1
|
Kurt F, Filiz E, Yildiz K, Akbudak MA. Genome-Wide Identification, Characterization and Expression Profiling of Potato ( Solanum tuberosum) Frataxin ( FH) Gene. Genes (Basel) 2023; 14:468. [PMID: 36833395 PMCID: PMC9957314 DOI: 10.3390/genes14020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Frataxin (FH) plays a crucial role in the biogenesis of mitochondria and the regulation of iron in the cells of various organisms. However, there has been very little research on FH in plants. In this study, the potato FH gene (StFH) was identified and characterized using a genome-wide approach, and its sequence was compared to those of FH genes from Arabidopsis, rice, and maize. The FH genes were found to have a lineage-specific distribution and were more conserved in monocots than in dicots. While multiple copies of FH genes have been reported in some species, including plants, only one isoform of FH was found in potato. The expression of StFH in leaves and roots was analyzed under two different abiotic stress conditions, and the results showed that StFH was upregulated more in leaves and that its expression levels increased with the severity of the stress. This is the first study to examine the expression of an FH gene under abiotic stress conditions.
Collapse
Affiliation(s)
- Firat Kurt
- Department of Plant Production and Technologies, Faculty of Applied Sciences, Mus Alparslan University, 49250 Mus, Turkey
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, Cilimli, 81750 Duzce, Turkey
| | - Kubra Yildiz
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey
| | - M. Aydın Akbudak
- Department of Agricultural Biotechnology, Akdeniz University, 07058 Antalya, Turkey
| |
Collapse
|
2
|
Singh N, Bhatla SC. Heme oxygenase-nitric oxide crosstalk-mediated iron homeostasis in plants under oxidative stress. Free Radic Biol Med 2022; 182:192-205. [PMID: 35247570 DOI: 10.1016/j.freeradbiomed.2022.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Plant growth under abiotic stress conditions significantly enhances intracellular generation of reactive oxygen species (ROS). Oxidative status of plant cells is directly affected by the modulation of iron homeostasis. Among mammals and plants, heme oxygenase-1 (HO-1) is a well-known antioxidant enzyme. It catalyzes oxygenation of heme, thereby producing Fe2+, CO and biliverdin as byproducts. The antioxidant potential of HO-1 is primarily due to its catalytic reaction byproducts. Biliverdin and bilirubin possess conjugated π-electrons which escalate the ability of these biomolecules to scavenge free radicals. CO also enhances the ROS scavenging ability of plants cells by upregulating catalase and peroxidase activity. Enhanced expression of HO-1 in plants under oxidative stress accompanies sequestration of iron in specialized iron storage proteins localized in plastids and mitochondria, namely ferritin for Fe3+ storage and frataxin for storage of Fe-S clusters, respectively. Nitric oxide (NO) crosstalks with HO-1 at multiple levels, more so in plants under oxidative stress, in order to maintain intracellular iron status. Formation of dinitrosyl-iron complexes (DNICs) significantly prevents Fenton reaction during oxidative stress. DNICs also release NO upon dissociation in target cells over long distance in plants. They also function as antioxidants against superoxide anions and lipidic free radicals. A number of NO-modulated transcription factors also facilitate iron homeostasis in plant cells. Plants facing oxidative stress exhibit modulation of lateral root formation by HO-1 through NO and auxin-dependent pathways. The present review provides an in-depth analysis of the structure-function relationship of HO-1 in plants and mammals, correlating them with their adaptive mechanisms of survival under stress.
Collapse
Affiliation(s)
- Neha Singh
- Department of Botany, Gargi College, University of Delhi, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. PHYSIOLOGIA PLANTARUM 2020; 168:256-277. [PMID: 30980533 DOI: 10.1111/ppl.12976] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/09/2019] [Accepted: 04/09/2019] [Indexed: 05/03/2023]
Abstract
There seems to be no report in the literature on the effect of melatonin (MT) in relieving the detrimental effects of combined application of salt stress (SS) and iron deficiency (ID). Therefore, the effect of MT on the accumulation/synthesis of endogenous nitric oxide (NO) and hydrogen sulphide (H2 S) and how far these molecules are involved in MT-improved tolerance to the combined application of ID and SS in pepper (Capsicum annuum L) were tested. Hence, two individual trials were set up. The treatments in the first experiment comprised: Control, ID (0.1 mM FeSO4 ), SS (100 mM NaCl) and ID + SS. The detrimental effects of combined stresses were more prominent than those by either of the single stress, with respect to growth, oxidative stress and antioxidant defense attributes. Single stress or both in combination improved the endogenous H2 S and NO, and foliar-applied MT (100 µM) led to a further increase in NO and H2 S levels. In the second experiment, 0.1 mM scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) and that of H2 S, hypotuarine (HT) were applied along with MT to get further evidence whether NO and H2 S are involved in MT-induced tolerance to ID and SS. MT combined with cPTIO and HT under a single or combined stress showed that NO effect was reversed by the NO scavenger, cPTIO, alone but the H2 S effect was inhibited by both scavengers. These findings suggested that tolerance to ID and SS induced by MT may be involved in downstream signal crosstalk between NO and H2 S.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - David Higgs
- Department of Biological & Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mohammed N Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
4
|
Zhu XF, Dong XY, Wu Q, Shen RF. Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana. PLANTA 2019; 250:1089-1102. [PMID: 31168664 DOI: 10.1007/s00425-019-03202-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/29/2019] [Indexed: 05/20/2023]
Abstract
The accumulation of NH4+ in response to Fe deficiency plays a role not only in the remobilization of Fe from the root cell wall, but also in the transportation of Fe from root to shoot. Ammonium (NH4+) plays an important role in phosphorus-deficiency responses in rice, but its role in responses to Fe deficiency remains unknown. Here, we demonstrate that the accumulation of NH4+ plays a pivotal role when Arabidopsis thaliana plants are subject to Fe deficiency. The Arabidopsis amt1-3 mutant, which is defective in endogenous NH4+ sensing, exhibited increased sensitivity to Fe deficiency compared to WT (wild type; Col-0). In addition, exogenous application of NH4+ significantly alleviated Fe deficiency symptoms in plants. NH4+ triggers the production of nitric oxide (NO), which then induces ferric-chelate reductase (FCR) activity and accelerates the release of Fe from the cell wall, especially hemicellulose, thereby increasing the availability of soluble Fe in roots. NH4+ also increases soluble Fe levels in shoots by upregulating genes involved in Fe translocation, such as FRD3 (FERRIC REDUCTASE DEFECTIVE3) and NAS1 (NICOTIANAMINE SYNTHASE1), hence, alleviating leaf chlorosis. Overall, NH4+ plays an important role in the reutilization of Fe from the cell wall and the redistribution of Fe from root to shoot in Fe-deficient Arabidopsis, a process dependent on NO accumulation.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Andresen E, Peiter E, Küpper H. Trace metal metabolism in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:909-954. [PMID: 29447378 DOI: 10.1093/jxb/erx465] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Many trace metals are essential micronutrients, but also potent toxins. Due to natural and anthropogenic causes, vastly different trace metal concentrations occur in various habitats, ranging from deficient to toxic levels. Therefore, one focus of plant research is on the response to trace metals in terms of uptake, transport, sequestration, speciation, physiological use, deficiency, toxicity, and detoxification. In this review, we cover most of these aspects for the essential micronutrients copper, iron, manganese, molybdenum, nickel, and zinc to provide a broader overview than found in other recent reviews, to cross-link aspects of knowledge in this very active research field that are often seen in a separated way. For example, individual processes of metal usage, deficiency, or toxicity often were not mechanistically interconnected. Therefore, this review also aims to stimulate the communication of researchers following different approaches, such as gene expression analysis, biochemistry, or biophysics of metalloproteins. Furthermore, we highlight recent insights, emphasizing data obtained under physiologically and environmentally relevant conditions.
Collapse
Affiliation(s)
- Elisa Andresen
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, Ceské Budejovice, Czech Republic
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Plant Nutrition Laboratory, Betty-Heimann-Strasse, Halle (Saale), Germany
| | - Hendrik Küpper
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Marvasi M. Potential use and perspectives of nitric oxide donors in agriculture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1065-1072. [PMID: 27786356 DOI: 10.1002/jsfa.8117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/03/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Massimiliano Marvasi
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, London, NW4 4BT, UK
| |
Collapse
|
7
|
Zhou C, Liu Z, Zhu L, Ma Z, Wang J, Zhu J. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide. Int J Mol Sci 2016; 17:ijms17111777. [PMID: 27792144 PMCID: PMC5133778 DOI: 10.3390/ijms17111777] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023] Open
Abstract
Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana. In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous melatonin significantly increased the soluble Fe content of shoots and roots, and decreased the levels of root cell wall Fe bound to pectin and hemicellulose, thus alleviating Fe deficiency-induced chlorosis. Intriguingly, melatonin treatments induced a significant increase of nitric oxide (NO) accumulation in roots of Fe-deficient plants, but not in those of polyamine-deficient (adc2-1 and d-arginine-treated) plants. Moreover, the melatonin-alleviated leaf chlorosis was blocked in the polyamine- and NO-deficient (nia1nia2noa1 and c-PTIO-treated) plants, and the melatonin-induced Fe remobilization was largely inhibited. In addition, the expression of some Fe acquisition-related genes, including FIT1, FRO2, and IRT1 were significantly up-regulated by melatonin treatments, whereas the enhanced expression of these genes was obviously suppressed in the polyamine- and NO-deficient plants. Collectively, our results provide evidence to support the view that melatonin can increase the tolerance of plants to Fe deficiency in a process dependent on the polyamine-induced NO production under Fe-deficient conditions.
Collapse
Affiliation(s)
- Cheng Zhou
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Zhi Liu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Lin Zhu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Zhongyou Ma
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Jianfei Wang
- Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Jian Zhu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Shanmugam V, Wang YW, Tsednee M, Karunakaran K, Yeh KC. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:464-77. [PMID: 26333047 DOI: 10.1111/tpj.13011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) deficiency is a common agricultural problem that affects both the productivity and nutritional quality of plants. Thus, identifying the key factors involved in the tolerance of Fe deficiency is important. In the present study, the zir1 mutant, which is glutathione deficient, was found to be more sensitive to Fe deficiency than the wild type, and grew poorly in alkaline soil. Other glutathione-deficient mutants also showed various degrees of sensitivity to Fe-limited conditions. Interestingly, we found that the glutathione level was increased under Fe deficiency in the wild type. By contrast, blocking glutathione biosynthesis led to increased physiological sensitivity to Fe deficiency. On the other hand, overexpressing glutathione enhanced the tolerance to Fe deficiency. Under Fe-limited conditions, glutathione-deficient mutants, zir1, pad2 and cad2 accumulated lower levels of Fe than the wild type. The key genes involved in Fe uptake, including IRT1, FRO2 and FIT, are expressed at low levels in zir1; however, a split-root experiment suggested that the systemic signals that govern the expression of Fe uptake-related genes are still active in zir1. Furthermore, we found that zir1 had a lower accumulation of nitric oxide (NO) and NO reservoir S-nitrosoglutathione (GSNO). Although NO is a signaling molecule involved in the induction of Fe uptake-related genes during Fe deficiency, the NO-mediated induction of Fe-uptake genes is dependent on glutathione supply in the zir1 mutant. These results provide direct evidence that glutathione plays an essential role in Fe-deficiency tolerance and NO-mediated Fe-deficiency signaling in Arabidopsis.
Collapse
Affiliation(s)
| | - Yi-Wen Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Krithika Karunakaran
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
9
|
Turowski VR, Aknin C, Maliandi MV, Buchensky C, Leaden L, Peralta DA, Busi MV, Araya A, Gomez-Casati DF. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis. PLoS One 2015; 10:e0141443. [PMID: 26517126 PMCID: PMC4636843 DOI: 10.1371/journal.pone.0141443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/07/2015] [Indexed: 11/19/2022] Open
Abstract
Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S) cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR) and ferredoxin (Fd), two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.
Collapse
Affiliation(s)
- Valeria R. Turowski
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Cindy Aknin
- UMR5234 Microbiologie Fondamentale et Pathogénicité, Centre National de la Recherche Scientifique and Université Bordeaux-Segalen, 146 rue Léo Saignat, 33076, Bordeaux cedex, France
| | - Maria V. Maliandi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH) CONICET/UNSAM, Camino de Circunvaación Km 6, 7130, Chascomús, Argentina
| | - Celeste Buchensky
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Laura Leaden
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Diego A. Peralta
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Maria V. Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Alejandro Araya
- Centre National de la Recherche Scientifique & UMR 1332 –Biologie du Fruit et Pathologie, Institute National de la Recherche Agronomique (INRA) Bordeaux Aquitaine, 71 avenue Edouard Bourlaux, 33882, Villenave D’Ornon, France
| | - Diego F. Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- * E-mail:
| |
Collapse
|
10
|
Li H, Song JB, Zhao WT, Yang ZM. AtHO1 is Involved in Iron Homeostasis in an NO-Dependent Manner. ACTA ACUST UNITED AC 2013; 54:1105-17. [DOI: 10.1093/pcp/pct063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Kulik A, Anielska-Mazur A, Bucholc M, Koen E, Szymańska K, Żmieńko A, Krzywińska E, Wawer I, McLoughlin F, Ruszkowski D, Figlerowicz M, Testerink C, Skłodowska A, Wendehenne D, Dobrowolska G. SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress. PLANT PHYSIOLOGY 2012; 160:868-83. [PMID: 22885934 PMCID: PMC3461561 DOI: 10.1104/pp.112.194472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/09/2012] [Indexed: 05/03/2023]
Abstract
Cadmium ions are notorious environmental pollutants. To adapt to cadmium-induced deleterious effects plants have developed sophisticated defense mechanisms. However, the signaling pathways underlying the plant response to cadmium are still elusive. Our data demonstrate that SnRK2s (for SNF1-related protein kinase2) are transiently activated during cadmium exposure and are involved in the regulation of plant response to this stress. Analysis of tobacco (Nicotiana tabacum) Osmotic Stress-Activated Protein Kinase activity in tobacco Bright Yellow 2 cells indicates that reactive oxygen species (ROS) and nitric oxide, produced mainly via an l-arginine-dependent process, contribute to the kinase activation in response to cadmium. SnRK2.4 is the closest homolog of tobacco Osmotic Stress-Activated Protein Kinase in Arabidopsis (Arabidopsis thaliana). Comparative analysis of seedling growth of snrk2.4 knockout mutants versus wild-type Arabidopsis suggests that SnRK2.4 is involved in the inhibition of root growth triggered by cadmium; the mutants were more tolerant to the stress. Measurements of the level of three major species of phytochelatins (PCs) in roots of plants exposed to Cd(2+) showed a similar (PC2, PC4) or lower (PC3) concentration in snrk2.4 mutants in comparison to wild-type plants. These results indicate that the enhanced tolerance of the mutants does not result from a difference in the PCs level. Additionally, we have analyzed ROS accumulation in roots subjected to Cd(2+) treatment. Our data show significantly lower Cd(2+)-induced ROS accumulation in the mutants' roots. Concluding, the obtained results indicate that SnRK2s play a role in the regulation of plant tolerance to cadmium, most probably by controlling ROS accumulation triggered by cadmium ions.
Collapse
Affiliation(s)
- Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Anna Anielska-Mazur
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Emmanuel Koen
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Katarzyna Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Agnieszka Żmieńko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | | | - Fionn McLoughlin
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Dariusz Ruszkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Marek Figlerowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Christa Testerink
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Aleksandra Skłodowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - David Wendehenne
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02–106 Warsaw, Poland (A.K., A.A.-M., M.B., K.S., E.Kr., I.W., G.D.); Unité Mixte de Recherche Institut National de la Recherche Agronomique 1088/Centre National de la Recherche Scientifique 5184/Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon cedex, France (E.Ko., D.W.); Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61–704 Poznan, Poland (A.Ż., M.F.); Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL–1090GE Amsterdam, The Netherlands (F.M., C.T.); and Faculty of Biology, Laboratory of Environmental Pollution Analysis, University of Warsaw, 02–096 Warsaw, Poland (D.R., A.S.)
| |
Collapse
|
12
|
Koen E, Szymańska K, Klinguer A, Dobrowolska G, Besson-Bard A, Wendehenne D. Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency. PLANT SIGNALING & BEHAVIOR 2012; 7:1246-50. [PMID: 22902693 PMCID: PMC3493405 DOI: 10.4161/psb.21548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mounting evidence indicate that nitric oxide (NO) acts as a signaling molecule mediating iron deficiency responses through the upregulation of the expression of iron uptake-related genes. Accordingly, NO donors such as nitrosoglutathione (GSNO) were reported to improve the fitness of plants grown under iron deficiency. Here, we showed that glutathione, a by-product of GSNO, triggered the upregulation of the expression of iron uptake- and transport-related gene and an increase of iron concentration in Arabidopsis thaliana seedlings facing iron deficiency. Furthermore, we provided evidence that under iron deficiency, NO released by GSNO did not improve the root iron concentration but impacted the content of copper. Collectively, our data highlight the complexity of interpreting data based on the use of NO donors when investigating the role of NO in iron homeostasis.
Collapse
Affiliation(s)
- Emmanuel Koen
- Université de Bourgogne; UMR 1347 Agroécologie; Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes; Dijon, France
- Institute of Biochemistry and Biophysics; Polish Academy of Sciences; Warsaw, Poland
| | - Katarzyna Szymańska
- Institute of Biochemistry and Biophysics; Polish Academy of Sciences; Warsaw, Poland
| | - Agnès Klinguer
- Université de Bourgogne; UMR 1347 Agroécologie; Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes; Dijon, France
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics; Polish Academy of Sciences; Warsaw, Poland
| | - Angélique Besson-Bard
- Université de Bourgogne; UMR 1347 Agroécologie; Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes; Dijon, France
| | - David Wendehenne
- Université de Bourgogne; UMR 1347 Agroécologie; Pôle Mécanisme et Gestion des Interactions Plantes-microorganismes; Dijon, France
- Correspondence to: David Wendehenne,
| |
Collapse
|
13
|
Luo BF, Du ST, Lu KX, Liu WJ, Lin XY, Jin CW. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3127-36. [PMID: 22378950 PMCID: PMC3350926 DOI: 10.1093/jxb/ers036] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) management is a promising agronomic strategy to minimize cadmium (Cd) contamination in crops. However, it is unclear how N affects Cd uptake by plants. Wild-type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) plants were grown in pH-buffered hydroponic culture to investigate the direct effect of N-form on Cd uptake. Wild-type plants fed NO₃⁻ accumulated more Cd than plants fed NH₄⁺. Iron uptake and LeIRT1 expression in roots were also greater in plants fed NO₃⁻. However, in mutant T3238fer which loses FER function, LeIRT1 expression in roots was almost completely terminated, and the difference between NO₃⁻ and NH₄⁺ treatments vanished. As a result, the N-form had no effect on Cd uptake in this mutant. Furthermore, suppression of LeIRT1 expression by NO synthesis inhibition with either tungstate or L-NAME, also substantially inhibited Cd uptake in roots, and the difference between N-form treatments was diminished. Considering all of these findings, it was concluded that the up-regulation of the Fe uptake system was responsible for NO₃⁻-facilitated Cd accumulation in plants.
Collapse
Affiliation(s)
- Bing Fang Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Shao Ting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310035, China
| | - Kai Xing Lu
- Laboratory of Plant Molecular Biology, College of Science and Technology Ningbo University, Ningbo, 315211, China
| | - Wen Jing Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xian Yong Lin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Shanmugam V, Tsednee M, Yeh KC. ZINC TOLERANCE INDUCED BY IRON 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1006-17. [PMID: 22066515 DOI: 10.1111/j.1365-313x.2011.04850.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Zinc is an essential micronutrient for plants, but it is toxic in excess concentrations. In Arabidopsis, additional iron (Fe) can increase Zn tolerance. We isolated a mutant, zinc tolerance induced by iron 1, designated zir1, with a defect in Fe-mediated Zn tolerance. Using map-based cloning and genetic complementation, we identified that zir1 has a mutation of glutamate to lysine at position 385 on γ-glutamylcysteine synthetase (GSH1), the enzyme involved in glutathione biosynthesis. The zir1 mutant contains only 15% of the wild-type glutathione level. Blocking glutathione biosynthesis in wild-type plants by a specific inhibitor of GSH1, buthionine sulfoximine, resulted in loss of Fe-mediated Zn tolerance, which provides further evidence that glutathione plays an essential role in Fe-mediated Zn tolerance. Two glutathione-deficient mutant alleles of GSH1, pad2-1 and cad2-1, which contain 22% and 39%, respectively, of the wild-type glutathione level, revealed that a minimal glutathione level between 22 and 39% of the wild-type level is required for Fe-mediated Zn tolerance. Under excess Zn and Fe, the recovery of shoot Fe contents in pad2-1 and cad2-1 was lower than that of the wild type. However, the phytochelatin-deficient mutant cad1-3 showed normal Fe-mediated Zn tolerance. These results indicate a specific role of glutathione in Fe-mediated Zn tolerance. The induced accumulation of glutathione in response to excess Zn and Fe suggests that glutathione plays a specific role in Fe-mediated Zn tolerance in Arabidopsis. We conclude that glutathione is required for the cross-homeostasis between Zn and Fe in Arabidopsis.
Collapse
Affiliation(s)
- Varanavasiappan Shanmugam
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
15
|
Busi MV, Gomez-Casati DF. Exploring frataxin function. IUBMB Life 2012; 64:56-63. [PMID: 22095894 DOI: 10.1002/iub.577] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 08/23/2011] [Indexed: 11/09/2022]
Abstract
Frataxin is a nuclear-encoded mitochondrial protein highly conserved in prokaryotes and eukaryotes. Its deficiency was initially described as the phenotype of Friedreich's ataxia, an autosomal recessive disease in humans. Although several functions have been described for frataxin, that is, involvement in Fe-S cluster and heme synthesis, energy conversion and oxidative phosphorylation, iron handling and response to oxidative damage, its precise function remains unclear. Although there is a general consensus on the participation of frataxin in the maintenance of cellular iron homeostasis and in iron metabolism, this protein may have other specific functions in different tissues and organisms.
Collapse
Affiliation(s)
- Maria V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | | |
Collapse
|
16
|
Ramirez L, Simontacchi M, Murgia I, Zabaleta E, Lamattina L. Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:582-92. [PMID: 21893255 DOI: 10.1016/j.plantsci.2011.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 05/08/2023]
Abstract
Iron is a key element in plant nutrition. Iron deficiency as well as iron overload results in serious metabolic disorders that affect photosynthesis, respiration and general plant fitness with direct consequences on crop production. More than 25% of the cultivable land possesses low iron availability due to high pH (calcareous soils). Plant biologists are challenged by this concern and aimed to find new avenues to ameliorate plant responses and keep iron homeostasis under control even at wide range of iron availability in various soils. For this purpose, detailed knowledge of iron uptake, transport, storage and interactions with cellular compounds will help to construct a more complete picture of its role as essential nutrient. In this review, we summarize and describe the recent findings involving four central players involved in keeping cellular iron homeostasis in plants: nitric oxide, ferritin, frataxin and nitrosyl iron complexes. We attempt to highlight the interactions among these actors in different scenarios occurring under iron deficiency or iron overload, and discuss their counteracting and/or coordinating actions leading to the control of iron homeostasis.
Collapse
Affiliation(s)
- Leonor Ramirez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, CC 1245 Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
17
|
Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D. S-nitrosylation: an emerging post-translational protein modification in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:527-533. [PMID: 21893248 DOI: 10.1016/j.plantsci.2011.02.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 05/26/2023]
Abstract
Increasing evidences support the assumption that nitric oxide (NO) acts as a physiological mediator in plants. Understanding its pleiotropic effects requires a deep analysis of the molecular mechanisms underlying its mode of action. In the recent years, efforts have been made in the identification of plant proteins modified by NO at the post-translational level, notably by S-nitrosylation. This reversible process involves the formation of a covalent bond between NO and reactive cysteine residues. This research has now born fruits and numerous proteins regulated by S-nitrosylation have been identified and characterized. This review describes the basic principle of S-nitrosylation as well as the Biotin Switch Technique and its recent adaptations allowing the identification of S-nitrosylated proteins in physiological contexts. The impact of S-nitrosylation on the structure/function of selected proteins is further discussed.
Collapse
Affiliation(s)
- Jéremy Astier
- UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, F-21065 Dijon cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
19
|
Nouet C, Motte P, Hanikenne M. Chloroplastic and mitochondrial metal homeostasis. TRENDS IN PLANT SCIENCE 2011; 16:395-404. [PMID: 21489854 DOI: 10.1016/j.tplants.2011.03.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/25/2011] [Accepted: 03/07/2011] [Indexed: 05/03/2023]
Abstract
Transition metal deficiency has a strong impact on the growth and survival of an organism. Indeed, transition metals, such as iron, copper, manganese and zinc, constitute essential cofactors for many key cellular functions. Both photosynthesis and respiration rely on metal cofactor-mediated electron transport chains. Chloroplasts and mitochondria are, therefore, organelles with high metal ion demand and represent essential components of the metal homeostasis network in photosynthetic cells. In this review, we describe the metal requirements of chloroplasts and mitochondria, the acclimation of their functions to metal deficiency and recent advances in our understanding of their contributions to cellular metal homeostasis, the control of the cellular redox status and the synthesis of metal cofactors.
Collapse
Affiliation(s)
- Cécile Nouet
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering, Department of Life Sciences (B22), University of Liège, Belgium
| | | | | |
Collapse
|
20
|
Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. PLANT PHYSIOLOGY 2010. [PMID: 20699398 DOI: 10.1104/pp110.161109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompanied by up-regulation of root FCR activity and the expression of the basic helix-loop-helix transcription factor (FIT) and the ferric reduction oxidase 2 (FRO2) genes. This was further stimulated by application of exogenous auxin (α-naphthaleneacetic acid) or NO donor (S-nitrosoglutathione [GSNO]), but suppressed by either polar auxin transport inhibition with 1-naphthylphthalamic acid or NO scavenging with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, tungstate, or N(ω)-nitro-L-arginine methyl ester hydrochloride. On the other hand, the root FCR activity, NO level, and gene expression of FIT and FRO2 were higher in auxin-overproducing mutant yucca under Fe deficiency, which were sharply restrained by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide treatment. The opposite response was observed in a basipetal auxin transport impaired mutant aux1-7, which was slightly rescued by exogenous GSNO application. Furthermore, Fe deficiency or α-naphthaleneacetic acid application failed to induce Fe-deficiency responses in noa1 and nial nia2, two mutants with reduced NO synthesis, but root FCR activities in both mutants could be significantly elevated by GSNO. The inability to induce NO burst and FCR activity was further verified in a double mutant yucca noa1 with elevated auxin production and reduced NO accumulation. Therefore, we presented a novel signaling pathway where NO acts downstream of auxin to activate root FCR activity under Fe deficiency in Arabidopsis.
Collapse
Affiliation(s)
- Wei Wei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:810-9. [PMID: 20699398 PMCID: PMC2948983 DOI: 10.1104/pp.110.161109] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/06/2010] [Indexed: 05/17/2023]
Abstract
In response to iron (Fe) deficiency, dicots employ a reduction-based mechanism by inducing ferric-chelate reductase (FCR) at the root plasma membrane to enhance Fe uptake. However, the signal pathway leading to FCR induction is still unclear. Here, we found that the Fe-deficiency-induced increase of auxin and nitric oxide (NO) levels in wild-type Arabidopsis (Arabidopsis thaliana) was accompanied by up-regulation of root FCR activity and the expression of the basic helix-loop-helix transcription factor (FIT) and the ferric reduction oxidase 2 (FRO2) genes. This was further stimulated by application of exogenous auxin (α-naphthaleneacetic acid) or NO donor (S-nitrosoglutathione [GSNO]), but suppressed by either polar auxin transport inhibition with 1-naphthylphthalamic acid or NO scavenging with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, tungstate, or N(ω)-nitro-L-arginine methyl ester hydrochloride. On the other hand, the root FCR activity, NO level, and gene expression of FIT and FRO2 were higher in auxin-overproducing mutant yucca under Fe deficiency, which were sharply restrained by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide treatment. The opposite response was observed in a basipetal auxin transport impaired mutant aux1-7, which was slightly rescued by exogenous GSNO application. Furthermore, Fe deficiency or α-naphthaleneacetic acid application failed to induce Fe-deficiency responses in noa1 and nial nia2, two mutants with reduced NO synthesis, but root FCR activities in both mutants could be significantly elevated by GSNO. The inability to induce NO burst and FCR activity was further verified in a double mutant yucca noa1 with elevated auxin production and reduced NO accumulation. Therefore, we presented a novel signaling pathway where NO acts downstream of auxin to activate root FCR activity under Fe deficiency in Arabidopsis.
Collapse
|
22
|
Zheng SJ. Iron homeostasis and iron acquisition in plants: maintenance, functions and consequences. ANNALS OF BOTANY 2010; 105:799-800. [PMID: 20421236 PMCID: PMC2859926 DOI: 10.1093/aob/mcq082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Shao Jian Zheng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Zheng SJ. Iron homeostasis and iron acquisition in plants: maintenance, functions and consequences. ANNALS OF BOTANY 2010. [PMID: 20421236 PMCID: PMC2876019 DOI: 10.1093/aob/mcq104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Shao Jian Zheng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|