1
|
Li Z, Zhang Y, Liu T, Ding X, Xue Y, Zhu J. Analysis of regulatory networks provides new insights into the mechanism of rubber synthesis in Lactuca serriola. Int J Biol Macromol 2025; 305:141077. [PMID: 39956227 DOI: 10.1016/j.ijbiomac.2025.141077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
The rubber tree currently serves as the sole source of natural rubber (NR). However, its limited cultivation range and the increasing global NR demand necessitate the development of an alternative crop for NR production. This study reports that Lactuca serriola can produce high-quality NR suitable for industrial rubber demand. The rubber molecular weight of L. serriola exceeds 750 kg/mol, with NR production occurring throughout the entire plant. Furthermore, treatments with ethylene, methyl jasmonate (MeJA), and salicylic acid (SA) significantly increased rubber content in L. serriola. Transcriptome analysis revealed that ethylene and MeJA treatments affected gene expression associated with isopentenyl pyrophosphate (IPP) synthesis, while ethylene and SA treatments influenced gene expression involved in sucrose transportation and metabolism. Through Pearson correlation coefficient (PCC) analysis and virus-induced gene silencing, several transcription factors and LsCPTs/LsCPTL were identified as key regulators of rubber synthesis in L. serriola. Yeast two-hybrid and co-expression assays suggested that LsCPTL anchors LsCPT1 and LsCPT2 to the endoplasmic reticulum, forming a protein complex that regulates rubber synthesis. This study provides a preliminary analysis of the mechanism by which plant hormones regulate rubber synthesis in L. serriola, revealing its significant potential as an alternative to the rubber tree for NR production.
Collapse
Affiliation(s)
- Zhongqing Li
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Yao Zhang
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Tao Liu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Xiaoqin Ding
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Yanhua Xue
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, China.
| |
Collapse
|
2
|
Cheng H, Song X, Hu Y, Wu T, Yang Q, An Z, Feng S, Deng Z, Wu W, Zeng X, Tu M, Wang X, Huang H. Chromosome-level wild Hevea brasiliensis genome provides new tools for genomic-assisted breeding and valuable loci to elevate rubber yield. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1058-1072. [PMID: 36710373 PMCID: PMC10106855 DOI: 10.1111/pbi.14018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 05/04/2023]
Abstract
The rubber tree (Hevea brasiliensis) is grown in tropical regions and is the major source of natural rubber. Using traditional breeding approaches, the latex yield has increased by sixfold in the last century. However, the underlying genetic basis of rubber yield improvement is largely unknown. Here, we present a high-quality, chromosome-level genome sequence of the wild rubber tree, the first report on selection signatures and a genome-wide association study (GWAS) of its yield traits. Population genomic analysis revealed a moderate population divergence between the Wickham clones and wild accessions. Interestingly, it is suggestive that H. brasiliensis and six relatives of the Hevea genus might belong to the same species. The selective sweep analysis found 361 obvious signatures in the domesticated clones associated with 245 genes. In a 15-year field trial, GWAS identified 155 marker-trait associations with latex yield, in which 326 candidate genes were found. Notably, six genes related to sugar transport and metabolism, and four genes related to ethylene biosynthesis and signalling are associated with latex yield. The homozygote frequencies of the causal nonsynonymous SNPs have been greatly increased under selection, which may have contributed to the fast latex yield improvement during the short domestication history. Our study provides insights into the genetic basis of the latex yield trait and has implications for genomic-assisted breeding by offering valuable resources in this new domesticated crop.
Collapse
Affiliation(s)
- Han Cheng
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Xiaoming Song
- School of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Yanshi Hu
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Tingkai Wu
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Qihang Yang
- School of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zewei An
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Shuyan Feng
- School of Life Sciences/Center for Genomics and Bio‐computingNorth China University of Science and TechnologyTangshanHebeiChina
| | - Zhi Deng
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Wenguan Wu
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Xia Zeng
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Min Tu
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Xiyin Wang
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| | - Huasun Huang
- Rubber Research InstituteChinese Academy of Tropical Agricultural ScienceHaikouHainanChina
- Key Laboratory of Biology and Genetic Resources of Rubber TreeMinistry of Agriculture and Rural AffairsHaikouChina
| |
Collapse
|
3
|
Guo B, Dai L, Yang H, Zhao X, Liu M, Wang L. Comprehensive Analysis of BR Receptor Expression under Hormone Treatment in the Rubber Tree ( Hevea brasiliensis Muell. Arg.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1280. [PMID: 36986969 PMCID: PMC10058276 DOI: 10.3390/plants12061280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Brassinosteroids (BRs) are important for plant growth and development, with BRI1 and BAK1 kinases playing an important role in BR signal transduction. Latex from rubber trees is crucial for industry, medicine and defense use. Therefore, it is beneficial to characterize and analyze HbBRI1 and HbBAK1 genes to improve the quality of the resources obtained from Hevea brasiliensis (rubber tree). Based on bioinformatics predictions and rubber tree database, five HbBRI1s with four HbBAK1s were identified and named HbBRI1~HbBRL3 and HbBAK1a~HbBAK1d, respectively, which were clustered in two groups. HbBRI1 genes, except for HbBRL3, exclusively contain introns, which is convenient for responding to external factors, whereas HbBAK1b/c/d contain 10 introns and 11 exons, and HbBAK1a contains eight introns. Multiple sequence analysis showed that HbBRI1s include typical domains of the BRI1 kinase, indicating that HbBRI1s belong to BRI1. HbBAK1s that possess LRR and STK_BAK1_like domains illustrate that HbBAK1s belong to the BAK1 kinase. BRI1 and BAK1 play an important role in regulating plant hormone signal transduction. Analysis of the cis-element of all HbBRI1 and HbBAK1 genes identified hormone response, light regulation and abiotic stress elements in the promoters of HbBRI1s and HbBAK1s. The results of tissue expression patterns indicate that HbBRL1/2/3/4 and HbBAK1a/b/c are highly expressed in the flower, especially HbBRL2-1. The expression of HbBRL3 is extremely high in the stem, and the expression of HbBAK1d is extremely high in the root. Expression profiles with different hormones show that HbBRI1 and HbBAK1 genes are extremely induced by different hormone stimulates. These results provide theoretical foundations for further research on the functions of BR receptors, especially in response to hormone signals in the rubber tree.
Collapse
|
4
|
Bertrand H, Lapointe L. Bulb growth potential is independent of leaf longevity for the spring ephemeral Erythronium americanum Ker-Gawl. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:489-505. [PMID: 36308523 DOI: 10.1093/jxb/erac432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Growth in most spring ephemerals is decreased under warmer temperatures. Although photosynthetic activities are improved at warmer temperatures, leaves senesce earlier, which prevents the bulb from reaching a larger size. A longer leaf life duration during a warm spring, therefore, may improve bulb mass. We tested this hypothesis by modulating leaf life span of Erythronium americanum through the application of Promalin® (PRO; cytokinins and gibberellins) that prolonged or silver thiosulfate (STS) that reduced leaf duration. Gas exchange and chlorophyll fluorescence were measured along with leaf and bulb carbohydrate concentrations. Plants were also pulse labelled with 13CO2 to monitor sugar transport to the bulb. Lower photosynthetic rates and shorter leaf life span of STS plants reduced the amount of carbon that they assimilated during the season, resulting in a smaller bulb compared with control plants. PRO plants maintained their photosynthetic rates for a longer period than control plants, yet final bulb biomass did not differ between them. We conclude that seasonal growth for E. americanum is not limited by leaf life duration under warm growing conditions, but rather by limited sink growth capacity. Under global warming, spring geophytes might be at risk of being reduced in size and, eventually, reproducing less frequently.
Collapse
Affiliation(s)
- Hugo Bertrand
- Département de biologie and Centre d'étude de la forêt, Université Laval, Québec, Québec, G1V0A6, Canada
| | - Line Lapointe
- Département de biologie and Centre d'étude de la forêt, Université Laval, Québec, Québec, G1V0A6, Canada
| |
Collapse
|
5
|
Ajith SV, Nair NN, Sathik MBM, Meenakumari T. Breeding for low-temperature stress tolerance in Hevea brasiliensis: screening of newly developed clones using latex biochemical parameters. J RUBBER RES 2022. [DOI: 10.1007/s42464-021-00143-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Francisco FR, Aono AH, da Silva CC, Gonçalves PS, Scaloppi Junior EJ, Le Guen V, Fritsche-Neto R, Souza LM, de Souza AP. Unravelling Rubber Tree Growth by Integrating GWAS and Biological Network-Based Approaches. FRONTIERS IN PLANT SCIENCE 2021; 12:768589. [PMID: 34992619 PMCID: PMC8724537 DOI: 10.3389/fpls.2021.768589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
Hevea brasiliensis (rubber tree) is a large tree species of the Euphorbiaceae family with inestimable economic importance. Rubber tree breeding programs currently aim to improve growth and production, and the use of early genotype selection technologies can accelerate such processes, mainly with the incorporation of genomic tools, such as marker-assisted selection (MAS). However, few quantitative trait loci (QTLs) have been used successfully in MAS for complex characteristics. Recent research shows the efficiency of genome-wide association studies (GWAS) for locating QTL regions in different populations. In this way, the integration of GWAS, RNA-sequencing (RNA-Seq) methodologies, coexpression networks and enzyme networks can provide a better understanding of the molecular relationships involved in the definition of the phenotypes of interest, supplying research support for the development of appropriate genomic based strategies for breeding. In this context, this work presents the potential of using combined multiomics to decipher the mechanisms of genotype and phenotype associations involved in the growth of rubber trees. Using GWAS from a genotyping-by-sequencing (GBS) Hevea population, we were able to identify molecular markers in QTL regions with a main effect on rubber tree plant growth under constant water stress. The underlying genes were evaluated and incorporated into a gene coexpression network modelled with an assembled RNA-Seq-based transcriptome of the species, where novel gene relationships were estimated and evaluated through in silico methodologies, including an estimated enzymatic network. From all these analyses, we were able to estimate not only the main genes involved in defining the phenotype but also the interactions between a core of genes related to rubber tree growth at the transcriptional and translational levels. This work was the first to integrate multiomics analysis into the in-depth investigation of rubber tree plant growth, producing useful data for future genetic studies in the species and enhancing the efficiency of the species improvement programs.
Collapse
Affiliation(s)
- Felipe Roberto Francisco
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla Cristina da Silva
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo S. Gonçalves
- Center of Rubber Tree and Agroforestry Systems, Agronomic Institute (IAC), Votuporanga, Brazil
| | | | - Vincent Le Guen
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Roberto Fritsche-Neto
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Livia Moura Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- São Francisco University (USF), Itatiba, Brazil
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
7
|
Johnson AR, Moghe GD, Frank MH. Growing a glue factory: Open questions in laticifer development. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102096. [PMID: 34461600 DOI: 10.1016/j.pbi.2021.102096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/25/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Latex-containing cells called laticifers are present in at least 41 flowering plant families and are thought to have convergently evolved at least 12 times. These cells are known to function in defense, but little is known about the molecular genetic mechanisms of their development. The expansion of laticifers into their distinctive tube shape can occur through two distinct mechanisms, cell fusion and intrusive growth. The mechanism and extent of intrusive laticifer growth are still being investigated. Hormonal regulation by jasmonic acid and ethylene is important for both laticifer differentiation and latex biosynthesis. Current evidence suggests that laticifers can be specified independently of latex production, but extensive latex production requires specified laticifers. Laticifers are an emerging system for studying the intersection of cell identity specification and specialized metabolism.
Collapse
Affiliation(s)
- Arielle R Johnson
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Gaurav D Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Margaret H Frank
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Nakano Y, Mitsuda N, Ide K, Mori T, Mira FR, Rosmalawati S, Watanabe N, Suzuki K. Transcriptome analysis of Pará rubber tree (H. brasiliensis) seedlings under ethylene stimulation. BMC PLANT BIOLOGY 2021; 21:420. [PMID: 34517831 PMCID: PMC8436496 DOI: 10.1186/s12870-021-03196-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural rubber (cis-1,4-polyioprene, NR) is an indispensable industrial raw material obtained from the Pará rubber tree (H. brasiliensis). Natural rubber cannot be replaced by synthetic rubber compounds because of the superior resilience, elasticity, abrasion resistance, efficient heat dispersion, and impact resistance of NR. In NR production, latex is harvested by periodical tapping of the trunk bark. Ethylene enhances and prolongs latex flow and latex regeneration. Ethephon, which is an ethylene-releasing compound, applied to the trunk before tapping usually results in a 1.5- to 2-fold increase in latex yield. However, intense mechanical damage to bark tissues by excessive tapping and/or over-stimulation with ethephon induces severe oxidative stress in laticifer cells, which often causes tapping panel dryness (TPD) syndrome. To enhance NR production without causing TPD, an improved understanding of the molecular mechanism of the ethylene response in the Pará rubber tree is required. Therefore, we investigated gene expression in response to ethephon treatment using Pará rubber tree seedlings as a model system. RESULTS After ethephon treatment, 3270 genes showed significant differences in expression compared with the mock treatment. Genes associated with carotenoids, flavonoids, and abscisic acid biosynthesis were significantly upregulated by ethephon treatment, which might contribute to an increase in latex flow. Genes associated with secondary cell wall formation were downregulated, which might be because of the reduced sugar supply. Given that sucrose is an important molecule for NR production, a trade-off may arise between NR production and cell wall formation for plant growth and for wound healing at the tapping panel. CONCLUSIONS Dynamic changes in gene expression occur specifically in response to ethephon treatment. Certain genes identified may potentially contribute to latex production or TPD suppression. These data provide valuable information to understand the mechanism of ethylene stimulation, and will contribute to improved management practices and/or molecular breeding to attain higher yields of latex from Pará rubber trees.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Kohei Ide
- Bridgestone Corporation, Kodaira, Tokyo, 187-8531, Japan
| | - Teppei Mori
- Bridgestone Corporation, Kodaira, Tokyo, 187-8531, Japan
| | - Farida Rosana Mira
- Laboratory for Biotechnology, Agency for the Assessment and Application of Technology, Build. 630, Puspiptek area, Serpong, Tangerang, Selatan, 15314, Indonesia
| | - Syofi Rosmalawati
- Laboratory for Biotechnology, Agency for the Assessment and Application of Technology, Build. 630, Puspiptek area, Serpong, Tangerang, Selatan, 15314, Indonesia
| | - Norie Watanabe
- Bridgestone Corporation, Kodaira, Tokyo, 187-8531, Japan
| | - Kaoru Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 169-8555, Japan.
| |
Collapse
|
9
|
Zhang Y, Xin L, Pirrello J, Fang Y, Yang J, Qi J, Montoro P, Tang C. Ethylene response factors regulate expression of HbSUT3, the sucrose influx carrier in laticifers of Hevea brasiliensis. TREE PHYSIOLOGY 2021; 41:1278-1288. [PMID: 33554256 DOI: 10.1093/treephys/tpaa179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Natural rubber is an important industrial raw material and is commercially produced by rubber trees (Hevea brasiliensis). The sucrose transporter HbSUT3 plays an essential role in rubber production. Its expression in latex (cytoplasm of rubber-producing laticifers) is induced by bark treatment with Ethrel, an ethylene releaser, and the inducing effect correlates well with Ethrel-stimulated rubber yield increase. However, the mechanisms of ethylene induction on HbSUT3 expression are not known. Here, five Ethylene Response Factor (ERF) genes were identified from the cDNA library of Hevea latex by yeast one-hybrid screening with the promoter of HbSUT3 gene as bait. As revealed in a tobacco (Nicotiana tabacum) protoplast transient expression system, these HbERFs were mainly localized in the nucleus and four of them exhibited apparent transactivation activity. Of the five HbERF genes, HbERF-IXc4 was the most frequently screened in yeast one-hybrid, accounting for 65% of the ERF clones obtained. Moreover, among the five HbERFs, HbERF-IXc4 showed the strongest transactivation capacity when expressed in tobacco protoplast, the highest transcript abundance in latex and a close expressional correlation with its target gene, HbSUT3, in response to the Ethrel treatment. Taken together, our results indicate that ERFs, especially HbERF-IXc4, are critically involved in the activation of HbSUT3 expression in latex after Ethrel treatment on Hevea bark, and thus the stimulated latex yield.
Collapse
Affiliation(s)
- Yi Zhang
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Lusheng Xin
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Julien Pirrello
- CIRAD, UMR AGAP, 389 Avenue d'Agropolis - TA A-108/03, F-34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 389 Avenue d'Agropolis - TA A-108/03, F-34398 Montpellier, France
| | - Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 West Xueyuan Road, Haikou 570100, China; 5Corresponding authors C.Tang ( or ); P. Montoro
| | - Jianghua Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 West Xueyuan Road, Haikou 570100, China; 5Corresponding authors C.Tang ( or ); P. Montoro
| | - Jiyan Qi
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| | - Pascal Montoro
- CIRAD, UMR AGAP, 389 Avenue d'Agropolis - TA A-108/03, F-34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 389 Avenue d'Agropolis - TA A-108/03, F-34398 Montpellier, France
| | - Chaorong Tang
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, College of Tropical Crops, Hainan University, 58 Renmin Avenue, Haikou 570228, China
| |
Collapse
|
10
|
Fang P, Long X, Fang Y, Chen H, Yu M. A predominant isoform of fructokinase, HbFRK2, is involved in Hevea brasiliensis (para rubber tree) latex yield and regeneration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:211-220. [PMID: 33706182 DOI: 10.1016/j.plaphy.2021.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Fructokinase (FRK) mediates fructose phosphorylation to regulate the carbon flow and its assignment to sink tissues. Out of five HbFRKs in the genome of the rubber tree, three (HbFRK1-3) that were highly expressed in latex (cytoplasm of laticifers) were isolated and examined. According to phylogenetic analysis and intracellular location experiment, both HbFRK2 and HbFRK3 were highly possible to be expressed in cytosol, while HbFRK1 was in plastid. As the predominant isoform in laticifers, HbFRK2 had the highest transcripts, followed by HbFRK3 and HbFRK1. In enzymatic function, HbFRK2 also showed the highest affinity for fructose. To examine the roles of FRKs in latex yield and regeneration, changes in HbFRKs were examined when latex outflow from the trees were increased through two experimental interventions. In the first approach, tapping was initiated on previously untapped trees, resulting in latex yield increasing with consecutive tapping at the initial stage before it stabilized. In the second approach, latex yield from trees that were already in regular tapping was stimulated by treatment with the ethylene-based yield stimulant, ethephon. Using either method to induce an increase in latex yield, the abundance of HbFRK2 and HbFRK3 in transcripts, was increased. This development, which was especially marked in HbFRK2, may reflect a strengthening of glycolysis to meet the carbon flux and energy demands for increased rubber biosynthesis to replace rubber lost in the increased latex yield. Our results, therefore, suggest that HbFRK2 plays a critical role in fructose catabolism to facilitate rubber regeneration in the commercially exploited rubber tree.
Collapse
Affiliation(s)
- Pingchang Fang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China; Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Xiangyu Long
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Hua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
11
|
Long X, Li H, Yang J, Xin L, Fang Y, He B, Huang D, Tang C. Characterization of a vacuolar sucrose transporter, HbSUT5, from Hevea brasiliensis: involvement in latex production through regulation of intracellular sucrose transport in the bark and laticifers. BMC PLANT BIOLOGY 2019; 19:591. [PMID: 31881921 PMCID: PMC6935173 DOI: 10.1186/s12870-019-2209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six Suc transporter (SUT) genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. RESULTS Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker's yeast reveals HbSUT5 to be a typical Suc-H+ symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers. CONCLUSIONS Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.
Collapse
Affiliation(s)
- Xiangyu Long
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Heping Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou, 363005, Fujian, China
| | - Jianghua Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Lusheng Xin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Yongjun Fang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Bin He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Debao Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Chaorong Tang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
12
|
Campos Mantello C, Boatwright L, da Silva CC, Scaloppi EJ, de Souza Goncalves P, Barbazuk WB, Pereira de Souza A. Deep expression analysis reveals distinct cold-response strategies in rubber tree (Hevea brasiliensis). BMC Genomics 2019; 20:455. [PMID: 31164105 PMCID: PMC6549365 DOI: 10.1186/s12864-019-5852-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Background Natural rubber, an indispensable commodity used in approximately 40,000 products, is fundamental to the tire industry. The rubber tree species Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell-Arg., which is native the Amazon rainforest, is the major producer of latex worldwide. Rubber tree breeding is time consuming, expensive and requires large field areas. Thus, genetic studies could optimize field evaluations, thereby reducing the time and area required for these experiments. In this work, transcriptome sequencing was used to identify a full set of transcripts and to evaluate the gene expression involved in the different cold-response strategies of the RRIM600 (cold-resistant) and GT1 (cold-tolerant) genotypes. Results We built a comprehensive transcriptome using multiple database sources, which resulted in 104,738 transcripts clustered in 49,304 genes. The RNA-seq data from the leaf tissues sampled at four different times for each genotype were used to perform a gene-level expression analysis. Differentially expressed genes (DEGs) were identified through pairwise comparisons between the two genotypes for each time series of cold treatments. DEG annotation revealed that RRIM600 and GT1 exhibit different chilling tolerance strategies. To cope with cold stress, the RRIM600 clone upregulates genes promoting stomata closure, photosynthesis inhibition and a more efficient reactive oxygen species (ROS) scavenging system. The transcriptome was also searched for putative molecular markers (single nucleotide polymorphisms (SNPs) and microsatellites) in each genotype. and a total of 27,111 microsatellites and 202,949 (GT1) and 156,395 (RRIM600) SNPs were identified in GT1 and RRIM600. Furthermore, a search for alternative splicing (AS) events identified a total of 20,279 events. Conclusions The elucidation of genes involved in different chilling tolerance strategies associated with molecular markers and information regarding AS events provides a powerful tool for further genetic and genomic analyses of rubber tree breeding. Electronic supplementary material The online version of this article (10.1186/s12864-019-5852-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Campos Mantello
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil.,Department of Biology, University of Florida, Gainesville, FL, USA.,The John Bingham Laboratory, National Institute of Agricultural Botany, Cambridge, UK
| | - Lucas Boatwright
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Carla Cristina da Silva
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Erivaldo Jose Scaloppi
- Rubber Research Advanced Center (CAPSA), Agronomical Institute (IAC), Votuporanga, SP, Brazil
| | | | - W Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, USA.,Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil. .,Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Abstract
The commercial production of high quality natural rubber (NR) solely depends on Hevea brasiliensis Muell. Arg, (Para rubber tree) and accounts for >98% of total production worldwide. NR with its unique properties is an essential commodity for the automobile industry and its synthetic counterparts are in no way substitute to it. The rubber tree genome is very complex and plays an important role in delivering the unique properties of Hevea. But a lack of knowledge on the molecular mechanisms of rubber biosynthesis, disease resistance, etc., in elite clones of rubber still persists. Marker-assisted selection and transgenic techniques were proved to be advantageous in improving the breeding efficiency for latex yield, disease resistance, etc. The suppression subtractive hybridization (SSH), in the form of subtracted cDNA libraries and microarrays, can assist in searching the functions of expressed genes (candidate gene approach). Expressed sequence tags (ESTs) related to various metabolic aspects are well utilized to create EST banks that broadly represent the genes expressed in one tissue, such as latex cells, that assists in the study of gene function and regulation. Transcriptome analysis and gene mapping have been accomplished in Hevea at various stages. However, a selection criterion to delineate high yielding genotypes at the juvenile stage has not been accomplished so far. This is the main pit fall for rubber breeding apart from stock-scion interactions leading to yield differences among a clonally multiplied population. At least four draft genome sequences have been published on Hevea rubber, and all give different genome size and contig lengths-a comprehensive and acceptable genomic map remains unfulfilled. The progress made in molecular markers, latex biosynthesis genes, transcriptome analysis, chloroplast and mitochondrial DNA diversity, paternity identification through Breeding without Breeding (BwB), stimulated latex production and its molecular intricacies, molecular biology of tapping panel dryness, genomics for changed climates and genome mapping are discussed in this review. These information can be utilized to improvise the molecular breeding programs of Hevea in future.
Collapse
|
14
|
Wang Q, Xu G, Zhai J, Yuan H, Huang X. Identification of the targets of HbEIN3/EILs in genomic wide in Hevea brasiliensis. Biosci Biotechnol Biochem 2019; 83:1270-1283. [PMID: 30915888 DOI: 10.1080/09168451.2019.1597619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
EIN3/EILs are key regulators in ET signaling pathway. In this work, 4 members of EIN3/EILs of Hevea brasiliensis (HbEIN3/EILs) showed interaction with two F box proteins, HbEBF1 and HbEBF2. HbEIN3 located in nucleus and exhibited strong transcriptional activity. HbEIN3 was induced by ET treatment in C-serum, but not in B-serum of latex. HbEIN3/EILs bound to G-box cis-element. To globally search the potential targets of HbEIN3/EILs, genomic sequences of H. brasiliensis was re-annotated and an HCES (Hevea Cis-Elements Scanning) program was developed ( www.h-brasiliensis.com ). HCES scanning results showed that ET- and JA- responsive cis-elements distribute overlapping in gene promoters. 3146 genes containing G-box in promoters are potential targets of HbEIN3, including 41 genes involved in biosynthesis and drainage of latex, of which 7 rate-limiting genes of latex production were regulated by both ET and JA, suggesting that ET and JA signaling pathways coordinated the latex biosynthesis and drainage in H. brasiliensis. Abbreviations: ABRE: ABA responsive elements; bHLH: basic helix-loop-helix; COG: Orthologous Groups; DRE: dehydration response element; ERE: ethylene responsive element; ET: Ethylene; GO: Gene Ontology; HCES: Hevea Cis-Elements Scanning; JA: jasmonates; JRE: Jasmonate-responsive element; KEGG: Kyoto Encyclopedia of Genes and Genomes; NR: non-redundant database; PLACE: Plant Cis-acting Regulatory DNA Elements; qRT-PCR: quantitative real-time RT-PCR.
Collapse
Affiliation(s)
- Qichao Wang
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Hainan University , Haikou , P. R. China
| | - Gang Xu
- b School of Life Sciences , Tsinghua University , Beijing , China
| | - Jinling Zhai
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Hainan University , Haikou , P. R. China
| | - Hongmei Yuan
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Hainan University , Haikou , P. R. China
| | - Xi Huang
- a Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources , Hainan University , Haikou , P. R. China
| |
Collapse
|
15
|
Gao L, Sun Y, Wu M, Wang D, Wei J, Wu B, Wang G, Wu W, Jin X, Wang X, He P. Physiological and Proteomic Analyses of Molybdenum- and Ethylene-Responsive Mechanisms in Rubber Latex. FRONTIERS IN PLANT SCIENCE 2018; 9:621. [PMID: 29868077 PMCID: PMC5962772 DOI: 10.3389/fpls.2018.00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient in many plants. In the rubber tree Hevea brasiliensis, Mo application can reduce the shrinkage of the tapping line, decrease tapping panel dryness, and finally increase rubber latex yield. After combined Mo with ethylene (Eth), these effects become more obvious. However, the molecular mechanism remains unclear. Here, we compared the changed patterns of physiological parameters and protein accumulation in rubber latex after treated with Mo and/or Eth. Our results demonstrated that both Eth and Mo can improve the contents of thiol, sucrose, and dry yield in rubber latex. However, lutoid bursting is significantly inhibited by Mo. Comparative proteomics identified 169 differentially expressed proteins, including 114 unique proteins, which are mainly involved in posttranslational modification, carbohydrate metabolism, and energy production. The abundances of several proteins involved in rubber particle aggregation are decreased upon Mo stimulation, while many enzymes related to natural rubber biosynthesis are increased. Comparison of the accumulation patterns of 25 proteins revealed that a large portion of proteins have different changed patterns with their gene expression levels. Activity assays of six enzymes revealed that Mo stimulation can increase latex yield by improving the activity of some Mo-responsive enzymes. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the molecular mechanism of Mo-stimulated rubber latex yield.
Collapse
Affiliation(s)
- Le Gao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
| | - Yong Sun
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
| | - Min Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiashao Wei
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bingsun Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guihua Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenguan Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xuchu Wang
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Peng He
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, China
| |
Collapse
|
16
|
Ceusters J, Van de Poel B. Ethylene Exerts Species-Specific and Age-Dependent Control of Photosynthesis. PLANT PHYSIOLOGY 2018; 176:2601-2612. [PMID: 29438047 PMCID: PMC5884594 DOI: 10.1104/pp.17.01706] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 05/18/2023]
Abstract
Ethylene regulates many different aspects of photosynthesis in an age-dependent and species-specific manner.
Collapse
Affiliation(s)
- Johan Ceusters
- KU Leuven, Department of Microbial and Molecular Systems, Bioengineering Technology TC, Campus Geel, 2440 Geel, Belgium
- UHasselt, Centre for Environmental Sciences, Environmental Biology, Campus Diepenbeek, 3590 Diepenbeek, Belgium
| | | |
Collapse
|
17
|
Zhu L, Jin X, Xie Q, Yao Q, Wang X, Li H. Calcium-Dependent Protein Kinase Family Genes Involved in Ethylene-Induced Natural Rubber Production in Different Hevea brasiliensis Cultivars. Int J Mol Sci 2018; 19:ijms19040947. [PMID: 29565813 PMCID: PMC5979512 DOI: 10.3390/ijms19040947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022] Open
Abstract
Natural rubber latex production can be improved by ethylene stimulation in the rubber tree (Hevea brasiliensis). However, the expression levels of most functional proteins for natural rubber biosynthesis are not induced after ethylene application, indicating that post-translational modifications, especially protein phosphorylation, may play important roles in ethylene signaling in Hevea. Here, we performed a comprehensive investigation on evolution, ethylene-induced expression and protein-protein interaction of calcium-dependent protein kinases (CPKs), an important serine/threonine protein kinase family, in Hevea. Nine duplication events were determined in the 30 identified HbCPK genes. Expression profiling of HbCPKs in three rubber tree cultivars with low, medium and high ethylene sensitivity showed that HbCPK6, 17, 20, 22, 24, 28 and 30 are induced by ethylene in at least one cultivar. Evolution rate analysis suggested accelerated evolution rates in two paralogue pairs, HbCPK9/18 and HbCPK19/20. Analysis of proteomic data for rubber latex after ethylene treatment showed that seven HbCPK proteins could be detected, including six ethylene-induced ones. Protein-protein interaction analysis of the 493 different abundant proteins revealed that protein kinases, especially calcium-dependent protein kinases, possess most key nodes of the interaction network, indicating that protein kinase and protein phosphorylation play important roles in ethylene signaling in latex of Hevea. In summary, our data revealed the expression patterns of HbCPK family members and functional divergence of two HbCPK paralogue pairs, as well as the potential important roles of HbCPKs in ethylene-induced rubber production improvement in Hevea.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Quanliang Xie
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Qi Yao
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
| | - Xuchu Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
18
|
Stolze A, Wanke A, van Deenen N, Geyer R, Prüfer D, Schulze Gronover C. Development of rubber-enriched dandelion varieties by metabolic engineering of the inulin pathway. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:740-753. [PMID: 27885764 PMCID: PMC5425391 DOI: 10.1111/pbi.12672] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/21/2016] [Indexed: 05/21/2023]
Abstract
Natural rubber (NR) is an important raw material for a large number of industrial products. The primary source of NR is the rubber tree Hevea brasiliensis, but increased worldwide demand means that alternative sustainable sources are urgently required. The Russian dandelion (Taraxacum koksaghyz Rodin) is such an alternative because large amounts of NR are produced in its root system. However, rubber biosynthesis must be improved to develop T. koksaghyz into a commercially feasible crop. In addition to NR, T. koksaghyz also produces large amounts of the reserve carbohydrate inulin, which is stored in parenchymal root cell vacuoles near the phloem, adjacent to apoplastically separated laticifers. In contrast to NR, which accumulates throughout the year even during dormancy, inulin is synthesized during the summer and is degraded from the autumn onwards when root tissues undergo a sink-to-source transition. We carried out a comprehensive analysis of inulin and NR metabolism in T. koksaghyz and its close relative T. brevicorniculatum and functionally characterized the key enzyme fructan 1-exohydrolase (1-FEH), which catalyses the degradation of inulin to fructose and sucrose. The constitutive overexpression of Tk1-FEH almost doubled the rubber content in the roots of two dandelion species without any trade-offs in terms of plant fitness. To our knowledge, this is the first study showing that energy supplied by the reserve carbohydrate inulin can be used to promote the synthesis of NR in dandelions, providing a basis for the breeding of rubber-enriched varieties for industrial rubber production.
Collapse
Affiliation(s)
- Anna Stolze
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Alan Wanke
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Nicole van Deenen
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | | | - Dirk Prüfer
- Institute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)MuensterGermany
| | | |
Collapse
|
19
|
Wang D, Sun Y, Tong Z, Yang Q, Chang L, Meng X, Wang L, Tian W, Wang X. A protein extraction method for low protein concentration solutions compatible with the proteomic analysis of rubber particles. Electrophoresis 2016; 37:2930-2939. [PMID: 27699805 DOI: 10.1002/elps.201600172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 06/13/2016] [Accepted: 08/15/2016] [Indexed: 01/26/2023]
Abstract
The extraction of high-purity proteins from the washing solution (WS) of rubber particles (also termed latex-producing organelles) from laticifer cells in rubber tree for proteomic analysis is challenging due to the low concentration of proteins in the WS. Recent studies have revealed that proteins in the WS might play crucial roles in natural rubber biosynthesis. To further examine the involvement of these proteins in natural rubber biosynthesis, we designed an efficiency method to extract high-purity WS proteins. We improved our current borax and phenol-based method by adding reextraction steps with phenol (REP) to improve the yield from low protein concentration samples. With this new method, we extracted WS proteins that were suitable for proteomics. Indeed, compared to the original borax and phenol-based method, the REP method improved both the quality and quantity of isolated proteins. By repeatedly extracting from low protein concentration solutions using the same small amount of phenol, the REP method yielded enough protein of sufficiently high-quality from starting samples containing less than 0.02 mg of proteins per milliliter. This method was successfully applied to extract the rubber particle proteins from the WS of natural rubber latex samples. The REP-extracted WS proteins were resolved by 2DE, and 28 proteins were positively identified by MS. This method has the potential to become widely used for the extraction of proteins from low protein concentration solutions for proteomic analysis.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan, P. R. China.,Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan, P. R. China.,Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Zheng Tong
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Qian Yang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Lili Chang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Xueru Meng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Limin Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| | - Weimin Tian
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan, P. R. China
| | - Xuchu Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou Hainan, P. R. China.,Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, P. R. China
| |
Collapse
|
20
|
Lopez D, Amira MB, Brown D, Muries B, Brunel-Michac N, Bourgerie S, Porcheron B, Lemoine R, Chrestin H, Mollison E, Di Cola A, Frigerio L, Julien JL, Gousset-Dupont A, Fumanal B, Label P, Pujade-Renaud V, Auguin D, Venisse JS. The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. PLANT MOLECULAR BIOLOGY 2016; 91:375-96. [PMID: 27068521 DOI: 10.1007/s11103-016-0462-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
X-Intrinsic Proteins (XIP) were recently identified in a narrow range of plants as a full clade within the aquaporins. These channels reportedly facilitate the transport of a wide range of hydrophobic solutes. The functional roles of XIP in planta remain poorly identified. In this study, we found three XIP genes (HbXIP1;1, HbXIP2;1 and HbXIP3;1) in the Hevea brasiliensis genome. Comprehensive bioinformatics, biochemical and structural analyses were used to acquire a better understanding of this AQP subfamily. Phylogenetic analysis revealed that HbXIPs clustered into two major groups, each distributed in a specific lineage of the order Malpighiales. Tissue-specific expression profiles showed that only HbXIP2;1 was expressed in all the vegetative tissues tested (leaves, stem, bark, xylem and latex), suggesting that HbXIP2;1 could take part in a wide range of cellular processes. This is particularly relevant to the rubber-producing laticiferous system, where this isoform was found to be up-regulated during tapping and ethylene treatments. Furthermore, the XIP transcriptional pattern is significantly correlated to latex production level. Structural comparison with SoPIP2;1 from Spinacia oleracea species provides new insights into the possible role of structural checkpoints by which HbXIP2;1 ensures glycerol transfer across the membrane. From these results, we discuss the physiological involvement of glycerol and HbXIP2;1 in water homeostasis and carbon stream of challenged laticifers. The characterization of HbXIP2;1 during rubber tree tapping lends new insights into molecular and physiological response processes of laticifer metabolism in the context of latex exploitation.
Collapse
Affiliation(s)
- David Lopez
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Maroua Ben Amira
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Daniel Brown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Biotechnology Unit, Tun Abdul Razak Research Centre, Brickendonbury, Hertford, UK
| | - Beatriz Muries
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Nicole Brunel-Michac
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Sylvain Bourgerie
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, UPRES EA 1207, INRA-USC1328, 45067, Orléans, France
| | - Benoit Porcheron
- Ecologie, Biologie des Interactions, Equipe SEVE, UMR 7267 CNRS/Université de Poitiers, Bâtiment B31, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Remi Lemoine
- Ecologie, Biologie des Interactions, Equipe SEVE, UMR 7267 CNRS/Université de Poitiers, Bâtiment B31, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Hervé Chrestin
- Institut de Recherche pour le Développement, UR060/CEFE-CNRS, 1029 route de Mende, 34032, Montpellier, France
| | - Ewan Mollison
- Biotechnology Unit, Tun Abdul Razak Research Centre, Brickendonbury, Hertford, UK
| | - Alessandra Di Cola
- Biotechnology Unit, Tun Abdul Razak Research Centre, Brickendonbury, Hertford, UK
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jean-Louis Julien
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Aurélie Gousset-Dupont
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Boris Fumanal
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Philippe Label
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Valérie Pujade-Renaud
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
- CIRAD, UMR AGAP, 63000, Clermont-Ferrand, France
| | - Daniel Auguin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, UPRES EA 1207, INRA-USC1328, 45067, Orléans, France.
| | - Jean-Stéphane Venisse
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France.
- Campus Universitaire des Cézeaux, 8 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178, Aubiere Cedex, France.
| |
Collapse
|
21
|
Liu JP, Zhuang YF, Guo XL, Li YJ. Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. BMC Genomics 2016; 17:257. [PMID: 27008913 PMCID: PMC4806457 DOI: 10.1186/s12864-016-2587-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/14/2016] [Indexed: 12/29/2022] Open
Abstract
Background Rubber tree (Hevea brasiliensis) is an important industrial crop cultivated in tropical areas for natural rubber production. Treatment of the bark of rubber trees with ehephon (an ethylene releaser) has been a routine measure to increase latex yield, but the molecular mechanism behind the stimulation of rubber production by ethylene still remains a puzzle. Deciphering the enigma is of great importance for improvement of rubber tree for high yield. Results De novo sequencing and assembly of the bark transciptomes of Hevea brasiliensis induced with ethephon for 8 h (E8) and 24 h (E24) were performed. 51,965,770, 52,303,714 and 53,177,976 high-quality clean reads from E8, E24 and C (control) samples were assembled into 81,335, 80,048 and 80,800 unigenes respectively, with a total of 84,425 unigenes and an average length of 1,101 bp generated. 10,216 and 9,374 differentially expressed genes (DEGs) in E8 and E24 compared with C were respectively detected. The expression of several enzymes in crucial points of regulation in glycolysis were up-regulated and DEGs were not significantly enriched in isopentenyl diphosphate (IPP) biosynthesis pathway. In addition, up-regulated genes of great regulatory importance in carbon fixation (Calvin cycle) were identified. Conclusions The rapid acceleration of glycolytic pathway supplying precursors for the biosynthesis of IPP and natural rubber, instead of rubber biosynthesis per se, may be responsible for ethylene stimulation of latex yield in rubber tree. The elevated rate of flux throughout the Calvin cycle may account for some durability of ethylene-induced stimulation. Our finding lays the foundations for molecular diagnostic and genetic engineering for high-yielding improvement of rubber tree. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2587-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Ping Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agronomy, Hainan University, Haikou, Hainan Province, 570228, P. R. China.
| | - Yu-Fen Zhuang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agronomy, Hainan University, Haikou, Hainan Province, 570228, P. R. China
| | - Xiu-Li Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agronomy, Hainan University, Haikou, Hainan Province, 570228, P. R. China
| | - Yi-Jian Li
- Service Center of Science and Technology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan Province, 571737, P. R. China
| |
Collapse
|
22
|
Nie Z, Kang G, Duan C, Li Y, Dai L, Zeng R. Profiling Ethylene-Responsive Genes Expressed in the Latex of the Mature Virgin Rubber Trees Using cDNA Microarray. PLoS One 2016; 11:e0152039. [PMID: 26985821 PMCID: PMC4795647 DOI: 10.1371/journal.pone.0152039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/22/2016] [Indexed: 12/19/2022] Open
Abstract
Ethylene is commonly used as a latex stimulant of Hevea brasiliensis by application of ethephon (chloro-2-ethylphosphonic acid); however, the molecular mechanism by which ethylene increases latex production is not clear. To better understand the effects of ethylene stimulation on the laticiferous cells of rubber trees, a latex expressed sequence tag (EST)-based complementary DNA microarray containing 2,973 unique genes (probes) was first developed and used to analyze the gene expression changes in the latex of the mature virgin rubber trees after ethephon treatment at three different time-points: 8, 24 and 48 h. Transcript levels of 163 genes were significantly altered with fold-change values ≥ 2 or ≤ –2 (q-value < 0.05) in ethephon-treated rubber trees compared with control trees. Of the 163 genes, 92 were up-regulated and 71 down-regulated. The microarray results were further confirmed using real-time quantitative reverse transcript-PCR for 20 selected genes. The 163 ethylene-responsive genes were involved in several biological processes including organic substance metabolism, cellular metabolism, primary metabolism, biosynthetic process, cellular response to stimulus and stress. The presented data suggest that the laticifer water circulation, production and scavenging of reactive oxygen species, sugar metabolism, and assembly and depolymerization of the latex actin cytoskeleton might play important roles in ethylene-induced increase of latex production. The results may provide useful insights into understanding the molecular mechanism underlying the effect of ethylene on latex metabolism of H. brasiliensis.
Collapse
Affiliation(s)
- Zhiyi Nie
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Guijuan Kang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Cuifang Duan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Yu Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Longjun Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| | - Rizhong Zeng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou, Hainan, China
| |
Collapse
|
23
|
Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. J Proteomics 2015; 132:167-75. [PMID: 26581641 DOI: 10.1016/j.jprot.2015.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/24/2015] [Accepted: 11/09/2015] [Indexed: 11/23/2022]
Abstract
UNLABELLED Ethrel (ET) is an effective and widely used latex yield stimulant of Hevea brasiliensis (Pará rubber tree), and jasmonate (JA) is a key inducer of laticifer differentiation in this plant. To examine variations in the latex proteome caused by these phytohormones, ET and methyl jasmonate (MeJA) were applied to Reyan 7-33-97 rubber tree clones, and comparative proteomic analyses were conducted. On the basis of a transcriptome shotgun assembly (TSA) sequence database and an iTRAQ-coupled two-dimensional LC-MS/MS approach, 1499 latex proteins belonging to 1078 clusters were identified. With a 1.5-fold cut-off value to determine up- and down-regulated proteins, a total of 101 latex proteins were determined to be regulated by ET and/or MeJA via pairwise comparisons among the three exposure durations (0 h, 6 h, and 48 h). Proteins associated with latex regeneration, including phosphoenolpyruvate carboxylase and acetyl-CoA C-acetyltransferase, and those associated with latex flow, such as chitinase and a sieve element occlusion protein, were affected by the application of ET. Chitinase and polyphenol oxidase were also found to be regulated by MeJA. The findings of this study may provide new insight into the roles of phytohormones in latex yield and the causative mechanisms of laticifer differentiation in rubber trees. SIGNIFICANCE On the basis of a transcriptome shotgun assembly (TSA) sequence database and an iTRAQ-coupled two-dimensional LC-MS/MS approach, the most comprehensive proteome of the latex was profiled, and the ethylene-/jasmonate-responsive proteins were identified in the latex of H. brasiliensis. The findings of this study may provide new insight into the role of phytohormones in latex yield and the causative mechanisms of laticifer differentiation in rubber trees.
Collapse
|
24
|
An F, Zou Z, Cai X, Wang J, Rookes J, Lin W, Cahill D, Kong L. Regulation of HbPIP2;3, a Latex-Abundant Water Transporter, Is Associated with Latex Dilution and Yield in the Rubber Tree (Hevea brasiliensis Muell. Arg.). PLoS One 2015; 10:e0125595. [PMID: 25927524 PMCID: PMC4416032 DOI: 10.1371/journal.pone.0125595] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/14/2015] [Indexed: 12/20/2022] Open
Abstract
Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea.
Collapse
Affiliation(s)
- Feng An
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, P. R. China
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| | - Zhi Zou
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, P. R. China
| | - Xiuqing Cai
- College of Agronomy, Hainan University, Haikou, 570228, P. R. China
| | - Jin Wang
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, P. R. China
| | - James Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Australia
| | - Weifu Lin
- Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, P. R. China
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong, 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, 3216, Australia
| |
Collapse
|
25
|
Long X, He B, Gao X, Qin Y, Yang J, Fang Y, Qi J, Tang C. Validation of reference genes for quantitative real-time PCR during latex regeneration in rubber tree. Gene 2015; 563:190-5. [PMID: 25791491 DOI: 10.1016/j.gene.2015.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 03/13/2015] [Indexed: 10/23/2022]
Abstract
In rubber tree, latex regeneration is one of the decisive factors influencing the rubber yield, although its molecular regulation is not well known. Quantitative real-time PCR (qPCR) is a popular and powerful tool used to understand the molecular mechanisms of latex regeneration. However, the suitable reference genes required for qPCR are not available to investigate the expressions of target genes during latex regeneration. In this study, 20 candidate reference genes were selected and evaluated for their expression stability across the samples during the process of latex regeneration. All reference genes showed a relatively wide range of the threshold cycle values, and their stability was validated by four different algorithms (comparative delta Ct method, Bestkeeper, NormFinder and GeNorm). Three softwares (comparative delta Ct method, NormFinder and GeNorm) exported similar results that identify UBC4, ADF, UBC2a, eIF2 and ADF4 as the top five suitable references, and 18S as the least suitable one. The application of the screened references would improve accuracy and reliability of gene expression analysis in latex regeneration experiments.
Collapse
Affiliation(s)
- Xiangyu Long
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Bin He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China; College of Agronomy, Hainan University, Haikou, Hainan 570228, PR China
| | - Xinsheng Gao
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Yunxia Qin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Jianghua Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Yongjun Fang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Jiyan Qi
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China
| | - Chaorong Tang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China.
| |
Collapse
|
26
|
Isolation and molecular characterization of 1-aminocyclopropane-1-carboxylic acid synthase genes in Hevea brasiliensis. Int J Mol Sci 2015; 16:4136-49. [PMID: 25690030 PMCID: PMC4346948 DOI: 10.3390/ijms16024136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment.These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production.
Collapse
|
27
|
Zhiyi N, Guijuan K, Yu L, Longjun D, Rizhong Z. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis. PLoS One 2015; 10:e0116857. [PMID: 25615936 PMCID: PMC4304824 DOI: 10.1371/journal.pone.0116857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 ‘full-size’, 21 ‘half-size’ and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.
Collapse
Affiliation(s)
- Nie Zhiyi
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Kang Guijuan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Li Yu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Dai Longjun
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Zeng Rizhong
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- * E-mail:
| |
Collapse
|
28
|
Chaturvedi N, Singh M, Shukla AK, Shasany AK, Shanker K, Lal RK, Khanuja SPS. Comparative analysis of Papaver somniferum genotypes having contrasting latex and alkaloid profiles. PROTOPLASMA 2014; 251:857-67. [PMID: 24306419 DOI: 10.1007/s00709-013-0587-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/10/2013] [Indexed: 05/24/2023]
Abstract
Papaver somniferum produces therapeutically useful benzylisoquinoline alkaloids (BIAs) like papaverine, thebaine, codeine, and morphine that accumulate in its capsular latex. Morphine is a potent analgesic but is also abused as a narcotic, which has increased the demand for non-narcotic thebaine that can be converted into various analgesics. To curtail the narcotic menace, many distinct genotypes of the plant have been developed that are deficient in morphine and/or latex. Sujata is one such latex-less low alkaloid-producing variety developed from the alkaloid-rich gum harvest variety Sampada. Its utility for gene prospecting and studying differential gene regulation responsible for its low alkaloid, nutritive seed oil, and latex-less phenotype has been exploited in this study. BIA profiling of Sujata and Sampada capsules at the early and late stages indicated that except for thebaine, Sujata had a depressed alkaloid phenotype as compared to Sampada. Comparative transcript-based analysis of the two genotypes was carried out in the early stage capsule (higher thebaine) using subtractive hybridization and microarray. Interrogation of a P. somniferum array yielded many differentially expressing transcripts. Their homology-based annotation classified them into categories--latex related, oil/lipid related, alkaloid related, cell wall related, and others. These leads will be useful to characterize the highly sought after Sujata phenotype.
Collapse
Affiliation(s)
- Nidarshana Chaturvedi
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
29
|
Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis. PLoS One 2014; 9:e99367. [PMID: 24971876 PMCID: PMC4074046 DOI: 10.1371/journal.pone.0099367] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022] Open
Abstract
The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.
Collapse
|
30
|
Xiao X, Tang C, Fang Y, Yang M, Zhou B, Qi J, Zhang Y. Structure and expression profile of the sucrose synthase gene family in the rubber tree: indicative of roles in stress response and sucrose utilization in the laticifers. FEBS J 2013; 281:291-305. [PMID: 24279382 DOI: 10.1111/febs.12595] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 12/17/2022]
Abstract
Sucrose synthase (Sus, EC 2.4.1.13) is widely recognized as a key enzyme in sucrose metabolism in plants. However, nothing is known about this gene family in Hevea brasiliensis (para rubber tree). Here, we identified six Sus genes in H. brasiliensis that comprise the entire Sus family in this species. Analysis of the gene structure and phylogeny of the Sus genes demonstrates evolutionary conservation in the Sus families across Hevea and other plant species. The expression of Sus genes was investigated via Solexa sequencing and quantitative PCR in various tissues, at various phases of leaf development, and under abiotic stresses and ethylene treatment. The Sus genes exhibited distinct but partially redundant expression profiles. Each tissue has one abundant Sus isoform, with HbSus3, 4 and 5 being the predominant isoforms in latex (cytoplasm of rubber-producing laticifers), bark and root, respectively. HbSus1 and 6 were barely expressed in any tissue examined. In mature leaves (source), all HbSus genes were expressed at low levels, but HbSus3 and 4 were abundantly expressed in immature leaves (sink). Low temperature and drought treatments conspicuously induced HbSus5 expression in root and leaf, suggesting a role in stress responses. HbSus2 and 3 transcripts were decreased by ethylene treatment, consistent with the reduced sucrose-synthesizing activity of Sus enzymes in the latex in response to ethylene stimulation. Our results are beneficial to further determination of functions for the Sus genes in Hevea trees, especially roles in regulating latex regeneration.
Collapse
Affiliation(s)
- Xiaohu Xiao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China; College of Agronomy, Hainan University, Haikou, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Duan C, Argout X, Gébelin V, Summo M, Dufayard JF, Leclercq J, Kuswanhadi, Piyatrakul P, Pirrello J, Rio M, Champion A, Montoro P. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics 2013; 14:30. [PMID: 23324139 PMCID: PMC3644242 DOI: 10.1186/1471-2164-14-30] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022] Open
Abstract
Background Rubber tree (Hevea brasiliensis) laticifers are the source of natural rubber. Rubber production depends on endogenous and exogenous ethylene (ethephon). AP2/ERF transcription factors, and especially Ethylene-Response Factors, play a crucial role in plant development and response to biotic and abiotic stresses. This study set out to sequence transcript expressed in various tissues using next-generation sequencing and to identify AP2/ERF superfamily in the rubber tree. Results The 454 sequencing technique was used to produce five tissue-type transcript libraries (leaf, bark, latex, embryogenic tissues and root). Reads from all libraries were pooled and reassembled to improve mRNA lengths and produce a global library. One hundred and seventy-three AP2/ERF contigs were identified by in silico analysis based on the amino acid sequence of the conserved AP2 domain from the global library. The 142 contigs with the full AP2 domain were classified into three main families (20 AP2 members, 115 ERF members divided into 11 groups, and 4 RAV members) and 3 soloist members. Fifty-nine AP2/ERF transcripts were found in latex. Alongside the microRNA172 already described in plants, eleven additional microRNAs were predicted to inhibit Hevea AP2/ERF transcripts. Conclusions Hevea has a similar number of AP2/ERF genes to that of other dicot species. We adapted the alignment and classification methods to data from next-generation sequencing techniques to provide reliable information. We observed several specific features for the ERF family. Three HbSoloist members form a group in Hevea. Several AP2/ERF genes highly expressed in latex suggest they have a specific function in Hevea. The analysis of AP2/ERF transcripts in Hevea presented here provides the basis for studying the molecular regulation of latex production in response to abiotic stresses and latex cell differentiation.
Collapse
|
32
|
Pitakpornpreecha T, Plubrukarn A, Wititsuwannakul R. Quantification of 5'-deoxy-5'-methylthioadenosine in heat-treated natural rubber latex serum. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:12-15. [PMID: 21538640 DOI: 10.1002/pca.1319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 12/30/2010] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
INTRODUCTION 5'-Deoxy-5'-methylthioadenosine (MTA) is one of the biologically active components found in natural rubber latex (NRL) serum, a common waste product from rubber plantations. In this study the contents of MTA in heat-treated NRL serum were measured in order to assess the potential of the serum as an alternative source of MTA. OBJECTIVE To devise an HPLC/UV-based quantitative analytical protocol for the determination of MTA, and to determine the effect of heat treatment on the content of MTA in NRL serum from various sources. METHODOLOGY An HPLC/UV-based determination of MTA using an acidic eluant was devised and validated. In the heat treatment, the effect of refluxing times on MTA liberation was evaluated. RESULTS The quantification protocol was validated with satisfying linearity, limits of detection and quantitation, precisions for peak areas and recovery percentages from intra- and inter-day operations. The amounts of MTA in the NRL sera from various sources increased with heat treatment to yield 5-12 μg MTA/mL of serum. CONCLUSION The devised protocol was found to be satisfyingly applicable to the routine determination of MTA in NRL serum. The effect of heat treatment on the content of MTA also indicated another possible use for NRL serum, normally discarded in vast amounts by the rubber industry, as an alternative source of MTA.
Collapse
|
33
|
Reinders A, Sivitz AB, Ward JM. Evolution of plant sucrose uptake transporters. FRONTIERS IN PLANT SCIENCE 2012; 3:22. [PMID: 22639641 PMCID: PMC3355574 DOI: 10.3389/fpls.2012.00022] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/20/2012] [Indexed: 05/18/2023]
Abstract
In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vacuolar targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
| | - Alicia B. Sivitz
- Department of Biological Sciences, Dartmouth CollegeHanover, NH, USA
| | - John M. Ward
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
- *Correspondence: John M. Ward, Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA. e-mail:
| |
Collapse
|
34
|
Li H, Qin Y, Xiao X, Tang C. Screening of valid reference genes for real-time RT-PCR data normalization in Hevea brasiliensis and expression validation of a sucrose transporter gene HbSUT3. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:132-9. [PMID: 21683878 DOI: 10.1016/j.plantsci.2011.04.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 05/08/2023]
Abstract
Real-time RT-PCR (RT-qPCR) is a sensitive and precise method of quantifying gene expression, however, suitable reference genes are required. Here, a systematic reference gene screening was performed by RT-qPCR on 22 candidate genes in Hevea brasiliensis. Two ubiquitin-protein ligases (UBC2a and UBC4) were the most stable when all samples were analyzed together. A mitosis protein (YLS8) and a eukaryotic translation initiation factor (eIF1Aa) were the most stable in response to tapping. UBC2b and UBC1 were the most stable among different genotypes. UBC2b and a DEAD box RNA helicase (RH2b) were the most stable across individual trees. YLS8 and RH8 were most stably expressed in hormone-treated samples. Expression of the candidate reference genes varied significantly across different tissues, and at least four genes (RH2b, RH8, UBC2a and eIF2) were needed for expression normalization. In addition, examination of relative expression of a sucrose transporter HbSUT3 in different RNA samples demonstrated the importance of additional reference genes to ensure accurate quantitative expression analysis. Overall, our work serves as a guide for selection of reference genes in RT-qPCR gene expression studies in H. brasiliensis.
Collapse
Affiliation(s)
- Heping Li
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China.
| | | | | | | |
Collapse
|
35
|
Tungngoen K, Viboonjun U, Kongsawadworakul P, Katsuhara M, Julien JL, Sakr S, Chrestin H, Narangajavana J. Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:253-262. [PMID: 20637523 DOI: 10.1016/j.jplph.2010.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 05/29/2023]
Abstract
Natural rubber is synthesized in laticifers in the inner liber of the rubber tree (Hevea brasiliensis). Upon bark tapping, the latex is expelled due to liber turgor pressure. The mature laticifers are devoid of plasmodesmata; therefore a corresponding decrease in the total latex solid content is likely to occur due to water influx inside the laticifers. Auxins and ethylene used as efficient yield stimulants in mature untapped rubber trees, but, bark treatments with abscisic acid (ABA) and salicylic acid (SA) could also induce a transient increase latex yield. We recently reported that there are three aquaporin genes, HbPIP2;1, HbTIP1;1 and HbPIP1;1, that are regulated differentially after ethylene bark treatment. HbPIP2;1 was up-regulated in both the laticifers and the inner liber tissues, whereas HbTIP1;1 was up-regulated in the latex cells, but very markedly down-regulated in the inner liber tissues. Conversely, HbPIP1;1 was down-regulated in both tissues. In the present study, HbPIP2;1 and HbTIP1;1 showed a similar expression in response to auxin, ABA and SA, as seen in ethylene stimulation, while HbPIP1;1 was slightly regulated by auxin, but neither by ABA nor SA. The analysis of the HbPIP1;1 promoter region indicated the presence of only ethylene and auxin responsive elements. In addition, the poor efficiency of this HbPIP1;1 in increasing plasmalemma water conductance was confirmed in Xenopus oocytes. Thus, an increase in latex yield in response to all of these hormones was proposed to be the major function of aquaporins, HbPIP2;1 and HbTIP1;1. This study emphasized that the circulation of water between the laticifers and their surrounding tissues that result in latex dilution, as well as the probable maintenance of the liber tissues turgor pressure, favor the prolongation of latex flow.
Collapse
Affiliation(s)
- Kessarin Tungngoen
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dusotoit-Coucaud A, Kongsawadworakul P, Maurousset L, Viboonjun U, Brunel N, Pujade-Renaud V, Chrestin H, Sakr S. Ethylene stimulation of latex yield depends on the expression of a sucrose transporter (HbSUT1B) in rubber tree (Hevea brasiliensis). TREE PHYSIOLOGY 2010; 30:1586-1598. [PMID: 20980289 DOI: 10.1093/treephys/tpq088] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hevea brasiliensis is an important industrial crop for natural rubber production. Latex biosynthesis occurs in the cytoplasm of highly specialized latex cells and requires sucrose as the unique precursor. Ethylene stimulation of latex production results in high sugar flow from the surrounding cells of inner bark towards the latex cells. The aim of this work was to understand the role of seven sucrose transporters (HbSUTs) and one hexose transporter (HbHXT1) in this process. Two Hevea clones were used: PB217 and PB260, respectively described as high and low yielding clones. The expression pattern of these sugar transporters (HbSUTs and HbHXT1) was monitored under different physiological conditions and found to be maximal in latex cells. HbSUT1, one of the most abundant isoforms, displayed the greatest response to ethylene treatment. In clone PB217, ethylene treatment led to a higher accumulation of HbSUT1B in latex cells than in the inner bark tissues. Conversely, stronger expression of HbSUT1B was observed in inner bark tissues than in latex cells of PB260. A positive correlation with HbSUT1B transcript accumulation and increased latex production was further supported by its lower expression in latex cells of the virgin clone PB217.
Collapse
|
37
|
Dusotoit-Coucaud A, Porcheron B, Brunel N, Kongsawadworakul P, Franchel J, Viboonjun U, Chrestin H, Lemoine R, Sakr S. Cloning and characterization of a new polyol transporter (HbPLT2) in Hevea brasiliensis. PLANT & CELL PHYSIOLOGY 2010; 51:1878-1888. [PMID: 20929914 DOI: 10.1093/pcp/pcq151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quebrachitol is a cyclic polyol and, along with sucrose, is one of the main sugars in Hevea latex. However, in contrast to sucrose, the mechanism and regulation of quebrachitol absorption is still unknown. Screening a latex-derived cDNA library using polyol transporter-specific probes, two full-length cDNAs were isolated, and named HbPLT1 and HbPLT2 (for Hevea brasiliensis polyol transporter 1 and 2, respectively). Their respective sequences exhibited close similarity with the previously cloned acyclic sugar polyol transporters, and shared the main features of the major facilitative superfamily. The functional activity of one of the cDNAs was determined by using an HbPLT2-complemented yeast strain. These strains displayed a marginal absorption of cyclic (inositol) and acyclic (mannitol and sorbitol) polyol but no absorption of sucrose, hexose and glycerol. Active absorption for xylitol was detected, and was competitively inhibited by quebrachitol. HbPLT1 and HbPLT2 expression patterns varied in response to different stimuli. Bark treatment with ethylene resulted in an early and significant up-regulation of HbPLT2 transcripts in laticifers as well as in inner bark cells, when compared with HbPLT1. Other treatments, especially mechanical wounding, strongly induced HbPLT2 transcripts. These data were consistent with the presence of ethylene and a wound-responsive regulatory cis-element on the sequence of the HbPLT2 promoter. All these findings together with those recently obtained for sucrose transporters and aquaporins are discussed in relation to the different roles for quebrachitol in Hevea brasiliensis.
Collapse
|
38
|
Ibraheem O, Botha CEJ, Bradley G. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Comput Biol Chem 2010; 34:268-83. [PMID: 21036669 DOI: 10.1016/j.compbiolchem.2010.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022]
Abstract
The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions.
Collapse
Affiliation(s)
- Omodele Ibraheem
- Plant Stress Response Group, Department of Biochemistry & Microbiology, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa
| | | | | |
Collapse
|
39
|
Tang C, Huang D, Yang J, Liu S, Sakr S, Li H, Zhou Y, Qin Y. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). PLANT, CELL & ENVIRONMENT 2010; 33:1708-20. [PMID: 20492551 DOI: 10.1111/j.1365-3040.2010.02175.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Efficient sucrose loading in rubber-producing cells (laticifer cells) is essential for retaining rubber productivity in Hevea brasiliensis, but the molecular mechanisms underlying the regulation of this process remain unknown. Here, we functionally characterized a putative Hevea SUT member, HbSUT3, mainly in samples from regularly exploited trees. When expressed in yeast, HbSUT3 encodes a functional sucrose transporter that exhibits high sucrose affinity with a K(m) value of 1.24 mm at pH 4.0, and possesses features typical of sucrose/H(+) symporters. In planta, when compared to the expression of other Hevea SUT genes, HbSUT3 was found to be the predominant member expressed in the rubber-containing cytoplasm (latex) of laticifers. The comparison of HbSUT3 expression among twelve Hevea tissues demonstrates a relatively tissue-specific pattern, i.e. expression primarily in the latex and in female flowers. HbSUT3 expression is induced by the latex stimulator Ethrel (an ethylene generator), and relates to its yield-stimulating effect. Tapping (the act of rubber harvesting) markedly increased the expression of HbSUT3, whereas wounding alone had little effect. Moreover, the expression of HbSUT3 was found to be positively correlated with latex yield. Taken together, our results provide evidence favouring the involvement of HbSUT3 in sucrose loading into laticifers and in rubber productivity.
Collapse
Affiliation(s)
- Chaorong Tang
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, College of Agronomy, Hainan University, Danzhou, Hainan 571737, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhu J, Zhang Z. Ethylene stimulation of latex production in Hevea brasiliensis. PLANT SIGNALING & BEHAVIOR 2009; 4:1072-4. [PMID: 20009550 PMCID: PMC2819517 DOI: 10.4161/psb.4.11.9738] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 05/20/2023]
Abstract
Rubber tree (Hevea brasiliensis) is an important industrial crop for natural rubber production. Ethylene, as a stimulant of latex production in H. brasiliensis, has been widely used in commercial latex production. However, the mechanism of ethylene action are not completely elucidated, especially in molecular aspect. Here, we focus on the molecular biological progression of ethylene stimulation of latex production. Our data and all previous information showed ethylene had little direct effect on accelerating rubber biosynthesis. The prolonged latex flow and acceleration of sucrose metabolism by ethylene may be the main reasons for the stimulation of latex yield by ethylene.
Collapse
Affiliation(s)
- Jiahong Zhu
- Key Laboratory of Tropical Crop Biotechnology; Ministry of Agriculture; Institute of Tropical Biosciences and Biotechnology; Chinese Academy of Tropical Agricultural Sciences; Haikou, China
| | - Zhili Zhang
- Key Laboratory of Tropical Crop Biotechnology; Ministry of Agriculture; Institute of Tropical Biosciences and Biotechnology; Chinese Academy of Tropical Agricultural Sciences; Haikou, China
- Hainan Academy of Agricultural Sciences; Haikou, China
| |
Collapse
|
41
|
Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H. Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. PLANT PHYSIOLOGY 2009; 151:843-56. [PMID: 19656906 PMCID: PMC2754619 DOI: 10.1104/pp.109.140228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 07/24/2009] [Indexed: 05/18/2023]
Abstract
Natural rubber is synthesized in specialized articulated cells (laticifers) located in the inner liber of Hevea brasiliensis. Upon bark tapping, the laticifer cytoplasm (latex) is expelled due to liber tissue turgor pressure. In mature virgin (untapped) trees, short-term kinetic studies confirmed that ethylene, the rubber yield stimulant used worldwide, increased latex yield, with a concomitant decrease in latex total solid content, probably through water influx in the laticifers. As the mature laticifers are devoid of plasmodesmata, the rapid water exchanges with surrounding liber cells probably occur via the aquaporin pathway. Two full-length aquaporin cDNAs (HbPIP2;1 and HbTIP1;1, for plasma membrane intrinsic protein and tonoplast intrinsic protein, respectively) were cloned and characterized. The higher efficiency of HbPIP2;1 than HbTIP1;1 in increasing plasmalemma water conductance was verified in Xenopus laevis oocytes. HbPIP2;1 was insensitive to HgCl(2). In situ hybridization demonstrated that HbPIP2;1 was expressed in all liber tissues in the young stem, including the laticifers. HbPIP2;1 was up-regulated in both liber tissues and laticifers, whereas HbTIP1;1 was down-regulated in liber tissues but up-regulated in laticifers in response to bark Ethrel treatment. Ethylene-induced HbPIP2;1 up-regulation was confirmed by western-blot analysis. The promoter sequences of both genes were cloned and found to harbor, among many others, ethylene-responsive and other chemical-responsive (auxin, copper, and sulfur) elements known to increase latex yield. Increase in latex yield in response to ethylene was emphasized to be linked with water circulation between the laticifers and their surrounding tissues as well as with the probable maintenance of liber tissue turgor, which together favor prolongation of latex flow.
Collapse
Affiliation(s)
- Kessarin Tungngoen
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | |
Collapse
|