1
|
Manna T, Dey S, Karmakar M, Panda AK, Ghosh C. Investigations on genomic, topological and structural properties of diguanylate cyclases involved in Vibrio cholerae biofilm signalling using in silico techniques: Promising drug targets in combating cholera. Curr Res Struct Biol 2025; 9:100166. [PMID: 40330072 PMCID: PMC12051071 DOI: 10.1016/j.crstbi.2025.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
During various stages of its life cycle, Vibrio cholerae initiate biofilm signalling cascade. Intercellular high level of the signalling nucleotide 3'-5' cyclic dimeric guanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclases (DGCs) from its precursor molecule GTP, is crucial for biofilm formation. Present study endeavours to in silico approaches in evaluating genomic, physicochemical, topological and functional properties of six c-di-GMP regulatory DGCs (CdgA, CdgH, CdgK, CdgL, CdgM, VpvC) of V. cholerae. Genomic investigations unveiled that codon preferences were inclined towards AU ending over GC ending codons and overall GC content ranged from 44.6 to 49.5 with codon adaptation index ranging from 0.707 to 0.783. Topological analyses deciphered the presence of transmembrane domains in all proteins. All the DGCs were acidic, hydrophilic and thermostable. Only CdgA, CdgH and VpvC were predicted to be stable during in vitro conditions. Non-polar amino acids with leucine being the most abundant amino acid among these DGCs with α-helix as the predominant secondary structure, responsible for forming the transmembrane regions by secondary structure analysis. Tertiary structures of the proteins were obtained by computation using AlphaFold and trRosetta. Predicted structures by both the servers were compared in various aspects using PROCHECK, ERRAT and Modfold8 servers. Selected 3D structures were refined using GalaxyRefine. InterPro Scan revealed presence of a conserved GGDEF domain in all DGCs and predicted the active site residues in the GGDEF domain. Molecular docking studies using CB-DOCK 2 tool revealed that among the DGCs, VpvC exhibited highest affinity for GTP (-5.6 kcal/mol), which was closely followed by CdgL (-5.5 kcal/mol). MD simulations depicted all DGC-GTP complexes to be stable due to its considerably low eigenvalues. Such studies are considered to provide maiden insights into the genomic and structural properties of V. cholerae DGCs, actively involved in biofilm signalling systems, and it is projected to be beneficial in the discovery of novel DGC inhibitors that can target and downregulate the c-di-GMP regulatory system to develop anti-biofilm strategies against the cholera pathogen.
Collapse
Affiliation(s)
- Tuhin Manna
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Subhamoy Dey
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, India
| | - Monalisha Karmakar
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
- Rani Rashmoni Green University, Singur, West Bengal, India
| | - Chandradipa Ghosh
- Deparment of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
2
|
Rahman MO, Ahmed SS, Alqahtani AS, Hamid K, Sultana M, Ali MA. Adenocarpine, Marmesin, and Lycocernuine from Ficus benjamina as Promising Inhibitors of Aldose Reductase in Diabetes: A Bioinformatics-Guided Approach. Appl Biochem Biotechnol 2025; 197:3215-3257. [PMID: 39836299 DOI: 10.1007/s12010-024-05160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Diabetes affects approximately 422 million people worldwide, leading to 1.5 million deaths annually and causing severe complications such as kidney failure, neuropathy, and cardiovascular disease. Aldose reductase (AR), a key enzyme in the polyol pathway, is an important therapeutic target for managing these complications. The high cost, severe side effects, and rising drug resistance in traditional diabetes treatments underscore the urgent need for novel AR-targeting antidiabetic agents. Ficus benjamina used in traditional medicine demonstrates promising potential for diabetes management. This study investigated the antidiabetic potential of F. benjamina phytocompounds targeting AR receptor employing a structure-based drug design approach to identify potential antidiabetic drug agents. Using molecular docking, ADMET analysis, molecular dynamics (MD) simulation, MM/GBSA, MM/PBSA, and DFT calculations, we identified three promising lead compounds: adenocarpine (- 9.2 kcal/mol), marmesin (- 8.8 kcal/mol), and lycocernuine (- 8.4 kcal/mol). These compounds presented favorable pharmacokinetic, pharmacodynamic, and toxicity profiles, with a 500-ns MD simulation confirming their stability, supported by PCA and Gibbs FEL analysis. MM/GBSA study identified adenocarpine (- 72.53 kcal/mol) as the best compound, outperforming marmesin (- 70 kcal/mol) and lycocernuine (- 61.95 kcal/mol). DFT analysis revealed that adenocarpine exhibited the highest molecular reactivity (3.914 eV), while lycocernuine demonstrated the greatest kinetic stability (6.377 eV). Marmesin and lycocernuine showed increased reactivity upon transitioning from the free states (4.441 eV and 6.377 eV, respectively) to the bound states (4.359 eV and 6.231 eV, respectively). These results could lead to the development of adenocarpine, marmesin, and lycocernuine as novel drug candidates for diabetes, warranting further in vitro and in vivo validation.
Collapse
Affiliation(s)
- M Oliur Rahman
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Kaiser Hamid
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Maria Sultana
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
El-Banna AA, Eltamany EE, Yassen ASA, Lotfy A, El-Tanahy AHH, Badr JM, Algandaby MM, Murshid SS, Elhady SS, Abdelhameed RFA. Integrated Network Pharmacology, Molecular Modeling, LC-MS Profiling, and Semisynthetic Approach for the Roots of Rubia tinctorum L. Metabolites in Cancer Treatment. ACS OMEGA 2025; 10:13027-13045. [PMID: 40224436 PMCID: PMC11983213 DOI: 10.1021/acsomega.4c09853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Rubia tinctorum L. is one of the most widely used plants in folk medicine, with many reported pharmacological activities. One of these valuable activities is its anticancer efficacy. The aim of this study is to explore the multilevel mechanisms of R. tinctorum metabolites in cancer treatment using network pharmacology, together with molecular docking and in vitro studies. The network pharmacology analysis enabled us to reveal the hit anticancer R. tinctorum constituents, which were found to be acacetin, alizarin, anthragallol, 2-hydroxyanthraquinone, and xanthopurpurin. The most enriched cancer-linked target genes were PLCG1, BCL2, CYP1B1, NSD2, and ESR2. The pathways that were mostly involved in the anticancer mechanism of R. tinctorum metabolites were found to be metabolic pathways as well as pathways in cancer and apoptosis. Molecular docking of the identified hit anticancer constituents on the active sites of the most enriched genes unveiled that acacetin and alizarin possessed the lowest binding energies on the active sites of NSD2 and BCL2, respectively. While anthragallol showed the most stabilized interaction on the active sites of PLCG1, CYP1B1, and ESR2. Consequently, R. tinctorum extracts were evaluated for their in vitro cytotoxicity on a panel of cancerous cells. Among the tested R. tinctorum extracts, the chloroform extract was the strongest one with an IC50 = 3.987 μg/mL on the MCF-7 breast cancer cell line. Consequently, it was subjected to chromatographic separation and purification to isolate its major components with reported anticancer activity (scopoletin, rubiadin, chrysophanic acid, alizarin, purpurin, nor-damnacanthal, emodin, and rutin). Alizarin and purpurin constituted the main anthraquinones in R. tinctorum . Thus, they were quantified using LC/MS analysis. Moreover, a semisynthetic approach of alizarin toward the enhancement of its anticancer effect on the tested cancer cells was attained. Among the synthesized compounds, 2-methyl alizarin was the most active one with an IC50 = 8.878 μg/mL against the HepG2 cell line. This study provides deep insights into the anticancer mechanisms of R. tinctorum metabolites for the first time using network pharmacology and valorizes their significance as valuable anticancer agents.
Collapse
Affiliation(s)
- Alaa A. El-Banna
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21521, Egypt
- Department
of Pharmacognosy, College of Pharmacy, Najran
University, Najran 66454, Saudi Arabia
| | - Enas E. Eltamany
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Asmaa S. A. Yassen
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Lotfy
- Egyptian
Liver Research Institute and Hospital (ELRIAH), Mansoura 35111, Egypt
- Department
of Surgery, Medical University of South
Carolina, Charleston, South Carolina 29425, United States
| | - Aya H. H. El-Tanahy
- Department
of Pharmacognosy, Faculty of Pharmacy, Delta
University for Science and Technology, Gamasa 7730103, Egypt
| | - Jihan M. Badr
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Mardi M. Algandaby
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S. Murshid
- Department
of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sameh S. Elhady
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda F. A. Abdelhameed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of
Pharmacy, Galala University, New Galala 43713, Egypt
| |
Collapse
|
4
|
Paul M, Banerjee A, Maiti S, Mitra D, DasMohapatra PK, Thatoi H. Evaluation of substrate specificity and catalytic promiscuity of Bacillus albus cellulase: an insight into in silico proteomic study aiming at enhanced production of renewable energy. J Biomol Struct Dyn 2025; 43:3076-3098. [PMID: 38126200 DOI: 10.1080/07391102.2023.2295971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Cellulases are enzymes that aid in the hydrolysis of cellulosic fibers and have a wide range of industrial uses. In the present in silico study, sequence alignment between cellulases from different Bacillus species revealed that most of the residues are conserved in those aligned enzymes. Three dimensional structures of cellulase enzymes from 23 different Bacillus species have been predicted and based on the alignment between the modeled structures, those enzymes have been categorized into 7 different groups according to the homology in their conformational folds. There are two structural contents in Gr-I cellulase namely β1-α2 and β3-α5 loops which varies greatly according to their static position. Molecular docking study between the B. albus cellulase and its various cellulosic substrates including xylanoglucan oligosaccharides revealed that residues viz. Phe154, Tyr258, Tyr282, Tyr285, and Tyr376 of B. albus cellulase are significantly involved in formation stacking interaction during enzyme-substrate binding. Residue interaction network and binding energy analysis for the B. albus cellulase with different cellulosic substrates depicted the strong affinity of XylGlc3 substrate with the receptor enzyme. Molecular interaction and molecular dynamics simulation studies exhibited structural stability of enzyme-substrate complexes which are greatly influenced by the presence of catalytic promiscuity in their substrate binding sites. Screening of B. albus in carboxymethylcellulose (CMC) and xylan supplemented agar media revealed the capability of the bacterium in degrading both cellulose and xylan. Overall, the study demonstrated B. albus cellulase as an effective biocatalyst candidate with the potential role of catalytic promiscuity for possible applications in biofuel industries.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
- Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Amrita Banerjee
- Oriental Institute of Science and Technology, Midnapore, India
| | - Smarajit Maiti
- Oriental Institute of Science and Technology, Midnapore, India
| | - Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, India
| | - Pradeep K DasMohapatra
- Department of Microbiology, Raiganj University, Raiganj, India
- PAKB Environment Conservation Centre, Raiganj University, Raiganj, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| |
Collapse
|
5
|
Ongtanasup T, Eawsakul K. Developing Novel Beta-Secretase Inhibitors in a Computer Model as a Possible Treatment for Alzheimer's Disease. Adv Pharmacol Pharm Sci 2025; 2025:5528793. [PMID: 40201042 PMCID: PMC11976051 DOI: 10.1155/adpp/5528793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that causes neurons and axons in the brain to deteriorate over time and in a specific pattern. The enzyme beta-secretase-1 (BACE-1) plays a crucial role in the onset and progression of AD. In silico approaches, or computer-aided drug design, have become useful tools for reducing the number of therapeutic candidates that need to be evaluated in human clinical trials. Finding chemicals that bind to BACE-1's active site and inhibit its activity is key for preventing AD. A pharmacophore model was developed in this study based on potent BACE-1 inhibitors previously identified, and subsequently employed to screen a commercially available compound database for similar compounds. ZINC35883784 was identified with high binding affinities and hydrogen bonding interactions. Moreover, similar properties to donepezil were found in a compound made by altering the structure of ZINC35883784 called (4R,5R)-2-[1-(2-ethylcyclohexyl)ethyl]-4-hydroxy-5-(4-hydroxybutyl)cyclohexanolate (M4). Compounds were tested for interactions with BACE-1 and favorable properties. Binding scores were confirmed after molecular docking. The assessment of drug-likeness was conducted utilizing Swiss ADME analysis. Molecular dynamics simulations assessed the stability of compound interactions with BACE-1. MMPBSA calculated binding free energy and contribution energy. Results showed that M4 had strong and steady interactions with BACE-1. M4 was also analyzed by predicted NMR and retrosynthesis. However, further experiments are needed to evaluate M4's potential as a BACE-1 inhibitor.
Collapse
Affiliation(s)
- Tassanee Ongtanasup
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Komgrit Eawsakul
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
6
|
Singh J, Khanduja KL, Dahiya D, Avti PK. Mechanistic Regulation of Epidermal Growth Factor and Hormonal Receptors by Kinase Inhibitors and Organofluorines in Breast Cancer Therapy. Cell Biochem Biophys 2025; 83:1113-1137. [PMID: 39316263 DOI: 10.1007/s12013-024-01546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Differential expression patterns of growth factor (EGFR, HER-2) and hormonal (ER, PR) receptors in breast cancer (BC) remain crucial for evaluating and tailoring therapeutic interventions. This study investigates differential expression profiles of hormonal and growth factor receptors in BC patients and across age groups, major subclasses, disease stages and tumor histology and survival rates, the efficacy of emerging clinical trial drugs (Dabrafenib and Palbociclib) and elucidating their molecular interaction mechanisms for efficient therapeutic strategies. Gene and protein expression analysis in the normal vs BC and across age groups and major subclasses reveals divergent patterns as EGFR and HER-2 levels are reduced in tumors versus normal tissue, while ER and PR levels are higher, particularly in luminal subtypes. However, there was no significant difference in survival rates among high and low/medium expression levels of EGFR and PR receptors. Conversely, patients with high HER-2 and ER expression exhibited poorer survival rates compared to low or medium expression levels. The in vitro findings indicate that Dabrafenib exhibits greater effectiveness than Palbociclib in suppressing various BC cells such as MCF-7 (Luminal), MDA-MB-231 (Triple-Negative), SKBR-3 (HER-2 + ) proliferation, promoting cell death, (IC50 of Dab < Pal) at 24 and 48 h, ROS production, and reduced ER and PR, elevated HER-2 with no change in EGFR expression. Molecular simulation studies revealed Dabrafenib's thermodynamically stable interactions (ΔG), tighter binding, and less structural deviation in the order EGFR > HER-2 > ER > PR as compared to Palbociclib (HER-2 > ER > PR = EGFR). These results indicate that Dabrafenib, compared to Palbociclib, more effectively regulates breast cancer cell proliferation through specific interactions with hormonal and growth factor receptors towards a repurposing approach.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Krishan Lal Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of Surgery, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, (PGIMER), Chandigarh, India.
| |
Collapse
|
7
|
Sangeet S, Khan A. An in-silico approach to identify bioactive phytochemicals from Houttuynia cordata Thunb. As potential inhibitors of human glutathione reductase. J Biomol Struct Dyn 2025; 43:2300-2319. [PMID: 38109166 DOI: 10.1080/07391102.2023.2294181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Cellular infections are central to the etiology of various diseases, notably cancer and malaria. Counteracting cellular oxidative stress via the inhibition of glutathione reductase (GR) has emerged as a promising therapeutic strategy. Houttuynia cordata, a medicinal plant known for its potent antioxidant properties, has been the focus of our investigation. In this study, we conducted comprehensive in silico analyses involving the phytochemical constituents of H. cordata to identify potential natural GR inhibitors. Our methodological approach encompassed multiple in silico techniques, including molecular docking, molecular dynamics simulations, MMPBSA analysis, and dynamic cross-correlation analysis. Out of 13 docked phytochemicals, Quercetin, Quercitrin, and Sesamin emerged as particularly noteworthy due to their exceptional binding affinities for GR. Notably, our investigation demonstrated that Quercetin and Sesamin exhibited promising outcomes compared to the well-established pharmaceutical agent N-acetylcysteine (NAC). Molecular dynamics analyses provided insights into the ability of these phytochemicals to induce structural compaction and stabilization of the GR protein, as evidenced by changes in radius of gyration and solvent-accessible surface area. Moreover, MMPBSA analysis highlighted the crucial roles of specific residues, namely Gly27, Gly28, Ser51, His52, and Val61, in mediating essential interactions with these phytochemicals. Furthermore, an assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox) profiles underscored the favourable drug-like attributes of these phytochemicals. Thus, the current findings underscore the immense potential of Houttuynia cordata phytochemicals as potent antioxidants with the capacity to combat a spectrum of maladies, including malaria and cancer. This study not only unveils novel therapeutic avenues but also underscores the distinctive outcomes and paramount significance of harnessing H. cordata phytochemicals for their efficacious antioxidant properties.
Collapse
Affiliation(s)
- Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
- CompObelisk, Mirzapur, India
| | - Arshad Khan
- CompObelisk, Mirzapur, India
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, India
| |
Collapse
|
8
|
Temirak A, El Kerdawy AM, Nageeb AM, Abdel-Mohsen HT. Novel 5,6-dichlorobenzimidazole derivatives as dual BRAF WT and BRAF V600E inhibitors: design, synthesis, anti-cancer activity and molecular dynamics simulations. BMC Chem 2025; 19:45. [PMID: 39985108 PMCID: PMC11844072 DOI: 10.1186/s13065-025-01402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/28/2025] [Indexed: 02/24/2025] Open
Abstract
A new series of 1-substiuted-5,6-dichloro-2-(4-methoxyphenyl)-1H-benzo[d]imidazoles 10a-p was designed and synthesized to target both BRAFWT and BRAFV600E. The design strategy ensures that these derivatives would effectively occupy the ATP binding pocket of BRAFWT/V600E kinase domains and extend over the gate area interacting through hydrogen bonding with the surrounding key amino acids Glu500 and Asp593 and to finally occupy the allosteric hydrophobic back pocket. Some synthesized derivatives demonstrated impressive potency against BRAFWT with % inhibition approaching 91% at a concentration of 10 µM. The most potent candidate 10h demonstrated IC50 values of 1.72 and 2.76 µM on BRAFWT and BRAFV600E, respectively. At the same time, the synthesized benzimidazoles 10a-p were examined for their growth inhibitory activity on NCI-60 cancer cell lines. Again, compound 10h revealed a potent GI50 across a range of cancer cell lines. Moreover, it arrested cell cycle progression in HT29 colon cancer cell line at G2/M phase and induced apoptosis in the same cell line. Molecular dynamics simulations supported the validity of the design assumption, simultaneously, ADME prediction study displayed that the designed benzimidazoles exhibit promising physiochemical and drug-likeness properties as anticancer agents.
Collapse
Affiliation(s)
- Ahmed Temirak
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt
| | - Ahmed M El Kerdawy
- School of Health and Care Sciences, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, UK
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
| | - Amira M Nageeb
- High Throughput Molecular and Genetic Technology Lab, Center of Excellence for Advanced Sciences, Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt
| | - Heba T Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, P.O. 12622, Cairo, Egypt.
| |
Collapse
|
9
|
Wang J, Ouyang X, Meng S, Li J, Liu L, Li C, Li H, Zheng H, Liao C, Zhao YL, Ni J. Semi-rational design of an aromatic dioxygenase by substrate tunnel redirection. iScience 2025; 28:111570. [PMID: 39811656 PMCID: PMC11731282 DOI: 10.1016/j.isci.2024.111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Lignin valorization is crucial for achieving economic and sustainable biorefinery processes. However, the enzyme substrate preferences involved in lignin degradation remain poorly understood, and low activity toward specific substrates presents a significant challenge to the efficient utilization of lignin. In this study, we investigated the substrate promiscuity of ThAdo, a key enzyme involved in lignin valorization. Pre-reaction state analysis revealed that a hydrogen bond network is critical in determining substrate selectivity. By performing targeted saturation mutagenesis on residues surrounding the substrate tunnels, we identified the Y205W and Y205Q mutants, which demonstrated 0.73-fold and 0.72-fold enhancements in activity, respectively. Structural analysis indicated that the redirection of the original substrate tunnel may be responsible for the improved activity. Our study provides essential insights into the substrate preference mechanisms of lignin degrading enzymes and suggests that this tunnel-redirection strategy can be extended to other promiscuous enzymes.
Collapse
Affiliation(s)
- Jiawei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyu Meng
- Innovation Center for Synthetic Biotechnology, Lumy Biotechnology, Changzhou 213200, Jiangsu, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaofeng Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hengrun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haotian Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Liao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Ni
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
- Innovation Center for Synthetic Biotechnology, Lumy Biotechnology, Changzhou 213200, Jiangsu, China
| |
Collapse
|
10
|
Alvarado YJ, González-Paz L, Paz JL, Loroño-González MA, Santiago Contreras J, Lossada C, Vivas A, Marrero-Ponce Y, Martinez-Rios F, Rodriguez-Lugo P, Balladores Y, Vera-Villalobos J. Biological Implications of the Intrinsic Deformability of Human Acetylcholinesterase Induced by Diverse Compounds: A Computational Study. BIOLOGY 2024; 13:1065. [PMID: 39765732 PMCID: PMC11672903 DOI: 10.3390/biology13121065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
The enzyme acetylcholinesterase (AChE) plays a crucial role in the termination of nerve impulses by hydrolyzing the neurotransmitter acetylcholine (ACh). The inhibition of AChE has emerged as a promising therapeutic approach for the management of neurological disorders such as Lewy body dementia and Alzheimer's disease. The potential of various compounds as AChE inhibitors was investigated. In this study, we evaluated the impact of natural compounds of interest on the intrinsic deformability of human AChE using computational biophysical analysis. Our approach incorporates classical dynamics, elastic networks (ENM and NMA), statistical potentials (CUPSAT and SWOTein), energy frustration (Frustratometer), and volumetric cavity analyses (MOLE and PockDrug). The results revealed that cyanidin induced significant changes in the flexibility and rigidity of AChE, especially in the distribution and volume of internal cavities, compared to model inhibitors such as TZ2PA6, and through a distinct biophysical-molecular mechanism from the other inhibitors considered. These findings suggest that cyanidin could offer potential mechanistic pathways for future research and applications in the development of new treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ysaías J. Alvarado
- Laboratorio de Química Biofísica Experimental y Teórica (LQBET), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (Y.J.A.); (P.R.-L.)
| | - Lenin González-Paz
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Marcos A. Loroño-González
- Departamento Académico de Fisicoquímica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Julio Santiago Contreras
- Departamento Académico de Química Orgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Carla Lossada
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - Alejandro Vivas
- Laboratorio de Modelado, Dinamica y Bioquímica Subcelular (LMDBS), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (C.L.); (A.V.)
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, México or (Y.M.-P.); (F.M.-R.)
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Universidad San Francisco de Quito (USFQ), Escuela de Medicina, Edificio de Especialidades Médicas, Diego de Robles y vía interoceánica, Quito 170157, Ecuador
| | - Felix Martinez-Rios
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Insurgentes Mixcoac, Benito Juárez, Ciudad de México 03920, México or (Y.M.-P.); (F.M.-R.)
| | - Patricia Rodriguez-Lugo
- Laboratorio de Química Biofísica Experimental y Teórica (LQBET), Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Biomedicina Molecular (CBM), Maracaibo 4001, Zulia, República Bolivariana de Venezuela; (Y.J.A.); (P.R.-L.)
| | - Yanpiero Balladores
- Laboratorio de Física de la Materia Condensada, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, República Bolivariana de Venezuela;
| | - Joan Vera-Villalobos
- Laboratorio de Análisis Químico Instrumental (LAQUINS), Facultad de Ciencias Naturales y Matemáticas, Departamento de Química y Ciencias Ambientales, Escuela Superior Politécnica del Litoral, Guayaquil ECO90211, Ecuador;
| |
Collapse
|
11
|
Alzamami A, Alturki NA, Khan K, Basharat Z, Mashraqi MM. Screening inhibitors against the Ef-Tu of Fusobacterium nucleatum: a docking, ADMET and PBPK assessment study. Mol Divers 2024; 28:4259-4276. [PMID: 38457020 DOI: 10.1007/s11030-024-10815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 03/09/2024]
Abstract
The oral pathogen Fusobacterium nucleatum has recently been associated with an elevated risk of colorectal cancer (CRC), endometrial metastasis, chemoresistance, inflammation, metastasis, and DNA damage, along with several other diseases. This study aimed to explore the disruption of protein machinery of F. nucleatum via inhibition of elongation factor thermo unstable (Ef-Tu) protein, through natural products. No study on Ef-Tu inhibition by natural products or in Fusobacterium spp. exists till todate. Ef-Tu is an abundant specialized drug target in bacteria that varies from human Ef-Tu. Elfamycins target Ef-Tu and hence, Enacyloxin IIa was used to generate pharmacophore for virtual screening of three natural product libraries, Natural Product Activity and Species Source (NPASS) (n = 30000 molecules), Tibetan medicinal plant database (n = 54 molecules) and African medicinal plant database (n > 6000 molecules). Peptaibol Septocylindrin B (NPC141050), Hirtusneanoside, and ZINC95486259 were prioritized from these libraries as potential therapeutic candidates. ADMET profiling was done for safety assessment, physiological-based pharmacokinetic modeling in human and mouse for getting insight into drug interaction with body tissues and molecular dynamics was used to assess stability of the best hit NPC141050 (Septocylindrin B). Based on the promising results, we propose further in vitro, in vivo and pharmacokinetic testing on the lead Septocylindrin B, for possible translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, 11961, Al-Quwayiyah, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zarrin Basharat
- Alpha Genomics (Private) Limited, Islamabad, 45710, Pakistan.
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia.
| |
Collapse
|
12
|
Liu X, Jimenez-Alesanco A, Li Z, Rizzuti B, Neira JL, Estaras M, Peng L, Chuluyan E, Garona J, Gottardo F, Velazquez-Campoy A, Xia Y, Abian O, Santofimia-Castaño P, Iovanna J. Development of an efficient NUPR1 inhibitor with anticancer activity. Sci Rep 2024; 14:29515. [PMID: 39604425 PMCID: PMC11603058 DOI: 10.1038/s41598-024-79340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel. To address this, we have performed a high-throughput screening of 10,000 compounds from the HitFinder Chemical Library, and identified AJO14 as a lead compound that binds to NUPR1, without having favorable affinity towards hERG. AJO14 induced cell death through apoptosis, necroptosis, and parthanatos (induced by the poly-ADP ribose polymerase (PARP) overactivation), driven by mitochondrial catastrophe and decreased ATP production. This process seemed to be mediated by the hyperPARylation (an excessive modification of proteins by PARP, leading to cellular dysfunction), as it could be reversed by Olaparib, a PARP inhibitor. In xenografted mice, AJO14 demonstrated a dose-dependent tumor reduction activity. Furthermore, we attempted to improve the anti-cancer properties of AJO14 by molecular modification of the lead compound. Among the 51 candidates obtained and tested, 8 compounds exhibited a significant increase in efficacy and have been retained for further studies, especially LZX-2-73. These AJO14-derived compounds offer potent NUPR1 inhibition for pancreatic cancer treatment, without cardiotoxicity concerns.
Collapse
Affiliation(s)
- Xi Liu
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ana Jimenez-Alesanco
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
| | - Zexian Li
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- CNR NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Via P.Bucci, Cubo 31 C, 87036, Rende, Italy
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- IDIBE, Universidad Miguel Hernández, Edificio Torregaitán, Avda. del Ferrocarril s/n, 03202, Elche, Alicante, Spain
| | - Matías Estaras
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR7325, Parc Scientifique et Technologique de Luminy, Equipe labélisée Ligue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Eduardo Chuluyan
- Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
| | - Juan Garona
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Florencia Gottardo
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Yi Xia
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina.
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Aruge S, Asif M, Tariq A, Asif S, Zafar M, Elahi MA, Riaz L, Javed A, Bostan N, Sattar S. Impact of MTHFD2 Expression in Bladder/Breast Cancer and Screening of Its Potential Inhibitor. ACS OMEGA 2024; 9:44193-44202. [PMID: 39524662 PMCID: PMC11541529 DOI: 10.1021/acsomega.4c03599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Genes of folate-mediated 1 carbon metabolism are found to be highly upregulated in tumor cells and promote cancer cell proliferation. The current study aimed to determine the expression of the MTHFD2 gene in bladder and breast cancers. Furthermore, the determination of potential ligand-based inhibitors against MTHFD2 was performed in comparison with those of chemotherapeutic drugs and natural plant-based compounds. Semiquantitative expression analysis along with structure-based virtual ligand library screening was done to find plausible inhibitors. MTHFD2 expression was significantly increased with tumor stage progression both in low- and high-grade bladder cancer and especially in triple-negative breast cancer. Virtual ligand-based library screening against the three-dimensional MTHFD2 protein structure led to the identification of plausible inhibitors like MCULE-8109969891-0 and MCULE-9715677418-0-1 that displayed lower binding free energy as compared to that of already documented LY345899. Similar scaffold commercial drugs leucal (LEU), epirubicin (EPI), and lometrexol also displayed strong binding to the active site of MTHFD2. EPI and LEU in combinatorial therapy were also tested in vitro on MDA-MB-231 cells. The high doses of LEU in combination with EPI showed a significant reduction in cell viability at 2 and 3 μM concentrations. The interaction of breast cancer serum with high expression of MTHFD2 also showed an increase in binding of epirubicin in the presence of leucovorin. The decrease in the absorbance spectra of epirubicin at 37 and 53 °C displayed the stability induced by LEU on the interaction of EPI with the MTHFD2 binding pocket. Leucovorin tends to stabilize the interaction as the binding affinity is high even at 53 °C. Thus, MTHFD2 might be used as a cancer biomarker since its expression level changes drastically with tumor progression. Further experimental studies are required to establish the potential mode of inhibition of the novel small ligands. Future in vivo trials may validate the effectiveness of the combinatorial therapy.
Collapse
Affiliation(s)
- Samreen Aruge
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Maleeha Asif
- Department
of Biochemistry, Hazara University, Dhodial, Mansehra, Khyber Pakthunkhwa 21120, Pakistan
| | - Aamira Tariq
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Saaim Asif
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Muhammad Zafar
- Institute
of Kidney Disease, Hayatabad
Medical Complex, Hayatabad, Peshawar, Khyber Pakthunkhwa 25100, Pakistan
| | - Muhammad Affan Elahi
- Department
of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lubna Riaz
- Micro-molecular
lab, Public Health Laboratories Division, National Institute of Health, 45500 Islamabad, Pakistan
| | - Aneela Javed
- ASAB, NUST University, Islamabad 44000, Pakistan
| | - Nazish Bostan
- Molecular
Virology Laboratories, Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Sadia Sattar
- Molecular
Virology Laboratories, Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| |
Collapse
|
14
|
Karmakar M, Jana D, Manna T, Mitra M, Guchhait KC, Dey S, Raul P, Jana S, Roy S, Baitalik A, Ghosh K, Panda AK, Ghosh C. Bioremediation by Brevibacterium sediminis: a prospective pyrene degrading agent to eliminate environmental polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2024; 40:377. [PMID: 39495360 DOI: 10.1007/s11274-024-04178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Environmental abuses and subsequent array of health hazards by petroleum products have emerged as a global concern that warrants proper remediation. Pyrene (PYR), a polycyclic aromatic hydrocarbon, is a xenobiotic by-product during crude petroleum processing. Biodegradation potential of two bacterial isolates (MK4 and MK9) of Brevibacterium sediminis from oil contaminated sites was explored. MK4 and MK9 could degrade PYR up to 23 and 59% (1000 mg.L- 1), respectively. A first-order formalism with the rate constant for MK4 and MK9 were found to be 0.022 ± 0.001 and 0.081 ± 0.005 day- 1, respectively with the corresponding half life period of 31.4 ± 1.4 and 8.6 ± 0.60 days respectively. Both the isolates produce biosurfactants as established by drop collapse assay, oil spreading and emulsification activity studies. Decrease in pH, change in absorbance (bacterial growth), and catechol formation support adaptation capability of the isolates to degrade PYR by using it as a source of carbon. PYR ring cleavage was induced by the ring hydroxylating dioxogenase enzyme present in the strains, as identified by PCR assay. In silico analyses of the PYR degrading enzyme revealed its higher binding affinity (-7.6 kcal.mol- 1) and stability (Eigen value:1.655763 × 10- 04) to PYR, as further supported by other thoeroretical studies. MK9 strain was more efficient than the MK4 strain in PYR degradation. Studies gain its prominence as it reports for the first time on the aptitude of B. sediminis as novel PYR-degrading agent that can efficiently be used in the bioremediation of petroleum product pollution with a greener approach.
Collapse
Affiliation(s)
- Monalisha Karmakar
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Debarati Jana
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Maitreyee Mitra
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Kartik Chandra Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Subhamoy Dey
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Priyanka Raul
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sahadeb Jana
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Anirban Baitalik
- Department of Pure and Applied Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
15
|
Dong L, Sun L, Yang Y, Yuan L, Gao W, Yu D, Meng Q, Shi W, Wang Q, Li Y, Zhang Y, You X, Yao K. Non-antibiotic pharmaceutical phenylbutazone binding to MexR reduces the antibiotic susceptibility of Pseudomonas aeruginosa. Microbiol Res 2024; 288:127872. [PMID: 39146705 DOI: 10.1016/j.micres.2024.127872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Antimicrobial resistance has been an increasingly serious threat to global public health. The contribution of non-antibiotic pharmaceuticals to the development of antibiotic resistance has been overlooked. Our study found that the anti-inflammatory drug phenylbutazone could protect P. aeruginosa against antibiotic mediated killing by binding to the efflux pump regulator MexR. In this study, antibiotic activity against P. aeruginosa alone or in combination with phenylbutazone was evaluated in vitro and in vivo. Resazurin accumulation assay, transcriptomic sequencing, and PISA assay were conducted to explore the underlying mechanism for the reduced antibiotic susceptibility caused by phenylbutazone. Then EMSA, ITC, molecular dynamic simulations, and amino acid substitutions were used to investigate the interactions between phenylbutazone and MexR. We found that phenylbutazone could reduce the susceptibility of P. aeruginosa to multiple antibiotics, including parts of β-lactams, fluoroquinolones, tetracyclines, and macrolides. Phenylbutazone could directly bind to MexR, then promote MexR dissociating from the mexA-mexR intergenic region and de-repress the expression of MexAB-OprM efflux pump. The overexpressed MexAB-OprM pump resulted in the reduced antibiotic susceptibility. And the His41 and Arg21 residues of MexR were involved in the phenylbutazone-MexR interaction. We hope this study would imply the potential risk of antibiotic resistance caused by non-antibiotic pharmaceuticals.
Collapse
Affiliation(s)
- Limin Dong
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lin Yuan
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Gao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Dan Yu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qinghong Meng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Shi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Qing Wang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yue Li
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
16
|
Wang Z, Wang S, Kang Y, Chi X, Pan Y, Zeng S, Zhang C, Xu X, Wang W, Huang W. Discovery of new non-covalent reversible BTK inhibitors: Synthesis, in silico studies, and in vitro evaluations. Chem Biol Interact 2024; 403:111241. [PMID: 39278457 DOI: 10.1016/j.cbi.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Bruton's Tyrosine Kinase (BTK) played a key role in the B cell antigen receptor (BCR) signaling pathway, and was considered a hotspot in the treatment of B cell malignant tumors and B cell immune diseases. There were 5 covalent irreversible inhibitors launched currently on the market, but C481S mutation was detected in most patients after administration. The approval of Pirtobrutinib (Jaypirca) by FDA in 2023 aroused great interest in the development of non-covalent and reversible BTK inhibitors. In order to solve the resistance of covalent irreversible inhibitors caused by C481S mutation, 11 reversible BTK inhibitors were designed based on screening in this article. The design, synthesis, in silico studies, and in vitro evaluations were performed for further verification. Among them, compound WS-11 showed best activity with IC50 of 3.9 nM for wild type, 2.2 nM for C481S mutation BTK, which was comparable to the positive control Pirtobrutinib. Furthermore, WS-11 would have a good druglikeness properties predicted by pkCSM and SwissADME, which provided a promising lead for further optimization and development.
Collapse
Affiliation(s)
- Zunyuan Wang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, 310013, China
| | - Shu Wang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China
| | - Youkun Kang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xinglong Chi
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China
| | - Youlu Pan
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Shenxin Zeng
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Chixiao Zhang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xiangwei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China; Yongkang First People's Hospital, Yongkang, 321306, China
| | - Wenyong Wang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China; Yongkang First People's Hospital, Yongkang, 321306, China.
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
17
|
Shukla M, Mali G, Sharma S, Maji S, Yadav V, Mishra A, Erande RD, Bhattacharyya S. One-Pot Green Synthesis and Biological Evaluation of Dimedone-Coupled 2,3-Dihydrofuran Derivatives to Divulge Their Inhibition Potential against Staphylococcal Thioredoxin Reductase Enzyme. ACS OMEGA 2024; 9:43414-43425. [PMID: 39494007 PMCID: PMC11525517 DOI: 10.1021/acsomega.4c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024]
Abstract
New therapeutic leads are in global demand against multiple drug-resistant Staphylococcus aureus, as presently there is no drug of choice left to treat this pathogen. In the present work, we have designed, synthesized, and in vitro validated dimedone-coupled 2,3-dihydrofuran (DDHF)-based inhibitor scaffolds against Staphylococcal thioredoxin reductase (SaTR), a pivotal drug target enzyme of Gram-positive pathogens. Accordingly, a green multicomponent method that is both efficient and one pot has been optimized to synthesize DDHF derivatives. The synthesized DDHF derivatives were found to inhibit a purified SaTR enzyme. The best inhibitor derivative, DDHF20, inhibits SaTR as a competitive inhibitor for the NADPH binding site at low micromolar concentrations. DDHF20-capped silver nanoparticles are synthesized and characterized, and their bactericidal property has been checked in vitro. Furthermore, detailed in silico-based structure-guided functional studies have been carried out to uncover the plausible mode of action of DDHF20 as a potential anti-Staphylococcal therapeutic lead.
Collapse
Affiliation(s)
- Manjari Shukla
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Ghanshyam Mali
- Department
of Chemistry, Indian Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Supriya Sharma
- Department
of Chemistry, Indian Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Sushobhan Maji
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Vinay
Kumar Yadav
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Amit Mishra
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Rohan D. Erande
- Department
of Chemistry, Indian Institute of Technology, Jodhpur 342037, Rajasthan, India
| | - Sudipta Bhattacharyya
- Department
of Bioscience & Bioengineering, Indian
Institute of Technology, Jodhpur 342037, Rajasthan, India
| |
Collapse
|
18
|
Singh N, Singh AK. Phytoconstituents of Withania somnifera (L.) Dunal (Ashwagandha) unveiled potential cerebroside sulfotransferase inhibitors: insight through virtual screening, molecular dynamics, toxicity, and reverse pharmacophore analysis. J Biol Eng 2024; 18:59. [PMID: 39444022 PMCID: PMC11515467 DOI: 10.1186/s13036-024-00456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is considered as therapeutic target for substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD). The present study evaluates the therapeutic potential of 57 phytoconstituents of Withania somnifera against CST. Using binding score cutoff ≤-7.0 kcal/mol, top 10 compounds were screened and after ADME and toxicity-based screening, Withasomidienone, 2,4-methylene-cholesterol, and 2,3-Didehydrosomnifericin were identified as safe and potent drug candidates for CST inhibition. Key substrate binding site residues involved in interaction were LYS82, LYS85, SER89, TYR176, PHE170, PHE177. Four steroidal Lactone-based withanolide backbone of these compounds played a critical role in stabilizing their position in the active site pocket. 100 ns molecular dynamics simulation and subsequent trajectory analysis through structural deviation and compactness, principal components, free energy landscape and correlation matrix confirmed the stability of CST-2,3-Didehydrosomnifericin complex throughout the simulation and therefore is considered as the most potent drug candidate for CST inhibition and Withasomidienone as the second most potent drug candidate. The reverse pharmacophore analysis further confirmed the specificity of these two compounds towards CST as no major cross targets were identified. Thus, identified compounds in this study strongly present their candidature for oral drug and provide route for further development of more specific CST inhibitors.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
19
|
Sethi G, Hwang JH, Krishna R. Structure based exploration of potential lead molecules against the extracellular cysteine protease (EcpA) of Staphylococcus epidermidis: a therapeutic halt. J Biomol Struct Dyn 2024; 42:9167-9183. [PMID: 37615425 DOI: 10.1080/07391102.2023.2250455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Nosocomial infection caused by Staphylococcus epidermidis is one of the most widely spread diseases affecting the world's population. No strategies have been developed to overcome this infection and inhibit its spread in immunocompromised patients or patients with indwelling medical devices. EcpA is an extracellular cysteine protease protein involved in biofilm formation on medical devices. Thus, blocking this mechanism may be viable for developing a drug against S. epidermidis. The current research aimed to find new, potent inhibitors that could stop the S. epidermidis EcpA protein from functioning. This study attempted to identify the most promising drug candidates using structure-based virtual screening (SBVS) from libraries of natural ligands. The top-scored molecules were shortlisted based on their IC50 values and pharmacophore properties and further validated through density functional theory (DFT) studies. We found five inhibitors using virtual screening, and the results indicate that these drugs had the highest energy binding potential towards the EcpA targets when compared to the reference molecule E-64, a known cysteine protease inhibitor. In order to evaluate the binding conformational stability of protein-ligand complexes, molecular dynamics (MD) simulations were performed in triplicate for 100 ns, revealing the significant stability of anticipated molecules at the docked site. Furthermore, principal component analysis and binding free energy calculations were performed to understand the dynamics and stability of the complexes. The current study indicated that these compounds looked to be suitable novel inhibitors of the EcpA protein and pave the path for further discovery of novel inhibitors of EcpA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Guneswar Sethi
- Department of Bioinformatics, Pondicherry University, Puducherry, India
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeonguep, Republic of Korea
| | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
20
|
Yassen ASA, Abdel-Wahab SM, Darwish KM, Nafie MS, Abdelhameed RFA, El-Sayyad GS, El-Batal AI, Attia KM, Elshihawy HA, Elrayess R. Novel curcumin-based analogues as potential VEGFR2 inhibitors with promising metallic loading nanoparticles: synthesis, biological evaluation, and molecular modelling investigation. RSC Med Chem 2024:d4md00574k. [PMID: 39345715 PMCID: PMC11428034 DOI: 10.1039/d4md00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
VEGFR2 inhibition has been established as a therapeutic approach for managing cancer. A series of curcumin-based analogues were designed, synthesized, and screened for their anticancer activity against MCF-7 and HepG-2 cell lines and WISH normal cells. Compounds 4b, 4d, 4e, and 4f showed potent cytotoxicity against MCF-7 with IC50 values of 0.49, 0.14, 0.01, and 0.32 μM, respectively, compared to curcumin (IC50 = 13.8 μM) and sorafenib (IC50 = 2.13 μM). Interestingly, compound 4e, the most active compound, exhibited potent VEGFR2 inhibition with an IC50 value of 11.6 nM (96.5% inhibition) compared to sorafenib with an IC50 value of 30 nM (94.8% inhibition). Additionally, compound 4e significantly induced apoptotic cell death in MCF-7 cells by 41.1% compared to a control group (0.8%), halting cell division during the G2/M phase by 39.8% compared to the control (21.7%). Molecular docking-coupled dynamics simulations highlighted the bias of the VEGFR2 pocket towards compound 4e compared to other synthesized compounds. Predicting superior binding affinities and relevant interactions with the pocket's key residues recapitulated in vitro findings towards higher inhibition activity for compound 4e. Furthermore, compound 4e with adequate pharmacokinetic and drug-likeness profiles in terms of ADME and safety characteristics can serve as a promising clinical candidate for future lead optimization and development. Notably, 4e-Fe2O3-humic acid NPs exhibited potent cytotoxicity with IC50 values of 2.41 and 13.4 ng mL-1 against MCF-7 and HepG-2 cell lines, respectively. Hence, compound 4e and its Fe2O3-humic acid-NPs could be further developed as promising anti-breast cancer agents.
Collapse
Affiliation(s)
- Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Sherief M Abdel-Wahab
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC) Cairo Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Khadiga M Attia
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Al-Ayen University, College of Pharmacy Dhi Qar Iraq
| |
Collapse
|
21
|
Chaudhuri D, Majumder S, Datta J, Giri K. In silico fragment-based design and pharmacophore modelling of therapeutics against dengue virus envelope protein. In Silico Pharmacol 2024; 12:87. [PMID: 39310675 PMCID: PMC11415559 DOI: 10.1007/s40203-024-00262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
Dengue virus, an arbovirus of genus Flavivirus, is an infectious disease causing organisms in the tropical environment leading to numerous deaths every year. No therapeutic is available against the virus till date with only symptomatic relief available. Here, we have tried to design therapeutic compounds from scratch by fragment based method followed by pharmacophore based modelling to find suitable similar structure molecules and validated the same by MD simulation, followed by binding energy calculations and ADMET analysis. The receptor binding region of the dengue envelope protein was considered as the target for prevention of viral host cell entry and thus infection. This resulted in the final selection of kanamycin as a stable binding molecule against the Dengue virus envelope protein receptor binding domain. This study results in selection of a single molecule having high binding energy and prominent stable interactions as determined by post simulation analyses. This study aims to provide a direction for development of small molecule therapeutics against the dengue virus in order to control infection. This study may open a new avenue in the arena of structure based and fragment based therapeutic design to obtain novel molecules with therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00262-9.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073 India
| |
Collapse
|
22
|
Olender D, Kujawski J, Skóra B, Baranowska-Wójcik E, Sowa-Kasprzak K, Pawełczyk A, Zaprutko L, Szwajgier D, Szychowski KA. Bis-chalcones obtained via one-pot synthesis as the anti-neurodegenerative agents and their effect on the HT-22 cell line. Heliyon 2024; 10:e37147. [PMID: 39286165 PMCID: PMC11403034 DOI: 10.1016/j.heliyon.2024.e37147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
In the area of research on neurodegenerative diseases, the current challenge is to search for appropriate research methods that would detect these diseases at the earliest possible stage, but also new active structures that would reduce the rate of the disease progression and minimize the intensity of their symptoms experienced by the patient. The chalcones are considered in the context of candidates for new drugs dedicated to the fight against neurodegenerative diseases. The synthesis of bis-chalcone derivatives (3a-3d), as aim molecules was performed. Their structures were established by applying 1H NMR, 13C NMR, MS, FT-IR and UV-Vis spectra. All bis-chalcones were synthesized from terephthalaldehyde and appropriate aromatic ketone as substrates in the Claisen-Schmidt condensation method and evaluated in the biological tests and in silico analysis. Compounds exerted antioxidant activity using the HORAC method (3a-3d) and decreased the activities of GPx, COX-2 (3b-3d), GR (3a-3c) and CAT (3a,3b). The high anti-neurodegenerative potential of all four bis-chalcones was observed by inhibition of acetyl- (AChE) and butyrylcholinesterase (BChE) and a positive effect on the mouse hippocampal neuronal HT-22 cell line (LDH release and PGC-1α, PPARγ and GAPDH protein expression). TD-DFT method (computing a number of descriptors associated with HOMO-LUMO electron transition: electronegativity, chemical hardness and potential, first ionization potential, electron affinity) was employed to study the spectroscopic properties. This method showed that the first excited state of compounds was consistent with their maximum absorption in the computed UV-Vis spectra, which showed good agreement with the experimental spectrum using PBE1PBE functional. Using in silico approach, interactions of bis-chalcones with selected targets (aryl hydrocarbon receptor (AhR) PAS-A Domain, ligand binding domain of human PPAR-γ, soman-aged human BChE-butyrylthiocholine complex, Torpedo californica AChE:N-piperidinopropyl-galanthamine complex and the COX-2-celecoxib complex) were characterized. Results obtained in in silico models were consistent with in vitro experiments.
Collapse
Affiliation(s)
- Dorota Olender
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Jacek Kujawski
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszów, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszów, Poland
| |
Collapse
|
23
|
Patnala SV, Robles R, Snyder DA. Application of CoLD-CoP to Detecting Competitively and Cooperatively Binding Ligands. Biomolecules 2024; 14:1136. [PMID: 39334902 PMCID: PMC11430148 DOI: 10.3390/biom14091136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
NMR utilization in fragment-based drug discovery requires techniques to detect weakly binding fragments and to subsequently identify cooperatively binding fragments. Such cooperatively binding fragments can then be optimized or linked in order to develop viable drug candidates. Similarly, ligands or substrates that bind macromolecules (including enzymes) in competition with the endogenous ligand or substrate are valuable probes of macromolecular chemistry and function. The lengthy and costly process of identifying competitive or cooperative binding can be streamlined by coupling computational biochemistry and spectroscopy tools. The Clustering of Ligand Diffusion Coefficient Pairs (CoLD-CoP) method, previously developed by Snyder and co-workers, detects weakly binding ligands by analyzing pairs of diffusion spectra, obtained in the absence and the presence of a protein. We extended the CoLD-CoP method to analyze spectra pairs (each in the presence of a protein) with or without a critical ligand, to detect both competitive and cooperative binding.
Collapse
Affiliation(s)
- Shiva V Patnala
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| | - Roberto Robles
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| | - David A Snyder
- Department of Chemistry, College of Science and Health, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA
| |
Collapse
|
24
|
Mitra S, Halder AK, Koley A, Ghosh N, Panda P, Mandal SC, Cordeiro MNDS. Unveiling structural determinants for FXR antagonism in 1,3,4-trisubstituted-Pyrazol amide derivatives: A multi-scale in silico modelling approach. Comput Biol Med 2024; 180:108991. [PMID: 39126787 DOI: 10.1016/j.compbiomed.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern due to its potential to progress into severe liver diseases. Targeting the bile acid receptor FXR has emerged as a promising strategy for managing NAFLD. Building upon our previous research on FXR partial agonism, the present study investigates a series of 1,3,4-trisubstituted-pyrazol amide derivatives as FXR antagonists, aiming to delineate the structural features for antagonism. By means of 2D-QSAR (quantitative structure-activity relationships) modelling techniques, we elucidated the key structural elements responsible for the antagonistic properties of these derivatives. We then employed QPhAR, an open-access software, to identify key molecular features within the compounds that enhance their antagonistic activity. Additionally, 3D-QSAR modelling allowed us to analyse the steric and electrostatic fields of aligned 3D structures, further refining our understanding of structure-activity relationships. Subsequent molecular dynamics simulations provided insights into the binding mode interactions between the compounds and FXR, with varying potencies, confirming and complementing the findings from 2D-QSAR, pharmacophore, and 3D-QSAR modelling. Particularly, our study highlighted the significance of hydrophobic interactions in conferring potent antagonism by the 1,3,4-trisubstituted-pyrazol amide derivatives against FXR. Overall, this work underscores the potential of 1,3,4-trisubstituted-pyrazol amides as FXR antagonists for NAFLD treatment. Notably, our reliance on open-access software fosters reproducibility and broadens the accessibility of our findings.
Collapse
Affiliation(s)
- Soumya Mitra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Amit Kumar Halder
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India; LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Arup Koley
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Parthasarathi Panda
- Dr B C Roy College of Pharmacy and Allied Health Sciences, Durgapur, 713206, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Maria Natalia D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
25
|
Rani N, Kumar P. Exploring Natural Compounds as Potential CDK4 Inhibitors for Therapeutic Intervention in Neurodegenerative Diseases through Computational Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01258-8. [PMID: 39207668 DOI: 10.1007/s12033-024-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
CDK4 is a member of the serine-threonine kinase family, which has been found to be overexpressed in a plethora of studies related to neurodegenerative diseases. CDK4 is one of the most validated therapeutic targets for neurodegenerative diseases. Hence, the discovery of potent inhibitors of CDK4 is a promising candidate in the drug discovery field. Firstly, the reference drug Palbociclib was identified from the available literature as a potential candidate against target CDK4. In the present study, the Collection of Open Natural Products (COCONUT) database was accessed for determining potential CDK4 inhibitors using computational approaches based on the Tanimoto algorithm for similarity with the target drug, i.e., Palbociclib. The potential candidates were analyzed using SWISSADME, and the best candidates were filtered based on Lipinski's Rule of 5, Brenk, blood-brain barrier permeability, and Pains parameter. Further, the molecular docking protocol was accessed for the filtered compounds to anticipate the CDK4-ligand binding score, which was validated by the fastDRH web-based server. Based on the best docking score so obtained, the best four natural compounds were chosen for further molecular dynamic simulation to assess their stability with CDK4. In this study, two natural products, with COCONUT Database compound ID-CNP0396493 and CNP0070947, have been identified as the most suitable candidates for neuroprotection.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
26
|
Gul S, Khan AM, Ali ST, Rizwan S. In silico study of novel marine alkaloid jolynamine and other marine compounds via molecular docking, MM-GBSA binding energy prediction, ADMET evaluation, and molecular dynamics simulation. Nat Prod Res 2024; 38:2715-2721. [PMID: 36995020 DOI: 10.1080/14786419.2023.2195177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
In this research article bacterial (Escherichia coli and Pseudomonas aeruginosa) and fungal (Aspergillus niger and Candida albicans) enzymes are used for molecular docking of novel marine alkaloid jolynamine (10) and six marine natural compounds. Till date, no computational studies have been reported. In addition, MM/GBSA analysis is conducted for estimation of binding free energies. Furthermore, ADMET physicochemical properties were explored to understand the drug likeness property of compounds. In silico results showed that jolynamine (10) has more negative predicted binding energy among natural products. The ADMET profile of all compounds accepted the Lipinski rule and jolynamine also showed negative MM/GBSA binding free energy. Moreover, MD simulation was subjected to check structure stability. The outcomes of MD simulation of jolynamine (10) showed structure stability over 50 ns simulation. This study will hopefully facilitate the finding of other natural products and expedite the drug discovery process to screen drug like chemical compounds.
Collapse
Affiliation(s)
- Sana Gul
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, University Road, Karachi-75300, Pakistan
| | - Abdul Majeed Khan
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, University Road, Karachi-75300, Pakistan
| | - Syed Tahir Ali
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, University Road, Karachi-75300, Pakistan
| | - Samra Rizwan
- Department of OBGYN, Jinnah Postgraduate Medical Centre (JP MC), Karachi-75510, Pakistan
| |
Collapse
|
27
|
Kochnev Y, Ahmed M, Maldonado A, Durrant J. MolModa: accessible and secure molecular docking in a web browser. Nucleic Acids Res 2024; 52:W498-W506. [PMID: 38783339 PMCID: PMC11223821 DOI: 10.1093/nar/gkae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular docking advances early-stage drug discovery by predicting the geometries and affinities of small-molecule compounds bound to drug-target receptors, predictions that researchers can leverage in prioritizing drug candidates for experimental testing. Unfortunately, existing docking tools often suffer from poor usability, data security, and maintainability, limiting broader adoption. Additionally, the complexity of the docking process, which requires users to execute a series of specialized steps, often poses a substantial barrier for non-expert users. Here, we introduce MolModa, a secure, accessible environment where users can perform molecular docking entirely in their web browsers. We provide two case studies that illustrate how MolModa provides valuable biological insights. We further compare MolModa to other docking tools to highlight its strengths and limitations. MolModa is available free of charge for academic and commercial use, without login or registration, at https://durrantlab.com/molmoda.
Collapse
Affiliation(s)
- Yuri Kochnev
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mayar Ahmed
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alex M Maldonado
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Adediwura VA, Koirala K, Do HN, Wang J, Miao Y. Understanding the impact of binding free energy and kinetics calculations in modern drug discovery. Expert Opin Drug Discov 2024; 19:671-682. [PMID: 38722032 PMCID: PMC11108734 DOI: 10.1080/17460441.2024.2349149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION For rational drug design, it is crucial to understand the receptor-drug binding processes and mechanisms. A new era for the use of computer simulations in predicting drug-receptor interactions at an atomic level has begun with remarkable advances in supercomputing and methodological breakthroughs. AREAS COVERED End-point free energy calculation methods such as Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) or Molecular-Mechanics/Generalized Born Surface Area (MM/GBSA), free energy perturbation (FEP), and thermodynamic integration (TI) are commonly used for binding free energy calculations in drug discovery. In addition, kinetic dissociation and association rate constants (k off and k on ) play critical roles in the function of drugs. Nowadays, Molecular Dynamics (MD) and enhanced sampling simulations are increasingly being used in drug discovery. Here, the authors provide a review of the computational techniques used in drug binding free energy and kinetics calculations. EXPERT OPINION The applications of computational methods in drug discovery and design are expanding, thanks to improved predictions of the binding free energy and kinetic rates of drug molecules. Recent microsecond-timescale enhanced sampling simulations have made it possible to accurately capture repetitive ligand binding and dissociation, facilitating more efficient and accurate calculations of ligand binding free energy and kinetics.
Collapse
Affiliation(s)
- Victor A. Adediwura
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kushal Koirala
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hung N. Do
- Center for Computational Biology, University of Kansas, Lawrence, KS, USA
- Present address: Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jinan Wang
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yinglong Miao
- Department of Pharmacology and Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Taj Z, Chattopadhyay I. Identification of bio-active secondary metabolites from Actinobacteria as potential drug targets against Porphyromonas gingivalis in oral squamous cell carcinoma using molecular docking and dynamics study. In Silico Pharmacol 2024; 12:34. [PMID: 38666247 PMCID: PMC11039608 DOI: 10.1007/s40203-024-00209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic periodontitis caused by the bacteria Porphyromonas gingivalis is thought to be a risk factor for the advancement of oral squamous cell carcinoma (OSCC). Virulence factors of P. gingivalis include gingipains, outer membrane surface lipoproteins, and fimbriae contribute to the activation of oncogenic pathways in OSCC by up-regulating different cytokines. Gingipains (Arg and Lys) proteases have an important role in the activation of proMMP-9, which promotes cellular invasion and metastatic ability of OSCC. Thus gingipains and MMP-9 were actively investigated as potential therapeutic targets in OSCC therapy. Various natural bioactive compounds from Actinobacteria have been explored for their anticancer potential in a variety of cancers, but very few studies have been reported in OSCC. Therefore, the current study is focused to identify potential actinobacterial compounds that can be considered as a therapeutic target against gingipains and inflammatory proteins in OSCC through high-throughput virtual screening, Molecular Docking (MD), and Molecular Dynamics Simulation (MDS) approaches. A total of 179 bioactive secondary metabolites of Actinobacteria were explored for their binding affinity against six virulence proteins of P. gingivalis. The Molecular Docking studies revealed that among 179 metabolites screened, Actinosporin G showed a highly acceptable binding affinity of -7.9 kcal/mol with RgpB (1CVR), and exhibited multi-protein targeting and drug-likeness property and passed level of toxicity. Comprehensive docking interaction of the best top-ranked Actinosporin G with OSCC-related protein targets illustrated high binding affinity towards MMP-9 and JAK-1 proteins among all targeted receptor proteins. The molecular dynamic (MD) simulation has been executed for the metabolite Actinosporin G for both bacterial gingipain (RgpB) and MMP-9 & JAK-1 showed stable intermolecular binding with both hydrogen and hydrophobic interactions. In conclusion, this work suggests that the bioactive secondary metabolite of Actinosporin G from Actinobacteria genera may serve as a promising therapy for P. gingivalis-induced OSCC. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00209-0.
Collapse
Affiliation(s)
- Zarin Taj
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610 005 India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610 005 India
| |
Collapse
|
30
|
Abdel-Sattar E, Kutkat O, El-Shiekh RA, El-Ashrey MK, El Kerdawy AM. In Silico and In Vitro Screening of Some Pregnane Glycosides Isolated from Certain Caralluma Species as SARS-COV-2 Main Protease Inhibitors. Chem Biodivers 2024; 21:e202301786. [PMID: 38466126 DOI: 10.1002/cbdv.202301786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
SARS-CoV-2 caused pandemic represented a major risk for the worldwide human health, animal health and economy, forcing extraordinary efforts to discover drugs for its prevention and cure. Considering the extensive interest in the pregnane glycosides because of their diverse structures and excellent biological activities, we investigated them as antiviral agents against SARS-COV-2. We selected 21 pregnane glycosides previously isolated from the genus Caralluma from Asclepiadaceae family to be tested through virtual screening molecular docking simulations for their potential inhibition of SARS-CoV-2 Mpro. Almost all target compounds showed a more or equally negative docking energy score relative to the co-crystallized inhibitor X77 (S=-12.53 kcal/mol) with docking score range of (-12.55 to -19.76 kcal/mol) and so with a potent predicted binding affinity to the target enzyme. The activity of the most promising candidates was validated by in vitro testing. Arabincoside C showed the highest activity (IC50=35.42 μg/ml) and the highest selectivity index (SI=9.9) followed by Russelioside B (IC50=50.80 μg/ml), and Arabincoside B (IC50=53.31 μg/ml).
Collapse
Affiliation(s)
- Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Giza, Egypt
- Department of microbiology, Faculty of pharmacy, Ahram Canadian University, 6 th of October, Giza, 12566, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Mohamed K El-Ashrey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University (KSIU), 46612, South Sinai, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, LN6 7DL, Lincoln, Lincolnshire, United Kingdom
| |
Collapse
|
31
|
Yu F, Wu X, Chen W, Yan F, Li W. Computer-assisted discovery and evaluation of potential ribosomal protein S6 kinase beta 2 inhibitors. Comput Biol Med 2024; 172:108204. [PMID: 38484695 DOI: 10.1016/j.compbiomed.2024.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
S6K2 is an important protein in mTOR signaling pathway and cancer. To identify potential S6K2 inhibitors for mTOR pathway treatment, a virtual screening of 1,575,957 active molecules was performed using PLANET, AutoDock GPU, and AutoDock Vina, with their classification abilities compared. The MM/PB(GB)SA method was used to identify four compounds with the strongest binding energies. These compounds were further investigated using molecular dynamics (MD) simulations to understand the properties of the S6K2/ligand complex. Due to a lack of available 3D structures of S6K2, OmegaFold served as a reliable 3D predictive model with higher evaluation scores in SAVES v6.0 than AlphaFold, AlphaFold2, and RoseTTAFold2. The 150 ns MD simulation revealed that the S6K2 structure in aqueous solvation experienced compression during conformational relaxation and encountered potential energy traps of about 19.6 kJ mol-1. The virtual screening results indicated that Lys75 and Lys99 in S6K2 are key binding sites in the binding cavity. Additionally, MD simulations revealed that the ligands remained attached to the activation cavity of S6K2. Among the compounds, compound 1 induced restrictive dissociation of S6K2 in the presence of a flexible region, compound 8 achieved strong stability through hydrogen bonding with Lys99, compound 9 caused S6K2 tightening, and the binding of compound 16 was heavily influenced by hydrophobic interactions. This study suggests that these four potential inhibitors with different mechanisms of action could provide potential therapeutic options.
Collapse
Affiliation(s)
- Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - WeiSong Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
32
|
Shastry RP, Abhinand CS. Targeting the Pseudomonas aeruginosa quorum sensing system to inhibit virulence factors and eradicate biofilm formation using AHL-analogue phytochemicals. J Biomol Struct Dyn 2024; 42:1956-1965. [PMID: 37097921 DOI: 10.1080/07391102.2023.2202270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/09/2023] [Indexed: 04/26/2023]
Abstract
Quorum sensing plays a major role in the expression of virulence and development of biofilm in the human pathogen Pseudomonas aeruginosa. Natural compounds are well-known for their antibacterial characteristics by blocking various metabolic pathways. The goal of this study is to find natural compounds that mimic AHL (Acyl homoserine lactone) and suppress virulence in P. aeruginosa, which is triggered by quorum sensing-dependent pathways as an alternative drug development strategy. To support this rationale, functional network analysis and in silico investigations were carried out to find natural AHL analogues, followed by molecular docking studies. Out of the 16 top-hit AHL analogues derived from phytochemicals, seven ligands were found to bind to the quorum sensing activator proteins. Cassialactone, an AHL analogue, exhibited the highest binding affinity for RhlI, RhlR, and PqsE of P. aeruginosa, with a docking score of -9.4, -8.9, and -8.7 kcal/mol, respectively. 2(5H)-Furanone, a well-known inhibitor, was also docked to compare the docking score and intermolecular interactions between the ligand and the target protein. Furthermore, molecular dynamics simulations and binding free energy calculations were performed to determine the stability of the docked complexes. Additionally, the ADME properties of the analogues were also analyzed to evaluate the pharmacological parameters. Functional network analysis further showed that the interconnectedness of proteins such as RhlI, RhlR, LasI, and PqsE with the virulence and biofilm phenotype of the pathogen could offer potential as a therapeutic target.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
33
|
Monti M, Milanetti E, Frans MT, Miotto M, Di Rienzo L, Baranov MV, Gosti G, Somavarapu AK, Nagaraj M, Golbek TW, Rossing E, Moons SJ, Boltje TJ, van den Bogaart G, Weidner T, Otzen DE, Tartaglia GG, Ruocco G, Roeters SJ. Two Receptor Binding Strategy of SARS-CoV-2 Is Mediated by Both the N-Terminal and Receptor-Binding Spike Domain. J Phys Chem B 2024; 128:451-464. [PMID: 38190651 PMCID: PMC10801686 DOI: 10.1021/acs.jpcb.3c06258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other β-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.
Collapse
Affiliation(s)
- Michele Monti
- RNA
Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Edoardo Milanetti
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Myrthe T. Frans
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Mattia Miotto
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maksim V. Baranov
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giorgio Gosti
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- DHILab,
Istituto di Scienze del Patrimonio Culturale, Sede di Roma, Consiglio Nazionale delle Ricerche, Via Salaria km, 29300, 00010 Rome, Italy
| | - Arun Kumar Somavarapu
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Madhu Nagaraj
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Thaddeus W. Golbek
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Emiel Rossing
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sam J. Moons
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Synthetic
Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Molecular
Immunology—Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tobias Weidner
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Daniel E. Otzen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giancarlo Ruocco
- Center
for Life Nanoscience, Istituto Italiano
di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Steven J. Roeters
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Amsterdam
UMC, Vrije Universiteit, Department of Anatomy
and Neurosciences, De
Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
34
|
Sooram B, Mallikarjunachari U, Uddavesh S, Saudagar P. Pharmacophore-guided drug design using LdNMT as a model drug target for leishmaniasis. J Biomol Struct Dyn 2024; 42:863-875. [PMID: 37096664 DOI: 10.1080/07391102.2023.2196695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
Leishmaniasis is caused by Leishmania genus parasites and has a high mortality rate. The available drugs to treat leishmaniasis fail due to acquired resistance in parasites. Several enzymes of the Leishmania parasite have been used to design new therapeutic molecules against leishmaniasis. This study uses a pharmacophore-guided approach to design the drug candidate by targeting Leishmania N-Myristoyl transferase (LdNMT). From the initial sequence analysis of LdNMT, we have identified a unique 20 amino acid stretch exploited for screening and designing the small molecules. The pharmacophore for the myristate binding site on LdNMT was elucidated, and a heatmap was constructed. The leishmanial NMT pharmacophore has similarities with other pathogenic microorganisms. Moreover, substituting alanine in pharmacophoric residues elevates the affinity of myristate with NMT. Furthermore, a molecular dynamics (MD) simulation study was conducted to ascertain the stability of the mutants and or wild type. The wild-type NMT has a comparatively low affinity to myristate compared to alanine mutants, indicating that hydrophobic residues favor the myristate binding. The molecules were initially designed by using pharmacophore as a sieving mechanism. In subsequent steps, the selected molecules screened against leishmanial unique amino acid stretch and subsequently with human, leishmanial full-size NMTs. The compounds BP5, TYI, DMU, 3PE and 4UL were the top hits and chemical features similar to the myristate. The molecule 4UL was found to be highly specific towards leishmanial NMT over human NMT, suggesting the molecule is a strong leishmanial NMT inhibitor. The molecule can be taken further to assess it in in-vitro conditions.
Collapse
Affiliation(s)
- Banesh Sooram
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, India
| | - Uppuladinne Mallikarjunachari
- Department of High Performance Computing-Medical and Bioinformatics Applications, Centre for Development for Advanced Computing (CDAC), Pune, Maharastra, India
| | - Sonavane Uddavesh
- Department of High Performance Computing-Medical and Bioinformatics Applications, Centre for Development for Advanced Computing (CDAC), Pune, Maharastra, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, India
| |
Collapse
|
35
|
Moharana M, Maharana PC, Pattanayak SK, Khan F. Effect of temperature on hepatitis a virus and exploration of binding mode mechanism of phytochemicals from tinospora cordifolia: an insight into molecular docking, MM/GBSA, and molecular dynamics simulation study. J Biomol Struct Dyn 2024; 42:598-614. [PMID: 36995189 DOI: 10.1080/07391102.2023.2194429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
The hepatitis A virus (HAV), which causes hepatitis A, is a contagious liver ailment. The infections are not specifically treated by any medications. Therefore, the development of less harmful, more effective and cost-effective antiviral agents are necessary. The present work highlighted the in-silico activity of phytocompounds from tinospora cordifolia against HAV. The binding interaction of HAV with the phytocompounds was analyzed through molecular docking. Molecular docking revealed that chasmanthin, malabarolide, menispermacide, tinosporaside, and tinosporinone compounds bind with HAV more efficiently than other compounds. Further evaluation using 100 ns molecular dynamics simulation, MM/GBSA and free energy landscape indicated that all phytocompounds studied here were found to be most promising drug candidate against hepatitis A virus. Our computational study will encourage promoting in further investigation for in vitro and in vivo clinical trials.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
36
|
Moharana M, Pattanayak SK, Khan F. Bioactive compounds from Pandanous fascicularis as potential therapeutic candidate to tackle hepatitis a inhibition: Docking and molecular dynamics simulation study. J Biomol Struct Dyn 2023; 41:10478-10494. [PMID: 36541128 DOI: 10.1080/07391102.2022.2158940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Due to extensive pharmacological research, medicinal plants the underpinning of indigenous herbal serve as a possible source of key compounds for the development of new drugs. Hepatitis A, one of the most widespread infectious diseases associated with global public health issues. The transmission of hepatitis A virus (HAV) occurs, through personal contact, as well as contaminated food/water. The HAV 3C cysteine protease is a non-structural protein, plays pivotal role in proliferation and viral replication. Significant phytochemicals of Pandanous fascicularis include phytosterol, kobusin, epipinoresinol, and ceroptene, which have a wide variety of biological functions. Through ADMET investigation, we have screened fifteen phytochemicals for this study. Additionally, using molecular docking, these phytochemicals were docked with the HAV 3C protease which signifies the phytochemicals phytosterol, kobusin, epipinoresinol, and ceroptene have a significant capability to bind with hepatitis A virus protein.The docking study was further accompanied by analyzes RMSD, RMSF, Rg, SASA, H-bond number, and principal component analysis through 100 ns MD simulations. The molecular dynamics study reveals that, all four phytochemicals possess considerable binding efficacy with hepatitis A virus protein. Based on our computational study and MMGBSA calculations, phytosterol, kobusin and epipinoresinol phytochemicals may be a potential drug candidate for inhibition of hepatitis A. The potential therapeutic characteristics of the phytochemicals against hepatitis A inhibition offer additional support for the in vitro and in vivo studies in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
37
|
Bin Kanner Y, Teng QX, Ganoth A, Peer D, Wang JQ, Chen ZS, Tsfadia Y. Cytotoxicity and reversal effect of sertraline, fluoxetine, and citalopram on MRP1- and MRP7-mediated MDR. Front Pharmacol 2023; 14:1290255. [PMID: 38026953 PMCID: PMC10651738 DOI: 10.3389/fphar.2023.1290255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the development of resistance to chemotherapy drugs is a major challenge in treating malignancies. In recent years, researchers have focused on understanding the mechanisms of multidrug resistance (MDR) in cancer cells and have identified the overexpression of ATP-binding cassette (ABC) transporters, including ABCC1/MRP1 and ABCC10/MRP7, as a key factor in the development of MDR. In this study, we aimed to investigate whether three drugs (sertraline, fluoxetine, and citalopram) from the selective serotonin reuptake inhibitor (SSRI) family, commonly used as antidepressants, could be repurposed as inhibitors of MRP1 and MRP7 transporters and reverse MDR in cancer cells. Using a combination of in silico predictions and in vitro validations, we analyzed the interaction of MRP1 and MRP7 with the drugs and evaluated their ability to hinder cell resistance. We used computational tools to identify and analyze the binding site of these three molecules and determine their binding energy. Subsequently, we conducted experimental assays to assess cell viability when treated with various standard chemotherapies, both with and without the presence of SSRI inhibitors. Our results show that all three SSRI drugs exhibited inhibitory/reversal effects in the presence of chemotherapies on both MRP1-overexpressed cells and MRP7-overexpressed cells, suggesting that these medications have the potential to be repurposed to target MDR in cancer cells. These findings may open the door to using FDA-approved medications in combination therapy protocols to treat highly resistant malignancies and improve the efficacy of chemotherapy treatment. Our research highlights the importance of investigating and repurposing existing drugs to overcome MDR in cancer treatment.
Collapse
Affiliation(s)
- Yuval Bin Kanner
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Assaf Ganoth
- Department of Physical Therapy, Sackler Faculty of Medicine, School of Health Professions, Tel Aviv University, Tel Aviv, Israel
- Reichman University, Herzliya, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, George S. Wise Faculty of Life Sciences, Shmunis School for Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yossi Tsfadia
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Azmi MB, Ahmed A, Ahmed TF, Imtiaz F, Asif U, Zaman U, Khan KA, Sherwani AK. Transcript-Level In Silico Analysis of Alzheimer's Disease-Related Gene Biomarkers and Their Evaluation with Bioactive Flavonoids to Explore Therapeutic Interactions. ACS OMEGA 2023; 8:40695-40712. [PMID: 37929088 PMCID: PMC10621018 DOI: 10.1021/acsomega.3c05769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder that can significantly affect the quality of life. We used a variety of in silico tools to investigate the transcript-level mutational impact of exonic missense rare variations (single nucleotide polymorphisms, SNPs) on protein function and to identify potential druggable protein cavities that correspond to potential therapeutic targets for the management of AD. According to the NIA-AA (National Institute on Aging-Alzheimer's Association) framework, we selected three AD biomarker genes (APP, NEFL, and MAPT). We systematically screened transcript-level exonic rare SNPs from these genes with a minor allele frequency of 1% in 1KGD (1000 Genomes Project Database) and gnomAD (Genome Aggregation Database). With downstream functional effect predictions, a single variation (rs182024939: K > N) of the MAPT gene with nine transcript SNPs was identified as the most pathogenic variation from the large dataset of mutations. The machine learning consensus classifier predictor categorized these transcript-level SNPs as the most deleterious variations, resulting in a large decrease in protein structural stability (ΔΔG kcal/mol). The bioactive flavonoid library was screened for drug-likeness and toxicity risk. Virtual screening of eligible flavonoids was performed using the MAPT protein. Identification of druggable protein-binding cavities showed VAL305, GLU655, and LYS657 as consensus-interacting residues present in the MAPT-docked top-ranked flavonoid compounds. The MM/PB(GB)SA analysis indicated hesperetin (-5.64 kcal/mol), eriodictyol (-5.63 kcal/mol), and sakuranetin (-5.60 kcal/mol) as the best docked flavonoids with the near-native binding pose. The findings of this study provide important insights into the potential of hesperetin as a promising flavonoid that can be utilized for further rational drug design and lead optimization to open new gateways in the field of AD therapeutics.
Collapse
Affiliation(s)
- Muhammad Bilal Azmi
- Department
of Biochemistry, Dow Medical College, Dow
University of Health Sciences, Karachi 74400, Pakistan
| | - Affan Ahmed
- Dow
Medical College, Dow University of Health
Sciences, Karachi 74400, Pakistan
| | - Tehniat Faraz Ahmed
- Department
of Biochemistry, Dow International Dental College, Dow University of Health Sciences, Karachi 75460, Pakistan
| | - Fauzia Imtiaz
- Department
of Biochemistry, Dow Medical College, Dow
University of Health Sciences, Karachi 74400, Pakistan
| | - Uzma Asif
- Department
of Biochemistry, Medicine Program, Batterjee
Medical College, Jeddah 21442, Saudi Arabia
| | - Uzma Zaman
- Department
of Biochemistry, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Khalid Ali Khan
- Unit of Bee
Research and Honey Production, Research Center for Advanced Materials
Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Applied
College, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Asif Khan Sherwani
- Research
and Development Unit, Jamjoom Pharmaceuticals
Co. Ltd, Jeddah 21442, Saudi Arabia
| |
Collapse
|
39
|
Singh J, Khanduja KL, Avti PK. Unravelling benzazepines and aminopyrimidine as multi-target therapeutic repurposing drugs for EGFR V774M mutation in neuroglioma patients. BIOIMPACTS : BI 2023; 14:28876. [PMID: 38938756 PMCID: PMC11199933 DOI: 10.34172/bi.2023.28876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 06/29/2024]
Abstract
Introduction Neuroglioma, a classification encompassing tumors arising from glial cells, exhibits variable aggressiveness and depends on tumor grade and stage. Unraveling the EGFR gene alterations, including amplifications (unaltered), deletions, and missense mutations (altered), is emerging in glioma. However, the precise understanding of emerging EGFR mutations and their role in neuroglioma remains limited. This study aims to identify specific EGFR mutations prevalent in neuroglioma patients and investigate their potential as therapeutic targets using FDA-approved drugs for repurposing approach. Methods Neuroglioma patient's data were analyzed to identify the various mutations and survival rates. High throughput virtual screening (HTVS) of FDA-approved (1615) drugs using molecular docking and simulation was executed to determine the potential hits. Results Neuroglioma patient samples (n=4251) analysis reveals 19% EGFR alterations with most missense mutations at V774M in exon 19. The Kaplan-Meier plots show that the overall survival rate was higher in the unaltered group than in the altered group. Docking studies resulted the best hits based on each target's higher docking score, minimum free energy (MMGBSA), minimum kd, ki, and IC50 values. MD simulations and their trajectories show that compounds ZINC000011679756 target unaltered EGFR and ZINC000003978005 targets altered EGFR, whereas ZINC000012503187 (Conivaptan, Benzazepine) and ZINC000068153186 (Dabrafenib, aminopyrimidine) target both the EGFRs. The shortlisted compounds demonstrate favorable residual interactions with their respective targets, forming highly stable complexes. Moreover, these shortlisted compounds have drug- like properties as assessed by ADMET profiling. Conclusion Therefore, compounds (ZINC000012503187 and ZINC000068153186) can effectively target both the unaltered/altered EGFRs as multi-target therapeutic repurposing drugs towards neuroglioma.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India – 160012
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India – 160012
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India – 160012
| |
Collapse
|
40
|
Zhang C, Sui Y, Liu S, Yang M. Anti-Viral Activity of Bioactive Molecules of Silymarin against COVID-19 via In Silico Studies. Pharmaceuticals (Basel) 2023; 16:1479. [PMID: 37895950 PMCID: PMC10610370 DOI: 10.3390/ph16101479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection drove the global coronavirus disease 2019 (COVID-19) pandemic, causing a huge loss of human life and a negative impact on economic development. It is an urgent necessity to explore potential drugs against viruses, such as SARS-CoV-2. Silymarin, a mixture of herb-derived polyphenolic flavonoids extracted from the milk thistle, possesses potent antioxidative, anti-apoptotic, and anti-inflammatory properties. Accumulating research studies have demonstrated the killing activity of silymarin against viruses, such as dengue virus, chikungunya virus, and hepatitis C virus. However, the anti-COVID-19 mechanisms of silymarin remain unclear. In this study, multiple disciplinary approaches and methodologies were applied to evaluate the potential mechanisms of silymarin as an anti-viral agent against SARS-CoV-2 infection. In silico approaches such as molecular docking, network pharmacology, and bioinformatic methods were incorporated to assess the ligand-protein binding properties and analyze the protein-protein interaction network. The DAVID database was used to analyze gene functions, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment. TCMSP and GeneCards were used to identify drug target genes and COVID-19-related genes. Our results revealed that silymarin compounds, such as silybin A/B and silymonin, displayed triplicate functions against SARS-CoV-2 infection, including directly binding with human angiotensin-converting enzyme 2 (ACE2) to inhibit SARS-CoV-2 entry into the host cells, directly binding with viral proteins RdRp and helicase to inhibit viral replication and proliferation, and regulating host immune response to indirectly inhibit viral infection. Specifically, the targets of silymarin molecules in immune regulation were screened out, such as proinflammatory cytokines TNF and IL-6 and cell growth factors VEGFA and EGF. In addition, the molecular mechanism of drug-target protein interaction was investigated, including the binding pockets of drug molecules in human ACE2 and viral proteins, the formation of hydrogen bonds, hydrophobic interactions, and other drug-protein ligand interactions. Finally, the drug-likeness results of candidate molecules passed the criteria for drug screening. Overall, this study demonstrates the molecular mechanism of silymarin molecules against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China;
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
41
|
Das D, Bharadwaz P, Mattaparthi VSK. Computational investigation on the effect of the peptidomimetic inhibitors (NPT100-18A and NPT200-11) on the α-synuclein and lipid membrane interactions. J Biomol Struct Dyn 2023; 42:11471-11482. [PMID: 37768058 DOI: 10.1080/07391102.2023.2262599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Parkinson's disease (PD) is associated with α-synuclein (α-Syn), a presynaptic protein that binds to cell membranes. The molecular pathophysiology of PD most likely begins with the binding of α-Syn to membranes. Recently, two peptidomimetic inhibitors (NPT100-18A and NPT200-11) were identified to potentially interact with α-Syn and affect the interaction of α-Syn with the membrane. In this study, the effect of the two peptidomimetic inhibitors on the α-Syn-membrane interaction was demonstrated. DFT calculations were performed for optimization of the two inhibitors, and the nucleophilicity (N) and electrophilicity (ω) of NPT100-18A and NPT200-11 were calculated to be 3.90 and 3.86 (N); 1.06 and 1.04 (ω), respectively. Using the docking tool (CB-dock2), the two α-Syn-peptidomimetic inhibitor complexes (α-Syn-NPT100-18A and α-Syn-NPT200-11) have been prepared. Then all-atom molecular dynamics (MD) simulation was carried out on the α-Syn (control), α-Syn-NPT100-18A and α-Syn-NPT200-11 complex systems in presence of DOPE: DOPS: DOPC (5:3:2) lipid bilayer. From the conformational dynamics analysis, the 3-D structure of α-Syn was found to be stable, and the helices present in the regions (1-37) and (45-95) of α-Syn were found to be retained in the presence of the two peptidomimetic inhibitors. The electron density profile analysis revealed the binding modes of NAC and C-terminal region of α-Syn (in the presence of NPT200-11 inhibitor) with lipid membrane are in the close vicinity from the lipid bilayer centre. Our findings in this study on α-Syn-membrane interactions may be useful for developing a new therapeutic approach for treating PD and other neurodegenerative disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dorothy Das
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Priyam Bharadwaz
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Venkata Satish Kumar Mattaparthi
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
42
|
Banerjee S, Bajire SK, Mithun HK, Shastry RP. 3-(Bromoacetyl) coumarin is a potential therapeutic agent against neonatal sepsis-associated Pseudomonas extremorientalis. Arch Microbiol 2023; 205:312. [PMID: 37603073 DOI: 10.1007/s00203-023-03653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Neonatal sepsis is a severe bacterial infection that can lead to life-threatening complications in newborns. Pseudomonas extremorientalis is a Gram-negative bacterium and these Gram-negative organisms have been identified as a major cause of neonatal sepsis. The virulence factors produced by this bacterium play a crucial role in its pathogenicity. Therefore, targeting these virulence factors could be a potential strategy to treat neonatal sepsis caused by P. extremorientalis. In this study, we investigated the efficacy of 3-(bromoacetyl) coumarin (3-BC) in reducing the virulence factors of P. extremorientalis strains isolated from neonatal sepsis. Our results showed that 3-BC effectively reduced the production of various virulence factors, including protease, elastase, siderophore, and exopolysaccharide in these strains. Furthermore, at a concentration of 125 µg/ml, 3-BC also inhibited the biofilm formation ability of these strains in combination with ciprofloxacin. It was discovered that 3-BC was functionally effective in protecting C. elegans against bacterial infection. Moreover, the in vitro and in vivo outcomes were strongly correlated with docking studies of various activator proteins. Overall, our findings suggest that 3-BC could be a potential therapeutic agent for the treatment of neonatal sepsis caused by P. extremorientalis. Further studies are needed to explore the mechanism of action of 3-BC and its potential use in clinical settings.
Collapse
Affiliation(s)
- Shukla Banerjee
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India
| | - H K Mithun
- Department of Pediatrics, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
43
|
Marafie SK, Alshawaf E, Abu-Farha M, Thanaraj TA, Wei DQ, Al-Mulla F, Khan A, Abubaker J, Mohammad A. Exploring the Binding Mechanism of NRG1-ERBB3 Complex and Discovery of Potent Natural Products to Reduce Diabetes-Assisted Breast Cancer Progression. Interdiscip Sci 2023:10.1007/s12539-023-00566-y. [PMID: 37389721 PMCID: PMC10374477 DOI: 10.1007/s12539-023-00566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 07/01/2023]
Abstract
Diabetes mellitus significantly contributes to breast cancer progression, where hyperglycemia upregulates specific genes, leading to more aggressive tumor growth. In patients with BC that develop diabetes, neuregulin 1 (NRG1) and epidermal growth factor receptor 3 (ERBB3) overexpression exacerbate tumor growth and progression. Since the interaction between NRG1 and ERBB3 is critical for tumor growth, understanding the molecular mechanisms underlying NRG1-ERBB3 complex formation is essential for elucidating diabetes-assisted breast cancer progression. However, the key residues forming the NRG1-ERBB3 complex remain unknown. Here, we substituted specific residues in NRG1 with alanine and studied its interactions with ERBB3 using computational structural biology tools. We further screened the South African natural compounds database to target the complex's interface residues to discover potential inhibitors. The conformational stability and dynamic features of NRG1-WT, -H2A, -L3A, and -K35A complexed with ERBB3 were subjected to 400 ns molecular dynamics simulations. The free binding energies of all NRG1-ERBB3 complexes were calculated using the molecular mechanics-generalized Born surface area (MM/GBSA). The H2 and L3 alanine substitutions caused a loss of interaction with ERBB3 residue D73, weakening the interaction with ERBB3. Screening 1300 natural compounds identified four (SANC00643, SANC00824, SANC00975, and SANC00335) with the best potential to inhibit ERRB3-NRG1 coupling. The binding free energies for each complex were - 48.55 kcal/mol for SANC00643, - 47.68 kcal/mol for SANC00824, - 46.04 kcal/mol for SANC00975, and - 45.29 kcal/mol for SANC00335, showing their overall stronger binding with ERBB3 than NRG1 and their potential to act as ERBB3-NRG1 complex inhibitors. In conclusion, this complex may represent a residue-specific drug target to inhibit BC progression.
Collapse
Affiliation(s)
- Sulaiman K Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- Special Service Facilities, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait.
| |
Collapse
|
44
|
Islam SI, Ahmed SS, Habib N, Ferdous MA, Sanjida S, Mou MJ. High-throughput virtual screening of marine algae metabolites as high-affinity inhibitors of ISKNV major capsid protein: An analysis of in-silico models and DFT calculation to find novel drug molecules for fighting infectious spleen and kidney necrosis virus (ISKNV). Heliyon 2023; 9:e16383. [PMID: 37292285 PMCID: PMC10245175 DOI: 10.1016/j.heliyon.2023.e16383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Infectious Spleen and Kidney Necrosis Virus (ISKNV) is linked to severe infections that cause significant financial losses in global aquaculture. ISKNV enters the host cell through its major capsid protein (MCP), and the resulting infection can lead to mass mortality of fish. Even though several drugs and vaccines are at various stages of clinical testing, none are currently available. Thus, we sought to assess the potential of seaweed compounds to block viral entrance by inhibiting the MCP. The Seaweed Metabolite Database (1110 compounds) was assessed for potential antiviral activity against ISKNV using high throughput virtual screening. Forty compounds with docking scores of ≥8.0 kcal/mol were screened further. The inhibitory molecules BC012, BC014, BS032, and RC009 were predicted by the docking and MD techniques to bind the MCP protein significantly with binding affinities of -9.2, -9.2, -9.9, and -9.4 kcal/mol, respectively. Also, ADMET characteristics of the compounds indicated drug-likeness. According to this study, marine seaweed compounds may operate as viral entrance inhibitors. For their efficacy to be established, in-vitro and in-vivo testing is required.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nasim Habib
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Akib Ferdous
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Moslema Jahan Mou
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Life Science, University of Rajshahi, Rajshahi, 00, Bangladesh
| |
Collapse
|
45
|
Dutta K, Shityakov S, Maruyama F. DSF inactivator RpfB homologous FadD upregulated in Bradyrhizobium japonicum under iron limiting conditions. Sci Rep 2023; 13:8701. [PMID: 37248242 DOI: 10.1038/s41598-023-35487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Phytopathogenic bacteria Xanthomonas campestris pv. campestris (Xcc) causes black rot and other plant diseases. Xcc senses diffusible signal factor (DSF) as a quorum-sensing (QS) signal that mediates mainly iron uptake and virulence. RpfB deactivates DSF in this DSF-QS circuit. We examined differential gene expression profiles of Bradyrhizobium japonicum under low versus high iron conditions and found that fadD and irr were upregulated under low iron (log2 fold change 0.825 and 1.716, respectively). In addition to having similar protein folding patterns and functional domain similarities, FadD shared 58% sequence similarity with RpfB of Xcc. The RpfB-DSF and FadD-DSF complexes had SWISSDock molecular docking scores of - 8.88 kcal/mol and - 9.85 kcal/mol, respectively, and the 100 ns molecular dynamics simulation results were in accord with the docking results. However, significant differences were found between the binding energies of FadD-DSF and RpfB-DSF, indicating possible FadD-dependent DSF turnover. The protein-protein interaction network showed that FadD connected indirectly with ABC transporter permease (ABCtp), which was also upregulated (log2 fold change 5.485). We speculate that the low iron condition may be a mimetic environmental stimulus for fadD upregulation in B. japonicum to deactivate DSF, inhibit iron uptake and virulence of DSF-producing neighbors. This finding provides a new option of using B. japonicum or a genetically improved B. japonicum as a potential biocontrol agent against Xcc, with the added benefit of plant growth-promoting properties.
Collapse
Affiliation(s)
- Kunal Dutta
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation.
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russian Federation.
| | - Fumito Maruyama
- Microbial Genomics and Ecology, The IDEC Institute, Hiroshima University, Higashihiroshima, Japan.
| |
Collapse
|
46
|
Avti PK, Singh J, Dahiya D, Khanduja KL. Dual functionality of pyrimidine and flavone in targeting genomic variants of EGFR and ER receptors to influence the differential survival rates in breast cancer patients. Integr Biol (Camb) 2023; 15:zyad014. [PMID: 38084900 DOI: 10.1093/intbio/zyad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/01/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
Breast cancer ranks as one of the most prevalent forms of cancer and stands as the primary global cause of mortality among women. Overexpression of EGFR and ER receptors or their genomic alterations leads to malignant transformation, disease aggression and is linked to poor patient survival outcomes. The clinical breast cancer patient's genomic expression, survival analysis, and computational drug-targeting approaches were used to identify best-hit phytochemicals for therapeutic purposes. Breast cancer patients have genomic alterations in EGFR (4%, n = 5699) and ER (9%, n = 8461), with the highest proportion being missense mutations. No statistically significant difference was observed in the patient survival rates between the altered and unaltered ER groups, unlike EGFR, with the lowest survival rates in the altered group. Computational screening of natural compound libraries (7711) against each EGFR (3POZ) and ER (3ERT) receptor shortlists the best-hit 3 compounds with minimum docking score (ΔG = -7.9 to -10.8), MMGBSA (-40.16 to -51.91 kcal/mol), strong intermolecular H-bonding, drug-like properties with least kd, and ki. MD simulation studies display stable RMSD, RMSF, and good residual correlation of best-hit common compounds (PubChem ID: 5281672 and 5280863) targeting both EGFR and ER receptors. In vitro, studies revealed that these common drugs exhibited a high anti-proliferative effect on MCF-7 and MDA-MB-231 breast cancer cells, with effective IC50 values (15-40 μM) and lower free energy, kd, and ki (5281672 > 5280863 > 5330286) much affecting HEK-293 non-cancerous cells, indicating the safety profile. The experimental and computational correlation studies suggest that the highly expressed EGFR and ER receptors in breast cancer patients having poor survival rates can be effectively targeted with best-hit common potent drugs with a multi-target therapeutic approach. Insight Box: The findings of this study provide valuable insights into the genomic/proteomic data, breast cancer patient's survival analysis, and EGFR and ER receptor variants structural analysis. The genetic alterations analysis of EGFR and ER/ESR1 in breast cancer patients reveals the high frequency of mutation types, which affect patient's survival rate and targeted therapies. The common best-hit compounds affect the cell survival patterns with effective IC50, drug-like properties having lower equilibrium and dissociation constants demonstrating the anti-proliferative effects. This work integrates altered receptor structural analysis, molecular interaction-based simulations, and ADMET properties to illuminate the identified best hits phytochemicals potential efficacy targeting both EGFR and ER receptors, demonstrating a multi-target therapeutic approach.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
47
|
Tomarchio R, Patamia V, Zagni C, Crocetti L, Cilibrizzi A, Floresta G, Rescifina A. Steered Molecular Dynamics Simulations Study on FABP4 Inhibitors. Molecules 2023; 28:molecules28062731. [PMID: 36985701 PMCID: PMC10058326 DOI: 10.3390/molecules28062731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Ordinary small molecule de novo drug design is time-consuming and expensive. Recently, computational tools were employed and proved their efficacy in accelerating the overall drug design process. Molecular dynamics (MD) simulations and a derivative of MD, steered molecular dynamics (SMD), turned out to be promising rational drug design tools. In this paper, we report the first application of SMD to evaluate the binding properties of small molecules toward FABP4, considering our recent interest in inhibiting fatty acid binding protein 4 (FABP4). FABP4 inhibitors (FABP4is) are small molecules of therapeutic interest, and ongoing clinical studies indicate that they are promising for treating cancer and other diseases such as metabolic syndrome and diabetes.
Collapse
Affiliation(s)
- Rosario Tomarchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Letizia Crocetti
- Department Neurofarba, Pharmaceutical and Nutraceutical Section, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
48
|
Molecular insights on PS-PLA 1 lipase activity of human ABHD16B. Biophys Chem 2023; 296:106976. [PMID: 36841071 DOI: 10.1016/j.bpc.2023.106976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The human alpha beta hydrolase domain (ABHD) proteins are ubiquitous and regulate the cellular lipids' anabolic and catabolic processes. The structural aspects for specific biochemical function of many ABHD proteins related to physiological disorders and its link to pathological conditions remain unknown. Here putative human ABHD16B protein was overexpressed in Saccharomyces cerevisiae for its biological activity. In-vitro enzymatic assay of the recombinant ABHD16B protein with fluorescently tagged glycerophospholipids revealed that the PLA1 activity is observed with phosphatidylserine (PS). In addition, it efficiently hydrolyzed monoacylglycerol over triacylglycerols. Further, molecular dynamic simulations and per residue binding free energy decomposition analysis revealed that the origin of PS-specific PLA1 activity of ABHD16B is due to the electrostatic interaction of the PS head group with K8, R319, and E178, which led to having the hydrogen bond interaction of sn-1 acyl chain ester to the catalytic site residues. Site-directed mutagenesis of the 245GXSXG249 motif of ABHD16B reduced the maximal lipase activity of PS and MAG. In summary, these results revealed that ABHD16B plays a vital role in PS selectivity that in turn, controls the specific subcellular pools of 2-LPS metabolism in the tissues at low pH.
Collapse
|
49
|
Wu Q, Huang SY. HCovDock: an efficient docking method for modeling covalent protein-ligand interactions. Brief Bioinform 2023; 24:6961470. [PMID: 36573474 DOI: 10.1093/bib/bbac559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
Covalent inhibitors have received extensive attentions in the past few decades because of their long residence time, high binding efficiency and strong selectivity. Therefore, it is valuable to develop computational tools like molecular docking for modeling of covalent protein-ligand interactions or screening of potential covalent drugs. Meeting the needs, we have proposed HCovDock, an efficient docking algorithm for covalent protein-ligand interactions by integrating a ligand sampling method of incremental construction and a scoring function with covalent bond-based energy. Tested on a benchmark containing 207 diverse protein-ligand complexes, HCovDock exhibits a significantly better performance than seven other state-of-the-art covalent docking programs (AutoDock, Cov_DOX, CovDock, FITTED, GOLD, ICM-Pro and MOE). With the criterion of ligand root-mean-squared distance < 2.0 Å, HCovDock obtains a high success rate of 70.5% and 93.2% in reproducing experimentally observed structures for top 1 and top 10 predictions. In addition, HCovDock is also validated in virtual screening against 10 receptors of three proteins. HCovDock is computationally efficient and the average running time for docking a ligand is only 5 min with as fast as 1 sec for ligands with one rotatable bond and about 18 min for ligands with 23 rotational bonds. HCovDock can be freely assessed at http://huanglab.phys.hust.edu.cn/hcovdock/.
Collapse
Affiliation(s)
- Qilong Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
50
|
Zhang Y, Dong L, Sun L, Hu X, Wang X, Nie T, Li X, Wang P, Pang P, Pang J, Lu X, Yao K, You X. ML364 exerts the broad-spectrum antivirulence effect by interfering with the bacterial quorum sensing system. Front Microbiol 2022; 13:980217. [PMID: 36619997 PMCID: PMC9813848 DOI: 10.3389/fmicb.2022.980217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Antivirulence strategy has been developed as a nontraditional therapy which would engender a lower evolutionary pressure toward the development of antimicrobial resistance. However, the majority of the antivirulence agents currently in development could not meet clinical needs due to their narrow antibacterial spectrum and limited indications. Therefore, our main purpose is to develop broad-spectrum antivirulence agents that could target on both Gram-positive and Gram-negative pathogens. We discovered ML364, a novel scaffold compound, could inhibit the productions of both pyocyanin of Pseudomonas aeruginosa and staphyloxanthin of Staphylococcus aureus. Further transcriptome sequencing and enrichment analysis showed that the quorum sensing (QS) system of pathogens was mainly disrupted by ML364 treatment. To date, autoinducer-2 (AI-2) of the QS system is the only non-species-specific signaling molecule that responsible for the cross-talk between Gram-negative and Gram-positive species. And further investigation showed that ML364 treatment could significantly inhibit the sensing of AI-2 or its nonborated form DPD signaling in Vibrio campbellii MM32 and attenuate the biofilm formation across multi-species pathogens including Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The results of molecular docking and MM/GBSA free energy prediction showed that ML364 might have higher affinity with the receptors of DPD/AI-2, when compared with DPD molecule. Finally, the in vivo study showed that ML364 could significantly improve the survival rates of systemically infected mice and attenuate bacterial loads in the organs of mice. Overall, ML364 might interfere with AI-2 quorum sensing system to exert broad-spectrum antivirulence effect both in vitro and in vivo.
Collapse
Affiliation(s)
- Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Youwen Zhang, ✉
| | - Limin Dong
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Penghe Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengbo Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Xuefu You, ✉
| |
Collapse
|