1
|
Navarro P, Beato C, Rodriguez-Moreno JF, Ruiz-Llorente S, Mielgo X, Pineda E, Navarro M, Bruixola G, Grazioso TP, Viudez A, Fuster J, Nogueron E, Mediano MD, Balaña C, Mendez C, Rodriguez RM, Del Barco Berron S, Gongora B, Carmona-Bayonas A, Garcia-Donas J. Prospective study of the real impact of fusion centered genomic assays in patient management in a national collaborative group: the GETHI-XX-16 study. Clin Transl Oncol 2025; 27:2719-2730. [PMID: 39485597 DOI: 10.1007/s12094-024-03745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/21/2024] [Indexed: 11/03/2024]
Abstract
PURPOSE Precision medicine represents a paradigm shift in oncology. Access to genetic testing and targeted therapies is frequently limited. Assays based on DNA sequencing can miss druggable alterations. We aimed to determine the impact of a free access program to RNA tests in patient management. METHODS We designed a multicenter prospective observational study within the Spanish National Group for Translational Oncology and Rare and Orphan Tumors (GETTHI). Eligible patients were adults with solid cancers that had progressed on standard therapies. Tumor samples were analyzed using two RNA sequencing assays (Trailblaze PharosTM and Archer FusionPlex Solid TumorTM). A central committee evaluated the actionability of genetic alterations and reported the findings to attending physicians, who made the final clinical management decisions. RESULTS Between November 2016 and April 2019, 395 patients with 41 different tumors across 30 hospitals were included. Molecular analysis revealed actionable genetic alterations in 57 individuals (14.4%). Targeted therapies were advised for 23 and seven received a matched targeted therapy: two lung cancers (EML4-ALK and CD74-ROS1 fusion), three glioblastomas (EGFR point mutations), one oligodendroglioma (FGFR3-TACC3 fusion) and a prostate cancer (SND1-BRAF fusion). The outcomes included two tumor responses, one disease stabilization, one early withdrawal due to toxicity, one progression, and one unknown. CONCLUSION Despite the growing knowledge of cancer biology and its translation to drug development, the overall impact of personalized treatments remains low. Access to comprehensive molecular tests covering properly all known actionable alterations and programs for a wide access to targeted therapies seem to be critical steps.
Collapse
Affiliation(s)
- Paloma Navarro
- Laboratory of Innovation in Oncology; Gynecological, Genitourinary and Skin Tumor Unit, HM CIOCC (Clara Campal Comprehensive Cancer Centre), Sanchinarro HM Universitary Hospital, HM Hospitales, Madrid, Spain, Madrid, Spain
- HM Faculty of Health Sciences, Camilo José Cela University, Madrid, Spain
- HM Hospitals Health Research Institute, Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA), School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Carmen Beato
- Medical Oncology Department, Hospital Virgen de La Macarena, Seville, Spain
| | - Juan Francisco Rodriguez-Moreno
- Laboratory of Innovation in Oncology; Gynecological, Genitourinary and Skin Tumor Unit, HM CIOCC (Clara Campal Comprehensive Cancer Centre), Sanchinarro HM Universitary Hospital, HM Hospitales, Madrid, Spain, Madrid, Spain
- HM Faculty of Health Sciences, Camilo José Cela University, Madrid, Spain
- HM Hospitals Health Research Institute, Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA), School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Sergio Ruiz-Llorente
- Laboratory of Innovation in Oncology; Gynecological, Genitourinary and Skin Tumor Unit, HM CIOCC (Clara Campal Comprehensive Cancer Centre), Sanchinarro HM Universitary Hospital, HM Hospitales, Madrid, Spain, Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA), School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- Departamento de Biomedicina y Biotecnología, Área de Genética, Universidad de Alcalá, Madrid, Spain
| | - Xabier Mielgo
- Medical Oncology Department , Hospital Universitario Fundacion Alcorcon, Madrid, Spain
| | - Estela Pineda
- Medical Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Miguel Navarro
- Medical Oncology Department, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Gema Bruixola
- Medical Oncology Department, Hospital Clinico Universtario - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Tatiana P Grazioso
- Laboratory of Innovation in Oncology; Gynecological, Genitourinary and Skin Tumor Unit, HM CIOCC (Clara Campal Comprehensive Cancer Centre), Sanchinarro HM Universitary Hospital, HM Hospitales, Madrid, Spain, Madrid, Spain
- HM Faculty of Health Sciences, Camilo José Cela University, Madrid, Spain
- HM Hospitals Health Research Institute, Madrid, Spain
- Institute of Applied Molecular Medicine (IMMA), School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Antonio Viudez
- Medical Oncology Department, Hospital de Navarra, Pamplona, Spain
| | - Jose Fuster
- Medical Oncology Department, Hospital Universitario Son Espases, Palma, Spain
| | - Esther Nogueron
- Medical Oncology Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | | | - Carmen Balaña
- Instituto Catalán de Oncología-Badalona, Barcelona, Spain
| | | | | | | | | | | | - Jesus Garcia-Donas
- Laboratory of Innovation in Oncology; Gynecological, Genitourinary and Skin Tumor Unit, HM CIOCC (Clara Campal Comprehensive Cancer Centre), Sanchinarro HM Universitary Hospital, HM Hospitales, Madrid, Spain, Madrid, Spain.
- HM Faculty of Health Sciences, Camilo José Cela University, Madrid, Spain.
- HM Hospitals Health Research Institute, Madrid, Spain.
- Institute of Applied Molecular Medicine (IMMA), School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain.
| |
Collapse
|
2
|
Cooper WA, Amanuel B, Cooper C, Fox SB, Graftdyk JWA, Jessup P, Klebe S, Lam WS, Leong TYM, Lwin Z, Roberts-Thomson R, Solomon BJ, Tay RY, Trowman R, Wale JL, Pavlakis N. Molecular testing of lung cancer in Australia: consensus best practice recommendations from the Royal College of Pathologists of Australasia in collaboration with the Thoracic Oncology Group of Australasia. Pathology 2025; 57:425-436. [PMID: 40102144 DOI: 10.1016/j.pathol.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 03/20/2025]
Abstract
Molecular testing plays a critical role in guiding optimal treatment decisions for lung cancer patients across a variety of clinical settings. While guidelines for biomarker testing exist in other jurisdictions, to date no best practice guidelines have been developed for the Australian setting. To address this need, the Royal College of Pathologists of Australasia collaborated with the Thoracic Oncology Group of Australasia to identify state-based pathologists, oncologists and consumer representatives to develop consensus best practice recommendations. Sixteen recommendations were established encompassing appropriate biomarkers, lung cancer subtype, tumour stage, specimen types, assay selection and quality assurance protocols that can inform and standardise best practice in molecular testing of lung cancer. These multidisciplinary evidence-based recommendations are designed to standardise and enhance molecular testing practices for lung cancers and should help ensure laboratories provide high-quality molecular testing of lung cancer for all Australians, including those from regional or remote communities.
Collapse
Affiliation(s)
- Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Benhur Amanuel
- Anatomical Pathology, PathWest, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
| | - Caroline Cooper
- Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Qld, Australia; Faculty of Medicine, The University of Queensland, St Lucia, Qld, Australia
| | - Stephen B Fox
- Pathology, Peter MacCallum Cancer Centre, Parkville, Melbourne, Vic, Australia; Sir Peter MacCallum Department of Oncology and the Collaborative Centre for Genomic Cancer Medicine, University of Melbourne, Parkville, Vic, Australia
| | | | - Peter Jessup
- Anatomical Pathology, Royal Hobart Hospital, Hobart, Tas, Australia
| | - Sonja Klebe
- Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; SA Pathology, Adelaide, SA, Australia
| | - Wei-Sen Lam
- Department of Medical Oncology, Fiona Stanley Hospital, Perth, WA, Australia; WA Regional Clinical Trial Coordinating Centre, WA Country Health Service, WA, Australia
| | - Trishe Y-M Leong
- Anatomical Pathology, Melbourne Pathology, Sonic Healthcare, Melbourne, Vic, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Vic, Australia
| | - Zarnie Lwin
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Qld, Australia; The Prince Charles Hospital, University of Queensland, Chermside, Qld, Australia
| | | | - Benjamin J Solomon
- Sir Peter MacCallum Department of Oncology and the Collaborative Centre for Genomic Cancer Medicine, University of Melbourne, Parkville, Vic, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
| | - Rebecca Y Tay
- Department of Medical Oncology, Royal Hobart Hospital. Hobart, Tas, Australia
| | - Rebecca Trowman
- Independent Health Technology Assessment Specialist, Perth, WA, Australia
| | - Janney L Wale
- Independent Consumer Advocate, Melbourne, Vic, Australia; Chair of the RCPA Community Advisory Committee, Sydney, NSW, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia; The Thoracic Oncology Group of Australasia, Thornbury, Vic, Australia
| |
Collapse
|
3
|
Das S, Sarangi J, Ahlawat S, Jain P, Tiwari P. Fibrosarcomatous Dermatofibrosarcoma Protuberans With COL1A1-PDGFB Fusion in a 2-Year-Old Child: A Rare Occurrence With Spectrum of Histopathological Findings and Review of Literature. Pediatr Dev Pathol 2025; 28:204-209. [PMID: 39835392 DOI: 10.1177/10935266251313604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is an intermediate-grade fibroblastic neoplasm commonly seen in young and middle-aged patients and rarely in pediatric patients. Fibrosarcomatous transformation is common in adults but extremely uncommon in children. Here, we present a case of a 2-year-old child who presented with a progressively enlarging subcutaneous mass in the knee. Histopathological examination revealed a spindle cell tumor with a storiform and fascicular pattern. Immunohistochemistry showed variable cluster of differentiation 34 (CD34) expression, with positivity in storiform areas and negativity in fascicular regions. Next-generation sequencing confirmed the diagnosis by detecting a collagen type I alpha 1 (COL1A1)-platelet-derived growth factor subunit B (PDGFB) fusion, with the PDGFB breakpoint in exon 2 (chromosome 22) and COL1A1 in intron 47 (chromosome 17). This case represents only the fifth reported instance of fibrosarcomatous DFSP in a child under 10 years old. While wide local excision remains the standard treatment for DFSP, targeted therapy with imatinib may be considered for unresectable, recurrent, or metastatic cases, though guidelines for pediatric patients are not yet established. This case highlights the importance of molecular testing in confirming the diagnosis of rare pediatric soft tissue tumors and contributes to the limited literature on fibrosarcomatous DFSP in very young children.
Collapse
Affiliation(s)
- Sumanta Das
- Department of Pathology, Fortis Memorial Research Institute, Agilus Diagnostics Ltd., Gurugram, Haryana, India
| | - Jayati Sarangi
- Department of Pathology, Fortis Memorial Research Institute, Agilus Diagnostics Ltd., Gurugram, Haryana, India
| | - Sunita Ahlawat
- Department of Pathology, Fortis Memorial Research Institute, Agilus Diagnostics Ltd., Gurugram, Haryana, India
| | - Priti Jain
- Department of Pathology, Fortis Memorial Research Institute, Agilus Diagnostics Ltd., Gurugram, Haryana, India
| | - Priya Tiwari
- Department of Medical Oncology, Artemis Hospital, Gurgaon, Haryana, India
| |
Collapse
|
4
|
Haberecker M, Kuerten P, Vetter VK, Malega F, Moch H, Pauli C. A practical approach to better identify NTRK 1-3 fusion-positive mesenchymal neoplasms by pan-Trk immunohistochemistry. Virchows Arch 2025:10.1007/s00428-025-04102-9. [PMID: 40232379 DOI: 10.1007/s00428-025-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pan-Trk immunohistochemistry has become an affordable screening tool for tumors harboring NTRK1 - 3-rearrangements. However, false positive staining has been addressed especially in tumors with mesenchymal origin. As a positive staining triggers reflex testing, a better understanding about pan-Trk immunohistochemistry in these tumors has become necessary. In this work, we extensively studied pan-Trk IHC in a large cohort of mesenchymal neoplasms using two antibody clones: EPR17341 (RTU Assay, Roche/Ventana) and A7H6R (Cell Signaling Technologies). Whole slide sections of 809 individual cases, including 35 subtypes of mesenchymal neoplasms, were analyzed by two different pan-Trk antibodies. Any positivity above background in > 1% of tumor cells was classified as positive. Positive stained cases were molecularly analyzed. The specificity of clone EPR17341 was 78% and showed 21.9% false positive staining (177/809). Forty-five percent (80/177) of the false positive stained cases harbored a non-NTRK-gene fusion. When comparing the two antibodies in mesenchymal neoplasms, clone A7H6R showed 80% less false positive stains compared to clone EPR17341. Additionally, three tumors harboring a NTRK1-fusion were newly identified (0.4%) and reclassified in our cohort. Our work showed a high false positive rate in mesenchymal neoplasms using clone EPR17341. Clone A7H6R demonstrated a higher specificity and therefore could be considered in clinical practice for screening mesenchymal tumors for NTRK1 - 3-rearrangements, eventually leading to less unnecessary reflex testing.
Collapse
Affiliation(s)
- Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Pauline Kuerten
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Viola Katharina Vetter
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Francesca Malega
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
- Medical Faculty, University Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
- Medical Faculty, University Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Yokoyama S, Oba U, Shunichiro T, Oda Y, Yoshimoto K, Sakai Y, Koga Y, Ohga S. Larotrectinib Monotherapy After a Subtotal Resection of Infantile Hemispheric Glioma With TPM3::NTRK1 Fusion. Pediatr Blood Cancer 2025:e31694. [PMID: 40195089 DOI: 10.1002/pbc.31694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Affiliation(s)
- Satomi Yokoyama
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Utako Oba
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toya Shunichiro
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Kubota Y, Kawano M, Iwasaki T, Itonaga I, Kaku N, Ozaki T, Tanaka K. Current management of neurotrophic receptor tyrosine kinase fusion-positive sarcoma: an updated review. Jpn J Clin Oncol 2025; 55:313-326. [PMID: 39895082 PMCID: PMC11973637 DOI: 10.1093/jjco/hyaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
In recent years, pembrolizumab has demonstrated significant efficacy in treating tumors characterized by a high tumor mutational burden and high microsatellite instability. Tropomyosin receptor kinase (TRK) inhibitors have shown considerable efficacy against tumors harboring neurotrophic receptor tyrosine kinase (NTRK) fusion genes, highlighting the growing importance of personalized medicine in cancer treatment. Advanced sequencing technologies enable the rapid analysis of numerous genetic abnormalities in tumors, facilitating the identification of patients with positive biomarkers. These advances have increased the likelihood of providing effective, tailored treatments. NTRK fusion genes are present in various cancer types, including sarcomas, and the TRK inhibitors larotrectinib and entrectinib have been effectively used for these malignancies. Consequently, the treatment outcomes for NTRK fusion-positive tumors have improved significantly, reflecting a shift toward more personalized therapeutic approaches. This review focuses on NTRK fusion-positive sarcomas and comprehensively evaluates their epidemiology, clinical features, and radiological and histological characteristics. We also investigated the treatment landscape, including the latest methodologies involving TRK inhibitors, and discussed the long-term efficacy of these inhibitors, and their optimal order of use. Notably, larotrectinib has demonstrated a high response rate in infantile fibrosarcoma, and its efficacy has been confirmed even in advanced cases. However, further research is warranted to optimize treatment duration and subsequent management strategies. The accumulation of clinical cases worldwide will play a pivotal role in refining the treatment approaches for tumors associated with NTRK fusion genes.
Collapse
Affiliation(s)
- Yuta Kubota
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Nobuhiro Kaku
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
- Department of Advanced Medical Sciences, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, Yufu City, Oita 879-5593, Japan
| |
Collapse
|
7
|
Fernandes I, Macedo D, Gouveia E, Ferreira A, Lima J, Lopez D, Melo-Alvim C, Carvalho A, Tavares P, Rodrigues-Santos P, Cardoso P, Magalhães M, Vieira P, Brito J, Mendes C, Rodrigues J, Netto E, Oliveira V, Sousa C, Henriques Abreu M, Pina F, Vasques H. [Practical Guidance on the Detection of NTRK Fusions in Sarcomas: Current Status and Diagnostic Challenges]. ACTA MEDICA PORT 2025; 38:266-275. [PMID: 40185143 DOI: 10.20344/amp.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/26/2024] [Indexed: 04/07/2025]
Abstract
Sarcomas are a rare and heterogeneous group of mesenchymal malignant tumors and account for approximately 1% of all adult cancers and around 20% of all pediatric solid tumors in Europe. Technology advances have enabled a more accurate and efficient characterization of the molecular mechanisms underlying the pathogenesis of sarcoma subtypes and revealed novel and unexpected therapeutic targets with prognostic/predictive biomarkers, namely the neurotrophic tyrosine receptor kinase (NTRK) gene fusion. The NTRK fusion assessment has recently become a standard part of management for patients with unresectable locally advanced or metastatic cancers and has been identified in various tumor types. In the more prevalent adult and pediatric sarcomas, NTRK fusions are present in 1% and 20%, respectively, and in more than 90% of very rare subsets of tumors. The inhibition of TRK activity with first-generation TRK inhibitors has been found to be effective and well tolerated in adult and pediatric patients, independently of the tumor type. Overall, the therapeutic benefit to those patients compensates for the difficulties of identifying NTRK gene fusions. However, the rarity and diagnostic complexity of NTRK gene fusions raise several questions and challenges for clinicians. To address these issues, an expert panel of medical and pediatric oncologists, radiologists, surgeons, orthopedists, and pathologists reviewed the recent literature and discussed the current status and challenges, proposing a diagnostic algorithm for identifying NTRK fusion sarcomas. The aim of this article is to review the updated information on this issue and to provide the experts' recommendations and practical guidance on the optimal management of patients with soft tissue sarcomas, infantile fibrosarcoma, gastrointestinal stromal tumors, and osteosarcoma.
Collapse
Affiliation(s)
- Isabel Fernandes
- EpiDoC Unit. Comprehensive Health Research Center (CHRC). NOVA Medical School. Universidade NOVA de Lisboa. Lisbon. Portugal
| | - Daniela Macedo
- Department of Medical Oncology. Hospital dos Lusíadas. Lisbon. Portugal
| | - Emanuel Gouveia
- Department of Medical Oncology. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Ana Ferreira
- Department of Medical Oncology. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Jorge Lima
- Instituto de Patologia e Imunologia Molecular (IPATIMUP). Universidade do Porto. Porto. Portugal
| | - Dolores Lopez
- Department of Medical Oncology. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Cecília Melo-Alvim
- Department of Medical Oncology. Hospital de Santo António. Unidade Local de Saúde (ULS) de Santo António. Porto. Portugal
| | - Alice Carvalho
- Department of Pediatrics. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Paulo Tavares
- Sarcoma and Bone tumors Unit. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Paulo Rodrigues-Santos
- Immunology and oncology laboratory. Centro de Neurociências e Biologia Celular (CNC). Universidade de Coimbra. Coimbra. Portugal
| | - Pedro Cardoso
- Department of Orthopedics. Hospital Geral de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Manuel Magalhães
- Department of Medical Oncology. Hospital de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Paula Vieira
- Department of Medical Oncology. Hospital Dr. Nélio Mendonça. Serviço de Saúde da Região Autónoma da Madeira. Funchal. Portugal
| | - Joaquim Brito
- Department of Orthopedics. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Cristina Mendes
- Department of Pediatrics. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Joana Rodrigues
- Department of Medical Oncology. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Eduardo Netto
- EpiDoC Unit. Comprehensive Health Research Center (CHRC). NOVA Medical School. Universidade NOVA de Lisboa. Lisbon. Portugal; Department of Radiotherapy. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Vânia Oliveira
- Department of Orthopedics. Hospital de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Catarina Sousa
- Department of Pediatrics. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Miguel Henriques Abreu
- Department of Medical Oncology. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Filomena Pina
- Department of Radiotherapy. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Hugo Vasques
- Department of General Surgery. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| |
Collapse
|
8
|
Xiang W, Yuan W, Ren L, Huang W, Liang H, Huang J, Luan L, Xu C, Hou Y. A case of quadruple wild-type gastrointestinal stromal tumor with CDC42BPB::NTRK3 fusion and abundant lymphoid infiltration. Diagn Pathol 2025; 20:31. [PMID: 40133893 PMCID: PMC11934696 DOI: 10.1186/s13000-025-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. The most common mutations in GISTs are those in receptor tyrosine kinase (KIT) and platelet-derived growth factor receptor alpha (PDGFRA). GISTs without KIT or PDGFRA mutations are defined as wild-type (WT) GISTs. The molecular changes, prognosis, and treatments of WT GISTs remain uncertain. Among WT GISTs, neurotrophic tyrosine receptor kinase (NTRK) fusions have rarely been reported. We report a case of quadruple wild-type GIST harboring a novel CDC42BPB::NTRK3 fusion. In this study, we described a 66-year-old male patient with intrajejunal lesion. This case showed massive lymphocytic and plasma cell infiltration, which caused diagnostic difficulties in morphology. CDC42BPB::NTRK3 fusion was detected via next-generation sequencing (NGS), and this finding was confirmed by fluorescence in situ hybridization (FISH), which revealed NTRK3 breakage. However, the expression of the Trk protein in tumor tissue was not detected by immunohistochemistry (IHC). This finding expands the genetic spectrum of NTRK rearrangements in GISTs.
Collapse
Affiliation(s)
- Wentao Xiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Ren
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wen Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huaiyu Liang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lijuan Luan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Lee H, Kim SY, Park JM, Jung SH, Mete O, Jung CK. Refining NTRK Fusion Detection in Papillary Thyroid Carcinoma Through Pan-TRK Immunohistochemistry and Histopathologic Features. Endocr Pathol 2025; 36:7. [PMID: 40100491 DOI: 10.1007/s12022-025-09852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
NTRK fusions are rare but recurrent driver alterations in papillary thyroid carcinoma (PTC), with therapeutic significance due to the availability of targeted TRK inhibitors. Pan-TRK immunohistochemistry (IHC) provides a practical approach for the identification of NTRK fusions; however, its application and reliability in routine pathology require further exploration. This study is aimed at evaluating the diagnostic utility of pan-TRK IHC for detecting NTRK fusions in PTC, assessing its correlation with histopathologic features, and developing a diagnostic algorithm. We analyzed 107 BRAF p.V600E-negative PTC cases using pan-TRK IHC, correlating staining patterns with molecular data and histopathologic features. RNA-based targeted sequencing confirmed gene fusions. NTRK fusion-positive tumors were enriched in distinct histopathologic features, including BRAF-like PTC with predominant follicular architecture, clear cells, and secretory-like cells. Findings such as tumor cell stratification, glomeruloid structures, and papillae with subfollicle formation (microfollicles within papillary structures) were associated with both NTRK and RET fusion-positive PTCs. Correlation of pan-TRK IHC and molecular testing results identified non-specific reactivity or false positivity in 62% of pan-TRK IHC-positive PTCs, including cases with RET fusions, BRAF fusion, or no detectable fusion. However, pan-TRK IHC with high H-scores (≥ 110) was observed exclusively in cases with NTRK fusions. For cases with lower H-scores (< 110), integrating histopathologic features improved the identification of fusion-driven PTCs. While our series further supports the limitations of pan-TRK IHC, a diagnostic algorithm that combines pan-TRK IHC H-scores and histopathologic patterns improved the triaging of NTRK molecular testing of BRAF p.V600E-negative PTCs when a stepwise approach is undertaken. This study also demonstrated that TRK protein localization may vary with tumor progression and dedifferentiation.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sue Youn Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Ji Min Park
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Ozgur Mete
- Department of Pathology, University Health Network, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- College of Medicine, Cancer Research Institute, the Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Department of Pathology, Seoul St. Mary'S Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
10
|
Jantus-Lewintre E, Rappa A, Ruano D, van Egmond D, Gallach S, Gozuyasli D, Durães C, Costa JL, Camps C, Lacroix L, Kashofer K, van Wezel T, Barberis M. Multicenter In-House Evaluation of an Amplicon-Based Next-Generation Sequencing Panel for Comprehensive Molecular Profiling. Mol Diagn Ther 2025; 29:249-261. [PMID: 39798063 PMCID: PMC11860996 DOI: 10.1007/s40291-024-00766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods. METHODS This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors. A series of 193 research samples (125 DNA and 68 RNA samples) was analyzed to evaluate the correlation and concordance of the OCA Plus panel with orthogonal methods, as well as its reproducibility (n = 5 DNA samples) across laboratories. RESULTS The success rate for DNA and RNA sequencing was 96.6% and 89.7%, respectively. In a single workflow, the OCA Plus panel provided a detailed genomic profile with a high success rate for all biomarkers tested: single nucleotide variants/indels, copy number variants, and fusions, as well as complex biomarkers such as microsatellite instability, tumor mutational burden, and homologous recombination deficiency. The concordance for single nucleotide variants/indels was 94.8%, for copy number variants 96.5%, for fusions 94.2%, for microsatellite instability 80.8%, for tumor mutational burden 81.3%, and for homologous recombination deficiency 100%. The results showed high reproducibility across the five European research centers, each analyzing shared pre-characterized tissue biopsies (average of 1890 single nucleotide variants/indels per sample). CONCLUSIONS This multicenter evaluation of the OCA Plus panel confirms the results of previous single-center studies and demonstrates the high reproducibility and accuracy of this assay.
Collapse
Affiliation(s)
- Eloisa Jantus-Lewintre
- Fundación Investigación Hospital General Universitario de València, Universitat Politècnica de València, CIBERONC, Valencia, Spain
| | - Alessandra Rappa
- Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Dina Ruano
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sandra Gallach
- Fundación Investigación Hospital General Universitario de València, Universitat Politècnica de València, CIBERONC, Valencia, Spain
| | | | | | | | - Carlos Camps
- Consorcio Hospital General Universitario de València, Universitat de València, CIBERONC, Valencia, Spain
| | | | | | - Tom van Wezel
- Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Massimo Barberis
- Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
11
|
Jiang X, Zhang S, Wu L, Li Z. NTRK rearranged spindle cell neoplasm of the uterine cervix: a rare case report and literature review. BMC Womens Health 2025; 25:88. [PMID: 40011900 PMCID: PMC11863720 DOI: 10.1186/s12905-025-03574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Neurotrophic tyrosine receptor kinase (NTRK) rearranged spindle cell neoplasm is an emerging group of molecularly defined rare soft tissue tumors, often presenting with a monotonous spindle cell morphology, infiltrative growth, and co-expression of S-100 and CD34 proteins by immunohistochemistry (IHC). Accurate diagnosis necessitates the combination of morphology, immunohistochemistry, and molecular test results, with next-generation sequencing (NGS) as the gold standard. We present a rare case of NTRK rearranged spindle cell neoplasm of the uterine cervix and review the literature to highlight the current understanding of the diagnosis and treatment of this rare disease. CASE PRESENTATION A 49-year-old perimenopausal woman presented with menorrhagia for more than a month. A biopsy of the cervix revealed a cervical spindle cell neoplasm with a tendency to be an isolated fibrous tumor. A total abdominal hysterectomy with bilateral salpingo-oophorectomy was performed and the surgical pathology suggested NTRK rearranged spindle cell neoplasm, while NGS confirmed TFG-NTRK3 fusion gene. Postoperatively, the patient refused larotrectinib maintenance therapy for economic reasons and had no sign of recurrence or metastasis at 31 months of follow-up. CONCLUSION We presented the first case of cervical spindle cell neoplasm with TFG-NTRK3 gene rearrangement and retrieved 22 cases of NTRK rearranged spindle cell neoplasm of the uterine cervix from literature. The most prevalent type of gene fusion was TPM3-NTRK1, and almost all cases demonstrated S-100 and CD34 positivity by IHC. Surgery remains the initial treatment of choice and tyrosine receptor kinase (TRK) inhibitors may serve as a promising target therapy for patients with recurred or metastatic disease.
Collapse
Affiliation(s)
- Xiaoxia Jiang
- Department of Gynecologic Oncology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Peking University Cancer Hospital Yunnan, KunMing, 650118, People's Republic of China
| | - Shao Zhang
- Department of Gynecologic Oncology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Peking University Cancer Hospital Yunnan, KunMing, 650118, People's Republic of China
| | - Lin Wu
- Department of Pathology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Peking University Cancer Hospital Yunnan, KunMing, 650118, People's Republic of China
| | - Zheng Li
- Department of Gynecologic Oncology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University/Peking University Cancer Hospital Yunnan, KunMing, 650118, People's Republic of China.
| |
Collapse
|
12
|
Batra U, Nathany S. Biomarker testing in lung cancer: from bench to bedside. Oncol Rev 2025; 18:1445826. [PMID: 39834530 PMCID: PMC11743711 DOI: 10.3389/or.2024.1445826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the poster child of personalized medicine. With increased knowledge about biomarkers and the consequent improvement in survival rates, NSCLC has changed from being a therapeutic nihilistic disease to that characterized by therapeutic enthusiasm. The routine biomarkers tested in NSCLC are EGFR, ALK, and ROS1. However, several additional biomarkers have been added to the diagnostic landscape. Current guidelines recommend testing at least seven biomarkers upfront at the time of NSCLC diagnosis-emphasizing the wide range of targets and corresponding therapies that can be leveraged for disease management. Sequential single-gene testing is not only time-consuming but also leads to tissue exhaustion. Multigene panel testing using next-generation sequencing (NGS) offers an attractive diagnostic substitute that aligns with the evolving dynamics of precision medicine. NGS enables the identification of point mutations, insertions, deletions, copy number alterations, fusion genes, and microsatellite instability information needed to guide the potential use of targeted therapy. This article reviews the existing guidelines, proposed recommendations for NGS in non-squamous NSCLC, real-world data on its use, and the advantages of adopting broader panel-based NGS testing over single-gene testing.
Collapse
Affiliation(s)
- Ullas Batra
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Shrinidhi Nathany
- Hematology and Bone Marrow Transplant, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| |
Collapse
|
13
|
Linxweiler M, Wemmert S, Braun FL, Körner S, Brust LA, Knebel M, Klamminger GG, Wagner M, Morris LGT, Kühn JP. Targeted Therapy in Salivary Gland Cancer: Prevalence of a Selected Panel of Actionable Molecular Alterations in a German Tertiary Referral Center Patient Cohort. Mol Diagn Ther 2025; 29:103-115. [PMID: 39485665 PMCID: PMC11748463 DOI: 10.1007/s40291-024-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE Salivary gland carcinomas (SGC) are a heterogeneous group of malignancies, with 24 subtypes defined by the World Health Organization (WHO). The standard of therapy is surgical resection, with adjuvant radiotherapy in most cases. However, disease recurrence (R) or metastasis (M) is common and no active systemic therapies are currently available for RM-SGC resulting in a 5-year survival rate of only 20%. PATIENTS AND METHODS Overall, 55 SGC patients with seven different histological tumor subtypes were included in this study. formalin-fixed paraffin-embedded (FFPE) tissue samples were used for immunohistochemical (IHC) staining targeting HER2/neu, androgen receptor (AR), PD-L1, EGFR, panTRK, and TROP2. Fluorescence in situ hybridization (FISH) was performed for detecting HER2/neu amplifications and NTRK1/2/3 translocations in selected cases with relevant HER2/neu and panTRK protein expression, respectively. IHC and FISH results were correlated with patients' clinical and histopathological data. RESULTS The overall prevalence of druggable molecular alterations, defined as an immunoreactive score ≥ 9 in at least one of the analyzed targets, was 54.4% with the highest percentage in oncocytic carcinomas (100%) and lowest percentage in acinic cell carcinomas (10%). EGFR overexpression proved to be the most common alteration (32.7% of cases) followed by overexpression of TROP2 (27.3%), AR (10.9%), HER2/neu (7.3%), PD-L1 (1.8%), and panTRK (1.8%). HER2/neu amplifications were found in 50% and NTRK translocations were found in 100% of all cases with elevated Her2/neu and panTRK protein expression, respectively. CONCLUSIONS Our data indicate that targeted therapy using e.g., trastuzumab deruxtecan, bicalutamide, pembrolizumab, cetuximab, entrectinib or sacituzumab govitecan might be a promising option especially for a relevant subset of patients with RM-SGC not suitable for salvage surgery. However, evidence from clinical studies regarding response rates to these therapies remains sparse, which underlines the need of multicenter clinical trials.
Collapse
Affiliation(s)
- Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, Kirrbergerstr. 100, Building 6, 66421, Homburg, Saar, Germany.
| | - Silke Wemmert
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, Kirrbergerstr. 100, Building 6, 66421, Homburg, Saar, Germany
| | - Felix Leon Braun
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, Kirrbergerstr. 100, Building 6, 66421, Homburg, Saar, Germany
| | - Sandrina Körner
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, Kirrbergerstr. 100, Building 6, 66421, Homburg, Saar, Germany
| | - Lukas Alexander Brust
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, Kirrbergerstr. 100, Building 6, 66421, Homburg, Saar, Germany
| | - Moritz Knebel
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, Kirrbergerstr. 100, Building 6, 66421, Homburg, Saar, Germany
| | - Gilbert Georg Klamminger
- Department of General and Surgical Pathology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Mathias Wagner
- Department of General and Surgical Pathology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jan Philipp Kühn
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, Kirrbergerstr. 100, Building 6, 66421, Homburg, Saar, Germany
| |
Collapse
|
14
|
Brezden-Masley C, Fiset PO, Cheung CC, Arnason T, Bateman J, Borduas M, Evaristo G, Ionescu DN, Lim HJ, Sheffield BS, Soldera SV, Streutker CJ. Canadian Consensus Recommendations for Predictive Biomarker Testing in Gastric and Gastroesophageal Junction Adenocarcinoma. Curr Oncol 2024; 31:7770-7786. [PMID: 39727695 DOI: 10.3390/curroncol31120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Gastric cancer is common globally and has a generally poor prognosis with a low 5-year survival rate. Targeted therapies and immunotherapies have improved the treatment landscape, providing more options for efficacious treatment. The use of these therapies requires predictive biomarker testing to identify patients who can benefit from their use. New therapies on the horizon, such as CLDN18.2 monoclonal antibody therapy, require laboratories to implement new biomarker tests. A multidisciplinary pan-Canadian expert working group was convened to develop guidance for pathologists and oncologists on the implementation of CLDN18.2 IHC testing for gastric and gastroesophageal junction (G/GEJ) adenocarcinoma in Canada, as well as general recommendations to optimize predictive biomarker testing in G/GEJ adenocarcinoma. The expert working group recommendations highlight the importance of reflex testing for HER2, MMR and/or MSI, CLDN18, and PD-L1 in all patients at first diagnosis of G/GEJ adenocarcinoma. Testing for NTRK fusions may also be included in reflex testing or requested by the treating clinician when third-line therapy is being considered. The expert working group also made recommendations for pre-analytic, analytic, and post-analytic considerations for predictive biomarker testing in G/GEJ adenocarcinoma. Implementation of these recommendations will provide medical oncologists with accurate, timely biomarker results to use for treatment decision-making.
Collapse
Affiliation(s)
- Christine Brezden-Masley
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Medical Oncology, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Pierre O Fiset
- Department of Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Carol C Cheung
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Arnason
- Queen Elizabeth II Health Sciences Centre, Halifax, NS B3H 3A7, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Justin Bateman
- Alberta Precision Laboratories, Edmonton, AB T5H 3V9, Canada
| | - Martin Borduas
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke (CHUS), University of Sherbrooke, Sherbrooke, QC J1H 5H3, Canada
| | - Gertruda Evaristo
- Department of Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Diana N Ionescu
- BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | | | - Brandon S Sheffield
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON L6R 3J7, Canada
| | - Sara V Soldera
- Division of Medical Oncology, Royal Victoria Hospital, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | | |
Collapse
|
15
|
Gouda MA, Thein KZ, Hong DS. Tissue-Agnostic Targeting of Neurotrophic Tyrosine Receptor Kinase Fusions: Current Approvals and Future Directions. Cancers (Basel) 2024; 16:3395. [PMID: 39410015 PMCID: PMC11475940 DOI: 10.3390/cancers16193395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
NTRK fusions are oncogenic drivers for multiple tumor types. Therefore, the development of selective tropomyosin receptor kinase (TRK) inhibitors, including larotrectinib and entrectinib, has been transformative in the context of clinical management, given the high rates of responses to these drugs, including intracranial responses in patients with brain metastases. Given their promising activity in pan-cancer cohorts, larotrectinib and entrectinib received U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) approval for tissue-agnostic indications in patients with advanced solid tumors harboring NTRK fusions. The safety profiles for both drugs are quite manageable, although neurotoxicity driven by the on-target inhibition of normal NTRK can be a concern. Also, on- and off-target resistance mechanisms can arise during therapy with TRK inhibitors, but they can be addressed with the use of combination therapy and next-generation TRK inhibitors. More recently, the FDA approved the use of repotrectinib, a second-generation TRK inhibitor, in patients with NTRK fusions, based on data suggesting clinical efficacy and safety, which could offer another tool for the treatment of NTRK-altered cancers. In this review, we summarize the current evidence related to the use of TRK inhibitors in the tissue-agnostic setting. We also elaborate on the safety profiles and resistance mechanisms from a practical perspective.
Collapse
Affiliation(s)
- Mohamed A. Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kyaw Z. Thein
- Comprehensive Cancer Centers of Nevada—Central Valley, Las Vegas, NV 89169, USA;
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
16
|
Subbiah V, Gouda MA, Ryll B, Burris HA, Kurzrock R. The evolving landscape of tissue-agnostic therapies in precision oncology. CA Cancer J Clin 2024; 74:433-452. [PMID: 38814103 DOI: 10.3322/caac.21844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/31/2024] Open
Abstract
Tumor-agnostic therapies represent a paradigm shift in oncology by altering the traditional means of characterizing tumors based on their origin or location. Instead, they zero in on specific genetic anomalies responsible for fueling malignant growth. The watershed moment for tumor-agnostic therapies arrived in 2017, with the US Food and Drug Administration's historic approval of pembrolizumab, an immune checkpoint inhibitor. This milestone marked the marriage of genomics and immunology fields, as an immunotherapeutic agent gained approval based on genomic biomarkers, specifically, microsatellite instability-high or mismatch repair deficiency (dMMR). Subsequently, the approval of NTRK inhibitors, designed to combat NTRK gene fusions prevalent in various tumor types, including pediatric cancers and adult solid tumors, further underscored the potential of tumor-agnostic therapies. The US Food and Drug Administration approvals of targeted therapies (BRAF V600E, RET fusion), immunotherapies (tumor mutational burden ≥10 mutations per megabase, dMMR) and an antibody-drug conjugate (Her2-positive-immunohistochemistry 3+ expression) with pan-cancer efficacy have continued, offering newfound hope to patients grappling with advanced solid tumors that harbor particular biomarkers. In this comprehensive review, the authors delve into the expansive landscape of tissue-agnostic targets and drugs, shedding light on the rationale underpinning this approach, the hurdles it faces, presently approved therapies, voices from the patient advocacy perspective, and the tantalizing prospects on the horizon. This is a welcome advance in oncology that transcends the boundaries of histology and location to provide personalized options.
Collapse
Affiliation(s)
- Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bettina Ryll
- Melanoma Patient Network Europe, Uppsala, Sweden
- The Stockholm School of Economics Institute for Research (SIR), Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Parisi F, De Luca G, Mosconi M, Lastraioli S, Dellepiane C, Rossi G, Puglisi S, Bennicelli E, Barletta G, Zullo L, Santamaria S, Mora M, Ballestrero A, Montecucco F, Bellodi A, Del Mastro L, Lambertini M, Barisione E, Cittadini G, Tagliabue E, Spagnolo F, Tagliamento M, Coco S, Dono M, Genova C. Front-line liquid biopsy for early molecular assessment and treatment of hospitalized lung cancer patients. Cancer Treat Res Commun 2024; 41:100839. [PMID: 39217684 DOI: 10.1016/j.ctarc.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Molecular characterization is pivotal for managing non-small cell lung cancer (NSCLC), although this process is often time-consuming and patients' conditions might worsen while molecular analyses are processed. Our primary aim was to evaluate the performance of "up-front" next-generation sequencing (NGS) through liquid biopsy (LB) of hospitalized patients with newly detected lung neoplasm in parallel with conventional diagnosis. The secondary aim included longitudinal monitoring through LB of patients with oncogenic alterations at baseline. METHODS We enrolled 47 consecutive patients immediately after hospitalization and radiological detection of symptomatic lung neoplasm. LB from peripheral blood was performed at baseline, in parallel with conventional biopsy (CB), when feasible. Additionally, LBs were repeated during treatment in patients with actionable gene alterations at baseline. Oncomine™ Lung cfTNA Research Assay panel was employed for processing plasma samples in NGS. RESULTS 47 hospitalized patients were enrolled. LB identified 28 patients with gene alterations, including mutations of EGFR (n = 7), KRAS (n = 12), ERBB2 (n = 1), TP53 (n = 2), BRAF (n = 1), one ALK rearrangement, and 4 patients with combined mutations involving EGFR, KRAS and PIK3CA. LB and CB were consistent, except for two patients. Three patients with positive LB for oncogenic drivers did not undergo CB due to contraindications. Median time to molecular results after LB was significantly lower compared to time to molecular report after CB (11 versus 22 days, p < 0.001). CONCLUSIONS Despite limited numbers, our study supports the role of front-line LB for improving management of symptomatic patients with lung cancer, potentially leading to early targeted therapy initiation.
Collapse
Affiliation(s)
- Francesca Parisi
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Manuela Mosconi
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sonia Lastraioli
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Dellepiane
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni Rossi
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Bennicelli
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Barletta
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lodovica Zullo
- Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Sara Santamaria
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Mora
- Pathological Anatomy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Internal Medicine with Oncology Focus Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy
| | - Andrea Bellodi
- Academic Internal Medicine with Oncology Focus Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Oncology Unit; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Oncology Unit; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Barisione
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Cittadini
- Oncologic and Interventional Radiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Tagliabue
- Interventional Pulmonology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Medical Oncology 2 Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Italy
| | - Marco Tagliamento
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Oncology Unit; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; Academic Oncology Unit; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
18
|
La Salvia A, Meyer ML, Hirsch FR, Kerr KM, Landi L, Tsao MS, Cappuzzo F. Rediscovering immunohistochemistry in lung cancer. Crit Rev Oncol Hematol 2024; 200:104401. [PMID: 38815876 DOI: 10.1016/j.critrevonc.2024.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024] Open
Abstract
Several observations indicate that protein expression analysis by immunohistochemistry (IHC) remains relevant in individuals with non-small-cell lung cancer (NSCLC) when considering targeted therapy, as an early step in diagnosis and for therapy selection. Since the advent of next-generation sequencing (NGS), the role of IHC in testing for NSCLC biomarkers has been forgotten or ignored. We discuss how protein-level investigations maintain a critical role in defining sensitivity to lung cancer therapies in oncogene- and non-oncogene-addicted cases and in patients eligible for immunotherapy, suggesting that IHC testing should be reconsidered in clinical practice. We also argue how a panel of IHC tests should be considered complementary to NGS and other genomic assays. This is relevant to current clinical diagnostic practice but with potential future roles to optimize the selection of patients for innovative therapies. At the same time, strict validation of antibodies, assays, scoring systems, and intra- and interobserver reproducibility is needed.
Collapse
Affiliation(s)
- Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), Rome 00161, Italy
| | - May-Lucie Meyer
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred R Hirsch
- Center for Thoracic Oncology/Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith M Kerr
- Aberdeen University School of Medicine & Aberdeen Royal Infirmary, Aberdeen, UK
| | - Lorenza Landi
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy
| | - Ming-Sound Tsao
- University Health Network, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Federico Cappuzzo
- Medical Oncology, Istituto Nazionale Tumori IRCCS "Regina Elena", Rome, Italy.
| |
Collapse
|
19
|
Okuno M, Tanaka T, Iwata K, Mukai T, Watanabe N, Shimojo K, Iwasa Y, Tezuka R, Iwashita T, Tomita E, Shimizu M. Diagnosis of pancreatic malignancies using an overnight-stored pancreatic juice cell block specimen. Pancreatology 2024; 24:732-739. [PMID: 38879435 DOI: 10.1016/j.pan.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AND AIMS Pancreatic juice cytology is useful for diagnosing pancreatic duct strictures and cystic lesions. However, some cases cannot be diagnosed using cytology. This study aimed to evaluate the utility of the overnight-stored pancreatic juice cell block (CB) method for diagnosing pancreatic disease. METHODS This retrospective study included 32 patients who presented with pancreatic duct strictures or cystic lesions between 2018 and 2024. The sensitivity, specificity, and accuracy of the CB method and single/multiple pancreatic juice cytology were compared to evaluate the utility of the CB. RESULT An endoscopic nasopancreatic drainage tube was placed in the main pancreatic duct, and pancreatic juice was collected to create a CB specimen. The median amount of pancreatic juice collected was 180(30-200) mL, and the median number of cytological examinations was three(2-8). Of the 32 cases, 13 were malignant, and 19 were benign (non-malignant). The sensitivity was significantly higher for the CB method (62 %) than for single cytology(15 %, P = 0.0414), and there was no significant difference between CB and multiple cytology(54 %, P = 1.0). The specificity and accuracy were not significantly different between the CB method and single or multiple cytology. When multiple cytology and CB were combined, sensitivity improved to 77 %. The pathological findings of the CB specimens were similar to the surgical specimens, including immunohistochemistry. CONCLUSION The overnight-stored pancreatic juice CB method was more effective than single cytology, with similar sensitivities to multiple cytology and can also be used for immunohistochemistry. The pancreatic juice CB method is useful for pancreatic juice assessment.
Collapse
Affiliation(s)
- Mitsuru Okuno
- Department of Gastroenterology, Matsunami General Hospital, Gifu, Japan; Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan.
| | - Takuji Tanaka
- Department of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Keisuke Iwata
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan
| | - Tsuyoshi Mukai
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan; Department of Gastroenterological Endoscopy, Kanazawa Medical University, Ishikawa, Japan
| | - Naoki Watanabe
- Department of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Kota Shimojo
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan
| | - Yuhei Iwasa
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan
| | - Ryuichi Tezuka
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan
| | - Takuji Iwashita
- First Department of Internal Medicine, Gifu University Hospital, Gifu, Japan
| | - Eiichi Tomita
- Department of Gastroenterology, Matsunami General Hospital, Gifu, Japan; Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan
| | - Masahito Shimizu
- First Department of Internal Medicine, Gifu University Hospital, Gifu, Japan
| |
Collapse
|
20
|
Metellus P, Camilla C, Bialecki E, Beaufils N, Vellutini C, Pellegrino E, Tomasini P, Ahluwalia MS, Mansouri A, Nanni I, Ouafik L. The landscape of cancer-associated transcript fusions in adult brain tumors: a longitudinal assessment in 140 patients with cerebral gliomas and brain metastases. Front Oncol 2024; 14:1382394. [PMID: 39087020 PMCID: PMC11288828 DOI: 10.3389/fonc.2024.1382394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Background Oncogenic fusions of neurotrophic receptor tyrosine kinase NTRK1, NTRK2, or NTRK3 genes have been found in different types of solid tumors. The treatment of patients with TRK fusion cancer with a first-generation TRK inhibitor (such as larotrectinib or entrectinib) is associated with high response rates (>75%), regardless of tumor histology and presence of metastases. Due to the efficacy of TRK inhibitor therapy of larotrectinib and entrectinib, it is clinically important to identify patients accurately and efficiently with TRK fusion cancer. In this retrospective study, we provide unique data on the incidence of oncogenic NTRK gene fusions in patients with brain metastases (BM) and gliomas. Methods 140 samples fixed and paraffin-embedded tissue (FFPE) of adult patients (59 of gliomas [17 of WHO grade II, 20 of WHO grade III and 22 glioblastomas] and 81 of brain metastasis (BM) of different primary tumors) are analyzed. Identification of NTRK gene fusions is performed using next-generation sequencing (NGS) technology using Focus RNA assay kit (Thermo Fisher Scientific). Results We identified an ETV6 (5)::NTRK3 (15) fusion event using targeted next-generation sequencing (NGS) in one of 59 glioma patient with oligodendroglioma-grade II, IDH-mutated and 1p19q co-deleted at incidence of 1.69%. Five additional patients harboring TMPRSS (2)::ERG (4) were identified in pancreatic carcinoma brain metastasis (BM), prostatic carcinoma BM, endometrium BM and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted. A FGFR3 (17)::TACC3 (11) fusion was identified in one carcinoma breast BM. Aberrant splicing to produce EGFR exons 2-7 skipping mRNA, and MET exon 14 skipping mRNA were identified in glioblastoma and pancreas carcinoma BM, respectively. Conclusions This study provides data on the incidence of NTRK gene fusions in brain tumors, which could strongly support the relevance of innovative clinical trials with specific targeted therapies (larotrectinib, entrectinib) in this population of patients. FGFR3 (17)::TACC3 (11) rearrangement was detected in breast carcinoma BM with the possibility of using some specific targeted therapies and TMPRSS (2)::ERG (4) rearrangements occur in a subset of patients with, prostatic carcinoma BM, endometrium BM, and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted, where there are yet no approved ERG-directed therapies.
Collapse
Affiliation(s)
- Philippe Metellus
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Clara Camilla
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Emilie Bialecki
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
| | - Eric Pellegrino
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Oncologie multidisciplinaire et innovations thérapeutiques, Marseille, France
- Aix-Marseille Univ, Centre national de Recherche Scientifique (CNRS), Inserm, CRCM, Marseille, France
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, PA, United States
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| |
Collapse
|
21
|
Ahmed J, Torrado C, Chelariu A, Kim SH, Ahnert JR. Fusion Challenges in Solid Tumors: Shaping the Landscape of Cancer Care in Precision Medicine. JCO Precis Oncol 2024; 8:e2400038. [PMID: 38986029 PMCID: PMC11371109 DOI: 10.1200/po.24.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Targeting actionable fusions has emerged as a promising approach to cancer treatment. Next-generation sequencing (NGS)-based techniques have unveiled the landscape of actionable fusions in cancer. However, these approaches remain insufficient to provide optimal treatment options for patients with cancer. This article provides a comprehensive overview of the actionability and clinical development of targeted agents aimed at driver fusions. It also highlights the challenges associated with fusion testing, including the evaluation of patients with cancer who could potentially benefit from testing and devising an effective strategy. The implementation of DNA NGS for all tumor types, combined with RNA sequencing, has the potential to maximize detection while considering cost effectiveness. Herein, we also present a fusion testing strategy aimed at improving outcomes in patients with cancer.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anca Chelariu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center, German Cancer Consortium (DKTK), Munich, Germany
| | - Sun-Hee Kim
- Precision Oncology Decision Support, Khalifa Institute for Personalized Cancer Therapy, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
22
|
Herrera Kok JH, Marano L, van den Berg JW, Shetty P, Vashist Y, Lorenzon L, Rau B, van Hillegersberg R, de Manzoni G, Spallanzani A, Seo WJ, Nagata H, Eveno C, Mönig S, van der Sluis K, Solaini L, Wijnhoven BP, Puccetti F, Chevallay M, Lee E, D'Ugo D. Current trends in the management of Gastro-oEsophageal cancers: Updates to the ESSO core curriculum (ESSO-ETC-UGI-WG initiative). EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108387. [PMID: 38796969 DOI: 10.1016/j.ejso.2024.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Gastro-oEsophageal Cancers (GECs) are severe diseases whose management is rapidly evolving. The European Society of Surgical Oncology (ESSO) is committed to the generation and spread of knowledge, and promotes the multidisciplinary management of cancer patients through its core curriculum. The present work discusses the approach to GECs, including the management of oligometastatic oesophagogastric cancers (OMEC), the diagnosis and management of peritoneal metastases from gastric cancer (GC), the management of Siewert Type II tumors, the importance of mesogastric excision, the role of robotic surgery, textbook outcomes, organ preserving options, the use of molecular markers and immune check-point inhibitors in the management of patients with GECs, as well as the improvement of current clinical practice guidelines for the management of patients with GECs. The aim of the present review is to provide a concise overview of the state-of-the-art on the management of patients with GECs and, at the same time, to share the latest advancements in the field and to foster the debate between surgical oncologists treating GECs worldwide. We are sure that our work will, at the same time, give an update to the advanced surgical oncologists and help the training surgical oncologists to settle down the foundations for their future practice.
Collapse
Affiliation(s)
- Johnn Henry Herrera Kok
- European Society of Surgical Oncology (ESSO), Education and Training Committee (ETC), Upper Gastrointestinal (UGI), Working Group (WG), Belgium; ESSO-European Young Surgeons and Alumni Club (EYSAC), Research Academy (RA), Belgium; Department of General and Digestive Surgery, Upper GI Unit, University Hospital of León, León, Spain.
| | - Luigi Marano
- European Society of Surgical Oncology (ESSO), Education and Training Committee (ETC), Upper Gastrointestinal (UGI), Working Group (WG), Belgium; Department of Medicine, Academy of Applied Medical and Social Sciences (AMiSNS), Akademia Medycznych i Społecznych Nauk Stosowanych, Elbląg, Poland
| | - Jan Willem van den Berg
- European Society of Surgical Oncology (ESSO), Education and Training Committee (ETC), Upper Gastrointestinal (UGI), Working Group (WG), Belgium; Department of Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Preethi Shetty
- European Society of Surgical Oncology (ESSO), Education and Training Committee (ETC), Upper Gastrointestinal (UGI), Working Group (WG), Belgium; Department of Surgical Oncology, Kasturba Medical College, MAHE Manipal, India
| | - Yogesh Vashist
- European Society of Surgical Oncology (ESSO), Education and Training Committee (ETC), Upper Gastrointestinal (UGI), Working Group (WG), Belgium; Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Laura Lorenzon
- ESSO-European Young Surgeons and Alumni Club (EYSAC), Research Academy (RA), Belgium; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Beate Rau
- Department of Surgery, Campus Virchow-Klinikum and Charité Campus Mitte, Charité-Universitätsmedizin Berlin, Germany
| | | | - Giovanni de Manzoni
- Department of General Surgery, Upper GI Unit, University Hospital of Verona, Verona, Italy
| | - Andrea Spallanzani
- Department of Oncology and Hematology, University of Modena and Reggio Emilia Hospital, Modena, Italy
| | - Won Jun Seo
- Department of Surgery, Korea University Guro Hospital, Seoul, Republic of Korea; PIPS-GC Study Group, Republic of Korea
| | - Hiromi Nagata
- Department of Gastric Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Clarisse Eveno
- Department of Surgery, Lille University Hospital, Lille, France
| | - Stefan Mönig
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Karen van der Sluis
- Department of Surgery, The Netherlands Cancer Institute Antoni van Leewenhoek, Amsterdam, the Netherlands
| | - Leonardo Solaini
- Department of General and Oncologic Surgery, Morgagni Pierantoni Hospital, Forli, Italy
| | - Bas Pl Wijnhoven
- Department of Surgery, Erasmus Medical Center Cancer Institute, Amsterdam, the Netherlands
| | - Francesco Puccetti
- Gastrointestinal Surgery Unit, Department of Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mickael Chevallay
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Eunju Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea; Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong-si, Republic of Korea
| | - Domenico D'Ugo
- European Society of Surgical Oncology (ESSO), Education and Training Committee (ETC), Upper Gastrointestinal (UGI), Working Group (WG), Belgium; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; ESSO Past-President, Republic of Korea
| |
Collapse
|
23
|
Repetto M, Chiara Garassino M, Loong HH, Lopez-Rios F, Mok T, Peters S, Planchard D, Popat S, Rudzinski ER, Drilon A, Zhou C. NTRK gene fusion testing and management in lung cancer. Cancer Treat Rev 2024; 127:102733. [PMID: 38733648 DOI: 10.1016/j.ctrv.2024.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024]
Abstract
Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are recurrent oncogenic drivers found in a variety of solid tumours, including lung cancer. Several tropomyosin receptor kinase (TRK) inhibitors have been developed to treat tumours with NTRK gene fusions. Larotrectinib and entrectinib are first-generation TRK inhibitors that have demonstrated efficacy in patients with TRK fusion lung cancers. Genomic testing is recommended for all patients with metastatic non-small cell lung cancer for optimal drug therapy selection. Multiple testing methods can be employed to identify NTRK gene fusions in the clinic and each has its own advantages and limitations. Among these assays, RNA-based next-generation sequencing (NGS) can be considered a gold standard for detecting NTRK gene fusions; however, several alternatives with minimally acceptable sensitivity and specificity are also available in areas where widespread access to NGS is unfeasible. This review highlights the importance of testing for NTRK gene fusions in lung cancer, ideally using the gold-standard method of RNA-based NGS, the various assays that are available, and treatment algorithms for patients.
Collapse
Affiliation(s)
- Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| | - Marina Chiara Garassino
- Department of Medicine, Thoracic Oncology Program, The University of Chicago, Chicago, IL, USA
| | | | | | - Tony Mok
- The Chinese University of Hong Kong, Hong Kong, China
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | | | - Sanjay Popat
- Royal Marsden NHS Foundation Trust, London, UK; Institute of Cancer Research, London, UK
| | - Erin R Rudzinski
- Seattle Children's Hospital and University of Washington Medical Center, Seattle, WA, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Caicun Zhou
- Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Dong K, Yin L, Wang Y, Jia L, Diao X, Huang X, Zhou L, Lin D, Sun Y. Prevalence and detection methodology for preliminary exploration of NTRK fusion in gastric cancer from a single-center retrospective cohort. Hum Pathol 2024; 148:87-92. [PMID: 38653403 DOI: 10.1016/j.humpath.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The fusion of neurotrophic tyrosine receptor kinase (NTRK) is a novel target for cancer therapy and offers hope for patients with gastric cancer (GC). However, there are few studies on the prevalence and detection methods of NTRK fusions in GC. In this study, we used immunohistochemistry (IHC) as a screening method to select cases for molecular testing and evaluated the effectiveness of IHC, fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS). We retrospectively collected 1970 patients with GC. Pan-TRK IHC was conducted in all cases, and three cases were positive: one with strong and diffuse cytoplasmic staining, while two with weak cytoplasmic staining. All three cases were validated using NTRK1/2/3 FISH. FISH results revealed a single 3' signal of NTRK1 in 95% of the tumor cells in the first case, while the remaining two cases were negative. NGS confirmed LMNA-NTRK1 fusion in the first case, with no gene fusion detected in the other two cases. Out of 46 negative controls, one had a non-functional fusion of IGR-NTRK1, and four had point mutations. The case with LMNA-NTRK1 fusion were negative for pMMR, EBV, HER2, and AFP. The pan-TRK IHC showed a 33.33% (1/3) concordance rate with RNA-based NGS. If the criterion for positivity was 3+ cytoplasmic staining, the agreement between IHC and RNA-based NGS was 100% (1/1). In conclusion, the incidence of NTRK fusion in GC is extremely low (0.05%). If the criteria are strict, pan-TRK IHC is highly effective for screening NTRK fusions. FISH could complement NGS detection, particularly when NTRK fusion is detected by DNA sequencing. NTRK fusion in GC may not be limited to specific subtypes.
Collapse
Affiliation(s)
- Kun Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Lisha Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Yu Wang
- Department of Pathology, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, Shanxi Province, 046099, China
| | - Ling Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Xinting Diao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China.
| | - Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China.
| |
Collapse
|
25
|
Pathak PS, Chan G, Deming DA, Chee CE. State-of-the-Art Management of Colorectal Cancer: Treatment Advances and Innovation. Am Soc Clin Oncol Educ Book 2024; 44:e438466. [PMID: 38768405 DOI: 10.1200/edbk_438466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, ranking among the leading causes of cancer-related morbidity and mortality worldwide. Recent advancements in molecular characterization have revolutionized our understanding of the heterogeneity within colorectal tumors, particularly in the context of tumor sidedness. Tumor sidedness, referring to the location of the primary tumor in either the right or left colon, has emerged as a critical factor influencing prognosis and treatment responses in metastatic CRC. Molecular underpinnings of CRC, the impact of tumor sidedness, and how this knowledge guides therapeutic decisions in the era of precision medicine have led to improved outcomes and better quality of life in patients. The emergence of circulating tumor DNA as a prognostic and predictive tool in CRC heralds promising advancements in the diagnosis and monitoring of the disease. This innovation facilitates better patient selection for exploration of additional treatment options. As the field progresses, with investigational agents demonstrating potential as future treatments for refractory metastatic CRC, new avenues for enhancing outcomes in this challenging disease are emerging.
Collapse
Affiliation(s)
- Priyadarshini S Pathak
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gloria Chan
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
| | - Dustin A Deming
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Cancer Center, Madison, WI
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Cheng Ean Chee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
26
|
Vince CSC, Brassesco MS, Mançano BM, Gregianin LJ, Carbone EK, do Amaral e Castro A, Dwan VSY, Menezes da Silva RZ, Mariano CS, da Mata JF, Silva MO, Caran EMM, Macedo CD, Alves da Costa G, Esteves TC, Silva LN, Ferman SE, Martins FD, Cristófani LM, Odone-Filho V, Silva MM, Reis RM, Pianovski MAD, Campregher PV, Kunii MS, de Sá Rodrigues KE, Carvalho Filho NP, Valera ET. Beyond Clinical Trials: Understanding Neurotrophic Tropomyosin Receptor Kinase Inhibitor Challenges and Efficacy in Real-World Pediatric Oncology. JCO Precis Oncol 2024; 8:e2300713. [PMID: 38810175 PMCID: PMC11371084 DOI: 10.1200/po.23.00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE Our study aimed to explore real-world treatment scenarios for children and adolescents with neurotrophic tropomyosin receptor kinase (NTRK)-fused tumors, emphasizing access, responses, side effects, and outcomes. PATIENTS AND METHODS Pooled clinical data from 17 pediatric cases (11 soft-tissue sarcomas, five brain tumors, and one neuroblastoma) treated with larotrectinib and radiologic images for 14 patients were centrally reviewed. Testing for gene fusions was prompted by poor response to treatment, tumor progression, or aggressiveness. RESULTS Six different NTRK fusion subtypes were detected, and various payment sources for testing and medication were reported. Radiologic review revealed objective tumor responses (OR) in 11 of 14 patients: Complete responses: two; partial responses: nine; and stable disease: three cases. Grades 1 or 2 Common Terminology Criteria for Adverse Events adverse effects were reported in five patients. Regarding the entire cohort's clinical information, 15 of 17 patients remain alive (median observation time: 25 months): four with no evidence of disease and 11 alive with disease (10 without progression). One patient developed resistance to the NTRK inhibitor and died from disease progression while another patient died due to an unrelated cause. CONCLUSION This real-world study confirms favorable agnostic tumor OR rates to larotrectinib in children with NTRK-fused tumors. Better coordination to facilitate access to medication remains a challenge, particularly in middle-income countries like Brazil.
Collapse
Affiliation(s)
- Carolina Sgarioni Camargo Vince
- Childhood Cancer Treatment Institute (ITACI), São Paulo Medical School, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Maria Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Lauro Jose Gregianin
- Department of Pediatrics, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Adham do Amaral e Castro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Diagnostic Imaging, UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | - Eliana Maria Monteiro Caran
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of Sao Paulo, São Paulo, Brazil
| | - Carla Donato Macedo
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | | | - Sima Esther Ferman
- Pediatric Oncology Department, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Lilian Maria Cristófani
- Childhood Cancer Treatment Institute (ITACI), São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Vicente Odone-Filho
- Childhood Cancer Treatment Institute (ITACI), São Paulo Medical School, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | | | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Roth GS, Verlingue L, Sarabi M, Blanc JF, Boleslawski E, Boudjema K, Bretagne-Bignon AL, Camus-Duboc M, Coriat R, Créhange G, De Baere T, de la Fouchardière C, Dromain C, Edeline J, Gelli M, Guiu B, Horn S, Laurent-Croise V, Lepage C, Lièvre A, Lopez A, Manfredi S, Meilleroux J, Neuzillet C, Paradis V, Prat F, Ronot M, Rosmorduc O, Cunha AS, Soubrane O, Turpin A, Louvet C, Bouché O, Malka D. Biliary tract cancers: French national clinical practice guidelines for diagnosis, treatments and follow-up (TNCD, SNFGE, FFCD, UNICANCER, GERCOR, SFCD, SFED, AFEF, SFRO, SFP, SFR, ACABi, ACHBPT). Eur J Cancer 2024; 202:114000. [PMID: 38493667 DOI: 10.1016/j.ejca.2024.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION This document is a summary of the French intergroup guidelines of the management of biliary tract cancers (BTC) (intrahepatic, perihilar and distal cholangiocarcinomas, and gallbladder carcinomas) published in September 2023, available on the website of the French Society of Gastroenterology (SNFGE) (www.tncd.org). METHODS This collaborative work was conducted under the auspices of French medical and surgical societies involved in the management of BTC. Recommendations were graded in three categories (A, B and C) according to the level of scientific evidence until August 2023. RESULTS BTC diagnosis and staging is mainly based on enhanced computed tomography, magnetic resonance imaging and (endoscopic) ultrasound-guided biopsy. Treatment strategy depends on BTC subtype and disease stage. Surgery followed by adjuvant capecitabine is recommended for localised disease. No neoadjuvant treatment is validated to date. Cisplatin-gemcitabine chemotherapy combined to the anti-PD-L1 inhibitor durvalumab is the first-line standard of care for advanced disease. Early systematic tumour molecular profiling is recommended to screen for actionable alterations (IDH1 mutations, FGFR2 rearrangements, HER2 amplification, BRAFV600E mutation, MSI/dMMR status, etc.) and guide subsequent lines of treatment. In the absence of actionable alterations, FOLFOX chemotherapy is the only second-line standard-of-care. No third-line chemotherapy standard is validated to date. CONCLUSION These guidelines are intended to provide a personalised therapeutic strategy for daily clinical practice. Each individual BTC case should be discussed by a multidisciplinary team.
Collapse
Affiliation(s)
- Gael S Roth
- Univ. Grenoble Alpes / Hepato-Gastroenterology and Digestive Oncology department, CHU Grenoble Alpes / Institute for Advanced Biosciences, CNRS UMR 5309-INSERM U1209, Grenoble, France
| | - Loic Verlingue
- Medical Oncology Department, Centre Léon Bérard, 28 rue Laennec, Lyon, France
| | - Matthieu Sarabi
- Gastroenterology Department, Hopital privé Jean Mermoz, 69008 Lyon, France
| | | | - Emmanuel Boleslawski
- Univ. Lille, INSERM U1189, CHU Lille, Service de Chirurgie Digestive et Transplantations, Lille, France
| | - Karim Boudjema
- Département de chirurgie viscérale hépatobiliaire, CHU de Rennes, Rennes, France
| | | | - Marine Camus-Duboc
- Endoscopie digestive, Hôpital Saint-Antoine, AP-HP/Sorbonne Université, Paris France
| | - Romain Coriat
- Service de gastroentérologie, d'endoscopie et d'oncologie digestive, Hôpital Cochin, APHP, Paris, France
| | - Gilles Créhange
- Radiation Oncology Department. Paris/Saint-Cloud/Orsay, Institut Curie. PSL Research University, Paris, France
| | - Thierry De Baere
- Département de Radiologie Interventionnelle, Gustave Roussy, 94805 Villejuif, France
| | | | - Clarisse Dromain
- Service de radiodiagnostic et radiologie interventionnelle, Centre Hospitalier Universitaire Vaudois, Switzerland
| | | | - Maximiliano Gelli
- Département de Chirurgie Viscérale, Gustave Roussy, 94805 Villejuif, France
| | - Boris Guiu
- Department of Radiology, St-Eloi University Hospital - Montpellier School of Medicine, Montpellier, France
| | - Samy Horn
- Department of Radiation Oncology, Centre Hospitalier Lyon Sud, Pierre Benite, France
| | - Valérie Laurent-Croise
- Department of Radiology, Centre Hospitalier Universitaire de Nancy, Hôpital de Brabois, 54500 Vandœuvre-lès-Nancy, France
| | - Côme Lepage
- Université de Bourgogne, CHU Dijon-Bourgogne, INSERM U1231. BP 87 900, 14 rue Paul Gaffarel, 21079 Dijon, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, University of Rennes 1, INSERM Unité 1242, Rennes, France
| | - Anthony Lopez
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; Department of Hepatology and Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Sylvain Manfredi
- Université de Bourgogne, CHU Dijon-Bourgogne, INSERM U1231. BP 87 900, 14 rue Paul Gaffarel, 21079 Dijon, France
| | - Julie Meilleroux
- Pathology and Cytology Department, CHU Toulouse, IUCT Oncopole, Toulouse Cedex 9, France
| | - Cindy Neuzillet
- GI Oncology, Department of Medical Oncology, Institut Curie - Site Saint Cloud, Versailles Saint-Quentin University, Paris Saclay University, Saint-Cloud, France
| | - Valérie Paradis
- Université Paris Cité, APHP.Nord Sce d'Anatomie Pathologique Hôpital Beaujon, Clichy, INSERM UMR 1149, France
| | - Frédéric Prat
- Endoscopie digestive, Hôpital Beaujon, Clichy, France
| | - Maxime Ronot
- Department of Medical Imaging, Beaujon University Hospital, Clichy, France
| | - Olivier Rosmorduc
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, INSERM U1193, Université Paris-Saclay, FHU Hépatinov, France
| | - Antonio Sa Cunha
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, INSERM U1193, Université Paris-Saclay, FHU Hépatinov, France
| | - Olivier Soubrane
- Department of Digestive Surgery, Institut Mutualiste Montsouris, Paris, France
| | - Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020, Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University Lille, CHU Lille, Lille; GERCOR, Paris, France
| | - Christophe Louvet
- Department of Medical Oncology, Institute Mutualiste Montsouris, Paris, France
| | - Olivier Bouché
- Gastroenterology and Digestive Oncology Department, Robert-Debré University Hospital, Reims, France
| | - David Malka
- Department of Medical Oncology, Institute Mutualiste Montsouris, Paris, France.
| |
Collapse
|
28
|
Helgadottir H, Matikas A, Fernebro J, Frödin JE, Ekman S, Rodriguez-Wallberg KA. Fertility and reproductive concerns related to the new generation of cancer drugs and the clinical implication for young individuals undergoing treatments for solid tumors. Eur J Cancer 2024; 202:114010. [PMID: 38520926 DOI: 10.1016/j.ejca.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The treatment landscape of solid tumors has changed markedly in the last years. Molecularly targeted treatments and immunotherapies have been implemented and have, in many cancers, lowered the risk of relapse and prolonged survival. Patients with tumors harboring specific targetable molecular alterations or mutations are often of a younger age, and hence future fertility and family building can be important concerns in this group. However, there are great uncertainties regarding the effect of the new drugs on reproductive functions, including fertility, pregnancy and lactation and how young patients with cancers, both women and men should be advised. The goal with this review is to gather the current knowledge regarding oncofertility and the different novel therapies, including immune checkpoint inhibitors, antibody-drug conjugates, small molecules and monoclonal antibody targeted therapies. The specific circumstances and reproductive concerns in different patient groups where novel treatments have been broadly introduced are also discussed, including those with melanoma, lung, breast, colorectal and gynecological cancers. It is clear, that more awareness is needed regarding potential drug toxicity on reproductive tissues, and it is of essence that individuals are informed based on current expertise and on available fertility preservation methods.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Skin Cancer Centrum, Theme Cancer, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | - Alexios Matikas
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden
| | - Josefin Fernebro
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Division of Gynecological Cancer, Department of Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Erik Frödin
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Division of Gastrointestinal Oncology, Department of Upper abdomen, Karolinska University Hospital, Sweden
| | - Simon Ekman
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Thoracic Oncology Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Reproductive Medicine, Division of Gynecology and Reproduction Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Evans M, Kendall T. Practical considerations for pathological diagnosis and molecular profiling of cholangiocarcinoma: an expert review for best practices. Expert Rev Mol Diagn 2024; 24:393-408. [PMID: 38752560 DOI: 10.1080/14737159.2024.2353696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Advances in precision medicine have expanded access to targeted therapies and demand for molecular profiling of cholangiocarcinoma (CCA) patients in routine clinical practice. However, pathologists face challenges in establishing a definitive intrahepatic CCA (iCCA) diagnosis while preserving sufficient tissue for molecular profiling. Additionally, they frequently face challenges in optimal tissue handling to preserve nucleic acid integrity. AREAS COVERED This article first identifies the challenges in establishing a definitive diagnosis of iCCA in a lesional liver biopsy while preserving sufficient tissue for molecular profiling. Then, the authors explore the clinical value of molecular profiling, the basic principles of single gene and next-generation sequencing (NGS) techniques, and the challenges in tissue sampling for genomic testing. They also propose an algorithm for best practice in tissue management for molecular profiling of CCA. EXPERT OPINION Several practical challenges face pathologists during tissue sampling and processing for molecular profiling. Optimized tissue processing, careful tissue handling, and selection of appropriate approaches to molecular testing are essential to ensure that the highest possible quality of diagnostic information is provided in the greatest proportion of cases.
Collapse
Affiliation(s)
- Matt Evans
- Cellular Pathologist, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | |
Collapse
|
30
|
Heumann P, Albert A, Gülow K, Tümen D, Müller M, Kandulski A. Current and Future Therapeutic Targets for Directed Molecular Therapies in Cholangiocarcinoma. Cancers (Basel) 2024; 16:1690. [PMID: 38730642 PMCID: PMC11083102 DOI: 10.3390/cancers16091690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
We conducted a comprehensive review of the current literature of published data, clinical trials (MEDLINE; ncbi.pubmed.com), congress contributions (asco.org; esmo.org), and active recruiting clinical trains (clinicaltrial.gov) on targeted therapies in cholangiocarcinoma. Palliative treatment regimens were analyzed as well as preoperative and perioperative treatment options. We summarized the current knowledge for each mutation and molecular pathway that is or has been under clinical evaluation and discussed the results on the background of current treatment guidelines. We established and recommended targeted treatment options that already exist for second-line settings, including IDH-, BRAF-, and NTRK-mutated tumors, as well as for FGFR2 fusion, HER2/neu-overexpression, and microsatellite instable tumors. Other options for targeted treatment include EGFR- or VEGF-dependent pathways, which are known to be overexpressed or dysregulated in this cancer type and are currently under clinical investigation. Targeted therapy in CCA is a hallmark of individualized medicine as these therapies aim to specifically block pathways that promote cancer cell growth and survival, leading to tumor shrinkage and improved patient outcomes based on the molecular profile of the tumor.
Collapse
Affiliation(s)
- Philipp Heumann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases University Hospital Regensburg Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
31
|
Iliev P, Jaworski C, Wängler C, Wängler B, Page BDG, Schirrmacher R, Bailey JJ. Type II & III inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Expert Opin Ther Pat 2024; 34:231-244. [PMID: 38785069 DOI: 10.1080/13543776.2024.2358818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications. AREAS COVERED Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Relevant patents were identified using the Web of Science database, Google, and Google Patents. EXPERT OPINION While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.
Collapse
Affiliation(s)
- Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
32
|
Machado I, Claramunt-Alonso R, Lavernia J, Romero I, Barrios M, Safont MJ, Santonja N, Navarro L, López-Guerrero JA, Llombart-Bosch A. ETV6::NTRK3 Fusion-Positive Wild-Type Gastrointestinal Stromal Tumor (GIST) with Abundant Lymphoid Infiltration (TILs and Tertiary Lymphoid Structures): A Report on a New Case with Therapeutic Implications and a Literature Review. Int J Mol Sci 2024; 25:3707. [PMID: 38612518 PMCID: PMC11011305 DOI: 10.3390/ijms25073707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract, with proto-oncogene, receptor tyrosine kinase (c-kit), or PDGFRα mutations detected in around 85% of cases. GISTs without c-kit or platelet-derived growth factor receptor alpha (PDGFRα) mutations are considered wild-type (WT), and their diverse molecular alterations and biological behaviors remain uncertain. They are usually not sensitive to tyrosine kinase inhibitors (TKIs). Recently, some molecular alterations, including neurotrophic tyrosine receptor kinase (NTRK) fusions, have been reported in very few cases of WT GISTs. This novel finding opens the window for the use of tropomyosin receptor kinase (TRK) inhibitor therapy in these subtypes of GIST. Herein, we report a new case of NTRK-fused WT high-risk GIST in a female patient with a large pelvic mass (large dimension of 20 cm). The tumor was removed, and the histopathology displayed spindle-predominant morphology with focal epithelioid areas, myxoid stromal tissue, and notable lymphoid infiltration with tertiary lymphoid structures. Ten mitoses were quantified in 50 high-power fields without nuclear pleomorphism. DOG1 showed strong and diffuse positivity, and CD117 showed moderate positivity. Succinate dehydrogenase subunit B (SDHB) was retained, Pan-TRK was focal positive (nuclear pattern), and the proliferation index Ki-67 was 7%. Next-generation sequencing (NGS) detected an ETV6::NTRK3 fusion, and this finding was confirmed by fluorescence in situ hybridization (FISH), which showed NTRK3 rearrangement. In addition, an RB1 mutation was found by NGS. The follow-up CT scan revealed peritoneal nodules suggestive of peritoneal dissemination, and Entrectinib (a TRK inhibitor) was administered. After 3 months of follow-up, a new CT scan showed a complete response. Based on our results and the cases from the literature, GISTs with NTRK fusions are very uncommon so far; hence, further screening studies, including more WT GIST cases, may increase the possibility of finding additional cases. The present case may offer new insights into the potential introduction of TRK inhibitors as treatments for GISTs with NTRK fusions. Additionally, the presence of abundant lymphoid infiltration in the present case may prompt further research into immunotherapy as a possible additional therapeutic option.
Collapse
Affiliation(s)
- Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología, Calle Gregorio Gea 31, 4to Piso, 46009 Valencia, Spain
- Patologika Laboratory, Hospital Quiron-Salud, 46010 Valencia, Spain
- Pathology Department, University of Valencia and CIBERONC, 46009 Valencia, Spain;
| | - Reyes Claramunt-Alonso
- Molecular Biology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (R.C.-A.); (J.A.L.-G.)
| | - Javier Lavernia
- Oncology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (J.L.); (I.R.)
| | - Ignacio Romero
- Oncology Unit, Instituto Valenciano de Oncología, 46009 Valencia, Spain; (J.L.); (I.R.)
| | - María Barrios
- Radiology Department, Instituto Valenciano de Oncología, 46009 Valencia, Spain;
| | - María José Safont
- Oncology Unit, Hospital General de Valencia, University of Valencia and CIBERONC, 46009 Valencia, Spain;
| | - Nuria Santonja
- Pathology Department, Hospital General de Valencia, 46009 Valencia, Spain; (N.S.); (L.N.)
| | - Lara Navarro
- Pathology Department, Hospital General de Valencia, 46009 Valencia, Spain; (N.S.); (L.N.)
| | | | | |
Collapse
|
33
|
Hernandez S, Conde E, Molero A, Suarez-Gauthier A, Martinez R, Alonso M, Plaza C, Camacho C, Chantada D, Juaneda-Magdalena L, Garcia-Toro E, Saiz-Lopez P, Rojo F, Abad M, Boni V, Del Carmen S, Regojo RM, Sanchez-Frias ME, Teixido C, Paz-Ares L, Lopez-Rios F. Efficient Identification of Patients With NTRK Fusions Using a Supervised Tumor-Agnostic Approach. Arch Pathol Lab Med 2024; 148:318-326. [PMID: 37270803 DOI: 10.5858/arpa.2022-0443-oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— The neurotrophic tropomyosin receptor kinase (NTRK) family gene rearrangements have been recently incorporated as predictive biomarkers in a "tumor-agnostic" manner. However, the identification of these patients is extremely challenging because the overall frequency of NTRK fusions is below 1%. Academic groups and professional organizations have released recommendations on the algorithms to detect NTRK fusions. The European Society for Medical Oncology proposal encourages the use of next-generation sequencing (NGS) if available, or alternatively immunohistochemistry (IHC) could be used for screening with NGS confirmation of all positive IHC results. Other academic groups have included histologic and genomic information in the testing algorithm. OBJECTIVE.— To apply some of these triaging strategies for a more efficient identification of NTRK fusions within a single institution, so pathologists can gain practical insight on how to start looking for NTRK fusions. DESIGN.— A multiparametric strategy combining histologic (secretory carcinomas of the breast and salivary gland; papillary thyroid carcinomas; infantile fibrosarcoma) and genomic (driver-negative non-small cell lung carcinomas, microsatellite instability-high colorectal adenocarcinomas, and wild-type gastrointestinal stromal tumors) triaging was put forward. RESULTS.— Samples from 323 tumors were stained with the VENTANA pan-TRK EPR17341 Assay as a screening method. All positive IHC cases were simultaneously studied by 2 NGS tests, Oncomine Comprehensive Assay v3 and FoundationOne CDx. With this approach, the detection rate of NTRK fusions was 20 times higher (5.57%) by only screening 323 patients than the largest cohort in the literature (0.30%) comprising several hundred thousand patients. CONCLUSIONS.— Based on our findings, we propose a multiparametric strategy (ie, "supervised tumor-agnostic approach") when pathologists start searching for NTRK fusions.
Collapse
Affiliation(s)
- Susana Hernandez
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Esther Conde
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| | - Aida Molero
- the Department of Pathology, Segovia General Hospital, Segovia, Spain (Molero)
| | - Ana Suarez-Gauthier
- the Department of Pathology, Jimenez Diaz Foundation University Hospital, Madrid, Spain (Suarez-Gauthier)
| | - Rebeca Martinez
- the Department of Pathology, Health Diagnostic-Grupo Quiron Salud, Madrid, Spain (Martinez)
| | - Marta Alonso
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Carlos Plaza
- the Department of Pathology, Clinico San Carlos University Hospital, Madrid, Spain (Plaza)
| | - Carmen Camacho
- the Department of Pathology, Insular Materno-Infantil University Hospital, Las Palmas de Gran Canaria, Spain (Camacho)
| | - Debora Chantada
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Laura Juaneda-Magdalena
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Enrique Garcia-Toro
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Patricia Saiz-Lopez
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Federico Rojo
- the Institute of Health Research-Jimenez Diaz Foundation, CIBERONC, Madrid, Spain (Rojo)
| | - Mar Abad
- the Department of Pathology, Salamanca University Hospital, Salamanca, Spain (Abad)
| | - Valentina Boni
- NEXT Oncology Madrid, Quiron Salud Madrid University Hospital, Madrid, Spain (Boni)
| | - Sofia Del Carmen
- the Department of Pathology, Marques de Valdecilla University Hospital, Santander, Spain (del Carmen)
| | - Rita Maria Regojo
- the Department of Pathology, La Paz University Hospital, Madrid, Spain (Regojo)
| | | | - Cristina Teixido
- the Department of Pathology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain (Teixido)
| | - Luis Paz-Ares
- the Department of Oncology, 12 de Octubre University Hospital, Department of Medicine, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Paz-Ares)
| | - Fernando Lopez-Rios
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| |
Collapse
|
34
|
de la Fouchardière C, Fugazzola L, Locati LD, Alvarez CV, Peeters RP, Camacho P, Simon IM, Jarząb B, Netea-Maier R. Improved guidance is needed to optimise diagnostics and treatment of patients with thyroid cancer in Europe. Endocrine 2024; 83:585-593. [PMID: 38001324 PMCID: PMC10901911 DOI: 10.1007/s12020-023-03610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Although thyroid cancer (TC) is generally associated with a favourable prognosis, there are certain high-risk groups with a clear unmet therapeutic need. Unravelling the genomic landscape of TC has recently led to the development of novel effective targeted treatments. To date, these treatments have mostly been evaluated in non-randomised single-arm phase II clinical trials and are consequently non-reimbursed in several countries. Furthermore, most of these agents must be tailored to individual patient molecular characteristics, a context known as personalised cancer medicine, necessitating a requirement for predictive molecular biomarker testing. Existing guidelines, both in Europe and internationally, entail mostly therapeutic rather than molecular testing recommendations. This may reflect ambiguity among experts due to lack of evidence and also practical barriers in availability of the preferred molecular somatic screening and/or targeted treatments. This article reviews existing European recommendations regarding advanced/metastatic TC management with a special focus on molecular testing, and compares findings with real-world practice based on a recent survey involving TC experts from 18 European countries. Significant disparities are highlighted between theory and practice related to variable access to infrastructure, therapies and expertise, together with the insufficient availability of multidisciplinary tumour boards. In particular, practitioners' choice of what, how and when to test is shown to be influenced by the expertise of the available laboratory, the financing source and the existence of potential facilitators, such as clinical trial access. Overall, the need of a collaborative initiative among European stakeholders to develop standardised, accessible molecular genotyping approaches in TC is underscored.
Collapse
Affiliation(s)
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, 20145, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122, Milan, Italy
| | - Laura D Locati
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria (IDIS), 15706, Santiago de Compostela, Spain
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Barbara Jarząb
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-102, Gliwice, Poland
| | - Romana Netea-Maier
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Friedlaender A, Perol M, Banna GL, Parikh K, Addeo A. Oncogenic alterations in advanced NSCLC: a molecular super-highway. Biomark Res 2024; 12:24. [PMID: 38347643 PMCID: PMC10863183 DOI: 10.1186/s40364-024-00566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer ranks among the most common cancers world-wide and is the first cancer-related cause of death. The classification of lung cancer has evolved tremendously over the past two decades. Today, non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma, comprises a multitude of molecular oncogenic subsets that change both the prognosis and management of disease.Since the first targeted oncogenic alteration identified in 2004, with the epidermal growth factor receptor (EGFR), there has been unprecedented progress in identifying and targeting new molecular alterations. Almost two decades of experience have allowed scientists to elucidate the biological function of oncogenic drivers and understand and often overcome the molecular basis of acquired resistance mechanisms. Today, targetable molecular alterations are identified in approximately 60% of lung adenocarcinoma patients in Western populations and 80% among Asian populations. Oncogenic drivers are largely enriched among non-smokers, east Asians, and younger patients, though each alteration has its own patient phenotype.The current landscape of druggable molecular targets includes EGFR, anaplastic lymphoma kinase (ALK), v-raf murine sarcoma viral oncogene homolog B (BRAF), ROS proto-oncogene 1 (ROS1), Kirstin rat sarcoma virus (KRAS), human epidermal receptor 2 (HER2), c-MET proto-oncogene (MET), neurotrophic receptor tyrosine kinase (NTRK), rearranged during transfection (RET), neuregulin 1 (NRG1). In addition to these known targets, others including Phosphoinositide 3-kinases (PI3K) and fibroblast growth factor receptor (FGFR) have garnered significant attention and are the subject of numerous ongoing trials.In this era of personalized, precision medicine, it is of paramount importance to identify known or potential oncogenic drivers in each patient. The development of targeted therapy is mirrored by diagnostic progress. Next generation sequencing offers high-throughput, speed and breadth to identify molecular alterations in entire genomes or targeted regions of DNA or RNA. It is the basis for the identification of the majority of current druggable alterations and offers a unique window into novel alterations, and de novo and acquired resistance mechanisms.In this review, we discuss the diagnostic approach in advanced NSCLC, focusing on current oncogenic driver alterations, through their pathophysiology, management, and future perspectives. We also explore the shortcomings and hurdles encountered in this rapidly evolving field.
Collapse
Affiliation(s)
- Alex Friedlaender
- Clinique Générale Beaulieu, Geneva, Switzerland
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland
| | - Maurice Perol
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Giuseppe Luigi Banna
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Rue Gentil Perret 4. 1205, Geneva, Switzerland.
| |
Collapse
|
36
|
Zhang W, Schmitz AA, Kallionpää RE, Perälä M, Pitkänen N, Tukiainen M, Alanne E, Jöhrens K, Schulze-Rath R, Farahmand B, Zong J. Neurotrophic-tyrosine receptor kinase gene fusion in papillary thyroid cancer: A clinicogenomic biobank and record linkage study from Finland. Oncotarget 2024; 15:106-116. [PMID: 38329731 PMCID: PMC10852057 DOI: 10.18632/oncotarget.28555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 02/09/2024] Open
Abstract
Selective tropomyosin receptor kinase (TRK) inhibitors are approved targeted therapies for patients with solid tumors harboring a neurotrophic tyrosine receptor kinase (NTRK) gene fusion. Country-specific estimates of NTRK gene fusion frequency, and knowledge on the characteristics of affected patients, are limited. We identified patients with histologically-confirmed papillary thyroid cancer (PTC) from Finland's Auria Biobank. TRK protein expression was determined by pan-TRK immunohistochemistry. Immuno-stained tumor samples were scored by a certified pathologist. Gene fusions and other co-occurring gene alterations were identified by next generation sequencing. Patient characteristics and vital status were determined from linked hospital electronic health records (EHRs). Patients were followed from 1 year before PTC diagnosis until death. 6/389 (1.5%) PTC patients had an NTRK gene fusion (all NTRK3); mean age 43.8 years (and none had comorbidities) at PTC diagnosis. Gene fusion partners were EML4 (n = 3), ETV6 (n = 2), and RBPMS (n = 1). Of 3/6 patients with complete EHRs, all received radioactive iodine ablation only and were alive at end of follow-up (median observation, 9.12 years). In conclusion, NTRK gene fusion is infrequent in patients with PTC. Linkage of biobank samples to EHRs is feasible in describing the characteristics and outcomes of patients with PTC and potentially other cancer types.
Collapse
Affiliation(s)
- Wei Zhang
- Bayer HealthCare Pharmaceuticals Inc, Whippany, NJ 07981, USA
| | | | - Roosa E. Kallionpää
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Merja Perälä
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Niina Pitkänen
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Mikko Tukiainen
- Auria Biobank, Turku University Hospital, University of Turku, Turku, Finland
| | - Erika Alanne
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
- Western Finland Cancer Centre, Turku, Finland
| | - Korinna Jöhrens
- Dresden University Hospital, Technical University Dresden, Dresden, Germany
| | | | | | - Jihong Zong
- Bayer HealthCare Pharmaceuticals Inc, Whippany, NJ 07981, USA
| |
Collapse
|
37
|
Hagopian G, Nagasaka M. Oncogenic fusions: Targeting NTRK. Crit Rev Oncol Hematol 2024; 194:104234. [PMID: 38122917 DOI: 10.1016/j.critrevonc.2023.104234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is responsible for the highest number of cancer-related deaths in the United States. Thankfully, advancements in the detection and targeting of gene mutations have greatly improved outcomes for many patients. One significant mutation driving oncogenesis in various cancers, including NSCLC, is the neurotrophic tyrosine receptor kinase (NTRK) fusion. Presently, larotrectinib and entrectinib are the only FDA-approved therapies for NTRK-mutated cancers. Despite the efficacy and tolerability exhibited by these therapies, several clinical hurdles persist for physicians, including resistance mutations and limited penetration of the central nervous system (CNS), which diminishes their effectiveness. The treatment landscape for NTRK cancers is still being explored, with numerous new tyrosine kinase inhibitors currently in development or undergoing phase 1 and 2 clinical trials. In this review, we delve into both established and novel therapies targeting NTRK-mutated NSCLC.
Collapse
Affiliation(s)
- Garo Hagopian
- Department of Medicine, University of California Irvine Medical Center, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine Medical Center, Orange, CA, USA; Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
38
|
Riedl JM, Moik F, Esterl T, Kostmann SM, Gerger A, Jost PJ. Molecular diagnostics tailoring personalized cancer therapy-an oncologist's view. Virchows Arch 2024; 484:169-179. [PMID: 37982847 PMCID: PMC10948510 DOI: 10.1007/s00428-023-03702-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Medical oncology is rapidly evolving with the implementation of personalized, targeted therapies. Advances in molecular diagnostics and the biologic understanding of cancer pathophysiology led to the identification of specific genetic alterations as drivers of cancer progression. Further, improvements in drug development enable the direct interference with these pathways, which allow tailoring personalized treatments based on a distinct molecular characterization of tumors. Thereby, we are currently experiencing a paradigm-shift in the treatment of cancers towards cancer-type agnostic, molecularly targeted, personalized therapies. However, this concept has several important hurdles and limitations to overcome to ultimately increase the proportion of patients benefitting from the precision oncology approach. These include the assessment of clinical relevancy of identified alterations, capturing and interpreting levels of heterogeneity based on intra-tumoral or time-dependent molecular evolution, and challenges in the practical implementation of precision oncology in routine clinical care. In the present review, we summarize the current state of cancer-agnostic precision oncology, discuss the concept of molecular tumor boards, and consider current limitations of personalized cancer therapy. Further, we provide an outlook towards potential future developments including the implementation of functionality assessments of identified genetic alterations and the broader use of liquid biopsies in order to obtain more comprehensive and longitudinal genetic information that might guide personalized cancer therapy in the future.
Collapse
Affiliation(s)
- Jakob M Riedl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Florian Moik
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Tamara Esterl
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sarah M Kostmann
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Armin Gerger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp J Jost
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
- Medical Department III for Haematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
39
|
Moura MS, Costa J, Velasco V, Kommoss F, Oliva E, Le Loarer F, McCluggage WG, Razack R, Treilleux I, Mills A, Longacre T, Devouassoux-Shisheboran M, Hostein I, Azmani R, Blanchard L, Hartog C, Soubeyran I, Khalifa E, Croce S. Pan-TRK immunohistochemistry in gynaecological mesenchymal tumours: diagnostic implications and pitfalls. Histopathology 2024; 84:451-462. [PMID: 37988282 DOI: 10.1111/his.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 10/14/2023] [Indexed: 11/23/2023]
Abstract
AIMS NTRK-rearranged sarcomas of the female genital tract mainly occur in the uterus (more commonly cervix than corpus) and are characterized by a "fibrosarcoma-like" morphology and NTRK gene rearrangements. These neoplasms may exhibit histological overlap with other entities and can present diagnostic difficulties without molecular confirmation. Pan-TRK immunohistochemistry was developed to identify tumours harbouring NTRK rearrangements. The aim of this study was to characterize pan-TRK immunohistochemical expression in a large cohort of gynaecological mesenchymal neoplasms and investigate the utility of pan-TRK immunohistochemistry to distinguish NTRK-rearranged sarcoma from its mimics. METHODS AND RESULTS A total of 473 gynaecological mesenchymal tumours (461 without known NTRK fusions and 12 NTRK-rearranged sarcomas) were selected. Pan-TRK immunohistochemistry (EPR17341, Abcam) was performed on whole tissue sections and tissue microarrays. Molecular interrogation of pan-TRK positive tumours was performed by RNA sequencing or fluorescence in situ hybridization (FISH). Of the 12 NTRK-rearranged sarcomas, 11 (92%) exhibited diffuse (≥70%) cytoplasmic pan-TRK staining with moderate/marked intensity, while the other was negative. Eleven (2.4%) additional tumours also exhibited pan-TRK immunohistochemical expression: three low-grade endometrial stromal sarcomas, seven high-grade endometrial stromal sarcomas, and an undifferentiated uterine sarcoma. Molecular confirmation of the absence of NTRK rearrangements was possible in nine of these tumours. Of these nine neoplasms, seven exhibited focal/multifocal (<70%) pan-TRK cytoplasmic staining with weak/moderate intensity. CONCLUSION Even though pan-TRK immunohistochemical expression is not entirely sensitive or specific for NTRK-rearranged sarcomas, these neoplasms tend to exhibit diffuse staining of moderate/strong intensity, unlike its mimics. Pan-TRK should be performed in monomorphic uterine (corpus and cervix) spindle cell neoplasms that are negative for smooth muscle markers and hormone receptors and positive for CD34 and/ or S100. Ultimately, the diagnosis requires molecular confirmation.
Collapse
Affiliation(s)
- Madalena Souto Moura
- Department of Pathology, Portuguese Institute of Oncology-Porto, Porto, Portugal
| | - João Costa
- Department of Pathology, Portuguese Institute of Oncology-Porto, Porto, Portugal
| | - Valérie Velasco
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| | - Felix Kommoss
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Esther Oliva
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francois Le Loarer
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
- Inserm U1312, Université de Bordeaux, Bordeaux, France
- Université de Bordeaux, Talence, France
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - Rubina Razack
- Division of Anatomical Pathology, National Health Laboratory Service, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Academic Hospital, Cape Town, South Africa
| | | | - Anne Mills
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Teri Longacre
- Department of Surgical Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Isabelle Hostein
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| | - Rihab Azmani
- Bioinformatics, Data and Digital Health Department, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| | - Larry Blanchard
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| | - Cécile Hartog
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| | - Isabelle Soubeyran
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| | - Emmanuel Khalifa
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
| | - Sabrina Croce
- Department of Biopathology, Institut Bergonié, Comprehensive Cancer Centre, Bordeaux, France
- Inserm U1312, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
40
|
Bertero L, Mangherini L, Ricci AA, Cassoni P, Sahm F. Molecular neuropathology: an essential and evolving toolbox for the diagnosis and clinical management of central nervous system tumors. Virchows Arch 2024; 484:181-194. [PMID: 37658995 PMCID: PMC10948579 DOI: 10.1007/s00428-023-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Molecular profiling has transformed the diagnostic workflow of CNS tumors during the last years. The latest WHO classification of CNS tumors (5th edition), published in 2021, pushed forward the integration between histopathological features and molecular hallmarks to achieve reproducible and clinically relevant diagnoses. To address these demands, pathologists have to appropriately deal with multiple molecular assays mainly including DNA methylation profiling and DNA/RNA next generation sequencing. Tumor classification by DNA methylation profiling is now a critical tool for many diagnostic tasks in neuropathology including the assessment of complex cases, to evaluate novel tumor types and to perform tumor subgrouping in hetereogenous entities like medulloblastoma or ependymoma. DNA/RNA NGS allow the detection of multiple molecular alterations including single nucleotide variations, small insertions/deletions (InDel), and gene fusions. These molecular markers can provide key insights for diagnosis, for example, if a tumor-specific mutation is detected, but also for treatment since targeted therapies are progressively entering the clinical practice. In the present review, a brief, but comprehensive overview of these tools will be provided, discussing their technical specifications, diagnostic value, and potential limitations. Moreover, the importance of molecular profiling will be shown in a representative series of CNS neoplasms including both the most frequent tumor types and other selected entities for which molecular characterization plays a critical role.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin and Città Della Salute E Della Scienza University Hospital, Via Santena 7, 10126, Turin, Italy
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
41
|
Dyrbekk APH, Warsame AA, Suhrke P, Ludahl MO, Zecic N, Moe JO, Lund-Iversen M, Brustugun OT. Evaluation of NTRK expression and fusions in a large cohort of early-stage lung cancer. Clin Exp Med 2024; 24:10. [PMID: 38240952 PMCID: PMC10798916 DOI: 10.1007/s10238-023-01273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Tropomyosin receptor kinases (TRK) are attractive targets for cancer therapy. As TRK-inhibitors are approved for all solid cancers with detectable fusions involving the Neurotrophic tyrosine receptor kinase (NTRK)-genes, there has been an increased interest in optimizing testing regimes. In this project, we wanted to find the prevalence of NTRK fusions in a cohort of various histopathological types of early-stage lung cancer in Norway and to investigate the association between TRK protein expression and specific histopathological types, including their molecular and epidemiological characteristics. We used immunohistochemistry (IHC) as a screening tool for TRK expression, and next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) as confirmatory tests for underlying NTRK-fusion. Among 940 cases, 43 (4.6%) had positive TRK IHC, but in none of these could a NTRK fusion be confirmed by NGS or FISH. IHC-positive cases showed various staining intensities and patterns including cytoplasmatic or nuclear staining. IHC-positivity was more common in squamous cell carcinoma (LUSC) (10.3%) and adenoid cystic carcinoma (40.0%), where the majority showed heterogeneous staining intensity. In comparison, only 1.1% of the adenocarcinomas were positive. IHC-positivity was also more common in men, but this association could be explained by the dominance of LUSC in TRK IHC-positive cases. Protein expression was not associated with differences in time to relapse or overall survival. Our study indicates that NTRK fusion is rare in early-stage lung cancer. Due to the high level of false positive cases with IHC, Pan-TRK IHC is less suited as a screening tool for NTRK-fusions in LUSC and adenoid cystic carcinoma.
Collapse
Affiliation(s)
- Anne Pernille Harlem Dyrbekk
- University of Oslo, NO-0316, Oslo, Norway.
- Department of Pathology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway.
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, NO-0310, Oslo, Norway.
| | - Abdirashid Ali Warsame
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
| | - Pål Suhrke
- Department of Pathology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Marianne Odnakk Ludahl
- Department of Microbiology/Division for Gene-Technology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Nermin Zecic
- Department of Microbiology/Division for Gene-Technology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Joakim Oliu Moe
- Department of Internal Medicine, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Marius Lund-Iversen
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
| | - Odd Terje Brustugun
- University of Oslo, NO-0316, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
- Department of Oncology, Vestre Viken Hospital Trust, NO-3004, Drammen, Norway
| |
Collapse
|
42
|
Karakas C, Giampoli EJ, Love T, Hicks DG, Velez MJ. Validation and interpretation of Pan-TRK immunohistochemistry: a practical approach and challenges with interpretation. Diagn Pathol 2024; 19:10. [PMID: 38200576 PMCID: PMC10777531 DOI: 10.1186/s13000-023-01426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Actionable, solid tumor activating neurotrophic receptor tyrosine kinase (NTRK) fusions are best detected via nucleic acid-based assays, while Pan-TRK immunohistochemistry (IHC) serves as a reasonable screening modality. We describe a practical and cost-effective approach to validate pan-TRK and discuss challenges that may be encountered. METHODS Pan-TRK Clone EPR17341 was validated in accordance with the 2014 consensus statements set forth by the College of American Pathologists. Confirmation of IHC results were guided by the European Society of Medical Oncology recommendations for standard methods to detect NTRK fusions. RESULTS Within 36 samples, ETV6-NTRK3 (n = 8) and TPM4-NTRK3 (n = 1) fusions were confirmed. ETV6-NTRK3 fusion positive cases revealed cytoplasmic and nuclear staining. A TPM4-NTRK3 fusion positive high grade malignant peripheral nerve sheath tumor revealed diffuse cytoplasmic staining. A high grade ovarian serous carcinoma revealed focal punctate staining and revealed a non-actionable NTRK1 truncation at intron 2. Diffuse cytoplasmic staining was observed in a case of fusion-negative polymorphous adenocarcinoma. Wild-type expression of TRK in pulmonary meningothelial-like nodules was discovered following a false-positive IHC interpretation. CONCLUSION Pan-TRK IHC shows some utility as a diagnostic and surrogate marker for NTRK screening however, physiologic or non-specific expression may lead to false-positive results.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellen J Giampoli
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tanzy Love
- Department of Biostatistics and Computation Biology, University of Rochester, Rochester, NY, USA
| | - David G Hicks
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Moises J Velez
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
43
|
Lim SM, Lee JB, Oya Y, Nutzinger J, Soo R. Path Less Traveled: Targeting Rare Driver Oncogenes in Non-Small-Cell Lung Cancer. JCO Oncol Pract 2024; 20:47-56. [PMID: 37733983 DOI: 10.1200/op.23.00273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
Over the past decade, tremendous efforts have been made in the development of targeted agents in non-small-cell lung cancer (NSCLC) with nonsquamous histology. Pivotal studies have used next-generation sequencing to select the patient population harboring oncogenic driver alterations that are targetable with targeted therapies. As treatment paradigm rapidly evolves for patients with rare oncogene-driven NSCLC, updated comprehensive overview of diagnostic approach and treatment options is paramount in clinical settings. In this review article, we discuss the epidemiology, molecular testing, and landmark clinical trials addressing the targeted agents for ROS1 rearrangement, METex14 skipping mutation, EGFR exon 20 insertion, KRAS G12C mutation, HER2 mutation, RET fusion, NTRK fusion, and BRAF mutations.
Collapse
Affiliation(s)
- Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yuko Oya
- Department of Respiratory Disease, Fujita Health University, Toyoake, Japan
| | - Jorn Nutzinger
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Ross Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| |
Collapse
|
44
|
Hyrcza MD, Martins-Filho SN, Spatz A, Wang HJ, Purgina BM, Desmeules P, Park PC, Bigras G, Jung S, Cutz JC, Xu Z, Berman DM, Sheffield BS, Cheung CC, Leduc C, Hwang DM, Ionescu D, Klonowski P, Chevarie-Davis M, Chami R, Lo B, Stockley TL, Tsao MS, Torlakovic E. Canadian Multicentric Pan-TRK (CANTRK) Immunohistochemistry Harmonization Study. Mod Pathol 2024; 37:100384. [PMID: 37972928 DOI: 10.1016/j.modpat.2023.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Tumor-agnostic testing for NTRK1-3 gene rearrangements is required to identify patients who may benefit from TRK inhibitor therapies. The overarching objective of this study was to establish a high-quality pan-TRK immunohistochemistry (IHC) screening assay among 18 large regional pathology laboratories across Canada using pan-TRK monoclonal antibody clone EPR17341 in a ring study design. TRK-fusion positive and negative tumor samples were collected from participating sites, with fusion status confirmed by panel next-generation sequencing assays. Each laboratory received: (1) unstained sections from 30 cases of TRK-fusion-positive or -negative tumors, (2) 2 types of reference standards: TRK calibrator slides and IHC critical assay performance controls (iCAPCs), (3) EPR17341 antibody, and (4) suggestions for developing IHC protocols. Participants were asked to optimize the IHC protocol for their instruments and detection systems by using iCAPCs, to stain the 30 study cases, and to report the percentage scores for membranous, cytoplasmic, and nuclear staining. TRK calibrators were used to assess the analytical sensitivity of IHC protocols developed by using the 2 reference standards. Fifteen of 18 laboratories achieved diagnostic sensitivity of 100% against next-generation sequencing. The diagnostic specificity ranged from 40% to 90%. The results did not differ significantly between positive scores based on the presence of any type of staining vs the presence of overall staining in ≥1% of cells. The median limit of detection measured by TRK calibrators was 76,000 molecules/cell (range 38,000 to >200,000 molecules/cell). Three different patterns of staining were observed in 19 TRK-positive cases, cytoplasmic-only in 7 samples, nuclear and cytoplasmic in 9 samples, and cytoplasmic and membranous in 3 samples. The Canadian multicentric pan-TRK study illustrates a successful strategy to accelerate the multicenter harmonization and implementation of pan-TRK immunohistochemical screening that achieves high diagnostic sensitivity by using laboratory-developed tests where laboratories used centrally developed reference materials. The measurement of analytical sensitivity by using TRK calibrators provided additional insights into IHC protocol performance.
Collapse
Affiliation(s)
- Martin D Hyrcza
- Department of Pathology and Laboratory Medicine, University of Calgary, Arnie Charbonneau Cancer Institute, Calgary, Alberta, Canada
| | - Sebastiao N Martins-Filho
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alan Spatz
- McGill University Health Center, Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Han-Jun Wang
- McGill University Health Center, Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Bibianna M Purgina
- Department of Pathology and Laboratory Medicine, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrice Desmeules
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| | - Paul C Park
- Shared Health, Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Sungmi Jung
- Department of Pathology, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Jean-Claude Cutz
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhaolin Xu
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David M Berman
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brandon S Sheffield
- Department of Pathology, William Osler Health System, Brampton, Ontario, Canada
| | - Carol C Cheung
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Charles Leduc
- Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - David M Hwang
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Diana Ionescu
- Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Klonowski
- Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine Diagnostic and Scientific Centre, Calgary, Alberta, Canada
| | - Myriam Chevarie-Davis
- Département de Pathologie et Biologie Cellulaire, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, Canada
| | - Rose Chami
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bryan Lo
- Department of Pathology and Laboratory Medicine, Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Tracy L Stockley
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Emina Torlakovic
- Department of Pathology and Laboratory Medicine, Royal University Hospital, Saskatchewan Health Authority, and College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
45
|
Kikuchi Y, Shimada H, Hatanaka Y, Kinoshita I, Ikarashi D, Nakatsura T, Kitano S, Naito Y, Tanaka T, Yamashita K, Oshima Y, Nanami T. Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1. Int J Clin Oncol 2024; 29:1-19. [PMID: 38019341 DOI: 10.1007/s10147-023-02430-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023]
Abstract
With advances in gene and protein analysis technologies, many target molecules that may be useful in cancer diagnosis have been reported. Therefore, the "Tumor Marker Study Group" was established in 1981 with the aim of "discovering clinically" useful molecules. Later, the name was changed to "Japanese Society for Molecular Tumor Marker Research" in 2000 in response to the remarkable progress in gene-related research. Currently, the world of cancer treatment is shifting from the era of representative tumor markers of each cancer type used for tumor diagnosis and treatment evaluation to the study of companion markers for molecular-targeted therapeutics that target cancer cells. Therefore, the first edition of the Molecular Tumor Marker Guidelines, which summarizes tumor markers and companion markers in each cancer type, was published in 2016. After publication of the first edition, the gene panel testing using next-generation sequencing became available in Japan in June 2019 for insured patients. In addition, immune checkpoint inhibitors have been indicated for a wide range of cancer types. Therefore, the 2nd edition of the Molecular Tumor Marker Guidelines was published in September 2021 to address the need to revise the guidelines. Here, we present an English version of the review (Part 1) of the Molecular Tumor Marker Guidelines, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan.
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Ichiro Kinoshita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Hokkaido, Japan
| | - Daiki Ikarashi
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigehisa Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoichi Naito
- Department of General Internal Medicine, National Cancer Center Hospital East, Chiba, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Tokyo, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Department of Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Tokyo, Japan
| | - Yoko Oshima
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| | - Tatsuki Nanami
- Division of General and Gastroenterological Surgery, Department of Surgery (Omori), Toho University, Tokyo, Japan
| |
Collapse
|
46
|
Malapelle U, Donne AD, Pagni F, Fraggetta F, Rocco EG, Pasello G, Perrone G, Pepe F, Vatrano S, Pignata S, Pinto C, Pruneri G, Russo A, Soto Parra HJ, Vallone S, Marchetti A, Troncone G, Novello S. Standardized and simplified reporting of next-generation sequencing results in advanced non-small-cell lung cancer: Practical indications from an Italian multidisciplinary group. Crit Rev Oncol Hematol 2024; 193:104217. [PMID: 38040072 DOI: 10.1016/j.critrevonc.2023.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Molecular biomarker testing is increasingly becoming standard of care for advanced non-small cell lung cancer (NSCLC). Tissue and liquid biopsy-based next-generation sequencing (NGS) is now highly recommended and has become an integral part of the routine management of advanced NSCLC patients. This highly sensitive approach can simultaneously and efficiently detect multiple biomarkers even in scant samples. However full optimization of NGS in clinical practice requires accurate reporting and interpretation of NGS findings. Indeed, as the number of NSCLC biomarkers continues to grow, clinical reporting of NGS data is becoming increasingly complex. In this scenario, achieving standardization, simplification, and improved readability of NGS reports is key to ensuring timely and appropriate treatment decisions. In an effort to address the complexity and lengthy reporting of NGS mutation results, an Italian group of 14 healthcare professionals involved in NSCLC management convened in 2023 to address the content, structure, and ease-of-use of NGS reporting practices and proposed a standard report template for clinical use This article presents the key discussion points addressed by the Italian working group and describes the essential elements of the report template.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | | | - Fabio Pagni
- Pathology Unit, University Bicocca of Milan, Italy
| | - Filippo Fraggetta
- Pathology Unit, Gravina Hospital Caltagirone, ASP Catania, Caltagirone, Italy
| | - Elena Guerini Rocco
- Anatomia Patologica, Istituto Europeo Oncologia, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giulia Pasello
- Dipartimento di Scienze Chirurgiche, Oncologichee Gastroenterologiche (DiSCOG) dell'Università di Padova, Oncologia 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Giuseppe Perrone
- Research Unit of Anatomical Pathology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Pepe
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Simona Vatrano
- Pathology Unit, Gravina Hospital Caltagirone, ASP Catania, Caltagirone, Italy
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale Napoli, Italy
| | - Carmine Pinto
- Medical Oncology, Comprehensive Cancer Centre, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giancarlo Pruneri
- Dipartimento di Diagnostica Avanzata, Fondazione IRCCS Istituto Tumori di Milano; Università degli Studi di Milano, Italy
| | - Antonio Russo
- Oncologia Medica, Università degli studi di Palermo, AOUP "Paolo Giaccone", Palermo, Italy
| | | | | | - Antonio Marchetti
- Unit of Diagnostic Molecular Oncology, Center for Advanced Studies and Technology, University of Chieti, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, Naples, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, Orbassano, TO, Italy.
| |
Collapse
|
47
|
de Castro JVA, Dos Santos PJS, Mantoan H, Baiocchi G, Bovolim G, Torrezan G, Corassa M, do Nascimento AG, De Brot M, Costa FD, De Brot L. Uterine Sarcoma With EML4::NTRK3 Fusion: A Spectrum of Mesenchymal Neoplasms Harboring Actionable Gene Fusions. Int J Gynecol Pathol 2024; 43:56-60. [PMID: 37668341 DOI: 10.1097/pgp.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
NTRK gene fusions are part of a paradigm shift in oncology, arising as one of the main genomic alterations with actionability in the so-called "agnostic setting." In gynecologic pathology, the recent description of uterine sarcoma resembling fibrosarcoma and with NTRK rearrangements ( NTRK -rearranged uterine sarcoma) highlights the importance of recognizing clinicopathological cues that can lead to genomic profiling. Herein, we report the case of a 43-year-old woman presenting with vaginal bleeding and pelvic mass. Histopathology of the tumor showed moderately atypical spindle cells arranged in long fascicles reminiscent of fibrosarcoma, along with immunohistochemical positivity for S100, CD34, and pan-tropomyosin receptor kinase. This prompted RNA-sequencing and the finding of a rare EML4::NTRK3 fusion. Clinical, histologic, and molecular findings are described, in addition to discussions regarding differential diagnoses and possible implications of the findings in clinical practice.
Collapse
Affiliation(s)
- João Víctor Alves de Castro
- Anatomic Pathology Department, A.C.Camargo Cancer Center (J.V.A.D.C., P.J.S.D.S., G.B., M.D.B., F.D.A.C., L.D.B., A.G.d.N.); Gynecology Oncology Unit, A.C.Camargo Cancer Center (H.M., G.B.); CIPE - Centro Internacional de Ensino e Pesquisa, A.C.Camargo Cancer Center (G.T.); and Medical Oncology Unit, A.C.Camargo Cancer Center (M.C.) São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Conde E, Hernandez S, Alonso M, Lopez-Rios F. Pan-TRK Immunohistochemistry to Optimize the Detection of NTRK Fusions: Removing the Hay When Looking for the Needle. Mod Pathol 2023; 36:100346. [PMID: 37757968 DOI: 10.1016/j.modpat.2023.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Esther Conde
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Madrid, Spain
| | - Susana Hernandez
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Alonso
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Madrid, Spain.
| |
Collapse
|
49
|
Cuello M, García-Rivello H, Huamán-Garaicoa F, Irigoyen-Piñeiros P, Lara-Torres CO, Rizzo MM, Ticona-Castro M, Trejo R, Zoroquiain P. Detection of NTRK gene fusions in solid tumors: recommendations from a Latin American group of oncologists and pathologists. Future Oncol 2023; 19:2669-2682. [PMID: 38088163 DOI: 10.2217/fon-2023-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
NTRK gene fusions have been detected in more than 25 types of tumors and their prevalence is approximately 0.3% in solid tumors. This low prevalence makes identifying patients who could benefit from TRK inhibitors a considerable challenge. Furthermore, while numerous papers on the evaluation of NTRK fusion genes are available, not all countries have guidelines that are suitable for their setting, as is the case with Latin America. Therefore, a group of oncologists and pathologists from several countries in Latin America (Argentina, Chile, Ecuador, Mexico, Peru and Uruguay) met to discuss and reach consensus on how to identify patients with NTRK gene fusions in solid tumors. To do so, they developed a practical algorithm, considering their specific situation and limitations.
Collapse
Affiliation(s)
- Mauricio Cuello
- Academic Unit of Oncology, Hospital de Clínicas Dr. Manuel Quintela, Montevideo, Uruguay
| | - Hernán García-Rivello
- Departmento of Clinical Pathology, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano, Buenos Aires, Argentina
| | - Fuad Huamán-Garaicoa
- Instituto de Salud Integral (ISAIN), Universidad Católica, Santiago de Guayaquil (Ecuador), Department of Pathology, Sociedad de Lucha Contra el Cáncer del Ecuador (SOLCA), Guayaquil, Ecuador
| | | | - César O Lara-Torres
- Laboratory of Molecular Pathology, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Manglio M Rizzo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, Derqui-Pilar, Argentina
- Department of Medical Oncology, Hospital Universitario Austral, Derqui-Pilar, Argentina
| | - Miguel Ticona-Castro
- Service of Medical Oncology, Hospital Nacional Edgardo Rebagliati Martins, EsSalud - Jesús María, Lima (Perú), Clínica Montefiori, La Molina, Lima, Perú
| | - Rogelio Trejo
- Department of Medical Oncology, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Pablo Zoroquiain
- Pathology Department, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
50
|
Wu S, Liu Y, Shi X, Zhou W, Zeng X. Elaboration of NTRK-rearranged colorectal cancer: Integration of immunoreactivity pattern, cytogenetic identity, and rearrangement variant. Dig Liver Dis 2023; 55:1757-1764. [PMID: 37142453 DOI: 10.1016/j.dld.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Fused information from protein status, DNA breakage, and transcripts are still limited because of the low rate of activated-NTRK in colorectal cancer (CRC). In total, 104 archived CRC tissue samples with dMMR were analyzed using immunohistochemistry (IHC), polymerase chain reaction (PCR), and pyrosequencing to mine the NTRK-enriched CRC group, and then subjected to NTRK fusion detection using pan-tyrosine kinase IHC, fluorescence in situ hybridization (FISH), and DNA-/RNA-based next generation sequencing (NGS) assays. Of the 15 NTRK-enriched CRCs, eight NTRK fusions (53.3%, 8/15), including two TPM3(e7)-NTRK1(e10), one TPM3(e5)-NTRK1(e11), one LMNA(e10)-NTRK1(e10), two EML4(e2)-NTRK3(e14), and two ETV6(e5)-NTRK3(e15) fusions, were identified. There was no immunoreactivity for ETV6-NTRK3 fusion. In addition to cytoplasmic staining found in six specimens, membrane positive (TPM3-NTRK1 fusion) and nuclear positive (LMNA-NTRK1 fusion) were also observed in two of them. Atypical FISH-positive types were observed in four cases. Unlike IHC, NTRK-rearranged tumors appeared homogeneous on FISH. ETV6-NTRK3 may be missed in pan-TRK IHC screening for CRC. Regarding break-apart FISH, NTRK detection is difficult because of the diversity of signal patterns. Further research is warranted to identify the characteristics of NTRK-fusion CRCs.
Collapse
Affiliation(s)
- Shafei Wu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Yuanyuan Liu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Xuan Zeng
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China.
| |
Collapse
|