discussed. Nineteen items were deemed to be mandatory for resected stage III patients and 24 for resected stage II disease. In addition, 9 and 4 items were judged as recommended for stage III and II, respectively. CONCLUSION In our opinion, these 28 variables should be used and uniformly reported in more comprehensive CRFs as research groups design future clinical trials in the field of adjuvant colon cancer.
Collapse
Affiliation(s)
- Julien Taieb
- Institut du Cancer Paris CARPEM, Gastroenterology and Digestive Oncology Department, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, France; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, France.
| | - Debora Basile
- Division of Medical Oncology, San Giovanni di Dio Hospital, Crotone, Italy
| | | | | | - Thierry André
- Sorbonne Université and department of Medical Oncology, Hospital Saint Antoine and INSERM 938 and SIRIC CURAMUS, Paris, France
| | - Claire Gallois
- Institut du Cancer Paris CARPEM, Gastroenterology and Digestive Oncology Department, APHP.Centre - Université Paris Cité, Hôpital Européen G. Pompidou, France; Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, France
| | - Richard M Goldberg
- West Virginia University Cancer Institute and the Mary Babb Randolph Cancer Center, Morgantown, WV
| | - Greg Yothers
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alberto Sobrero
- Department of Medical Oncology, IRCCS San Martino, Genoa, Italy
| | | | - John Souglakos
- Department of Medical Oncology, University General Hospital of Heraklion, 71110 Heraklion, Greece
| | | | - Tim Iveson
- University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | | | - Dirk Arnold
- Asklepios Tumorzentrum Hamburg, Department of Oncology and Hematology, AK Altona, Hamburg, Germany
| | - Jeanne Tie
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia; Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, EPIGENETEC, 75006 Paris, France
| | | | - Sara Lonardi
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Qian Shi
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Chen L, Chen S, Li Y, Qiu Y, Chen X, Wu Y, Deng X, Chen M, Wang C, Hong Z, Qiu C. Upregulation of GOLPH3 mediated by Bisphenol a promotes colorectal cancer proliferation and migration: evidence based on integrated analysis. Front Pharmacol 2024; 15:1337883. [PMID: 38828452 PMCID: PMC11143881 DOI: 10.3389/fphar.2024.1337883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background The interaction between environmental endocrine-disrupting chemicals, such as Bisphenol A (BPA), and their influence on cancer progression, particularly regarding the GOLPH3 gene in colorectal cancer, remains unclear. Methods We performed an integrated analysis of transcriptional profiling, clinical data, and bioinformatics analyses utilizing data from the Comparative Toxicogenomics Database and The Cancer Genome Atlas. The study employed ClueGO, Gene Set Enrichment Analysis, and Gene Set Variation Analysis for functional enrichment analysis, alongside experimental assays to examine the effects of BPA exposure on colorectal cancer cell lines, focusing on GOLPH3 expression and its implications for cancer progression. Results Our findings demonstrated that BPA exposure significantly promoted the progression of colorectal cancer by upregulating GOLPH3, which in turn enhanced the malignant phenotype of colorectal cancer cells. Comparative analysis revealed elevated GOLPH3 protein levels in cancerous tissues versus normal tissues, with single-cell analysis indicating widespread GOLPH3 presence across various cell types in the cancer microenvironment. GOLPH3 was also associated with multiple carcinogenic pathways, including the G2M checkpoint. Furthermore, our investigation into the colorectal cancer microenvironment and genomic mutation signature underscored the oncogenic potential of GOLPH3, exacerbated by BPA exposure. Conclusion This study provides novel insights into the complex interactions between BPA exposure and GOLPH3 in the context of colorectal cancer, emphasizing the need for heightened awareness and measures to mitigate BPA exposure risks. Our findings advocate for further research to validate these observations in clinical and epidemiological settings and explore potential therapeutic targets within these pathways.
Collapse
Affiliation(s)
- Lihua Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- The 2nd Clinical College of Fujian Medical University, Quanzhou, China
| | - Shaojian Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yachen Li
- Medical Department of the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaojing Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuze Wu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xian Deng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mingliang Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunxiao Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
11
|
Jiang W, Wang H, Dong X, Yu X, Zhao Y, Chen D, Yan B, Cheng J, Zhuo S, Wang H, Yan J. Pathomics Signature for Prognosis and Chemotherapy Benefits in Stage III Colon Cancer. JAMA Surg 2024; 159:519-528. [PMID: 38416471 PMCID: PMC10902777 DOI: 10.1001/jamasurg.2023.8015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/12/2023] [Indexed: 02/29/2024]
Abstract
Importance The current TNM staging system may not provide adequate information for prognostic purposes and to assess the potential benefits of chemotherapy for patients with stage III colon cancer. Objective To develop and validate a pathomics signature to estimate prognosis and benefit from chemotherapy using hematoxylin-eosin (H-E)-stained slides. Design, Setting, and Participants This retrospective prognostic study used data from consecutive patients with histologically confirmed stage III colon cancer at 2 medical centers between January 2012 and December 2015. A total of 114 pathomics features were extracted from digital H-E-stained images from Nanfang Hospital of Southern Medical University, Guangzhou, China, and a pathomics signature was constructed using a least absolute shrinkage and selection operator Cox regression model in the training cohort. The associations of the pathomics signature with disease-free survival (DFS) and overall survival (OS) were evaluated. Patients at the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China, formed the validation cohort. Data analysis was conducted from September 2022 to March 2023. Main Outcomes and Measures The prognostic accuracy of the pathomics signature as well as its association with chemotherapy response were evaluated. Results This study included 785 patients (mean [SD] age, 62.7 [11.1] years; 437 [55.7%] male). A pathomics signature was constructed based on 4 features. Multivariable analysis revealed that the pathomics signature was an independent factor associated with DFS (hazard ratio [HR], 2.46 [95% CI, 2.89-4.13]; P < .001) and OS (HR, 2.78 [95% CI, 2.34-3.31]; P < .001) in the training cohort. Incorporating the pathomics signature into pathomics nomograms resulted in better performance for the estimation of prognosis than the traditional model in a concordance index comparison in the training cohort (DFS: HR, 0.88 [95% CI, 0.86-0.89] vs HR, 0.73 [95% CI, 0.71-0.75]; P < .001; OS: HR, 0.85 [95% CI, 0.84-0.86] vs HR, 0.74 [95% CI, 0.72-0.76]; P < .001) and validation cohort (DFS: HR, 0.83 [95% CI, 0.82-0.85] vs HR, 0.70 [95% CI, 0.67-0.72]; P < .001; OS: HR, 0.80 [95% CI, 0.78-0.82] vs HR, 0.69 [0.67-0.72]; P < .001). Further analysis revealed that patients with a low pathomics signature were more likely to benefit from chemotherapy (eg, combined cohort: DFS: HR, 0.44 [95% CI, 0.28-0.69]; P = .001; OS: HR, 0.43 [95% CI, 0.29-0.64]; P < .001). Conclusions and Relevance These findings suggest that a pathomics signature could help identify patients most likely to benefit from chemotherapy in stage III colon cancer.
Collapse
Affiliation(s)
- Wei Jiang
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Science, Jimei University, Xiamen, China
| | - Huaiming Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery & Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Supported by National Key Clinical Discipline, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Dong
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xian Yu
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Yandong Zhao
- Department of Pathology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dexin Chen
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Botao Yan
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaxin Cheng
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | | | - Hui Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Colorectal Surgery & Guangdong Institute of Gastroenterology, the Sixth Affiliated Hospital, Supported by National Key Clinical Discipline, Sun Yat-sen University, Guangzhou, China
| | - Jun Yan
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Aiolfi A, Bona D, Rausa E, Manara M, Biondi A, Basile F, Campanelli G, Kelly ME, Bonitta G, Bonavina L. Effect of complete mesocolic excision (cme) on long-term survival after right colectomy for cancer: multivariate meta-analysis and restricted mean survival time estimation. Langenbecks Arch Surg 2024; 409:80. [PMID: 38429427 DOI: 10.1007/s00423-024-03273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Debate exists concerning the impact of complete mesocolic excision (CME) on long-term oncological outcomes. The aim of this review was to condense the updated literature and assess the effect of CME on long-term survival after right colectomy for cancer. METHODS PubMed, MEDLINE, Scopus, and Web of Science were searched through July 2023. The included studies evaluated the effect of CME on survival. The primary outcome was long-term overall survival. Restricted mean survival time difference (RMSTD), hazard ratio (HR), and 95% confidence intervals (CI) were used as pooled effect size measures. GRADE methodology was used to summarize the certainty of evidence. RESULTS Ten studies (3665 patients) were included. Overall, 1443 (39.4%) underwent CME. The RMSTD analysis shows that at 60-month follow-up, stage I-III CME patients lived 2.5 months (95% CI 1.1-4.1) more on average compared with noCME patients. Similarly, stage III patients that underwent CME lived longer compared to noCME patients at 55-month follow-up (6.1 months; 95% CI 3.4-8.5). The time-dependent HRs analysis for CME vs. noCME (stage I-III disease) shows a higher mortality hazard in patients with noCME at 6 months (HR 0.46, 95% CI 0.29-0.71), 12 months (HR 0.57, 95% CI 0.43-0.73), and 24 months (HR 0.73, 95% CI 0.57-0.92) up to 27 months. CONCLUSIONS This study suggests that CME is associated with unclear OS benefit in stage I-III disease. Caution is recommended to avoid overestimation of the effect of CME in stage III disease since the marginal benefit of a more extended resection may have been influenced by tumor biology/molecular profile and multimodal adjuvant treatments.
Collapse
Affiliation(s)
- Alberto Aiolfi
- Division of General Surgery, Department of Biomedical Science for Health, I.R.C.C.S. Ospedale Galeazzi - Sant'Ambrogio, University of Milan, Via C. Belgioioso, 173, 20157, Milan, Italy.
| | - Davide Bona
- Division of General Surgery, Department of Biomedical Science for Health, I.R.C.C.S. Ospedale Galeazzi - Sant'Ambrogio, University of Milan, Via C. Belgioioso, 173, 20157, Milan, Italy
| | - Emanuele Rausa
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Michele Manara
- Division of General Surgery, Department of Biomedical Science for Health, I.R.C.C.S. Ospedale Galeazzi - Sant'Ambrogio, University of Milan, Via C. Belgioioso, 173, 20157, Milan, Italy
| | - Antonio Biondi
- Department of General Surgery and Medical Surgical Specialties, G. Rodolico Hospital, Surgical Division, University of Catania, Catania, Italy
| | - Francesco Basile
- Department of General Surgery and Medical Surgical Specialties, G. Rodolico Hospital, Surgical Division, University of Catania, Catania, Italy
| | - Giampiero Campanelli
- Division of General Surgery, Department of Surgery, I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, University of Insubria, Milan, Italy
| | | | - Gianluca Bonitta
- Division of General Surgery, Department of Biomedical Science for Health, I.R.C.C.S. Ospedale Galeazzi - Sant'Ambrogio, University of Milan, Via C. Belgioioso, 173, 20157, Milan, Italy
| | - Luigi Bonavina
- Division of General and Foregut Surgery, Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Cyr DP, Pun C, Shivji S, Mitrovic B, Duan K, Tomin R, Sari A, Brar A, Zerhouni S, Brar MS, Kennedy ED, Swallow CJ, Kirsch R, Conner JR. Tumor Budding Assessment in Colorectal Carcinoma: Normalization Revisited. Am J Surg Pathol 2024; 48:251-265. [PMID: 38108373 DOI: 10.1097/pas.0000000000002166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Tumor budding (TB) is a powerful prognostic factor in colorectal cancer (CRC). An internationally standardized method for its assessment (International Tumor Budding Consensus Conference [ITBCC] method) has been adopted by most CRC pathology protocols. This method requires that TB counts are reported by field area (0.785 mm 2 ) rather than objective lens and a normalization factor is applied for this purpose. However, the validity of this approach is yet to be tested. We sought to validate the ITBCC method with a particular emphasis on normalization as a tool for standardization. In a cohort of 365 stage I-III CRC, both normalized and non-normalized TB were significantly associated with disease-specific survival and recurrence-free survival ( P <0.0001). Examining both 0.95 and 0.785 mm 2 field areas in a subset of patients (n=200), we found that normalization markedly overcorrects TB counts: Counts obtained in a 0.95 mm 2 hotspot field were reduced by an average of 17.5% following normalization compared with only 3.8% when counts were performed in an actual 0.785 mm 2 field. This resulted in 45 (11.3%) cases being downgraded using ITBCC grading criteria following normalization, compared with only 5 cases (1.3%, P =0.0007) downgraded when a true 0.785 mm 2 field was examined. In summary, the prognostic value of TB was retained regardless of whether TB counts in a 0.95 mm 2 field were normalized. Normalization resulted in overcorrecting TB counts with consequent downgrading of most borderline cases. This has implications for risk stratification and adjuvant treatment decisions, and suggests the need to re-evaluate the role of normalization in TB assessment.
Collapse
Affiliation(s)
- David P Cyr
- Lunenfeld-Tanenbaum Research Institute
- Institute of Medical Science
- Department of Surgery, Division of General Surgery, University of Toronto
- Department of Surgical Oncology, Princess Margaret Cancer Centre and Sinai Health System
| | - Cherry Pun
- Department of Pathology and Laboratory Medicine, Sinai Health System
- Department of Laboratory Medicine Pathobiology, University of Toronto
| | - Sameer Shivji
- Department of Pathology and Laboratory Medicine, Sinai Health System
| | - Bojana Mitrovic
- Department of Pathology and Laboratory Medicine, Health Sciences North, Sudbury, ON, Canada
| | - Kai Duan
- Department of Laboratory Medicine Pathobiology, University of Toronto
- Laboratory Medicine Program, University Health Network, Toronto
| | - Rossi Tomin
- Department of Pathology and Laboratory Medicine, Sinai Health System
| | - Aysegul Sari
- Department of Pathology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Amanpreet Brar
- Department of Surgery, Division of General Surgery, University of Toronto
| | - Siham Zerhouni
- Department of Surgery, Division of General Surgery, University of Toronto
- Department of Surgical Oncology, Princess Margaret Cancer Centre and Sinai Health System
| | - Mantaj S Brar
- Department of Surgery, Division of General Surgery, University of Toronto
| | - Erin D Kennedy
- Department of Surgery, Division of General Surgery, University of Toronto
- Department of Surgical Oncology, Princess Margaret Cancer Centre and Sinai Health System
| | - Carol J Swallow
- Lunenfeld-Tanenbaum Research Institute
- Institute of Medical Science
- Department of Surgery, Division of General Surgery, University of Toronto
- Department of Surgical Oncology, Princess Margaret Cancer Centre and Sinai Health System
| | - Richard Kirsch
- Lunenfeld-Tanenbaum Research Institute
- Department of Pathology and Laboratory Medicine, Sinai Health System
- Department of Laboratory Medicine Pathobiology, University of Toronto
| | - James R Conner
- Lunenfeld-Tanenbaum Research Institute
- Department of Pathology and Laboratory Medicine, Sinai Health System
- Department of Laboratory Medicine Pathobiology, University of Toronto
| |
Collapse
|
14
|
Xu H, Chen S, Li J, Weng S, Ren Y, Zhang Y, Wang L, Liu L, Guo C, Xing Z, Luo P, Cheng Q, Han X, Liu Z. Cellular Ligand-Receptor Perturbations Unravel MEIS2 as a Key Factor for the Aggressive Progression and Prognosis in Stage II/III Colorectal Cancer. J Proteome Res 2024; 23:760-774. [PMID: 38153233 DOI: 10.1021/acs.jproteome.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Approximately 10-15% of stage II and 25-30% of stage III colorectal cancer (CRC) patients experience recurrence within 5 years after surgery, and existing taxonomies are insufficient to meet the needs of clinical precision treatment. Thus, robust biomarkers and precise management were urgently required to stratify stage II and III CRC and identify potential patients who will benefit from postoperative adjuvant therapy. Alongside, interactions of ligand-receptor pairs point to an emerging direction in tumor signaling with far-reaching implications for CRC, while their impact on tumor subtyping has not been elucidated. Herein, based on multiple large-sample multicenter cohorts and perturbations of the ligand-receptor interaction network, four well-characterized ligand-receptor-driven subtypes (LRDS) were established and further validated. These molecular taxonomies perform with unique heterogeneity in terms of molecular characteristics, immune and mutational landscapes, and clinical features. Specifically, MEIS2, a key LRDS4 factor, performs significant associations with proliferation, invasion, migration, and dismal prognosis of stage II/III CRC, revealing promising directions for prognostic assessment and individualized treatment of CRC patients. Overall, our study sheds novel insights into the implications of intercellular communication on stage II/III CRC from a ligand-receptor interactome perspective and revealed MEIS2 as a key factor in the aggressive progression and prognosis for stage II/III CRC.
Collapse
Affiliation(s)
- Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
15
|
Xian ZY, Song YW, Zhang ZJ, Gan YG, Chen YL, Hu T, Wen XF, Mo TW, He XW. Combining pathological risk factors and T, N staging to optimize the assessment for risk stratification and prognostication in low-risk stage III colon cancer. World J Surg Oncol 2024; 22:10. [PMID: 38178080 PMCID: PMC10765648 DOI: 10.1186/s12957-023-03299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND This study aimed to investigate the combined pathological risk factors (PRFs) to stratify low-risk (pT1-3N1) stage III colon cancer (CC), providing a basis for individualized treatment in the future. PATIENTS AND METHODS PRFs for low-risk stage III CC were identified using COX model. Low-risk stage III CC was risk-grouped combining with PRFs, and survival analysis were performed using Kaplan-Meier. The Surveillance, Epidemiology, and End Results (SEER) databases was used for external validation. RESULTS Nine hundred sixty-two stage III CC patients were included with 634 (65.9%) as low risk and 328 (34.1%) as high risk. Poor differentiation (OS: P = 0.048; DFS: P = 0.011), perineural invasion (OS: P = 0.003; DFS: P < 0.001) and tumor deposits (OS: P = 0.012; DFS: P = 0.003) were identified as PRFs. The prognosis of low-risk CC combined with 2 PRFs (OS: HR = 3.871, 95%CI, 2.004-7.479, P < 0.001; DFS: HR = 3.479, 95%CI, 2.158-5.610, P < 0.001) or 3 PRFs (OS: HR = 5.915, 95%CI, 1.953-17.420, P = 0.002; DFS: HR = 5.915, 95%CI, 2.623-13.335, P < 0.001) was similar to that of high-risk CC (OS: HR = 3.927, 95%CI, 2.317-6.656, P < 0.001; DFS: HR = 4.132, 95%CI, 2.858-5.974, P < 0.001). In the SEER database, 18,547 CC patients were enrolled with 10,023 (54.0%) as low risk and 8524 (46.0%) as high risk. Low-risk CC combined with 2 PRFs (OS: HR = 1.857, 95%CI, 1.613-2.139, P < 0.001) was similar to that of high-risk CC without PRFs (HR = 1.876, 95%CI, 1.731-2.033, P < 0.001). CONCLUSION Combined PRFs improved the risk stratification of low-risk stage III CC, which could reduce the incidence of undertreatment and guide adjuvant chemotherapy.
Collapse
Affiliation(s)
- Zhen-Yu Xian
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi-Wen Song
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Radiotherapy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zong-Jin Zhang
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying-Guo Gan
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Le Chen
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tuo Hu
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Feng Wen
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tai-Wei Mo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Avenue, Guangzhou, 510630, Tianhe District, China.
- Department of General Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Guangzhou, 510180, Yuexiu District, China.
| | - Xiao-Wen He
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
16
|
Xie H, Zeng Z, Hou Y, Ye F, Cai T, Cai Y, Xiong L, Li W, Liu Z, Liang Z, Luo S, Zheng X, Huang L, Liu H, Kang L. Effects of tumour budding on adjuvant chemotherapy in colorectal cancer. BJS Open 2024; 8:zrad115. [PMID: 38190579 PMCID: PMC10773627 DOI: 10.1093/bjsopen/zrad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND High tumour budding has been indicated as a risk factor of poor survival in colorectal cancer. This study aimed to investigate the impact of tumour budding grades and the use of adjuvant chemotherapy on prognosis in patients with colorectal cancer. METHODS This study included consecutive colorectal cancer patients who underwent radical surgery for primary colorectal adenocarcinoma at The Sixth Hospital of Sun Yat-sen University between 2009 and 2019. Tumour budding was assessed based on the recommendations of the International Tumor Budding Consensus Conference using haematoxylin and eosin (H&E)-stained slides with tumour samples. The primary outcome of interest was to correlate tumour budding with disease-free survival and overall survival; the secondary outcome was investigation of the impact of adjuvant therapy on different tumour budding grades. In addition, a subgroup analysis was performed for the effects of lymphocytic infiltration on adjuvant chemotherapy in patients with Bd3. RESULTS Of 709 eligible patients, 412 with colorectal cancer were included. According to the International Tumor Budding Consensus Conference, 210 (50.9 per cent), 127 (30.8 per cent) and 75 (18.2 per cent) were classified as low budding (Bd1), intermediate budding (Bd2) and high budding (Bd3) respectively. Patients with Bd1, Bd2 and Bd3 had 5-year disease-free survival rates of 82.9 per cent, 70.1 per cent and 49.3 per cent respectively, and 5-year overall survival rates of 90 per cent, 79.5 per cent and 62.7 per cent respectively (P <0.001). Adjuvant chemotherapy yielded a significant survival benefit in patients with Bd3 (5-year disease-free survival, 65 per cent versus 31.4 per cent, P <0.001; 5-year overall survival, 84.4 per cent versus 63.1 per cent, P <0.001), but not in those with Bd1 or Bd2. In patients with Bd3, the benefit of adjuvant chemotherapy was maintained in those with low, but not high lymphocytic infiltration. CONCLUSION High grade of tumour budding was strongly correlated with poorer survival outcomes in colorectal cancer. Patients with Bd3 benefited from adjuvant chemotherapy, with the exclusion of patients with high lymphocytic infiltration.
Collapse
Affiliation(s)
- Hao Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ziwei Zeng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yujie Hou
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fujin Ye
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tanxing Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yonghua Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Xiong
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxin Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanzhen Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhenxing Liang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuangling Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Gao Z, Wan Z, Yu P, Shang Y, Zhu G, Jiang H, Chen Y, Wang S, Lei F, Huang W, Zeng Q, Wang Y, Rong W, Hong Y, Gao Q, Niu P, Zhai Z, An K, Ding C, Wang Y, Gu G, Wang X, Meng Q, Ye S, Liu H, Gu J. A recurrence-predictive model based on eight genes and tumor mutational burden/microsatellite instability status in Stage II/III colorectal cancer. Cancer Med 2024; 13:e6720. [PMID: 38111983 PMCID: PMC10807589 DOI: 10.1002/cam4.6720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/18/2023] [Accepted: 10/27/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Although adjuvant chemotherapy (ACT) is widely used to treat patients with Stage II/III colorectal cancer (CRC), administering ACT to specific patients remains a challenge. The decision to ACT requires an accurate assessment of recurrence risk and absolute treatment benefit. However, the traditional TNM staging system does not accurately assess a patient's individual risk of recurrence. METHODS To identify recurrence risk-related genetic factors for Stage II/III CRC patients after radical surgery, we conducted an analysis of whole-exome sequencing of 47 patients with Stage II/III CRC who underwent radical surgery at five institutions. Patients were grouped into non-recurrence group (NR, n = 24, recurrence-free survival [RFS] > 5 years) and recurrence group (R, n = 23, RFS <2 years). The TCGA-COAD/READ cohort was employed as the validation dataset. RESULTS A recurrence-predictive model (G8plus score) based on eight gene (CUL9, PCDHA12, HECTD3, DCX, SMARCA2, FAM193A, AATK, and SORCS2) mutations and tumor mutation burden/microsatellite instability (TMB/MSI) status was constructed, with 97.87% accuracy in our data and 100% negative predictive value in the TCGA-COAD/READ cohort. For the TCGA-COAD/READ cohort, the G8plus-high group had better RFS (HR = 0.22, p = 0.024); the G8plus-high tumors had significantly more infiltrated immune cell types, higher tertiary lymphoid structure signature scores, and higher immunological signature scores. The G8plus score was also a predict biomarker for immunotherapeutic in advanced CRC in the PUCH cohort. CONCLUSIONS In conclusion, the G8plus score is a powerful biomarker for predicting the risk of recurrence in patients with stage II/III CRC. It can be used to stratify patients who benefit from ACT and immunotherapy.
Collapse
Affiliation(s)
- Zhaoya Gao
- Department of General SurgeryPeking University First HospitalBeijingChina
| | - Zhiyi Wan
- Genecast Biotechnology Co., Ltd.Wuxi CityJiangsu ProvinceChina
| | - Pengfei Yu
- Department of General SurgeryAir Force Medical Center, Chinese People's Liberation ArmyBeijingChina
| | - Yan Shang
- Department of Colorectal SurgeryCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoning ProvinceChina
| | - Guangsheng Zhu
- Department of Gastrointestinal SurgeryHubei Cancer HospitalWuhanHubei ProvinceChina
| | - Huiyuan Jiang
- Department of Colorectal and Anal SurgeryShanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanShanxi ProvinceChina
| | - Yawei Chen
- Genecast Biotechnology Co., Ltd.Wuxi CityJiangsu ProvinceChina
| | - Shengzhou Wang
- Genecast Biotechnology Co., Ltd.Wuxi CityJiangsu ProvinceChina
| | - Fuming Lei
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Wensheng Huang
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Qingmin Zeng
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Yanzhao Wang
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Wanshui Rong
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Yuming Hong
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Qingkun Gao
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Pengfei Niu
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Zhichao Zhai
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Ke An
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Changmin Ding
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
| | - Yunfan Wang
- Department of PathologyPeking University Shougang HospitalBeijingChina
| | - Guoli Gu
- Department of General SurgeryAir Force Medical Center, Chinese People's Liberation ArmyBeijingChina
| | - Xin Wang
- Department of General SurgeryPeking University First HospitalBeijingChina
| | - Qingkai Meng
- Department of Colorectal SurgeryCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangLiaoning ProvinceChina
| | - Shengwei Ye
- Department of Gastrointestinal SurgeryHubei Cancer HospitalWuhanHubei ProvinceChina
| | - Haiyi Liu
- Department of Colorectal and Anal SurgeryShanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanShanxi ProvinceChina
| | - Jin Gu
- Department of Gastrointestinal SurgeryPeking University Shougang HospitalBeijingChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal SurgeryPeking University Cancer Hospital & InstituteBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- Peking University International Cancer InstituteBeijingChina
| |
Collapse
|
18
|
Fang L, Yao Y, Guan X, Liao Y, Wang B, Cui L, Han S, Zou H, Su D, Ma Y, Liu B, Wang Y, Huang R, Ruan Y, Yu X, Yao Y, Liu C, Zhang Y. China special issue on gastrointestinal tumors-Regulatory-immunoscore-A novel indicator to guide precision adjuvant chemotherapy in colorectal cancer. Int J Cancer 2023; 153:1904-1915. [PMID: 37085990 DOI: 10.1002/ijc.34539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 04/23/2023]
Abstract
Novel biomarkers are essential to improve the treatment efficacy and overall survival of stage II and III colorectal cancer (CRC), allowing for personalized treatment decisions. Here, the densities of CD8+ and FOXP3+ T cells in the tumor and invasive margin were processed by immunohistochemistry and digital pathology to form a scoring system named regulatory-Immunoscore (RIS). Cox proportional hazards regression models were used to determine the risk factors associated with time to recurrence. Harrell's concordance index and the time-dependent area under the curve were used to assess model performance. A total of 1213 stage I-III DNA mismatch repair-proficient colorectal cancer (pMMR CRC) patients were randomly assigned to a training set (n = 642) and a validation set (n = 571). From the Cox multivariable analysis, the association of RIS with survival was independent of patient age, sex and anatomy-based tumor risk parameters (P < .0001). For stage II patients, chemotherapy was significantly associated with better recurrence time in patients with low (95% confidence interval [CI]: 0.11-0.54, P = .001) and intermediate (95% CI = 0.25-0.57, P < .001) RIS values. In stage III patients treated with adjuvant chemotherapy, a treatment duration of 6 or more months was significantly associated with better recurrence time in patients with intermediate RIS values (95% CI = 0.38-0.90, P = .016) when compared with duration under 6 months. Therefore, these findings suggest that RIS is reliable for predicting recurrence risk and treatment responsiveness for patients with stage I-III pMMR CRC.
Collapse
Affiliation(s)
- Lin Fang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yang Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Su
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Biao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yao Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Rui Huang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| |
Collapse
|
19
|
Luo Y, Xie Y, Wu D, Wang B, Lu H, Wang Z, Quan Y, Han B. AL360181.1 promotes proliferation and invasion in colon cancer and is one of ten m6A-related lncRNAs that predict overall survival. PeerJ 2023; 11:e16123. [PMID: 37953780 PMCID: PMC10638913 DOI: 10.7717/peerj.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/27/2023] [Indexed: 11/14/2023] Open
Abstract
Background N6-methyladenosine (m6A) exerted a pivotal role in colon cancer. Nevertheless, the long non-coding RNAs (lncRNAs) associated with this process have yet to be elucidated. Methods The open-access data used for analysis was downloaded from The Cancer Genome Atlas (TCGA) database for analysis, employing the R software for computational evaluations. The RNA level of specific molecules was assessed using the quantitative real-time PCR. CCK8, colony formation and transwell assay were used to evaluate the proliferation, invasion and migration ability of colon cancer cells. Results Here, we identified the m6A regulators from TCGA data and subsequently pinpointed lncRNAs with a -Cor- > 0.3 and P < 0.05, categorizing them as m6A-associated lncRNAs. Moreover, we formulated a prognosis signature rooted in ten m6A-related lncRNAs, consisting of AL360181.1, PCAT6, SNHG26, AC016876.1, AC104667.2, AL114730.3, LINC02257, AC147067.1, AP006621.3 and AC009237.14. This signature exhibited notable predictive accuracy in gauging patient survival. Immune-related evaluations revealed varied immune cell infiltration patterns across different risk groups, with our findings suggesting superior immunotherapy response in low-risk patients. Biological enrichment analysis indicated that the high-risk patients had a higher activity of multiple carcinogenic pathways, including glycolysis. The previously unreported lncRNA, AL360181.1, displayed a connection to glycolytic activity and diminished survival rates, warranting further investigation. The result indicated that AL360181.1 was correlated with more aggressive clinical characteristics. Immune infiltration assessments found AL360181.1 to have a positive correlation with Tcm infiltration, but an inverse relationship with entities like Th2 cells, T cells, neutrophils and macrophages. Biological enrichment analysis indicated that the pathways of WNT/β-catenin, pancreas beta cells, hedgehog signaling and some metabolism pathways were upregulated in high AL360181.1 patients. In vitro experiments showed that AL360181.1 was upregulated in the colon cancer cells. Moreover, AL360181.1 significantly promotes the proliferation, invasion and migration of colon cancer cells. Conclusions Our results can provide direction for future studies on m6A-related lncRNA in colon cancer.
Collapse
Affiliation(s)
- Yi Luo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yayun Xie
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dejun Wu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Bingyi Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Helei Lu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiqiang Wang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjun Quan
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Han
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Yu X, Yang X, Nie H, Jiang W, He X, Ou C. Immunological role and prognostic value of somatostatin receptor family members in colon adenocarcinoma. Front Pharmacol 2023; 14:1255809. [PMID: 37900156 PMCID: PMC10603271 DOI: 10.3389/fphar.2023.1255809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Colon adenocarcinoma (COAD) is among the most prevalent cancers worldwide, ranking as the third most prevalent malignancy in incidence and mortality. The somatostatin receptor (SSTR) family comprises G-protein-coupled receptors (GPCRs), which couple to inhibitory G proteins (Gi and Go) upon binding to somatostatin (SST) analogs. GPCRs are involved in hormone release, neurotransmission, cell growth inhibition, and cancer suppression. However, their roles in COAD remain unclear. This study used bioinformatics to investigate the expression, prognosis, gene alterations, functional enrichment, and immunoregulatory effects of the SSTR family members in COAD. SSTR1-4 are differentially downregulated in COAD, and low SSTR2 expression indicates poor survival. Biological processes and gene expression enrichment of the SSTR family in COAD were further analyzed using the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology. A strong correlation was observed between SSTR expression and immune cell infiltration. We also quantified SSTR2 expression in 25 COAD samples and adjacent normal tissues using quantitative real-time polymerase chain reaction. We analyzed its correlation with the dendritic cell-integrin subunit alpha X marker gene. The biomarker exploration of the solid tumors portal was used to confirm the correlation between SSTR2 with immunomodulators and immunotherapy responses. Our results identify SSTR2 as a promising target for COAD immunotherapy. Our findings provide new insights into the biological functions of the SSTR family and their implications for the prognosis of COAD.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenying Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Simon HL, Reif de Paula T, Spigel ZA, Keller DS. Factors Associated With Adjuvant Chemotherapy Noncompliance and Survival in Older Adults With Stage III Colon Cancer. Dis Colon Rectum 2023; 66:1254-1262. [PMID: 36574320 DOI: 10.1097/dcr.0000000000002656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Standard management of stage III colon cancer includes surgical resection and adjuvant chemotherapy. Despite improved overall survival with adjuvant chemotherapy in stage III colon cancer, it is reportedly underused in older adults. To date, no contemporary national analysis of adjuvant chemotherapy use and its impact on older adults with stage III colon cancer exists. OBJECTIVE This study aimed to assess the current use of adjuvant chemotherapy in older adults with stage III colon cancer and determine factors associated with noncompliance. DESIGN Retrospective cohort study. SETTINGS Conducted using the National Cancer Database. PATIENTS This study included patients aged 65 years and older undergoing curative resection for stage III colon adenocarcinomas, 2010-2017. MAIN OUTCOME MEASURES Adjuvant chemotherapy use, factors associated with adjuvant chemotherapy use, and overall survival with and without adjuvant chemotherapy in older adults with pathologic stage III disease. RESULTS Of 64,608 patients included, 64.3% received adjuvant chemotherapy. Adjuvant chemotherapy was significantly independently associated with improved 1-, 3-, and 5-year overall survival vs no adjuvant chemotherapy (92.8%, 75.3%, 62.4% vs 70.8%, 46.6%, 32.7%; HR 0.475; 95% CI, 0.459-0.492; p <0.001). Compared with the no adjuvant chemotherapy cohort, patients who received adjuvant chemotherapy were younger, female, and less comorbid ( p < 0.001). Factors associated with adjuvant chemotherapy noncompliance included advancing age, lower annual income, open approach, longer length of stay, pathologic stage IIIA, and fewer than 12 lymph nodes. LIMITATIONS Administrative data source with inherent risks of bias, coding errors, and limitations in the fields available for analysis. CONCLUSIONS Adjuvant chemotherapy significantly improved overall survival but was only used in 64.3% of older adults with stage III colon cancer. Adjuvant chemotherapy noncompliance was seen in the most vulnerable and highest-risk patients, including those with greater comorbidity, lower income, and patients who received open surgery. See Video Abstract at http://links.lww.com/DCR/C125 . FACTORES ASOCIADOS CON EL INCUMPLIMIENTO DE LA QUIMIOTERAPIA ADYUVANTE Y LA SUPERVIVENCIA EN ADULTOS MAYORES CON CNCER DE COLON EN ESTADIO III ANTECEDENTES: El tratamiento estándar de oro del cáncer de colon en estadio III incluye la resección quirúrgica y la quimioterapia adyuvante. A pesar de la mejora de la supervivencia general con la quimioterapia adyuvante en el cáncer de colon en estadio III, se reporta que se utiliza poco en los adultos mayores. Hasta la fecha, no existe ningún análisis nacional actual, sobre el uso de quimioterapia adyuvante y su impacto en adultos mayores con cáncer de colon en etapa III.OBJETIVO: Evaluar el uso actual de quimioterapia adyuvante en adultos mayores con cáncer de colon en estadio III y determinar los factores asociados con el incumplimiento.DISEÑO: Estudio de cohorte retrospectivo.AJUSTES: Realizado y utilizando la Base de Datos Nacional de Cáncer.PACIENTES: Pacientes de 65 años o más sometidos a resección curativa por adenocarcinomas de colon en estadio III de 2010-2017.PRINCIPALES MEDIDAS DE RESULTADO: Uso de quimioterapia adyuvante, factores asociados con el uso de quimioterapia adyuvante y supervivencia general con y sin quimioterapia adyuvante en adultos mayores con enfermedad en estadio patológico III.RESULTADOS: De 64.608 pacientes incluidos, el 64,3% recibió quimioterapia adyuvante. La quimioterapia adyuvante se asoció de forma significativa e independiente con una mejor supervivencia general a 1, 3 y 5 años frente a ninguna quimioterapia adyuvante (92,8 %, 75,3 %, 62,4 % frente a 70,8 %, 46,6 %, 32,7 %; respectivamente, HR 0,475, 95 % IC 0,459-0,492, p < 0,001). En comparación con la cohorte sin quimioterapia adyuvante, los pacientes que recibieron quimioterapia adyuvante eran más jóvenes, mujeres y con menos comorbilidad. (p < 0,001). Los factores asociados con el incumplimiento de la quimioterapia adyuvante incluyeron edad avanzada (OR 0,857, IC del 95 % 0,854-0,861), ingresos anuales más bajos (OR 0,891, IC del 95 % 0,844-0,940), abordaje abierto (0,730, IC del 95 % 0,633-0,842), mayor duración de la estancia (OR 0,949, IC 95% 0,949-0,954) y estadio patológico IIIA (0,547, IC 95% 0,458-0,652) y <12.LIMITACIONES: Fuente de datos administrativos con riesgos inherentes de sesgo, errores de codificación y limitaciones en los campos disponibles para el análisis.CONCLUSIONES: La quimioterapia adyuvante mejoró significativamente la supervivencia general, pero solo se utilizó en el 64,3 % de los adultos mayores con cáncer de colon en estadio III. El incumplimiento de la quimioterapia adyuvante se observó en los pacientes más vulnerables y de mayor riesgo, incluidos aquellos con mayor comorbilidad, menores ingresos y pacientes que recibieron cirugía abierta. Consulte Video Resumen en http://links.lww.com/DCR/C125 . (Traducción-Dr. Fidel Ruiz Healy ).
Collapse
Affiliation(s)
- Hillary L Simon
- Department of Surgery, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Thais Reif de Paula
- Department of Biomedical Sciences, University of Houston College of Medicine, Houston, Texas
| | - Zachary A Spigel
- Department of Surgery, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Deborah S Keller
- Division of Colorectal Surgery, Department of Surgery, University of California, Davis Medical Center, Sacramento, California
| |
Collapse
|
22
|
Tang Y, Wang T, Hu Y, Ji H, Yan B, Hu X, Zeng Y, Hao Y, Xue W, Chen Z, Lan J, Wang Y, Deng H, Deng C, Wu X, Yan J. Cutoff value of IC 50 for drug sensitivity in patient-derived tumor organoids in colorectal cancer. iScience 2023; 26:107116. [PMID: 37426352 PMCID: PMC10329174 DOI: 10.1016/j.isci.2023.107116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Patient-derived tumor organoids (PDTOs) have the potential to be used to predict the patient response to chemotherapy. However, the cutoff value of the half-maximal inhibition concentration (IC50) for PDTO drug sensitivity has not been validated with clinical cohort data. We established PDTOs and performed a drug test in 277 samples from 242 CRC patients who received FOLFOX or XELOX chemotherapy. After follow-up and comparison of the PDTO drug test and final clinical outcome results, the optimal IC50 cutoff value for PDTO drug sensitivity was 43.26 μmol/L. This PDTO drug test-defined cutoff value could predict patient response with 75.36% sensitivity, 74.68% specificity, and 75% accuracy. Moreover, this value distinguished groups of patients with significant differences in survival benefit. Our study is the first to define the IC50 cutoff value for the PDTO drug test to effectively distinguish CRC patients with chemosensitivity or nonsensitivity and predict survival benefits.
Collapse
Affiliation(s)
- Yuting Tang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ting Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yaowen Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hongli Ji
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Botao Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiarong Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yunli Zeng
- Department of Oncology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yifan Hao
- Department of Oncology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weisong Xue
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zexin Chen
- Accurate International Biotechnology Limited Company, Guangzhou, Guangdong 510515, P.R. China
| | - Jianqiang Lan
- Accurate International Biotechnology Limited Company, Guangzhou, Guangdong 510515, P.R. China
| | - Yanan Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haijun Deng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of P.R. China
| | - Xiufeng Wu
- Department of Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
23
|
Zhan Y, Ni K, Liu Z, Xin R, Han Q, Ping H, Liu Y, Zhao X, Wang W, Yan S, Sun J, Zhang Q, Wang G, Zhang Z, Zhang X, Hu X, Li G, Zhang C. Stage III deficient mismatch repair colon patients get greater benefit from earlier starting oxaliplatin-based chemotherapy regimen. Sci Rep 2023; 13:8969. [PMID: 37268749 DOI: 10.1038/s41598-023-33153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/07/2023] [Indexed: 06/04/2023] Open
Abstract
We evaluate the prognostic value of chemotherapy and other prognostic factors on overall survival among colon patients with deficient mismatch repair (dMMR), and determine the optimum time to start chemotherapy after surgery. Data of 306 colon cancer patients with dMMR who received radical surgery were collected from three Chinese centers between August 2012 and January 2018. Overall survival (OS) was assessed with the Kaplan-Meier method and log-rank. Cox regression analysis were used to assess influencing prognosis factors. The median follow-up time for all patients was 45.0 months (range, 1.0-100). There was a nonsignificant OS benefit from chemotherapy for patients with stage I and stage II disease, including high-risk stage II disease (log-rank p: 0.386, 0.779, 0.921), and a significant OS benefit for patients with stage III and stage IV disease for receiving post-operation chemotherapy (log-rank p = 0.002, 0.019). Stage III patients benefitted from chemotherapy regimens that contained oxaliplatin (log-rank p = 0.004), and Starting chemotherapy with oxaliplatin treatment earlier resulted in better outcomes (95% CI 0.013-0.857; p = 0.035). Chemotherapy regimens containing oxaliplatin can prolong the survival time of stage III and IV dMMR colon cancer patients. This beneficial manifestation was more pronounced after starting chemotherapy treatment early post operation. High risk stage II dMMR colon patients including T4N0M0 cannot benefit from chemotherapy.
Collapse
Affiliation(s)
- Yixiang Zhan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- School of Medicine, Nankai University, Tianjin, China
| | - Kemin Ni
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhaoce Liu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ran Xin
- School of Medicine, Nankai University, Tianjin, China
| | - Qiurong Han
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangyu Ping
- School of Medicine, Nankai University, Tianjin, China
| | - Yaohong Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Xuanzhu Zhao
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanting Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Suying Yan
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Sun
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Qinghuai Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Guihua Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhang
- The Third Central, Clinical College of Tianjin Medical University, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
- Tianjin Institute of Coloproctology, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Xia Hu
- Department of Agriculture Insect, Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guoxun Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.
- Tianjin Institute of Coloproctology, Tianjin, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, China.
- Tianjin Institute of Coloproctology, Tianjin, China.
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China.
| |
Collapse
|
24
|
Ye SB, Cheng YK, Li PS, Zhang L, Zhang LH, Huang Y, Chen P, Wang Y, Wang C, Peng JH, Shi LS, Ling L, Wu XJ, Qin J, Yang ZH, Lan P. High-throughput proteomics profiling-derived signature associated with chemotherapy response and survival for stage II/III colorectal cancer. NPJ Precis Oncol 2023; 7:50. [PMID: 37258779 DOI: 10.1038/s41698-023-00400-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Adjuvant chemotherapy (ACT) is usually used to reduce the risk of disease relapse and improve survival for stage II/III colorectal cancer (CRC). However, only a subset of patients could benefit from ACT. Thus, there is an urgent need to identify improved biomarkers to predict survival and stratify patients to refine the selection of ACT. We used high-throughput proteomics to analyze tumor and adjacent normal tissues of stage II/III CRC patients with /without relapse to identify potential markers for predicting prognosis and benefit from ACT. The machine learning approach was applied to identify relapse-specific markers. Then the artificial intelligence (AI)-assisted multiplex IHC was performed to validate the prognostic value of the relapse-specific markers and construct a proteomic-derived classifier for stage II/III CRC using 3 markers, including FHL3, GGA1, TGFBI. The proteomics profiling-derived signature for stage II/III CRC (PS) not only shows good accuracy to classify patients into high and low risk of relapse and mortality in all three cohorts, but also works independently of clinicopathologic features. ACT was associated with improved disease-free survival (DFS) and overall survival (OS) in stage II (pN0) patients with high PS and pN2 patients with high PS. This study demonstrated the clinical significance of proteomic features, which serve as a valuable source for potential biomarkers. The PS classifier provides prognostic value for identifying patients at high risk of relapse and mortality and optimizes individualized treatment strategy by detecting patients who may benefit from ACT for survival.
Collapse
Affiliation(s)
- Shu-Biao Ye
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yi-Kan Cheng
- Department of Radiation Oncology; The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Pei-Si Li
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Sun Yat-sen University School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Lin Zhang
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Lian-Hai Zhang
- Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Ping Chen
- Department of VIP, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Yi Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing Proteome Research Center, Beijing, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jian-Hong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Li-Shuo Shi
- Department of Probability and Statistics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Li Ling
- Department of Probability and Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
| | - Xiao-Jian Wu
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Jun Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing Proteome Research Center, Beijing, China.
| | - Zi-Huan Yang
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Ping Lan
- Guangdong Institute of Gastroenterology; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
25
|
Murakawa Y, Ootsuka K, Kusaka J, Miura K. Correlation between overall survival and quality of life in colon cancer patients with chemotherapy. BMC Cancer 2023; 23:492. [PMID: 37259045 DOI: 10.1186/s12885-023-10989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/21/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Patients presenting with inoperable colon cancer at first onset (ICF) or at time of relapse (ICR) are considered in unrecoverable. The therapeutic goal for unrecoverable cancer is to prolong overall survival (OS) and maintain a high quality of life (QOL). As data on objective indicators of QOL in cancer patients, such as length of hospitalisation (LOH), outpatient consultation times (OCT), and hospital-free survival (HFS), is limited, this study compared ICF and ICR with respect to OS and QOL over the entire clinical course. METHODS We retrospectively evaluated 90 inoperable colon cancer patients with chemotherapy and compared ICF and ICR in terms of OS, LOH, OCT, and HFS. RESULTS Patients with ICF had a worse OS than those with ICR. In patients with ICF and ICR, OS and LOH were not correlated but OS and OCT and OS and HFS were strongly correlated. In patients with ICF and ICR, OCT and HFS accounted for approximately 8% and 90% of their OS, respectively. CONCLUSIONS The LOH, OCT, and HFS are important factors for evaluating objective QOL of patients with inoperable colon cancer and should be considered when making treatment decisions.
Collapse
Affiliation(s)
- Yasuko Murakawa
- Department of Cancer Chemotherapy, Miyagi Cancer Center, Nodayama 47-1, Medeshima, Natori, Miyagi, 981-1293, Japan.
| | - Kazunori Ootsuka
- Department of Cancer Chemotherapy, Miyagi Cancer Center, Nodayama 47-1, Medeshima, Natori, Miyagi, 981-1293, Japan
| | - Jun Kusaka
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| | - Kou Miura
- Department of Digestive Surgery, Miyagi Cancer Center, Natori, Japan
| |
Collapse
|
26
|
Wei RY, Li CH, Zhong WY, Ye JJ. A correlation study affecting survival in patients after radical colon cancer surgery: A retrospective study. Medicine (Baltimore) 2023; 102:e33302. [PMID: 36930115 PMCID: PMC10019116 DOI: 10.1097/md.0000000000033302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
The objective of this study was to explore the relevant factors affecting the 5-year survival rate of patients after radical colon cancer surgery, and to provide some basis for improving the quality of life and prognosis of colon cancer patients. The clinical data of 116 colon cancer patients who underwent treatment in our hospital from January 2017 to December 2017 were retrospectively selected. Using the date of performing surgical treatment as the starting point and the completion of 5 years after surgery or patient death as the end point, all patients were followed up by telephone to count the 5-year survival rate and analyze the influence of each factor with the prognosis of colon cancer patients. Of the 116 patients, 14 patients were lost to follow-up. Of the 102 patients with complete follow-up, 33 patients were died, with an overall 5-year survival rate of 67.6%. After univariate analysis, it was found that distant metastasis (χ2 = 10.493, P = .001), lymph node metastasis (χ2 = 25.145, P < .001), depth of muscle infiltration (χ2 = 14.929, P < .001), alcohol consumption (χ2 = 15.263, P < .001), and preoperative obstruction (χ2 = 9.555, P = .002) were significantly associated with the prognosis of colon cancer patients. Multivariate logistic analysis showed that distant metastasis (odds ratio [OR]: 1.932, 95% confidence intervals [CI]: 1.272-2.934, P = .002), lymph node metastasis (OR: 1.219, 95% CI: 1.091-1.362, P < .001), and obstruction (OR: 1.970, 95% CI: 1.300-2.990, P < .001) were significant independent risk factors affecting the prognosis in patients after radical colon cancer surgery. In summary, preoperative obstruction, lymph node metastasis, and distant metastasis are independent factors influencing 5-year survival rate after radical colon cancer surgery. Patients with risk factors should be followed up more closely and reasonable postoperative adjuvant chemotherapy regimens should be used to improve long-term survival.
Collapse
Affiliation(s)
- Ruo-Yu Wei
- Shenzhen School of Clinic Medicine, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Chun-Hong Li
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wen-Yi Zhong
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jin-Jun Ye
- Department of General Surgery, Longgang Central Hospital of Longgang District (The Ninth People’s Hospital of Shenzhen), Shenzhen, Guangdong, China
| |
Collapse
|
27
|
Lian SY, Tan LX, Liu XZ, Yang LJ, Li NN, Feng Q, Wang P, Wang Y, Qiao DB, Zhou LX, Sun TT, Wang L, Wu AW, Li ZW. KRAS, NRAS, BRAF signatures, and MMR status in colorectal cancer patients in North China. Medicine (Baltimore) 2023; 102:e33115. [PMID: 36862900 PMCID: PMC9981427 DOI: 10.1097/md.0000000000033115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023] Open
Abstract
We assessed the clinicopathological features and prognostic values of KRAS, NRAS, BRAF, and DNA mismatch repair status in colorectal cancer (CRC) to provide real-world data in developing countries. We enrolled 369 CRC patients and analyzed the correlation between RAS/BRAF mutation, mismatch repair status with clinicopathological features, and their prognostic roles. The mutation frequencies of KRAS, NRAS, and BRAF were 41.7%, 1.6%, and 3.8%, respectively. KRAS mutations and deficient mismatch repair (dMMR) status were associated with right-sided tumors, aggressive biological behaviors, and poor differentiation. BRAF (V600E) mutations are associated with well-differentiated and lymphovascular invasion. The dMMR status predominated in young and middle-aged patients and tumor node metastasis stage II patients. dMMR status predicted longer overall survival in all CRC patients. KRAS mutations indicated inferior overall survival in patients with CRC stage IV. Our study showed that KRAS mutations and dMMR status could be applied to CRC patients with different clinicopathological features.
Collapse
Affiliation(s)
- Shen-Yi Lian
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu-Xin Tan
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin-Zhi Liu
- Department of Colorectal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu-Jing Yang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ning-Ning Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qing Feng
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ping Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yue Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Dong-Bo Qiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Li-Xin Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting-Ting Sun
- Department of Colorectal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Wang
- Department of Colorectal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ai-Wen Wu
- Department of Colorectal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhong-Wu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
28
|
Knapen DG, de Haan JJ, Fehrmann RSN, de Vries EGE, de Groot DJA. Opportunities on the horizon for the management of early colon cancer. Crit Rev Oncol Hematol 2023; 183:103918. [PMID: 36702421 DOI: 10.1016/j.critrevonc.2023.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
There is a clear unmet need to improve early colon cancer management. This review encompasses the current systemic treatment landscape and summarises novel and pivotal trials. The Immunoscore and circulating tumour DNA (ctDNA) are studied to evaluate which patients should receive no, 3, or 6 months of adjuvant treatment. Several trials also test escalating treatment strategies for non-cleared ctDNA following standard adjuvant chemotherapy. Advances made in treating patients with metastatic colon cancer are now being translated to the early colon cancer setting. Two ongoing RCTs study immune checkpoint inhibitors (ICI) in patients with microsatellite instable high (MSI-H) early colon cancer as adjuvant treatment. Neo-adjuvant treatment is being studied in several ongoing RCTs as well. The complete response rate in patients with MSI-H tumours following ICI in neoadjuvant trials has potential organ-sparing implications.
Collapse
Affiliation(s)
- Daan G Knapen
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Jacco J de Haan
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Derk Jan A de Groot
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
29
|
Wu H, Zhong W, Zhang R, Ding Y, Qu C, Lai K, Pang Z, Yin S, Zhang G, Chen S. G-quadruplex-enhanced circular single-stranded DNA (G4-CSSD) adsorption of miRNA to inhibit colon cancer progression. Cancer Med 2023; 12:9774-9787. [PMID: 36855796 PMCID: PMC10166891 DOI: 10.1002/cam4.5721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Chromosomal heterogeneity leads to the abnormal expression and mutation of tumor-specific genes. Drugs targeting oncogenes have been extensively developed. However, given the random mutation of tumor suppressor genes, the development of its targeted drugs is difficult. METHODS Our early research revealed that artificial circular single-stranded DNA (CSSD) can restore multiple tumor suppressor genes to inhibit tumor malignant progression by adsorbing miRNA. Here, we improved CSSD to a fully closed single-stranded DNA with G quadruplex DNA secondary structure (G4-CSSD), which made G4-CSSD with higher acquisition rate and decreased degradation. The Cancer Genome Atlas (TCGA) and Human Protein Atlas database were used to predict tumour suppressor genes in colon cancer. Cellular and animal experiments were performed to validate the role of G4-CSSD in cancer cell progression. RESULTS In colon cancer, we observed the simultaneous low expressions of chloride channel accessory 1 (CLCA1), UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 6 (B3GNT6) and UDP glucuronosyltransferase family 2 member A3 (UGT2A3), which indicated an favourable prognosis. After repressing miR-590-3p with G4-CSSD590, the upregulation of CLCA1, B3GNT6 and UGT2A3 inhibited the proliferation and metastasis of colon cancer cells. CONCLUSIONS This study may provide basis for new treatment methods for colon cancer by restoration of tumor suppressor genes.
Collapse
Affiliation(s)
- Haidong Wu
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Weilong Zhong
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Ronghua Zhang
- Hebei Provincial Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Yuping Ding
- Gastroenterology Department of Medical Center of CAPF, Tianjin, China
| | - Chunhua Qu
- Department of outpatient and emergency, Shanghai Pudong Hospital, Shanghai, China
| | - Keguan Lai
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zheng Pang
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shan Yin
- OBiO Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Guangling Zhang
- Hebei Provincial Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
30
|
Garcia P, Hartman D, Choudry H, Pai RK. CD8 + T-cell Density Is an Independent Predictor of Survival and Response to Adjuvant Chemotherapy in Stage III Colon Cancer. Appl Immunohistochem Mol Morphol 2023; 31:69-76. [PMID: 36508180 PMCID: PMC11199076 DOI: 10.1097/pai.0000000000001094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
We assessed CD8 + T-cell density in 351 resected stage II to III colon cancers from 2011 to 2015 and correlated the findings with disease-free survival and survival effect of adjuvant chemotherapy. Most tumors (70%) had high/intermediate CD8 + T-cell density, and this was significantly associated with mismatch repair deficiency compared with tumors with low CD8 + T-cell density (28% vs. 13%, P =0.003). Fewer tumors with high/intermediate CD8 + T-cell density had adverse histologic features compared with tumors with low CD8 + T-cell density including high tumor budding (16% vs. 27%) and venous (22% vs. 35%), lymphatic (54% vs. 65%), and perineural (23% vs. 33%) invasion (all with P <0.05). In the stage III cohort, high/intermediate CD8 + T-cell density was an independent predictor of disease-free survival on multivariate analysis (hazard ratio: 0.39, 0.21 to 0.71 95% CI, P =0.002). For stage III patients with high/intermediate CD8 + T-cell density, adjuvant chemotherapy was significantly associated with improved disease-free survival (hazard ratio: 0.28, 0.11 to 0.74 95% CI, P =0.01) whereas stage III patients with low CD8 + T-cell density did not have improved survival with adjuvant chemotherapy. In conclusion, in stage III colon cancer, CD8 + T-cell density is an independent prognostic biomarker for disease-free survival and may help to identify patients who benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Paulo Garcia
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Douglas Hartman
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Haroon Choudry
- Departments of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Reetesh K. Pai
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
31
|
Peixoto C, Lopes MB, Martins M, Casimiro S, Sobral D, Grosso AR, Abreu C, Macedo D, Costa AL, Pais H, Alvim C, Mansinho A, Filipe P, Costa PMD, Fernandes A, Borralho P, Ferreira C, Malaquias J, Quintela A, Kaplan S, Golkaram M, Salmans M, Khan N, Vijayaraghavan R, Zhang S, Pawlowski T, Godsey J, So A, Liu L, Costa L, Vinga S. Identification of biomarkers predictive of metastasis development in early-stage colorectal cancer using network-based regularization. BMC Bioinformatics 2023; 24:17. [PMID: 36647008 PMCID: PMC9841719 DOI: 10.1186/s12859-022-05104-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deathly worldwide. It is a very heterogeneous disease that can develop via distinct pathways where metastasis is the primary cause of death. Therefore, it is crucial to understand the molecular mechanisms underlying metastasis. RNA-sequencing is an essential tool used for studying the transcriptional landscape. However, the high-dimensionality of gene expression data makes selecting novel metastatic biomarkers problematic. To distinguish early-stage CRC patients at risk of developing metastasis from those that are not, three types of binary classification approaches were used: (1) classification methods (decision trees, linear and radial kernel support vector machines, logistic regression, and random forest) using differentially expressed genes (DEGs) as input features; (2) regularized logistic regression based on the Elastic Net penalty and the proposed iTwiner-a network-based regularizer accounting for gene correlation information; and (3) classification methods based on the genes pre-selected using regularized logistic regression. Classifiers using the DEGs as features showed similar results, with random forest showing the highest accuracy. Using regularized logistic regression on the full dataset yielded no improvement in the methods' accuracy. Further classification using the pre-selected genes found by different penalty factors, instead of the DEGs, significantly improved the accuracy of the binary classifiers. Moreover, the use of network-based correlation information (iTwiner) for gene selection produced the best classification results and the identification of more stable and robust gene sets. Some are known to be tumor suppressor genes (OPCML-IT2), to be related to resistance to cancer therapies (RAC1P3), or to be involved in several cancer processes such as genome stability (XRCC6P2), tumor growth and metastasis (MIR602) and regulation of gene transcription (NME2P2). We show that the classification of CRC patients based on pre-selected features by regularized logistic regression is a valuable alternative to using DEGs, significantly increasing the models' predictive performance. Moreover, the use of correlation-based penalization for biomarker selection stands as a promising strategy for predicting patients' groups based on RNA-seq data.
Collapse
Affiliation(s)
- Carolina Peixoto
- grid.9983.b0000 0001 2181 4263INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
| | - Marta B. Lopes
- NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), NOVA School of Science and Technology, 2829-516 Caparica, Portugal ,Center for Mathematics and Applications (NOVA MATH), NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| | - Marta Martins
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Sandra Casimiro
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Daniel Sobral
- grid.10772.330000000121511713Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal ,grid.10772.330000000121511713UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita Grosso
- grid.10772.330000000121511713Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal ,grid.10772.330000000121511713UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Catarina Abreu
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Daniela Macedo
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Ana Lúcia Costa
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Helena Pais
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Cecília Alvim
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - André Mansinho
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal ,grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Pedro Filipe
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Pedro Marques da Costa
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Afonso Fernandes
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Paula Borralho
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Cristina Ferreira
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - João Malaquias
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - António Quintela
- grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Shannon Kaplan
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Mahdi Golkaram
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Michael Salmans
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Nafeesa Khan
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Raakhee Vijayaraghavan
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Shile Zhang
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Traci Pawlowski
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Jim Godsey
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Alex So
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Li Liu
- grid.185669.50000 0004 0507 3954Illumina Inc., 5200 Illumina Way, San Diego, CA 92122 USA
| | - Luís Costa
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal ,grid.418341.b0000 0004 0474 1607Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Susana Vinga
- grid.9983.b0000 0001 2181 4263INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, 1000-029 Lisbon, Portugal ,grid.9983.b0000 0001 2181 4263IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
32
|
Cai D, Wang W, Zhong ME, Fan D, Liu X, Li CH, Huang ZP, Zhu Q, Lv MY, Hu C, Duan X, Wu XJ, Gao F. An immune, stroma, and epithelial-mesenchymal transition-related signature for predicting recurrence and chemotherapy benefit in stage II-III colorectal cancer. Cancer Med 2023; 12:8924-8936. [PMID: 36629124 PMCID: PMC10134284 DOI: 10.1002/cam4.5534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Debates exist on the treatment decision of the stage II/III colorectal cancer (CRC) due to the insufficiency of the current TNM stage-based risk stratification system. Epithelial-mesenchymal transition (EMT) and tumor microenvironment (TME) have both been linked to CRC progression in recent studies. We propose to improve the prognosis prediction of CRC by integrating TME and EMT. METHODS In total, 2382 CRC patients from seven datasets and one in-house cohort were collected, and 1640 stage II/III CRC patients with complete survival information and gene expression profiles were retained and divided into a training cohort and three independent validation cohorts. Integrated analysis of 398 immune, stroma, and epithelial-mesenchymal transition (ISE)-related genes identified an ISE signature independently associated with the recurrence of CRC. The underlying biological mechanism of the ISE signature and its influence on adjuvant chemotherapy was further explored. RESULTS We constructed a 26-gene signature which was significantly associated with poor outcome in Training cohort (p < 0.001, HR [95%CI] = 4.42 [3.25-6.01]) and three independent validation cohorts (Validation cohort-1: p < 0.01, HR [95%CI] = 1.70 [1.15-2.51]; Validation cohort-2: p < 0.001, HR [95% CI] = 2.30 [1.67-3.16]; Validation cohort-3: p < 0.01, HR [95% CI] = 2.42 [1.25-4.70]). After adjusting for known clinicopathological factors, multivariate cox analysis confirmed the ISE signature's independent prognostic value. Subgroup analysis found that stage III patients with low ISE score might benefit from adjuvant chemotherapy (p < 0.001, HR [95%CI] = 0.15 [0.04-0.55]). Hypergeometric test and enrichment analysis revealed that low-risk group was enriched in thr immune pathway while high-risk group was associated with the EMT pathway and CMS4 subtype. CONCLUSION We proposed an ISE signature for robustly predicting the recurrence of stage II/III CRC and help treatment decision by identifying patients who will not benefit from current standard treatment.
Collapse
Affiliation(s)
- Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Clinical Laboratory, Haining People's Hospital, Jiaxing, China
| | - Min-Er Zhong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dejun Fan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuanhui Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Hang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Ping Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiqi Zhu
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Min-Yi Lv
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuling Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Duan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Zhang L, Deng Y, Liu S, Zhang W, Hong Z, Lu Z, Pan Z, Wu X, Peng J. Lymphovascular invasion represents a superior prognostic and predictive pathological factor of the duration of adjuvant chemotherapy for stage III colon cancer patients. BMC Cancer 2023; 23:3. [PMID: 36593480 PMCID: PMC9808960 DOI: 10.1186/s12885-022-10416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/06/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Lymphovascular invasion (LVI) and perineural invasion (PNI) can indicate poor survival outcomes in colorectal cancer, but few studies have focused on stage III colon cancer. The current study aimed to confirm the prognostic value of LVI and PNI and identify patients who could benefit from a complete duration of adjuvant chemotherapy based on the two pathological factors. METHODS We enrolled 402 consecutive patients with stage III colon cancer who received colon tumor resection from November 2007 to June 2016 at Sun Yat-sen University Cancer Center. Survival analyses were performed by using Kaplan-Meier method with log-rank tests. Risk factors related to disease-free survival (DFS) and overall survival (OS) were identified through Cox proportional hazards analysis. RESULTS 141 (35.1%) patients presented with LVI, and 108 (26.9%) patients with PNI. The LVI-positive group was associated with poorer 3-year DFS (86.5% vs. 76.3%, P = 0.001) and OS (96.0% vs. 89.1%, P = 0.003) rates compared with the LVI-negative group. The PNI-positive group showed a worse outcome compared with the PNI-negative group in 3-year DFS rate (72.5% vs. 86.7%, P < 0.001). Moreover, LVI-positive group present better 3-year DFS and OS rate in patients completing 6-8 cycles of adjuvant chemotherapy than those less than 6 cycles (3-year DFS: 80.0% vs. 64.9%, P = 0.019; 3-year OS: 93.2% vs. 76.3%, P = 0.002). CONCLUSIONS LVI is a superior prognostic factor to PNI in stage III colon cancer patients undergoing curative treatment. PNI status can noly predict the 3-year DFS wihout affecting the 3-year OS. Furthermore, LVI also represents an effective indicator for adjuvant chemotherapy duration.
Collapse
Affiliation(s)
- Linjie Zhang
- grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong 510060 Guangzhou, P. R. China
| | - Yuxiang Deng
- grid.440601.70000 0004 1798 0578Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, 518000 Shenzhen, P. R. China
| | - Songran Liu
- grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong 510060 Guangzhou, P. R. China
| | - Weili Zhang
- grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong 510060 Guangzhou, P. R. China
| | - Zhigang Hong
- grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong 510060 Guangzhou, P. R. China
| | - Zhenhai Lu
- grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong 510060 Guangzhou, P. R. China
| | - Zhizhong Pan
- grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong 510060 Guangzhou, P. R. China
| | - Xiaojun Wu
- grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong 510060 Guangzhou, P. R. China
| | - Jianhong Peng
- grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangdong 510060 Guangzhou, P. R. China
| |
Collapse
|
34
|
Dey A, Mitra A, Pathak S, Prasad S, Zhang AS, Zhang H, Sun XF, Banerjee A. Recent Advancements, Limitations, and Future Perspectives of the use of Personalized Medicine in Treatment of Colon Cancer. Technol Cancer Res Treat 2023; 22:15330338231178403. [PMID: 37248615 PMCID: PMC10240881 DOI: 10.1177/15330338231178403] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Accepted: 03/13/2023] [Indexed: 08/29/2024] Open
Abstract
Due to the heterogeneity of colon cancer, surgery, chemotherapy, and radiation are ineffective in all cases. The genomic profile and biomarkers associated with the process are considered in personalized medicine, along with the patient's personal history. It is based on the response of the targeted therapies to specific genetic variations. The patient's genetic transcriptomic and epigenetic features are evaluated, and the best therapeutic approach and diagnostic testing are identified through personalized medicine. This review aims to summarize all the necessary, updated information on colon cancer related to personalized medicine. Personalized medicine is gaining prominence as generalized treatments are finding it challenging to contain colon cancer cases which currently rank fourth among global cancer incidence while being the fifth largest in total death cases worldwide. In personalized therapy, patients are grouped into specific categories, and the best therapeutic approach is chosen based on evaluating their molecular features. Various personalized strategies are currently being explored in the treatment of colon cancer involving immunotherapy, phytochemicals, and other biomarker-specific targeted therapies. However, significant challenges must be overcome to integrate personalized medicine into healthcare systems completely. We look at the various signaling pathways and genetic and epigenetic alterations associated with colon cancer to understand and identify biomarkers useful in targeted therapy. The current personalized therapies available in colon cancer treatment and the strategies being explored to improve the existing methods are discussed. This review highlights the advantages and limitations of personalized medicine in colon cancer therapy. The current scenario of personalized medicine in developed countries and the challenges faced in middle- and low-income countries are also summarized. Finally, we discuss the future perspectives of personalized medicine in colon cancer and how it could be integrated into the healthcare systems.
Collapse
Affiliation(s)
- Amit Dey
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Abhijit Mitra
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| | - Suhanya Prasad
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Białystok, Poland
| | | | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Orebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai, India
| |
Collapse
|
35
|
The c-MYC-WDR43 signalling axis promotes chemoresistance and tumour growth in colorectal cancer by inhibiting p53 activity. Drug Resist Updat 2023; 66:100909. [PMID: 36525936 DOI: 10.1016/j.drup.2022.100909] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/27/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Oxaliplatin chemoresistance is a major challenge in the clinical treatment of colorectal cancer (CRC), which is one of the most common malignancies worldwide. In this study, we identified the tryptophan-aspartate repeat domain 43 (WDR43) as a potentially critical oncogenic factor in CRC pathogenesis through bioinformatics analysis. It was found that WDR43 is highly expressed in CRC tissues, and WDR43 overexpression is associated with poor prognosis of CRC patients. WDR43 knockdown significantly inhibits cell growth by arresting cell cycle and enhancing the effect of oxaliplatin chemotherapy both in vitro and in vivo. Mechanistically, upon oxaliplatin stimulation, c-MYC promotes the transcriptional regulation and expression of WDR43. WDR43 enhances the ubiquitination of p53 by MDM2 through binding to RPL11, thereby reducing the stability of the p53 protein, which induces proliferation and chemoresistance of CRC cells. Thus, the overexpression of WDR43 promotes CRC progression, and could be a potential therapeutic target of chemoresistance in CRC.
Collapse
|
36
|
Kim HS, Kim CG, Kim WK, Kim KA, Yoo J, Min BS, Paik S, Shin SJ, Lee H, Lee K, Kim H, Shin EC, Kim TM, Ahn JB. Fusobacterium nucleatum induces a tumor microenvironment with diminished adaptive immunity against colorectal cancers. Front Cell Infect Microbiol 2023; 13:1101291. [PMID: 36960042 PMCID: PMC10028079 DOI: 10.3389/fcimb.2023.1101291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Background & Aims Fusobacterium nucleatum (FN) plays a pivotal role in the development and progression of colorectal cancer by modulating antitumor immune responses. However, the impact of FN on immune regulation in the tumor microenvironment has not been fully elucidated. Methods The abundance of FN was measured in 99 stage III CRC tumor tissues using quantitative polymerase chain reaction. Gene expression profiles were assessed and annotated using consensus molecular subtypes (CMS), Gene Ontology (GO) analysis, and deconvolution of individual immune cell types in the context of FN abundance. Immune profiling for tumor infiltrating T cells isolated from human tumor tissues was analyzed using flow cytometry. Ex vivo tumor-infiltrating T cells were stimulated in the presence or absence of FN to determine the direct effects of FN on immune cell phenotypes. Results Gene expression profiles, CMS composition, abundance of immune cell subtypes, and survival outcomes differed depending on FN infection. We found that FN infection was associated with poorer disease-free survival and overall survival in stage III CRC patients. FN infection was associated with T cell depletion and enrichment of exhausted CD8+ and FoxP3+ regulatory T cells in the tumor microenvironment. The presence of FN in tumors was correlated with a suppressive tumor microenvironment in a T cell-dependent manner. Conclusion FN enhanced the suppressive immune microenvironment with high depletion of CD8+ T cells and enrichment of FoxP3+ regulatory T cells in human colorectal cancer cases. Our findings suggest a potential association for FN in adaptive immunity, with biological and prognostic implications.
Collapse
Affiliation(s)
- Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Kyu Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Kyung-A Kim
- Graduate School of Medical Science, Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinseon Yoo
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soonmyung Paik
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoguen Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- *Correspondence: Joong Bae Ahn, ; Tae-Min Kim, ; Eui-Cheol Shin,
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- *Correspondence: Joong Bae Ahn, ; Tae-Min Kim, ; Eui-Cheol Shin,
| | - Joong Bae Ahn
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Joong Bae Ahn, ; Tae-Min Kim, ; Eui-Cheol Shin,
| |
Collapse
|
37
|
NCR, an Inflammation and Nutrition Related Blood-Based Marker in Colon Cancer Patients: A New Promising Biomarker to Predict Outcome. Diagnostics (Basel) 2022; 13:diagnostics13010116. [PMID: 36611408 PMCID: PMC9818830 DOI: 10.3390/diagnostics13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Colorectal carcinoma (CRC) is a heterogeneous disease, and differences in outcomes have been reported among patients diagnosed with the same disease stage. Prognostic and predictive biomarkers provide information for patient risk stratification and guide treatment selection. Although numerous studies have analyzed the effects of systemic inflammatory factors on CRC outcomes, clinical significance remains to be elucidated. In particular, the treatment strategy of colon cancer patients is different from that of rectal cancer due to outcome and recurrence differences. The identification of patients with a poor prognosis who might benefit from intensive treatment approaches is clinically necessary. Methods: This study aimed to evaluate the value of different blood-based markers and assess the significance of our newly developed inflammatory-nutrition-related biomarker (NCR = BMI × albumin/CRP) in patients with colon cancer. A two-stage design was used with 212 patients with colon cancer (CC) in the discovery cohort (n = 159) and in an external validation cohort (n = 53). Results: A lower preoperative NCR level was significantly correlated with a worse prognosis, sidedness, undifferentiated histology, nodal involvement, and advanced UICC stage. We compared the NCR with other established prognostic indices and showed that the NCR is a more reliable indicator of a poor prognosis for patients with CC. Patients with low NCR levels experienced a significantly shorter Overall Survival (OS) than patients with high levels. Multivariate analysis confirmed preoperative NCR levels as an independent predictor for overall survival with a hazard ratio of 3.3 (95% confidence interval 1.628−6.709, p < 0.001). Finally, we confirmed the predictive value of the NCR in an independent validation cohort and confirmed NCR as an independent prognostic factor for OS. Conclusion: Taken together, we discovered a new prognostic index (NCR) based on BMI, albumin, and CRP levels as an independent prognostic predictor of OS in patients with colon cancer. In all UICC stages, our newly developed NCR marker is able to distinguish patients with better and worse prognoses. We, therefore, propose that NCR may serve as a supplement to the TNM staging system to optimize the risk stratification in CC patients towards personalized oncology. In particular, NCR can be used in clinical trials to stratify patients with UICC II and III tumors and help better select patients who might benefit from adjuvant treatment.
Collapse
|
38
|
Liu Z, Xu Y, Liu X, Wang B. PCDH7 knockdown potentiates colon cancer cells to chemotherapy via inducing ferroptosis and changes in autophagy through restraining MEK1/2/ERK/c-Fos axis. Biochem Cell Biol 2022; 100:445-457. [PMID: 35926236 DOI: 10.1139/bcb-2021-0513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemotherapy is a commonly utilized treatment strategy for colon cancer, a prevalent malignancy. The study intends to probe the function and mechanism of protocadherin 7 (PCDH7) in colon cancer. Gain or loss of functional assays of PCDH7 was performed. MTT and colony formation assay monitored cell proliferation. Transwell measured migration and invasion. Real-time quantitative polymerase chain reaction and western blot verified the profiles of PCDH7 and the MEK1/2/ERK/c-FOS pathway. Western blot was implemented to confirm the profiles of PP1α, MLC2, and p-MLC2 for evaluating the impact of PCDH7 on homotypic cells in cell (hocic) structures. Further, an in-vivo nude mouse model was engineered to figure out the function and mechanism of PCDH7 in tumor cell growth. As indicated by the data, PCDH7 knockdown boosted the cells' sensitivity to chemotherapy. PCDH7 overexpression facilitated their proliferation and invasion, altered autophagy, induced ferroptosis and hocic, and initiated the profile of the MEK1/2/ERK/c-FOS pathway. MEK1/2/ERK inhibition impaired the inhibitory impact of PCDH7 on colon cancer cells' chemotherapy sensitivity and dampened its pro-cancer function in the cells. In-vivo experiments displayed that PCDH7 overexpression stepped up tumor growth and pulmonary metastasis in colon cancer cells. All in all, the research has discovered that PCDH7 knockdown affects autophagy and induces ferroptosis, hence strengthening colon cancer cells' sensitivity to chemotherapy by repressing the MEK1/2/ERK/c-FOS axis.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Yuyang Xu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan, China
| |
Collapse
|
39
|
Crutcher M, Waldman S. Biomarkers in the development of individualized treatment regimens for colorectal cancer. Front Med (Lausanne) 2022; 9:1062423. [DOI: 10.3389/fmed.2022.1062423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionColorectal cancer (CRC) is the third most common and second most deadly malignancy in the world with an estimated 1. 9 million cases and 0.9 million deaths in 2020. The 5-year overall survival for stage I disease is 92% compared to a dismal 11% in stage IV disease. At initial presentation, up to 35% of patients have metastatic colorectal cancer (mCRC), and 20–50% of stage II and III patients eventually progress to mCRC. These statistics imply both that there is a proportion of early stage patients who are not receiving adequate treatment and that we are not adequately treating mCRC patients.BodyTargeted therapies directed at CRC biomarkers are now commonly used in select mCRC patients. In addition to acting as direct targets, these biomarkers also could help stratify which patients receive adjuvant therapies and what types. This review discusses the role of RAS, microsatellite instability, HER2, consensus molecular subtypes and ctDNA/CTC in targeted therapy and adjuvant chemotherapy.DiscussionGiven the relatively high recurrence rate in early stage CRC patients as well as the continued poor survival in mCRC patients, additional work needs to be done beyond surgical management to limit recurrence and improve survival. Biomarkers offer both a potential target and a predictive method of stratifying patients to determine those who could benefit from adjuvant treatment.
Collapse
|
40
|
Zhang C, Zhan Y, Ni K, Liu Z, Xin R, Han Q, Li G, Ping H, Liu Y, Zhao X, Wang W, Yan S, Sun J, Zhang Q, Wang G, Zhang Z, Zhang X, Hu X. Effects of deficient mismatch repair on the prognosis of patients with stage II and stage III colon cancer during different postoperative periods. BMC Cancer 2022; 22:1156. [DOI: 10.1186/s12885-022-10266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
We evaluated the prognostic role of deficient mismatch repair (dMMR) systems in stage II and stage III colon cancer patients during different postoperative periods. We also assessed whether patients aged ≥75 could benefit from chemotherapy.
Methods
This retrospective study was conducted across three medical centers in China. Kaplan–Meier survival methods and Cox proportional hazards models were used to evaluate the differences in overall survival (OS) and disease-free survival (DFS) rates. Propensity score matching was performed to reduce imbalances in the baseline characteristics of the patients. Landmark analysis was performed to evaluate the role of dMMR during different postoperative periods.
Results
The median follow-up time for all patients was 45.0 months (25–75 IQR: 38.0–82.5). There was no significant OS (p = 0.350) or DFS (p = 0.752) benefit associated with dMMR for stage II and III patients during the first postoperative year. However, significant OS (p < 0.001) and DFS (p < 0.001) benefits were observed from the second postoperative year until the end of follow-up. These differences remained after propensity score matching. Moreover, chemotherapy produced no OS (HR = 0.761, 95% CI: 0.43–1.34, p = 0.341) or DFS (HR = 0.98, 95% CI: 0.51–1.88, p = 0.961) benefit for patients aged ≥75 years.
Conclusion
The benefits of dMMR in stage III patients were observed from the second postoperative year until the end of follow-up. However, the prognosis of patients with dMMR is not different from that of patients with proficient mismatch repair (pMMR) during the first postoperative year. In addition, elderly patients aged ≥75 years obtained no significant survival benefits from postoperative chemotherapy.
Collapse
|
41
|
Mlecnik B, Torigoe T, Bindea G, Popivanova B, Xu M, Fujita T, Hazama S, Suzuki N, Nagano H, Okuno K, Hirohashi Y, Furuhata T, Takemasa I, Patel P, Vora H, Shah B, Patel JB, Rajvik KN, Pandya SJ, Shukla SN, Wang Y, Zhang G, Yoshino T, Taniguchi H, Bifulco C, Lugli A, Lee JKJ, Zlobec I, Rau TT, Berger MD, Nagtegaal ID, Vink-Börger E, Hartmann A, Geppert CI, Kolwelter J, Merkel S, Grützmann R, Van den Eynde M, Jouret-Mourin A, Kartheuser A, Léonard D, Remue C, Wang J, Bavi P, Roehrl MHA, Ohashi PS, Nguyen LT, Han S, MacGregor HL, Hafezi-Bakhtiari S, Wouters BG, Masucci GV, Andersson E, Zavadova E, Vocka M, Spacek J, Petruzelka L, Konopasek B, Dundr P, Skalova H, Nemejcova K, Botti G, Tatangelo F, Delrio P, Ciliberto G, Maio M, Laghi L, Grizzi F, Marliot F, Fredriksen T, Buttard B, Lafontaine L, Maby P, Majdi A, Hijazi A, El Sissy C, Kirilovsky A, Berger A, Lagorce C, Paustian C, Ballesteros-Merino C, Dijkstra J, Van de Water C, van Lent-van Vliet S, Knijn N, Mușină AM, Scripcariu DV, Marincola FM, Ascierto PA, Fox BA, Pagès F, Kawakami Y, Galon J. Clinical Performance of the Consensus Immunoscore in Colon Cancer in the Asian Population from the Multicenter International SITC Study. Cancers (Basel) 2022; 14:4346. [PMID: 36139506 PMCID: PMC9497086 DOI: 10.3390/cancers14184346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND: In this study, we evaluated the prognostic value of Immunoscore in patients with stage I−III colon cancer (CC) in the Asian population. These patients were originally included in an international study led by the Society for Immunotherapy of Cancer (SITC) on 2681 patients with AJCC/UICC-TNM stages I−III CC. METHODS: CD3+ and cytotoxic CD8+ T-lymphocyte densities were quantified in the tumor and invasive margin by digital pathology. The association of Immunoscore with prognosis was evaluated for time to recurrence (TTR), disease-free survival (DFS), and overall survival (OS). RESULTS: Immunoscore stratified Asian patients (n = 423) into different risk categories and was not impacted by age. Recurrence-free rates at 3 years were 78.5%, 85.2%, and 98.3% for a Low, Intermediate, and High Immunoscore, respectively (HR[Low-vs-High] = 7.26 (95% CI 1.75−30.19); p = 0.0064). A High Immunoscore showed a significant association with prolonged TTR, OS, and DFS (p < 0.05). In Cox multivariable analysis stratified by center, Immunoscore association with TTR was independent (HR[Low-vs-Int+High] = 2.22 (95% CI 1.10−4.55) p = 0.0269) of the patient’s gender, T-stage, N-stage, sidedness, and MSI status. A significant association of a High Immunoscore with prolonged TTR was also found among MSS (HR[Low-vs-Int+High] = 4.58 (95% CI 2.27−9.23); p ≤ 0.0001), stage II (HR[Low-vs-Int+High] = 2.72 (95% CI 1.35−5.51); p = 0.0052), low-risk stage-II (HR[Low-vs-Int+High] = 2.62 (95% CI 1.21−5.68); p = 0.0146), and high-risk stage II patients (HR[Low-vs-Int+High] = 3.11 (95% CI 1.39−6.91); p = 0.0055). CONCLUSION: A High Immunoscore is significantly associated with the prolonged survival of CC patients within the Asian population.
Collapse
Affiliation(s)
- Bernhard Mlecnik
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Boryana Popivanova
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Mingli Xu
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Tomonobu Fujita
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University School of Medicine, Yamaguchi 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi 753-8511, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi 753-8511, Japan
| | - Kiyotaka Okuno
- Department of Surgery, Kindai University, School of Medicine, Osakasayama 589-0014, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Tomohisa Furuhata
- Department of Surgery, Surgical Oncology, and Science, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology, and Science, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Prabhudas Patel
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Hemangini Vora
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Birva Shah
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | | | - Kruti N. Rajvik
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Shashank J. Pandya
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Shilin N. Shukla
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science, Xi’an 710061, China
- Health Science Center of Xi’an Jiaotong University, Xi’an 710061, China
| | - Guanjun Zhang
- Institute for Cancer Research, School of Basic Medical Science, Xi’an 710061, China
- Health Science Center of Xi’an Jiaotong University, Xi’an 710061, China
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa-shi 277-8577, Japan
| | - Hiroya Taniguchi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwanoha, Kashiwa-shi 277-8577, Japan
| | - Carlo Bifulco
- Department of Pathology, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Alessandro Lugli
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Jiun-Kae Jack Lee
- Department of Biostatistics, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Inti Zlobec
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Tilman T. Rau
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Martin D. Berger
- Department of Medical Oncology, University Hospital of Bern, 3010 Bern, Switzerland
| | - Iris D. Nagtegaal
- Pathology Department, Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Elisa Vink-Börger
- Pathology Department, Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Arndt Hartmann
- Department of Pathology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Carol I. Geppert
- Department of Pathology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julie Kolwelter
- Department of Pathology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Susanne Merkel
- Department of Surgery, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marc Van den Eynde
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires St-Luc, 1200 Brussels, Belgium
- Institut de Recherche Clinique et Experimentale (Pole MIRO), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Anne Jouret-Mourin
- Department of Pathology, Cliniques Universitaires St-Luc, 1200 Brussels, Belgium
- Institut de Recherche Clinique et Experimentale (Pole GAEN), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Alex Kartheuser
- Institut Roi Albert II, Department of Digestive Surgery, Cliniques Universitaires St-Luc Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Daniel Léonard
- Institut Roi Albert II, Department of Digestive Surgery, Cliniques Universitaires St-Luc Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Christophe Remue
- Institut Roi Albert II, Department of Digestive Surgery, Cliniques Universitaires St-Luc Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Julia Wang
- Curandis, New York, NY 10583, USA
- Department of Pathology, Laboratory Medicine Program, University Health Network, 11-E444, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Prashant Bavi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael H. A. Roehrl
- Department of Pathology, Laboratory Medicine Program, University Health Network, 11-E444, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Linh T. Nguyen
- Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - SeongJun Han
- Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | | | - Sara Hafezi-Bakhtiari
- Department of Pathology, Laboratory Medicine Program, University Health Network, 11-E444, Toronto, ON M5G 2C4, Canada
| | | | - Giuseppe V. Masucci
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University, 17177 Stockholm, Sweden
| | - Emilia Andersson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University, 17177 Stockholm, Sweden
| | - Eva Zavadova
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Jan Spacek
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Bohuslav Konopasek
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Helena Skalova
- Institute of Pathology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Kristyna Nemejcova
- Institute of Pathology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Gerardo Botti
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Paolo Delrio
- Colorectal Surgery Department, Instituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | | | - Michele Maio
- Center for Immuno-Oncology, University Hospital, 53100 Siena, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20090 Milan, Italy
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20090 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Florence Marliot
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Tessa Fredriksen
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Bénédicte Buttard
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Lucie Lafontaine
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Pauline Maby
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Amine Majdi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Carine El Sissy
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Amos Kirilovsky
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Anne Berger
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Digestive Surgery Department, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Christine Lagorce
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Department of Pathology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Christopher Paustian
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carmen Ballesteros-Merino
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeroen Dijkstra
- Pathology Department, Radboud University, 6500 HC Nijmegen, The Netherlands
| | | | | | - Nikki Knijn
- Pathology Department, Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Ana-Maria Mușină
- Department of Surgical Oncology, Regional Institute of Oncology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania
| | - Dragos-Viorel Scripcariu
- Department of Surgical Oncology, Regional Institute of Oncology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania
| | | | - Paolo A. Ascierto
- Melanoma, Cancer Immunotherapy and Innovative Therapies Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Bernard A. Fox
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
- Laboratory of Molecular and Tumor Immunology, Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Franck Pagès
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| |
Collapse
|
42
|
m6A Regulator-Based Exosomal Gene Methylation Modification Patterns Identify Distinct Microenvironment Characterization and Predict Immunotherapeutic Responses in Colon Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9451480. [PMID: 36046691 PMCID: PMC9423980 DOI: 10.1155/2022/9451480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/08/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Recent studies have highlighted the biological significance of exosomes and m6A modifications in immunity. Nonetheless, it remains unclear whether the m6A modification gene in exosomes of body fluid has potential roles in the tumor microenvironment (TME). Herein, we identified three different m6A-related exosomal gene modification patterns based on 59 m6A-related exosomal genes, which instructed distinguishing characteristics of TME in colon cancer (CC). We demonstrated that these patterns could predict the stage of tumor inflammation, subtypes, genetic variation, and patient prognosis. Furthermore, we developed a scoring mode—m6A-related exosomal gene score (MREGS)—by detecting the level of m6A modification in exosomes to classify immune phenotypes. Low MREGS, characterized by prominent survival and immune activation, was linked to a better response to anti-PDL1 immunotherapy. In contrast, the higher MREGS group displayed remarkable stromal activation, high activity of innate immunocytes, and a lower survival rate. Hence, this work provides a novel approach for evaluating TME cell infiltration in colon cancer and guiding more effective immunotherapy strategies.
Collapse
|
43
|
Wang H, Yang W, Qin Q, Yang X, Yang Y, Liu H, Lu W, Gu S, Cao X, Feng D, Zhang Z, He J. E3 ubiquitin ligase MAGI3 degrades c-Myc and acts as a predictor for chemotherapy response in colorectal cancer. Mol Cancer 2022; 21:151. [PMID: 35864508 PMCID: PMC9306183 DOI: 10.1186/s12943-022-01622-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Recurrence and chemoresistance constitute the leading cause of death in colorectal cancer (CRC). Thus, it is of great significance to clarify the underlying mechanisms and identify predictors for tailoring adjuvant chemotherapy to improve the outcome of CRC. Methods By screening differentially expressed genes (DEGs), constructing random forest classification and ranking the importance of DEGs, we identified membrane associated guanylate kinase, WW and PDZ domain containing 3 (MAGI3) as an important gene in CRC recurrence. Immunohistochemical and western blot assays were employed to further detect MAGI3 expression in CRC tissues and cell lines. Cell counting kit-8, plate colony formation, flow cytometry, sub-cutaneous injection and azoxymethane plus dextran sulfate sodium induced mice CRC assays were employed to explore the effects of MAGI3 on proliferation, growth, cell cycle, apoptosis, xenograft formation and chemotherapy resistance of CRC. The underlying molecular mechanisms were further investigated through gene set enrichment analysis, quantitative real-time PCR, western blot, co-immunoprecipitation, ubiquitination, GST fusion protein pull-down and immunohistochemical staining assays. Results Our results showed that dysregulated low level of MAGI3 was correlated with recurrence and poor prognosis of CRC. MAGI3 was identified as a novel substrate-binding subunit of SKP1-Cullin E3 ligase to recognize c-Myc, and process c-Myc ubiquitination and degradation. Expression of MAGI3 in CRC cells inhibited cell growth, promoted apoptosis and chemosensitivity to fluoropyrimidine-based chemotherapy by suppressing activation of c-Myc in vitro and in vivo. In clinic, the stage II/III CRC patients with MAGI3-high had a significantly good recurrence-free survival (~ 80%, 5-year), and were not necessary for further adjuvant chemotherapy. The patients with MAGI3-medium had a robustly good response rate or recurrence-free survival with fluoropyrimidine-based chemotherapy, and were recommended to undergo fluoropyrimidine-based adjuvant chemotherapy. Conclusions MAGI3 is a novel E3 ubiquitin ligase by degradation of c-Myc to regulate CRC development and may act as a potential predictor of adjuvant chemotherapy for CRC patients. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01622-9.
Collapse
Affiliation(s)
- Haibo Wang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Wenjing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China
| | - Qiong Qin
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Xiaomei Yang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Ying Yang
- Core Facilities Center, Capital Medical University, Beijing, People's Republic of China
| | - Hua Liu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Wenxiu Lu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Siyu Gu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Xuedi Cao
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China
| | - Duiping Feng
- Department of Interventional Radiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, No.95 Yong-anRoad, Xi-Cheng District, Beijing, 100050, People's Republic of China.
| | - Junqi He
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, People's Republic of China.
| |
Collapse
|
44
|
Zhu Q, Gu X, Wei W, Wu Z, Gong F, Dong X. BRD9 is an essential regulator of glycolysis that creates an epigenetic vulnerability in colon adenocarcinoma. Cancer Med 2022; 12:1572-1587. [PMID: 35778964 PMCID: PMC9883419 DOI: 10.1002/cam4.4954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The intensive interplay between aberrant epigenetic events and metabolic remodeling represents one of the hallmarks of tumors, including colon cancer. The functions of Bromodomain Containing Protein BRD-9 in colon cancer remains indefinite. We aimed to identify the biological roles and clinical significance of BRD9 in colon cancer. METHODS The univariate- and multi-variate Cox regression models were used to screen risk epigenetic regulators. Kaplan-Meier analysis and Pearson correlation analysis were used to assess clinical significance of BRD9. CCK-8 assays, colony formation assay, Transwell, and soft-agar assay were performed to determine the in vitro roles of BRD9. The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of colon cancer cells were evaluated by a Seahorse XF Extracellular Flux Analyzer. In vivo models and RT-qPCR, western blotting, and Chromatin Immunoprecipitation (ChIP) assay were conducted to explore the functional roles of BRD9 in COAD. RESULTS In the study, we detected the expressions of 662 epigenetic regulators in COAD and identified a series of 42 hazard epigenetic factors with p < 0.05. Low-throughput MTT assays highlighted that BRD9 is an essential target, and targeting BRD9 could reduce significant decreases of cell growth. BRD9 overexpression could notably elevate proliferation and migration potentialities, whereas, BRD9 ablation abolished these effects. Mechanistically, functional enrichment analysis indicated the potential associations between BRD9 and glycolysis metabolism. In addition, BRD9 epigenetically coordinates the H3K27ac modifications on the promoter regions of ENO2 and ALDOC, inducing enhanced glycolysis activity. Lastly, I-BRD9 could significantly suppress the growth of colon cancer cells in vitro and in vivo. CONCLUSIONS Together, our study revealed previously unidentified roles of BRD9 in colon cancer metabolism and tumor progression, indicating that BRD9 could be a valuable therapeutic target for COAD patients.
Collapse
Affiliation(s)
- Qunshan Zhu
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Department of General SurgeryJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Xiang Gu
- Department of RadiotherapyJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Wei Wei
- Department of General SurgeryJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Zheng Wu
- Department of General SurgeryJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Fengqin Gong
- Department of General SurgeryJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Xiaoqiang Dong
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
45
|
Combination of CDX2 H-score quantitative analysis with CD3 AI-guided analysis identifies patients with a good prognosis only in stage III colon cancer. Eur J Cancer 2022; 172:221-230. [PMID: 35785606 DOI: 10.1016/j.ejca.2022.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
Abstract
AIM Stratification of colon cancer (CC) of patients with stage II and III for risk of relapse is still needed especially to drive adjuvant therapy administration. Our study evaluates the prognostic performance of two known biomarkers, CDX2 and CD3, standalone or their combined information in stage II and III CC. PATIENTS AND METHODS CDX2 and CD3 expression was evaluated in Prodige-13 study gathering 443 stage II and 398 stage III primary CC on whole slide colectomy. We developed for this study an H-score to quantify CDX2 expression and used our artificial intelligence (AI)-guided tissue analysis ColoClass to detect CD3 in tumour core and invasive margin. Association between biomarkers and relapse-free survival was investigated. RESULTS Univariate analysis showed that the combined variable CD3-TC and CD3-IM was associated with prognosis in both stage II and stage III. CDX2, on the contrary, was associated with prognosis only in stage III. We subsequently associated CDX2 and combined immune parameters only in stage III. This multivariate analysis allowed us to distinguish a proportion of stage III CC harbouring a high CDX2 expression and a high immune infiltration with a particularly good prognosis compared to their counterpart. CONCLUSION This study validated the prognostic role of CDX2 and CD3 evaluated with immunohistochemistry procedures in stage III but not in stage II. This association would be conceivable in a routine pathology laboratory and could help oncologist to consider chemotherapy de-escalation for a part of stage III patients.
Collapse
|
46
|
Boo SJ, Piao MJ, Kang KA, Zhen AX, Fernando PDSM, Herath HMUL, Lee SJ, Song SE, Hyun JW. Comparative Study of Autophagy in Oxaliplatin-Sensitive and Resistant SNU-C5 Colon Cancer Cells. Biomol Ther (Seoul) 2022; 30:447-454. [PMID: 35611548 PMCID: PMC9424339 DOI: 10.4062/biomolther.2022.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Few studies have evaluated the role of autophagy in the development of oxaliplatin (OXT) resistance in colon cancer cells. In this study, we compared the role of autophagy between SNU-C5 colon cancer cells and OXT-resistant SNU-C5 (SNU-C5/OXTR) cells. At the same concentration of OXT, the cytotoxicity of OXT or apoptosis was significantly reduced in SNU-C5/OXTR cells compared with that in SNU-C5 cells. Compared with SNU-C5 cells, SNU-C5/OXTR cells exhibited low levels of autophagy. The expression level of important autophagy proteins, such as autophagy-related protein 5 (Atg5), beclin-1, Atg7, microtubule-associated proteins 1A/1B light chain 3B I (LC3-I), and LC3-II, was significantly lower in SNU-C5/OXTR cells than that in SNU-C5 cells. The expression level of the autophagy-essential protein p62 was also lower in SNU-C5/OXTR cells than in SNU-C5 cells. In SNU-C5/OXTR cells, the production of intracellular reactive oxygen species (ROS) was significantly higher than that in SNU-C5 cells, and treatment with the ROS scavenger N-acetylcysteine restored the reduced autophagy levels. Furthermore, the expression of antioxidant-related nuclear factor erythroid 2-related factor 2 transcription factor, heme oxygenase-1, and Cu/Zn superoxide dismutase were also significantly increased in SNU-C5/OXTR cells. These findings suggest that autophagy is significantly reduced in SNU-C5/OXTR cells compared with SNU-C5 cells, which may be related to the production of ROS in OXT-resistant cells.
Collapse
Affiliation(s)
- Sun-Jin Boo
- Department of Internal Medicine, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Ao Xuan Zhen
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Seung Joo Lee
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seung Eun Song
- Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
47
|
Fayyaz F, Yazdanpanah N, Rezaei N. Cytokine-induced killer cells mediated pathways in the treatment of colorectal cancer. Cell Commun Signal 2022; 20:41. [PMID: 35346234 PMCID: PMC8962105 DOI: 10.1186/s12964-022-00836-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCytokine-induced killer (CIK) cell therapy is a type of adoptive immunotherapy that due to its high proliferation rate and anti-tumor characteristics, is being investigated to treat various solid tumors. Since advanced colorectal cancer (CRC) has high mortality and poor survival rates, and the efficacy of chemotherapy and radiotherapy is limited in treatment, the application of CIK cell therapy in CRC has been evaluated in numerous studies. This review aims to summarize the clinical studies that investigated the safety and clinical efficacy of CIK cell therapy in CRC. Therefore, 1,969 enrolled CRC patients in the clinical trials, of which 842 patients received CIK cells in combination with chemotherapy with or without dendritic cell (DC) infusions, were included in the present review. Furthermore, the signaling pathways involved in CIK cell therapy and novel methods for improving migration abilities are discussed.
Collapse
|
48
|
Topi G, Ghatak S, Satapathy SR, Ehrnström R, Lydrup ML, Sjölander A. Combined Estrogen Alpha and Beta Receptor Expression Has a Prognostic Significance for Colorectal Cancer Patients. Front Med (Lausanne) 2022; 9:739620. [PMID: 35360718 PMCID: PMC8963951 DOI: 10.3389/fmed.2022.739620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
We reported that high estrogen receptor beta (ERβ) expression is independently associated with better prognosis in female colorectal cancer (CRC) patients. However, estrogen receptor alpha (ERα) is expressed at very low levels in normal colon mucosa, and its prognostic role in CRC has not been explored. Herein, we investigated the combined role of ERα and ERβ expression in the prognosis of female patients with CRC, which, to the best of our knowledge, is the first study to investigate this topic. A total number of 306 primary CRCs were immunostained for ERα and ERβ expression. A Cox regression model was used to evaluate overall survival (OS) and disease-free survival (DFS). The combined expression of high ERβ + negative ERα correlates with longer OS (HR = 0.23; 95% CI: 0.11–0.45, P <0.0001) and DFS (HR = 0.10; 95% CI: 0.03–0.26, P < 0.0001) and a more favorable tumor outcome, as well as significantly higher expression of antitumorigenic proteins than combined expression of low ERβ + positive ERα. Importantly, we found that low ERβ expression was associated with local recurrence of CRC, whereas ERα expression was correlated with liver metastasis. Overall, our results show that the combined high ERβ + negative ERα expression correlated with a better prognosis for CRC patients. Our results suggest that the combined expression of ERα and ERβ could be used as a predictive combination marker for CRC patients, especially for predicting DFS.
Collapse
Affiliation(s)
- Geriolda Topi
- Division of Cell Pathology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Souvik Ghatak
- Division of Cell Pathology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Roy Ehrnström
- Division of Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Marie-Louise Lydrup
- Division of Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell Pathology, Skåne University Hospital, Lund University, Malmö, Sweden
- *Correspondence: Anita Sjölander
| |
Collapse
|
49
|
Basile D, Broudin C, Emile J, Falcoz A, Pagès F, Mineur L, Bennouna J, Louvet C, Artru P, Fratte S, Ghiringhelli F, André T, Derangère V, Vernerey D, Taieb J, Svrcek M. Tumor budding is an independent prognostic factor in stage III colon cancer patients: A post-hoc analysis of the IDEA-France phase III trial (PRODIGE-GERCOR). Ann Oncol 2022; 33:628-637. [DOI: 10.1016/j.annonc.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
|
50
|
miR-23b-3p Inhibits the Oncogenicity of Colon Adenocarcinoma by Directly Targeting NFE2L3. JOURNAL OF ONCOLOGY 2021; 2021:8493225. [PMID: 34966429 PMCID: PMC8712119 DOI: 10.1155/2021/8493225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023]
Abstract
Background and Aims MicroR-23b-3p (miR-23b-3p) has been found to be abnormally expressed in a variety of malignant tumors and to play a role in tumor inhibition or promotion. However, the regulatory mechanism of miR-23b-3p in COAD remains unclear. The purpose of this study was to investigate the clinical significance of miR-23b-3p expression in COAD cells and to explore its role and regulatory mechanism in the growth of COAD. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure miR-23b-3p expression in COAD tissues and cell lines. After transfecting miR-23b-3p mimics into two human COAD cell lines (SW620 and LoVo), the cell counting kit-8 (CCK-8), colony formation, and 5-ethynyl-2′-deoxyuridine (EdU) assays were used to detect cell proliferation, the Transwell assay was used to measure cell migration and invasion capacity, and flow cytometry was used to evaluate cell apoptosis in vitro. In addition, a luciferase reporter assay was used to determine whether miR-23b-3p targets NFE2L3. The downstream regulatory mechanisms of miR-23b-3p action in COAD cells were also investigated. For in vivo tumorigenesis assay, COAD cells stably overexpressing miR-23b-3p were injected subcutaneously into the flank of nude mice to obtain tumors. Results Significantly decreased expression of miR-23b-3p was detected in COAD tissues and cell lines. Exogenous miR-23b-3p expression inhibited cell proliferation, migration, and invasion and promoted cell apoptosis of COAD cells in vitro. Nuclear factor erythroid 2 like 3 (NFE2L3) was identified as a direct target gene of miR-23b-3p. In addition, reintroduction of NFE2L3 partially abolished the anticancer effects of miR-23b-3p on COAD cells. Furthermore, miR-23b-3p overexpression hindered the growth of COAD cells in vivo. Conclusion miR-23b-3p inhibited the oncogenicity of COAD cells in vitro and in vivo by directly targeting NFE2L3, suggesting the importance of the miR-23b-3p/NFE2L3 pathway in the development of COAD.
Collapse
|