1
|
Lu Y, Sun Y, Feng Z, Jia X, Que J, Cui N, Yu L, Zheng YR, Wei YB, Liu JJ. Genetic insights into the role of mitochondria-related genes in mental disorders: An integrative multi-omics analysis. J Affect Disord 2025; 380:685-695. [PMID: 40180044 DOI: 10.1016/j.jad.2025.03.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Mitochondrial dysfunction has been implicated in the development of mental disorders, yet the underlying mechanisms remain unclear. In this study, we employed summary-data-based Mendelian randomization (SMR) analysis to explore the associations between mitochondrial-related genes and seven common mental disorders across gene expression, DNA methylation, and protein levels. METHOD Summary statistics from genome-wide association studies were used for seven mental disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, anxiety, bipolar disorder, major depressive disorder, post-traumatic stress disorder, and schizophrenia (SCZ). Instrumental variables associated with 1136 mitochondria-related genes were derived from summary statistics for DNA methylation, gene expression, and protein quantitative trait loci. SMR analyses and colocalization analyses were then conducted across these three biological levels to explore the associations with each of the seven mental disorders. RESULTS We identified mitochondria-related genes associated with mental disorders with multi-omics evidence: RMDN1 for ADHD, and ACADVL, ETFA, MMAB, and PPA2 for SCZ. Specifically, an increase of one standard deviation in the level of RMDN1 was linked to a 12 % decrease in the risk of developing ADHD (OR = 0.88, 95 % CI: 0.83-0.94). Increased levels of ETFA (OR = 1.79, 95 % CI: 1.24-2.60) and MMAB (OR = 1.10, 95 % CI: 1.05-1.16) were significantly associated with increased risk of SCZ. Conversely, high levels of ACADVL (OR = 0.50, 95 % CI: 0.33-0.77) and PPA2 (OR = 0.68, 95 % CI: 0.55-0.85) were associated with a reduced risk of SCZ. CONCLUSIONS These findings suggested that dysfunction in mitochondria-related genes may underlie the molecular mechanisms of ADHD and SCZ, providing novel biomarkers for diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Yan'e Lu
- School of Nursing, Peking University, Beijing 100191, China
| | - Yaoyao Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhendong Feng
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China
| | - Xinlei Jia
- School of Nursing, Peking University, Beijing 100191, China
| | - Jianyu Que
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric Center, Fujian Clinical Research Center for Mental Disorders, Xiamen 361012, Fujian, China
| | - Naixue Cui
- School of Nursing and Rehabilitation, Shandong University, Shandong Province 250012, China
| | - Lulu Yu
- Mental Health Center, the First Hospital of Hebei Medical University, Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, Hebei Province 050031, China
| | - Yi-Ran Zheng
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Ya Bin Wei
- Beijing Key Laboratory of Drug Dependence Research, National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Jia Jia Liu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Tuly SR, Ranjbari S, Murat EA, Arslanturk S. From Silos to Synthesis: A comprehensive review of domain adaptation strategies for multi-source data integration in healthcare. Comput Biol Med 2025; 191:110108. [PMID: 40209575 DOI: 10.1016/j.compbiomed.2025.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND The integration of data from diverse sources is not only crucial for addressing data scarcity in health informatics but also enables the use of complementary information from multiple datasets. However, the isolated nature of data collected from disparate sources (referred to as 'Silos') presents significant challenges in multi-source data integration due to inherent heterogeneity and differences in data structures, formats, and standards. Domain adaptation emerges as a key framework to transition from 'Silos' to 'Synthesis' by measuring and mitigating such discrepancies, enabling uniform representation and harmonization of multi-source data. METHODS This study explores different approaches to healthcare data integration, highlighting the challenges associated with each type and discussing both general-purpose and healthcare-specific adaptation methods. We examine key research challenges and evaluate leading domain adaptation approaches, demonstrating their effectiveness and limitations in advancing healthcare data integration. RESULTS The findings highlight the potential of domain adaptation methods to significantly improve healthcare data integration while laying a foundation for future research. CONCLUSION Current research often lacks a comprehensive analysis of how domain adaptation can effectively address the challenges associated with integrating multi-source and multi-modal healthcare datasets. This study serves as a valuable resource for healthcare professionals and researchers, providing guidance on leveraging domain adaptation techniques to mitigate domain discrepancies in healthcare data integration.
Collapse
Affiliation(s)
- Shelia Rahman Tuly
- Department of Computer Science, Wayne State University, 5057 Woodward Ave, Detroit, 48201, MI, USA.
| | - Sima Ranjbari
- Department of Computer Science, Wayne State University, 5057 Woodward Ave, Detroit, 48201, MI, USA.
| | - Ekrem Alper Murat
- Department of Industrial and Systems Engineering, Wayne State University, 4th Street, Detroit, 48201, MI, USA.
| | - Suzan Arslanturk
- Department of Computer Science, Wayne State University, 5057 Woodward Ave, Detroit, 48201, MI, USA.
| |
Collapse
|
3
|
de Alencar JN. New Icebergs in Evidence-Based Medicine. J Evid Based Med 2025; 18:e70028. [PMID: 40155319 DOI: 10.1111/jebm.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
|
4
|
McMullan A, Zwierzynski JB, Jain N, Haneline LS, Shou W, Kua KL, Hota SK, Durbin MD. Role of Maternal Obesity in Offspring Cardiovascular Development and Congenital Heart Defects. J Am Heart Assoc 2025; 14:e039684. [PMID: 40314345 DOI: 10.1161/jaha.124.039684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Congenital heart disease is a leading cause of death in newborns, yet many of its molecular mechanisms remain unknown. Both maternal obesity and diabetes increase the risk of congenital heart disease in offspring, with recent studies suggesting these conditions may have distinct teratogenic mechanisms. The global prevalence of obesity is rising, and while maternal obesity is a known risk factor for fetal congenital heart disease, the specific mechanisms are largely unexplored. METHODS AND RESULTS We used a murine model of diet-induced maternal obesity, without diabetes, to produce dams that were overweight but had normal blood glucose levels. Embryos were generated and their developing hearts analyzed. Transcriptome analysis was performed using single-nucleus and bulk RNA sequencing. Global and phospho-enriched proteome analysis was performed using tandem mass tag-mass spectroscopy. Immunobloting and histologic evaluation were also performed. Analysis revealed disrupted oxidative phosphorylation and reactive oxygen species formation, with reduced antioxidant capacity, evidenced by downregulation of genes Sod1 and Gp4x, and disrupted Hif1a signaling. Evidence of oxidative stress, cell death signaling, and alteration in Rho GTPase and actin cytoskeleton signaling was also observed. Genes involved in cardiac morphogenesis, including Hand2, were downregulated, and fewer mature cardiomyocytes were present. Histologic analysis confirmed increased cardiac defects in embryos exposed to maternal obesity. CONCLUSIONS These findings demonstrate that maternal obesity alone can result in cardiac defects through mechanisms similar to those associated with maternal hyperglycemia. This study provides valuable insight into the role of maternal obesity, a growing and modifiable risk factor, in the development of the most common birth defect, congenital heart disease.
Collapse
Affiliation(s)
- Ashleigh McMullan
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | | | - Nina Jain
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Laura S Haneline
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Weinian Shou
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Kok Lim Kua
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
- Center for Diabetes and Metabolic Disease Research Indiana University School of Medicine Indianapolis IN USA
| | - Swetansu K Hota
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| | - Matthew D Durbin
- Department of Pediatrics Herman B Wells Center for Pediatric Research, Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
5
|
Wu Z, Hu Y, Hao R, Li R, Lu X, Itale MW, Yuan Y, Zhu X, Zhang J, Wang L, Sun M, Hou X. Research Progress of Genomics Applications in Secondary Metabolites of Medicinal Plants: A Case Study in Safflower. Int J Mol Sci 2025; 26:3867. [PMID: 40332590 PMCID: PMC12027854 DOI: 10.3390/ijms26083867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025] Open
Abstract
Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that interact to influence the biosynthesis and accumulation of secondary metabolites. With the rapid development of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics technologies have become important tools for revealing the complexity and functionality of organisms. They are conducive to further uncovering the biological activities of secondary metabolites in medicinal plants and clarifying the molecular mechanisms underlying the production of secondary metabolites. Also, artificial intelligence (AI) technology accelerates the comprehensive utilization of high-dimensional datasets and offers transformative potential for multi-omics analysis. However, there is currently no systematic review summarizing the genomic mechanisms of secondary metabolite biosynthesis in medicinal plants. Safflower (Carthamus tinctorius L.) has rich and diverse bioactive flavonoids, among of which Hydroxysafflor yellow A (HSYA) is specific to safflower and emerging as a potential medication for treating a wide range of diseases. Hence, significant progress has been made in the study of safflower as an excellent example for the regulation of secondary metabolites in medicinal plants in recent years. Here, we review the progress on the understanding of the regulation of main secondary metabolites at the multi-omics level, and summarize the influence of various factors on their types and contents, with a particular focus on safflower flavonoids. This review aims to provide a comprehensive insight into the regulatory mechanisms of secondary metabolite biosynthesis from the perspective of genomics.
Collapse
Affiliation(s)
- Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Yan Hu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Ruru Hao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Ruting Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Xiaona Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Mdachi Winfrida Itale
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Yang Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiaoxian Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou 310053, China;
| | - Longxiang Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Meihao Sun
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Y.H.); (R.H.); (R.L.); (X.L.); (M.W.I.); (X.Z.); (L.W.); (M.S.)
| | - Xianfei Hou
- Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
6
|
Zhang Z, Liu C, Zhao L, Yao J. Systems biology of dry eye: Unraveling molecular mechanisms through multi-omics integration. Ocul Surf 2025; 36:25-40. [PMID: 39746576 DOI: 10.1016/j.jtos.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Dry eye disease (DED) is a multifactorial condition with complex and incompletely understood molecular mechanisms. Advances in multi-omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and microbiomics, have provided new insights into the pathophysiology of DED. Genomic analyses have identified key genetic variants linked to immune regulation and lacrimal gland function. Transcriptomic studies reveal upregulated inflammatory pathways in ocular surface tissues, implicating these as core drivers of chronic inflammation. Proteomic research highlights significant alterations in tear protein composition, especially proteins involved in inflammation and tissue repair. Metabolomics studies focus on disrupted lipid metabolism and oxidative stress, which are crucial in maintaining tear film stability. Furthermore, microbiome research has demonstrated reduced microbial diversity and increased pathogenic bacteria, exacerbating inflammatory responses. The integration of multi-omics data allows for the identification of novel biomarkers and therapeutic targets, enabling precision diagnostics and personalized treatments. Therefore, this review highlights the critical importance of multi-omics approaches in deepening our understanding of DED's complex molecular mechanisms and their potential to transform clinical management and therapeutic innovations in this challenging field.
Collapse
Affiliation(s)
- Zhirui Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Lingying Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jing Yao
- The First Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
7
|
Zhou Y, Wang P, Zhang H, Wang T, Han S, Ma X, Liang S, Bai M, Fan P, Wang L, Wang J, Wang Q. Prediction of influenza virus infection based on deep learning and peripheral blood proteomics: A diagnostic study. J Adv Res 2025:S2090-1232(25)00211-5. [PMID: 40158620 DOI: 10.1016/j.jare.2025.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
INTRODUCTION Influenza viruses cause seasonal epidemics almost every year, and it is difficult to diagnose quickly and accurately. Machine learning and peripheral blood protein omics have brought new ideas to the research of clinical markers. OBJECTIVES Prediction of key molecular marker of influenza virus infection by the established machine learning model and peripheral blood protein omics. METHODS This study used the testing data of 850 patients (including influenza, COVID-19 and mixed infections) and 265 healthy individuals, to establish and validate a diagnostic prediction model for influenza infection and verified the potential value of this model in the differential diagnosis of influenza, COVID-19 and healthy people. RESULTS The overall analysis showed that there were significant differences in 9 clinical features in the influenza group. Principal component analysis can effectively group samples based on these clinical features. Based on the random forest model and LASSO regression model found that the selected features are clinical indicators that can accurately distinguish influenza patients. We performed proteome sequencing combined with machine learning and found a total of 26 DEPs. Through PPI and WGCNA analysis, we identified several genes related to the proportion of monocytes. We then analyzed the correlation of these factors with immune cell proportions and found that SAA1 and SAA2 were highly correlated with various vital immunocyte. ROC curve analysis shows that SERPINA3 can distinguish influenza, COVID-19, mixed infection and healthy people; SAA1 can distinguish COVID-19, mixed infection and healthy people; SAA2 can distinguish influenza and healthy people. In influenza, high expression of SERPINA3, SAA1, and SAA2 is associated with higher risk. Finally, we used the ELISA method to confirm that SAA2 protein can be used as an auxiliary diagnostic indicator for influenza infection. CONCLUSIONS Preliminary results showed that SAA2 is an important molecular marker specific to influenza infection.
Collapse
Affiliation(s)
- Yumei Zhou
- National Institute of TCM Constitution and Preventive Treatment of Disease, Wangqi Academy of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Pengbo Wang
- Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Haiyun Zhang
- National Institute of TCM Constitution and Preventive Treatment of Disease, Wangqi Academy of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; Medical Laboratory Center, Dalian Municipal Women and Children's Medical Center (Group), Dalian, Liaoning 116033, PR China
| | - Taihao Wang
- Capital Medical University, Beijing 100069, PR China
| | - Shuai Han
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010070, PR China
| | - Xin Ma
- China Railway Construction Corporation, Beijing Tiejian Hospital, Beijing 100039, PR China
| | - Shuang Liang
- Department of Radiology, The Second Affiliated Hospital to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, PR China
| | - Minghua Bai
- National Institute of TCM Constitution and Preventive Treatment of Disease, Wangqi Academy of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Pengbei Fan
- National Institute of TCM Constitution and Preventive Treatment of Disease, Wangqi Academy of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Lei Wang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China.
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Treatment of Disease, Wangqi Academy of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China.
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Treatment of Disease, Wangqi Academy of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| |
Collapse
|
8
|
Wang PY, Chen ZS, Jiao X, Bao YJ. Integrating Deep Learning Models with Genome-Wide Association Study-Based Identification Enhanced Phenotype Predictions in Group A Streptococcus. J Microbiol Biotechnol 2025; 35:e2411010. [PMID: 40147921 PMCID: PMC11994263 DOI: 10.4014/jmb.2411.11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 03/29/2025]
Abstract
Group A Streptococcus (GAS) is a major pathogen with diverse clinical outcomes linked to its genetic variability, making accurate phenotype prediction essential. While previous studies have identified many GAS-associated genetic factors, translating these findings into predictive models remains challenging due to data complexity. The current study aimed to integrate deep learning models with genome-wide association study-derived genetic variants to predict pathogenic phenotypes in GAS. We evaluated the performance of several deep neural network models, including CNN, ResNet18, LSTM, and their ensemble approach in predicting GAS phenotypes. It was found that the ensemble model consistently achieved the highest prediction accuracy across phenotypes. Models trained on the full 4722-genotype set outperformed those trained on a reduced 175-genotype set, underscoring the importance of comprehensive variant data in capturing complex genotype-phenotype interactions. Performance changes in the reduced 175-genotype set compared to the full-set genotype scenarios revealed the impact of data dimensionality on model effectiveness, with CNN remaining robust, while ResNet18 and LSTM underperformed. Our findings emphasized the potential of deep learning in phenotype prediction and the critical role of data-model compatibility.
Collapse
Affiliation(s)
- Peng-Ying Wang
- School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Zhi-Song Chen
- School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Xiaoguo Jiao
- School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| | - Yun-Juan Bao
- School of Life Sciences, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
9
|
Tursi AR, Lages CS, Quayle K, Koenig ZT, Loni R, Eswar S, Cobeña-Reyes J, Thornton S, Tilburgs T, Andorf S. CytoPheno: Automated descriptive cell type naming in flow and mass cytometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.639902. [PMID: 40161808 PMCID: PMC11952469 DOI: 10.1101/2025.03.11.639902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Advances in cytometry have led to increases in the number of cellular markers that are routinely measured. The resulting complexity of the data has prompted a shift from manual to automated analysis methods. Currently, numerous unsupervised methods are available to cluster cells based on marker expression values. However, phenotyping the resulting clusters is typically not part of the automated process. Manually identifying both marker definitions (e.g. CD4+, CCR7+, CD45RA+, CD19-) and descriptive cell type names (e.g. naïve CD4+ T cells) based on marker expression values can be time-consuming, subjective, and error-prone. In this work we propose an algorithm that addresses these problems through the creation of an automated tool, CytoPheno, that assigns marker definitions and cell type names to unidentified clusters. First, post-clustered expression data undergoes per-marker calculations to assign markers as positive or negative. Next, marker names undergo a standardization process to match to Protein Ontology identifier terms. Finally, marker descriptions are matched to cell type names within the Cell Ontology. Each part of the tool was tested with benchmark data to demonstrate performance. Additionally, the tool is encompassed in a graphical user interface (R Shiny) to increase user accessibility and interpretability. Overall, CytoPheno can aid researchers in timely and unbiased phenotyping of post-clustered cytometry data.
Collapse
Affiliation(s)
- Amanda R Tursi
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Celine S Lages
- Division of Rheumatology, Research Flow Cytometry Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth Quayle
- Division of Rheumatology, Research Flow Cytometry Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zachary T Koenig
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rashi Loni
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shruti Eswar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pharmacology, Physiology & Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - José Cobeña-Reyes
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sherry Thornton
- Division of Rheumatology, Research Flow Cytometry Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tamara Tilburgs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
10
|
Chopra S, Sharma SG, Kaur S, Kumar V, Guleria P. Understanding the microRNA-mediated regulation of plant-microbe interaction and scope for regulation of abiotic and biotic stress tolerance in plants. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2025; 136:102565. [DOI: 10.1016/j.pmpp.2025.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
11
|
Zolfi E, Khaleghi Mehr F, Emtiazi N, Moradi Y. A review of the carcinogenic potential of human papillomavirus (HPV) in urological cancers. Virol J 2025; 22:53. [PMID: 40022189 PMCID: PMC11871667 DOI: 10.1186/s12985-025-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
Direct skin-to-skin contact during intimate sexual contact with a human papillomavirus (HPV)-positive individual is often the cause of HPV infection. In addition, many studies have been written up to date that look at the role of HPV in the growth of other types of tumors. Not all urological cancers are associated with HPV. However, penile cancer (PC) is often caused by HPV, especially high-risk types. HPV-16 has been the most frequent (68.3%), followed by HPV-6 (8.1%) and HPV-18 (6.9%). An increased risk of getting certain types of urinary cancers like prostate, bladder, testicular, and kidney has also been linked to these infections. Additionally, HPV may play a part in continuous inflammation and cancer progression in different organs and tissues. So, making HPV vaccine programs available to more people of the male sex around the world could significantly lower the number of urinary cancers caused by HPV. The critical effects of HPV on different types of urologic cancers (UCs), such as testicular, prostate, penile, and kidney cancer, and the importance of HPV vaccination have been seen in this study.
Collapse
Affiliation(s)
- Ehsan Zolfi
- Department of Urology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farhood Khaleghi Mehr
- Department of Urology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nikoo Emtiazi
- Department of Pathology Medicine, Rasool Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Pateras J, Lodi M, Rana P, Ghosh P. Heterogeneous Clustering of Multiomics Data for Breast Cancer Subgroup Classification and Detection. Int J Mol Sci 2025; 26:1707. [PMID: 40004168 PMCID: PMC11855380 DOI: 10.3390/ijms26041707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid growth of diverse -omics datasets has made multiomics data integration crucial in cancer research. This study adapts the expectation-maximization routine for the joint latent variable modeling of multiomics patient profiles. By combining this approach with traditional biological feature selection methods, this study optimizes latent distribution, enabling efficient patient clustering from well-studied cancer types with reduced computational expense. The proposed optimization subroutines enhance survival analysis and improve runtime performance. This article presents a framework for distinguishing cancer subtypes and identifying potential biomarkers for breast cancer. Key insights into individual subtype expression and function were obtained through differentially expressed gene analysis and pathway enrichment for BRCA patients. The analysis compared 302 tumor samples to 113 normal samples across 60,660 genes. The highly upregulated gene COL10A1, promoting breast cancer progression and poor prognosis, and the consistently downregulated gene CDG300LG, linked to brain metastatic cancer, were identified. Pathway enrichment analysis revealed similarities in cellular matrix organization pathways across subtypes, with notable differences in functions like cell proliferation regulation and endocytosis by host cells. GO Semantic Similarity analysis quantified gene relationships in each subtype, identifying potential biomarkers like MATN2, similar to COL10A1. These insights suggest deeper relationships within clusters and highlight personalized treatment potential based on subtypes.
Collapse
Affiliation(s)
- Joseph Pateras
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Musaddiq Lodi
- Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Pratip Rana
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
13
|
Qiao C, Zhang HX, Tian XT, Zhang YJ, Li DH. Harnessing multi-omics approaches to elucidate the role of Chinese herbal compounds in chemotherapy-induced gastrointestinal damage. World J Gastrointest Oncol 2025; 17:101500. [PMID: 39958539 PMCID: PMC11755994 DOI: 10.4251/wjgo.v17.i2.101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
In this editorial, we discuss the findings reported by Wang et al in the latest issue of the World Journal of Gastrointestinal Oncology. Various research methodologies, including microbiome analysis, assert that the Tzu-Chi Cancer-Antagonizing and Life-Protecting II Decoction of Chinese herbal compounds mitigates inflammatory responses by inhibiting the NF-κB signaling pathway. This action helps maintain the dynamic equilibrium of the intestinal microecology and lessens chemotherapy-induced gastrointestinal damage. The efficacy of these compounds is intimately linked to the composition of intestinal microbes. These compounds regulate intestinal microecology by virtue of their specific compatibility and effectiveness, thereby enhancing the overall therapeutic outcomes of cancer chemotherapy. Nonetheless, the exact mechanisms underlying these effects warrant further investigation. Multi-omics technologies offer a systematic approach to elucidate the mechanisms and effectiveness of Chinese herbal compounds in vivo. This manuscript reviews the application of multi-omics technologies to Chinese herbal compounds and explores their potential role in modulating the gastrointestinal microenvironment following cancer chemotherapy, thus providing a theoretical foundation for their continued use in adjunct cancer treatment.
Collapse
Affiliation(s)
- Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Hao-Xiang Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiao-Tong Tian
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Yan-Jing Zhang
- Department of Oncology I, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Shijiazhuang 050000, Hebei Province, China
| | - De-Hui Li
- Department of Oncology II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
14
|
Chen Y, Wang H, Yang M, Shen Z, Gao Y. Exploring the Effects of Metformin on the Body via the Urine Proteome. Biomolecules 2025; 15:241. [PMID: 40001544 PMCID: PMC11853151 DOI: 10.3390/biom15020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Metformin is the first-line medication for treating type 2 diabetes mellitus, with more than 200 million patients taking it daily. Its effects are extensive and play a positive role in multiple areas. Can its effects and potential mechanisms be explored through the urine proteome? In this study, 166 differential proteins were identified following the administration of 150 mg/(kg·d) of metformin to rats for five consecutive days. These included complement component C6, pyruvate kinase, coagulation factor X, growth differentiation factor 15, carboxypeptidase A4, chymotrypsin-like elastase family member 1, and L-lactate dehydrogenase C chain. Several of these proteins have been reported to be directly affected by metformin or associated with its effects. Multiple biological pathways enriched by these differential proteins, or proteins containing differentially modified peptides, have been reported to be associated with metformin, such as the glutathione metabolic process, negative regulation of gluconeogenesis, and the renin-angiotensin system. Additionally, some significantly changed proteins and enriched biological pathways, not yet reported to be associated with metformin's effects, may provide clues for exploring its potential mechanisms. In conclusion, the application of the urine proteome offers a comprehensive and systematic approach to exploring the effects of drugs, providing a new perspective on the study of metformin's mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Youhe Gao
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.C.); (H.W.); (M.Y.); (Z.S.)
| |
Collapse
|
15
|
Xu K, Berthiller F, Metzler-Zebeli BU, Schwartz-Zimmermann HE. Development and Validation of Targeted Metabolomics Methods Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for the Quantification of 235 Plasma Metabolites. Molecules 2025; 30:706. [PMID: 39942809 PMCID: PMC11820780 DOI: 10.3390/molecules30030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Plasma contains metabolites with diverse physicochemical properties, ranging from highly polar to highly apolar, and concentrations spanning at least nine orders of magnitude. Plasma metabolome analysis is valuable for monitoring health and evaluating medical interventions but is challenging due to the metabolome's diversity and complexity. This study aims to develop and validate targeted LC-MS/MS methods for quantifying 235 mammalian metabolites from 17 compound classes in porcine plasma without prior derivatization. Utilizing reversed-phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry, each analyte is identified and quantified using two selected reaction monitoring (SRM) transitions. Fast polarity switching and scheduled SRM enhance the metabolome coverage and throughput, enabling the analysis of one sample in about 40 min. A simple "dilute and shoot" sample preparation protocol was employed, with samples injected at two dilution levels to align metabolite concentrations within calibration curve ranges. Validation in porcine plasma included assessments of carryover, linearity, detection and quantification limits, repeatability and recovery. The method was further applied to plasma samples from various animal species, demonstrating its applicability to human and animal studies. This study establishes two robust LC-MS/MS methods for comprehensive porcine plasma metabolome quantification, advancing large-scale targeted metabolomics in biomedical research.
Collapse
Affiliation(s)
- Kangkang Xu
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), 3430 Tulln, Austria
| | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
| | - Barbara U. Metzler-Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
| |
Collapse
|
16
|
de Miranda AS, C B Toscano E, Venna VR, Graeff FG, Teixeira AL. Investigating novel pharmacological strategies for treatment-resistant depression: focus on new mechanisms and approaches. Expert Opin Drug Discov 2025:1-15. [PMID: 39885729 DOI: 10.1080/17460441.2025.2460674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION A substantial number of patients exhibit treatment-resistant depression (TRD), posing significant challenges to clinicians. The discovery of novel molecules or mechanisms that may underlie TRD pathogenesis and antidepressant actions is highly needed. AREAS COVERED Using the PubMed database, the authors searched for emerging evidence of novel approaches for TRD based on experimental and human studies. Herein, the authors discuss the mechanisms underlying glutamatergic antagonists, modulators of the opioid system, and tryptamine-derivate psychedelics as well as the emerging platforms to investigate novel pharmacological targets for TRD. A search for clinical trials investigating novel agents and interventions for TRD was also conducted. EXPERT OPINION The understanding of the multiple pathophysiological mechanisms involved in TRD may add further value to the effective treatment, contributing to a more personalized approach. Esketamine was approved for the treatment of TRD and novel drugs with rapid antidepressant actions such as psilocybin and buprenorphine have also been investigated as potential therapeutic strategies. Over the past decades, technological advances such as omics approaches have broadened our knowledge regarding molecular and genetic underpinnings of complex conditions like TRD. Omics approaches could open new avenues for investigating glial-mediated mechanisms, including their crosstalk with neurons, as therapeutic targets in TRD.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eliana C B Toscano
- Laboratory of Research in Pathology, Department of Pathology, Federal University of Juiz de Fora (UFJF) Medical School, Juiz de Fora, Brazil
| | - Venugopal Reddy Venna
- Department of Neurology, The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | | | - Antonio Lucio Teixeira
- Geriatric Neuropsychiatry Division, The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
17
|
Ma X, Yu J, Ma Y, Huang X, Zhu K, Jiang Z, Zhang L, Liu Y. Explore the mechanism of yishenjiangya formula in the treatment of senile hypertension based on multi-omics technology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118886. [PMID: 39362324 DOI: 10.1016/j.jep.2024.118886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Yishenjiangya formula (YSJ) is a traditional Chinese medicine (TCM) primarily composed of qi-tonifying components. This classic formula is commonly utilized to treat kidney qi deficiency in elderly patients with hypertension. According to TCM, maintaining a balance between qi and blood is crucial for stable blood pressure. Kidney qi deficiency can disrupt this balance, altering fluid shear force and, ultimately, leading to hypertension, particularly in elderly populations. Despite YSJ's efficacy in treating hypertension, its specific anti-hypertensive mechanisms remain unclear. AIM OF THE STUDY YSJ is commonly prescribed for elderly patients with hypertension. Earlier metabolomics studies demonstrated that YSJ exerts antihypertensive effects by influencing four key pathways: linoleic acid metabolism, glycerol phospholipid metabolism, arginine and proline metabolism, and steroid hormone biosynthesis. This study aims to combine metabolomic and proteomic analyses to thoroughly understand the molecular biological mechanisms responsible for YSJ's anti-hypertensive properties. METHODS Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) metabolomics, combined with Label-Free Quantitation (LFQ) proteomics, was employed to analyze serum samples from elderly individuals with and without hypertension pre- and post-YSJ intervention. Serum levels of candidate proteins were assessed using enzyme-linked immunosorbent assay, and receiver operating characteristic curves were used to evaluate the diagnostic performance of the target proteins. RESULTS Eight differentially expressed metabolites and three differentially expressed proteins were identified as potential therapeutic targets of YSJ. These substances are primarily involved in unsaturated fatty acid metabolism, fluid shear stress and atherosclerosis pathway, primary bile acid biosynthesis, proline metabolism, apoptosis, and endoplasmic reticulum stress. YSJ exerts its therapeutic effects on hypertension in the elderly by modulating these pathways. CONCLUSIONS YSJ effectively treats senile hypertension. By analyzing the correlation between therapeutic targets and pathways, YSJ's anti-hypertensive effect was achieved by inhibiting lipid peroxidation and matrix degeneration. Combining metabolomics and proteomics provides an effective method for uncovering YSJ's anti-hypertensive mechanisms.
Collapse
Affiliation(s)
- Xu Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Jie Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Yongbo Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, Shanghai, China
| | - Xinyu Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Kunpeng Zhu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Zhen Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| | - Yingying Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
18
|
Raungrut P, Jirapongsak J, Tanyapattrapong S, Bunsong T, Ruklert T, Kueakool K, Thongsuksai P, Nakwan N. Fibrinogen Alpha Chain as a Potential Serum Biomarker for Predicting Response to Cisplatin and Gemcitabine Doublet Chemotherapy in Lung Adenocarcinoma: Integrative Transcriptome and Proteome Analyses. Int J Mol Sci 2025; 26:1010. [PMID: 39940778 PMCID: PMC11817752 DOI: 10.3390/ijms26031010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Cisplatin combined with gemcitabine, a doublet regimen, is the first-line treatment for patients with advanced lung adenocarcinoma (ADC); however, the treatment response remains poor. This study aimed to identify potential biomarkers for predicting response to cisplatin and gemcitabine. Tissue transcriptome and blood proteome analyses were conducted on 27 patients with lung ADC. Blood-derived proteins that reflected tissue-specific biomarkers were obtained using Venn diagrams. The candidate proteins were validated by Western blotting. Lentivirus-mediated short hairpin RNA interference was used to verify the functional roles of the candidate proteins in human A549 cells. We identified 417 differentially expressed genes, including 52 upregulated and 365 downregulated genes, and 31 differentially expressed proteins, including 26 upregulated and 5 downregulated proteins. Integrative analysis revealed the presence of alpha-1-acid glycoprotein 1 (A1AG1) and fibrinogen alpha chain (FGA or FIBA) in both the tissue and serum. FGA levels were elevated in responders compared to non-responders, and reduced serum FGA levels were correlated with resistance to this regimen. Moreover, FGA knockdown in A549 cells resulted in resistance to the doublet regimen. Our findings indicate that FGA is a tissue-specific serum protein that may function as a blood-based biomarker to predict the response of patients with lung ADC to cisplatin plus gemcitabine chemotherapy.
Collapse
Affiliation(s)
- Pritsana Raungrut
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (J.J.); (S.T.)
| | - Jirapon Jirapongsak
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (J.J.); (S.T.)
| | - Suchanan Tanyapattrapong
- Division of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; (J.J.); (S.T.)
| | - Thitaya Bunsong
- Division of Pulmonology, Department of Medicine, Hat Yai Medical Education Center, Hat Yai Hospital, Hat Yai 90112, Songkhla, Thailand; (T.B.); (T.R.)
| | - Thidarat Ruklert
- Division of Pulmonology, Department of Medicine, Hat Yai Medical Education Center, Hat Yai Hospital, Hat Yai 90112, Songkhla, Thailand; (T.B.); (T.R.)
| | - Kannika Kueakool
- Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Narongwit Nakwan
- Division of Pulmonology, Department of Medicine, Hat Yai Medical Education Center, Hat Yai Hospital, Hat Yai 90112, Songkhla, Thailand; (T.B.); (T.R.)
| |
Collapse
|
19
|
Li W, Sun J, Sun R, Wei Y, Zheng J, Zhu Y, Guo T. Integral-Omics: Serial Extraction and Profiling of Metabolome, Lipidome, Genome, Transcriptome, Whole Proteome and Phosphoproteome Using Biopsy Tissue. Anal Chem 2025; 97:1190-1198. [PMID: 39772508 DOI: 10.1021/acs.analchem.4c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The integrative multiomics characterization of minute amounts of clinical tissue specimens has become increasingly important. Here, we present an approach called Integral-Omics, which enables sequential extraction of metabolites, lipids, genomic DNA, total RNA, proteins, and phosphopeptides from a single biopsy-level tissue specimen. We benchmarked this method with various samples, applied the workflow to perform multiomics profiling of tissues from six patients with colorectal cancer, and found that tumor tissues exhibited suppressed ferroptosis pathways at multiomics levels. Together, this study presents a methodology that enables sequential extraction and profiling of metabolomics, lipidomics, genomics, transcriptomics, proteomics, and phosphoproteomics using biopsy tissue specimens.
Collapse
Affiliation(s)
- Wei Li
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Sun
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| | - Yujuan Wei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
| | - Tiannan Guo
- Affiliated Hangzhou First People's Hospital, State Key Laboratory of Medical Proteomics, School of Medicine, Westlake University, Hangzhou, Zhejiang Province 310006, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310030, China
| |
Collapse
|
20
|
Huang J, Hou X, Zhou N, Su N, Wei S, Yang Y, Sun T, Li G, Li W, Zhang B. Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity. Cardiovasc Drugs Ther 2025:10.1007/s10557-024-07665-y. [PMID: 39808382 DOI: 10.1007/s10557-024-07665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC). METHODS DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln. RNA sequencing (RNA-seq) was employed to explore the mechanism of PAGln in DIC. Subsequently, the differentially expressed genes (DEGs) were subjected to comprehensive analysis using diverse public databases, and RT-PCR was used to confirm the expression levels of the candidate genes. Finally, molecular docking techniques were used for validation. RESULTS PAGln effectively prevented both in vivo and in vitro Dox-induced myocardial injury and cell apoptosis. RNA-seq results showed that 40 genes were up-regulated and 54 down-regulated in the Dox group compared to the Con group, displaying opposite changes in the Dox + PAGln group. Enrichment analysis highlighted several mechanisms by which PAGln alleviated Dox-induced cardiotoxicity, including the lipid metabolic process, calcium-mediated signaling, positive regulation of store-operated calcium channel activity, and hypertrophic cardiomyopathy. In vitro and in vivo experiments confirmed that PAGln treatment could reverse the changes in the expression levels of Klb, Ece2, Nmnat2, Casq1, Pak1, and Apob in Dox. Molecular docking results showed that these genes had good binding activity with PAGln. CONCLUSIONS PAGln shows potential in alleviating Dox-induced cardiotoxicity, with Ece2 identified as key regulatory molecules related to endothelial dysfunction.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410013, Hunan, China
| | - Xingyuan Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ni Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Nan Su
- Department of Ophthalmology, the First People's Hospital of Lanzhou City, Lanzhou, 730050, Gansu, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410013, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China.
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
21
|
Hassanein MM, Hagyousif YA, Zenati RA, Al-Hroub HM, Khan FM, Abuhelwa AY, Alzoubi KH, Soares NC, El-Huneidi W, Abu-Gharbieh E, Omar H, Zaher DM, Bustanji Y, Semreen MH. Metabolomics insights into doxorubicin and 5-fluorouracil combination therapy in triple-negative breast cancer: a xenograft mouse model study. Front Mol Biosci 2025; 11:1517289. [PMID: 39872164 PMCID: PMC11769812 DOI: 10.3389/fmolb.2024.1517289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Background Breast cancer is one of the most prevalent malignancies and a leading cause of death among women worldwide. Among its subtypes, triple-negative breast cancer (TNBC) poses significant clinical challenges due to its aggressive behavior and limited treatment options. This study aimed to investigate the effects of doxorubicin (DOX) and 5-fluorouracil (5-FU) as monotherapies and in combination using an established MDA-MB-231 xenograft model in female BALB/C nude mice employing advanced metabolomics analysis to identify molecular alterations induced by these treatments. Methods We conducted comprehensive plasma and tumor tissue sample profiling using ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). Results Each treatment group exhibited unique metabolic profiles in plasma and tumor analysis. Univariate and enrichment analyses identified alterations in metabolic pathways. The combination treatment of DOX + 5-FU induced the most extensive metabolic alterations disrupting key pathways including purine, pyrimidine, beta-alanine, and sphingolipid metabolism. It significantly reduced critical metabolites such as guanine, xanthine, inosine, L-fucose, and sphinganine, demonstrating enhanced cytotoxic effects compared to individual treatments. The DOX treatment uniquely increased ornithine levels, while 5-FU altered sphingolipid metabolism, promoting apoptosis. Significance This in vivo study highlights TNBC's metabolic alterations to chemotherapeutics, identifying potential biomarkers like L-fucose and beta-alanine, and provides insights for improving treatment strategies.
Collapse
Affiliation(s)
- Mai M. Hassanein
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yousra A. Hagyousif
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ruba A. Zenati
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamza M. Al-Hroub
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farman Matloob Khan
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C. Soares
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M. Zaher
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Liu J, Ren Q, Du B, Liu X, An Y, Zhang P, Li L, Liu Z, Cao K. Multi-omics approaches to deciphering complex pathological mechanisms of migraine: a systematic review. Front Pharmacol 2025; 15:1452614. [PMID: 39850553 PMCID: PMC11754399 DOI: 10.3389/fphar.2024.1452614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Background Migraine represents a chronic neurological disorder characterized by high prevalence, substantial disability rates, and significant economic burden. Its pathogenesis is complex, and there is currently no cure. The rapid progress in multi-omics technologies has provided new tools to uncover the intricate pathological mechanisms underlying migraine. This systematic review aims to synthesize the findings of multi-omics studies on migraine to further elucidate the complex mechanisms of disease onset, thereby laying a scientific foundation for identifying new therapeutic targets. Methods We conducted a comprehensive systematic review, specifically focusing on clinical observational studies that investigate various aspects of migraine through the integration of genomics, transcriptomics, proteomics, and metabolomics. Our search encompassed multiple databases including PubMed, EMBASE, the Web of Science Core Collection, the Cochrane Library, China National Knowledge Infrastructure, the Chinese Science and Technology Periodical Database, the Wanfang database, and the China Biology Medicine Database to cover studies from database inception until 20 March 2024., The scope of our review included various aspects of migraine such as ictal and interictal phases; episodic or chronic migraine; menstrual-related migraine; and migraine with or without aura (PROSPERO registration number: CRD42024470268). Results A total of 38 studies were ultimately included, highlighting a range of genetic variations, transcriptional abnormalities, protein function alterations, and disruptions in metabolic pathways associated with migraine.These multi-omics findings underscore the pivotal roles played by mitochondrial dysfunction, inflammatory responses, and oxidative stress in the pathophysiology of migraine. Conclusion Multi-omics approaches provide novel perspectives and tools for comprehending the intricate pathophysiology of migraine, facilitating the identification of potential biomarkers and therapeutic targets. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=470268, identifier CRD42024470268.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiaosheng Ren
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boxuan Du
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xian Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqiu An
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peichi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lexi Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kegang Cao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Ajonu CI, Grundy RI, Ball GR, Zafeiris D. Application of a high-throughput swarm-based deep neural network Algorithm reveals SPAG5 downregulation as a potential therapeutic target in adult AML. Funct Integr Genomics 2025; 25:8. [PMID: 39762615 PMCID: PMC11703901 DOI: 10.1007/s10142-024-01514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored. This study leverages a high-throughput swarm-based deep neural network (SDNN) and transcriptomic data-an approach that enhances predictive accuracy and robustness through collective intelligence-to augment, model, and enhance the understanding of the TP53 pathway in AML cohorts. Our integrative systems biology approach identified SPAG5 as a uniquely downregulated driver in adult AML, underscoring its potential as a novel therapeutic target. The interaction of SPAG5 with key hub genes such as MDM2 and CDK1 not only reinforces its role in tumour suppression through negative regulation but also highlights its potential in moderating the phenotypic and genomic alterations associated with AML progression. This study of the role and interaction dynamics of SPAG5 sets the stage for future research aimed at developing targeted and personalized treatment approaches for AML, utilizing the capabilities of genetic interventions.
Collapse
Affiliation(s)
- Chinyere I Ajonu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
- Intelligent OMICS Limited, Nottingham, United Kingdom.
| | | | - Graham R Ball
- Intelligent OMICS Limited, Nottingham, United Kingdom
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | | |
Collapse
|
24
|
Adim H, Fahmideh L, Fakheri BA, Zarrini HN, Sasanfar H. iTRAQ-based quantitative proteomic analysis of herbicide stress in Avena ludoviciana Durieu. Sci Rep 2025; 15:577. [PMID: 39747563 PMCID: PMC11696301 DOI: 10.1038/s41598-024-84326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Winter wild oat (Avena sterilis subsp. ludoviciana (Durieu) Gillet & Magne) has been considered the most common and troublesome weed in wheat fields of Iran. The widespread and continuous use of herbicides has led to the emergence and development of resistant biotypes in A. ludoviciana, making it one of the most important herbicide-resistant weeds within field crops. Considering the importance of understanding the mechanisms underlying resistance to herbicides and identifying key proteins involved in the response to Acetyl-coenzyme A carboxylase (ACCase) and Acetolactate synthase (ALS) inhibitor herbicides in A. ludoviciana. This study aimed to identify the proteins involved in herbicide resistance in A. ludoviciana using the Isobaric Tags for Relative and Absolute Quantification (iTRAQ) technique. In this study, a total of 18,313 peptides were identified with ≤ 0.01 FDR, which could be classified into 484 protein groups. Additionally, 138 differentially expressed proteins (DEPs) were identified in the resistant biotype (R), while 93 DEPs were identified in the susceptible biotype (S). Gene Ontology (GO) analysis revealed that these DEPs mainly consisted of proteins related to photosynthesis, respiration, amino acid synthesis and translation, secondary metabolite biosynthesis, defense proteins, and detoxification. Furthermore, enrichment pathway analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that the most important pathways included metabolic pathways, carbohydrate metabolism, secondary metabolites, amino acid synthesis, and photosynthesis. The function of DEPs indicated that some proteins, such as cytochrome P450, play a direct role in herbicide detoxification. Overall, the results of this study demonstrated the complex response of the resistant biotype to herbicides and its ability to increase antioxidant capacity through up-regulated detoxification proteins, particularly cytochrome P450 (Q6YSB4), and defense proteins, particularly superoxide dismutase (Q0DRV6) and polyamine oxidase (Q7XR46). In the resistant A. ludoviciana populations, in addition to the activation of enzymatic and non-enzymatic defense systems, other strategies such as reduced photosynthesis and respiration, increased transcription and translation activity, enhanced lipid metabolism, regulation of cellular processes and homeostasis, and up-regulation of proteins associated with signaling and ion channels play a role in resistance to herbicide. Overall these findings provide new insights into the role of different proteins in resistance to herbicides and contribute to a comprehensive understanding of herbicide resistance in A. ludoviciana.
Collapse
Affiliation(s)
- Hossein Adim
- Plant Protection Research Department, North Khorasan Agricultural and Natural Resources Research and Education Center, AREEO, Bojnurd, Iran.
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran.
| | - Leila Fahmideh
- Department of Plant Breeding and Biotechnology, Plant Production Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Barat Ali Fakheri
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Hamid Najafi Zarrini
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hamidreza Sasanfar
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
25
|
Muzaffer U, Nisar N, Ali SI, Kareem O, Paul V. Immunotoxicogenomics: Moving from observation to prediction. IMMUNOTOXICOGENOMICS 2025:181-206. [DOI: 10.1016/b978-0-443-18502-1.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
26
|
Clark SL, Hartwell EE, Choi DS, Krystal JH, Messing RO, Ferguson LB. Next-generation biomarkers for alcohol consumption and alcohol use disorder diagnosis, prognosis, and treatment: A critical review. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:5-24. [PMID: 39532676 PMCID: PMC11747793 DOI: 10.1111/acer.15476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
This critical review summarizes the current state of omics-based biomarkers in the alcohol research field. We first provide definitions and background information on alcohol and alcohol use disorder (AUD), biomarkers, and "omic" technologies. We next summarize using (1) genetic information as risk/prognostic biomarkers for the onset of alcohol-related problems and the progression from regular drinking to problematic drinking (including AUD), (2) epigenetic information as diagnostic biomarkers for AUD and risk biomarkers for alcohol consumption, (3) transcriptomic information as diagnostic biomarkers for AUD, risk biomarkers for alcohol consumption, and (4) metabolomic information as diagnostic biomarkers for AUD, risk biomarkers for alcohol consumption, and predictive biomarkers for response to acamprosate in subjects with AUD. In the final section, the clinical implications of the findings are discussed, and recommendations are made for future research.
Collapse
Affiliation(s)
- Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Emily E. Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Tian L, Qi T, Zhang F, Tran VG, Yuan J, Wang Y, He N, Cao M. Synthetic biology approaches to improve tolerance of inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2025; 78:108477. [PMID: 39551454 DOI: 10.1016/j.biotechadv.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Increasing attention is being focused on using lignocellulose for valuable products. Microbial decomposition can convert lignocellulose into renewable biofuels and other high-value bioproducts, contributing to sustainable development. However, the presence of inhibitors in lignocellulosic hydrolysates can negatively affect microorganisms during fermentation. Improving microbial tolerance to these hydrolysates is a major focus in metabolic engineering. Traditional detoxification methods increase costs, so there is a need for cheap and efficient cell-based detoxification strategies. Synthetic biology approaches offer several strategies for improving microbial tolerance, including redox balancing, membrane engineering, omics-guided technologies, expression of protectants and transcription factors, irrational engineering, cell flocculation, and other novel technologies. Advances in molecular biology, high-throughput sequencing, and artificial intelligence (AI) allow for precise strain modification and efficient industrial production. Developing AI-based computational models to guide synthetic biology efforts and creating large-scale heterologous libraries with automation and high-throughput technologies will be important for future research.
Collapse
Affiliation(s)
- Linyue Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tianqi Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Fenghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Vinh G Tran
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| |
Collapse
|
28
|
Bhat GS, Shaik Mohammad AF. Mechanistic Modeling the Role of MicroRNAs and Transcription Factors in Disease Progression. Methods Mol Biol 2025; 2883:195-230. [PMID: 39702710 DOI: 10.1007/978-1-0716-4290-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In this chapter, we illustrate the utilization of network analysis and mechanistic modeling, two potent branches of systems biology, to simplify the representation of intricate biological processes such as cell signaling, gene regulation, and metabolic pathways. Specifically, we demonstrate the application of a well-established method to generate a microRNA-transcription factor-gene regulatory feed-forward loop network extracted from the GEO dataset GSE163877. Furthermore, we outline a method for constructing a deterministic model using the LSODA method based on the sub-network. This model furnishes insights into the roles of crucial differentially expressed microRNAs and transcription factors in gene expression associated with Alzheimer's disease progression. Our analysis of the model reveals elevated kinetics of synthesis for EGR1, miR-6891, miR-4786, and LTBP1. The model suggests the linear upregulation of miR-8080, miR-3921, HSPB6, and downregulation MX2 gene. The rest of the miRNA, TFs, and genes shows a momentary variation in expression and if the system is undisturbed, they attain equilibrium. Thus, we elucidate how mechanistic modeling, along with perturbation studies and network analysis of expression data, can yield diverse insights into the trajectory of disease progression.
Collapse
Affiliation(s)
- Gayathri Shama Bhat
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abdul Fayaz Shaik Mohammad
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
29
|
Go D, Yeon GH, Park SJ, Lee Y, Koh HG, Koo H, Kim KH, Jin YS, Sung BH, Kim J. Integration of metabolomics and other omics: from microbes to microbiome. Appl Microbiol Biotechnol 2024; 108:538. [PMID: 39702677 DOI: 10.1007/s00253-024-13384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Metabolomics is a cutting-edge omics technology that identifies metabolites in organisms and their environments and tracks their fluctuations. This field has been extensively utilized to elucidate previously unknown metabolic pathways and to identify the underlying causes of metabolic changes, given its direct association with phenotypic alterations. However, metabolomics inherently has limitations that can lead to false positives and false negatives. First, most metabolites function as intermediates in multiple biochemical reactions, making it challenging to pinpoint which specific reaction is responsible for the observed changes in metabolite levels. Consequently, metabolic processes that are anticipated to vary with metabolite concentrations may not exhibit significant changes, generating false positives. Second, the range of metabolites identified is contingent upon the analytical conditions employed. Until now, no analytical instrument or protocol has been developed that can capture all metabolites simultaneously. Therefore, some metabolites are changed but are not detected, generating false negatives. In this review, we offer a novel and systematic assessment of the limitations of omics technologies and propose-specific strategies to minimize false positives and false negatives through multi-omics approaches. Additionally, we provide examples of multi-omics applications in microbial metabolic engineering and host-microbiome interactions, helping other researchers gain a better understanding of these strategies. KEY POINTS: • Metabolomics identifies metabolic shifts but has inherent false positive/negatives. • Multi-omics approaches help overcome metabolomics' inherent limitations.
Collapse
Affiliation(s)
- Daewon Go
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea
| | - Gun-Hwi Yeon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Yujin Lee
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-Gun, 25354, Gangwon-Do, Republic of Korea
| | - Hyun Gi Koh
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Hyunjin Koo
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-Gun, 25354, Gangwon-Do, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jungyeon Kim
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang, Gangwon-Do, 25354, Republic of Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-Gun, 25354, Gangwon-Do, Republic of Korea.
| |
Collapse
|
30
|
Marshall K, Twum Y, Li Y, Gao W. Spotting targets with 2D-DIGE proteomics. Adv Clin Chem 2024; 125:1-22. [PMID: 39988404 DOI: 10.1016/bs.acc.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) has been a staple of protein studies for almost three decades since first described in 1997. Although the advent of omic technologies has greatly expanded protein research and discovery, 2D-DIGE has consistently been the mainstay in biomedical applications. Differential protein expression is a hallmark of many disease states and identification of these biomarkers can improve diagnosis, prognosis and treatment. In this review, we examine the use of 2D-DIGE in exploring the cellular environment in physiologic and pathophysiologic states. We highlight this technology in protein identification and quantification, functional modification and biochemical pathways of interest. 2D-DIGE remains a useful tool due low cost and high resolving power for comparative and quantitative purposes in assessing disease states and facilitating identification of unique and novel biomarkers.
Collapse
Affiliation(s)
- Kent Marshall
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Yaw Twum
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Yulu Li
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Weimin Gao
- Department of Public Health, Brooks College of Health, University of North Florida, Jacksonville, FL, United States.
| |
Collapse
|
31
|
Ren Y, Yue Y, Li X, Weng S, Xu H, Liu L, Cheng Q, Luo P, Zhang T, Liu Z, Han X. Proteogenomics offers a novel avenue in neoantigen identification for cancer immunotherapy. Int Immunopharmacol 2024; 142:113147. [PMID: 39270345 DOI: 10.1016/j.intimp.2024.113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/11/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Cancer neoantigens are tumor-specific non-synonymous mutant peptides that activate the immune system to produce an anti-tumor response. Personalized cancer vaccines based on neoantigens are currently one of the most promising therapeutic approaches for cancer treatment. By utilizing the unique mutations within each patient's tumor, these vaccines aim to elicit a strong and specific immune response against cancer cells. However, the identification of neoantigens remains challenging due to the low accuracy of current prediction tools and the high false-positive rate of candidate neoantigens. Since the concept of "proteogenomics" emerged in 2004, it has evolved rapidly with the increased sequencing depth of next-generation sequencing technologies and the maturation of mass spectrometry-based proteomics technologies to become a more comprehensive approach to neoantigen identification, allowing the discovery of high-confidence candidate neoantigens. In this review, we summarize the reason why cancer neoantigens have become attractive targets for immunotherapy, the mechanism of cancer vaccines and the advances in cancer immunotherapy. Considerations relevant to the application emerging of proteogenomics technologies for neoantigen identification and challenges in this field are described.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Yue
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyang Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
32
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9475-9502. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
33
|
Prescott SL. Planetary health: A new approach to healing the Anthropocene. Ann Allergy Asthma Immunol 2024; 133:649-657. [PMID: 39173905 DOI: 10.1016/j.anai.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
The Anthropocene is a proposed geological epoch reflecting the large-scale impact of human activity on the Earth's natural systems. This era is also characterized by other significant threats to ecologic well-being that are less evident in the sedimentary records. Extensive environmental changes with industrialization and urbanization have also contributed to declining biodiversity and microbial dysbiosis in essential ecosystems-the original and foundational lifeforms that continue to sustain virtually all ecosystems today, including our own. These changes, along with numerous other social and ecologic disruptions at all scales are implicated in the rising rates of physical and mental ill-health, particularly the immune dysregulation and noncommunicable diseases that characterize the Anthropocene. This narrative review considers how urgent structural changes in how we live are essential to the future of human health and the flourishing of all life on Earth. It explores planetary health as a solutions-oriented, transdisciplinary field and social movement aimed at addressing these interconnected global challenges through integrated ecologic approaches. Planetary health considers not only the vital biophysical "planetary boundaries" required to support human flourishing, but also the upstream social, political, and economic ecosystems that support (or undermine) well-being at all scales. The value systems and the worldviews that have contributed to our global challenges are a central consideration in the planetary health agenda-emphasizing the imperative to address structural inequalities, injustices, and the social, emotional, and spiritual dimensions of unrealized human potential. Promoting these inner assets is essential to human flourishing and fostering the cultural capacities necessary to ensure sustainable planetary health.
Collapse
Affiliation(s)
- Susan L Prescott
- Medical School, University of Western Australia; Family and Community Medicine, University of Maryland, Baltimore, Maryland; Planetary Health Network, Nova Institute for Health, Baltimore, Maryland.
| |
Collapse
|
34
|
Yan F, Chen B, Ma Z, Chen Q, Jin Z, Wang Y, Qu F, Meng Q. Exploring molecular mechanisms of postoperative delirium through multi-omics strategies in plasma exosomes. Sci Rep 2024; 14:29466. [PMID: 39604493 PMCID: PMC11603267 DOI: 10.1038/s41598-024-80865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Currently, the diagnosis of delirium is solely based on clinical observation, lacking objective diagnostic tools, and the regulatory networks and pathological mechanisms behind it are not yet fully understood. Exosomes have garnered considerable interest as potential biomarkers for a variety of illnesses. This research aimed to delineate both the proteomic and metabolomic landscapes inherent to exosomes, assessing their diagnostic utility in postoperative delirium (POD) and understanding the underlying pathophysiological frameworks. Integrated analyses of proteomics and metabolomics were conducted on exosomes derived from plasma of individuals from both the non-postoperative delirium (NPOD) control group and the POD group. Subsequently, the study utilized the Connectivity Map (CMap) methodology for the identification of promising small-molecule drugs and carried out molecular docking assessments to explore the binding affinities with the enzyme MMP9 of these identified molecules. We identified significant differences in exosomal metabolites and proteins between the POD and control groups, highlighting pathways related to neuroinflammation and blood-brain barrier (BBB) integrity. Our CMap analysis identified potential small-molecule therapeutics, and molecular docking studies revealed two compounds with high affinity to MMP9, suggesting a new therapeutic avenue for POD. This study highlights MMP9, TLR2, ICAM1, S100B, and glutamate as key biomarkers in the pathophysiology of POD, emphasizing the roles of neuroinflammation and BBB integrity. Notably, molecular docking suggests mirin and orantinib as potential inhibitors targeting MMP9, providing new therapeutic avenues. The findings broaden our understanding of POD mechanisms and suggest targeted strategies for its management, reinforcing the importance of multidimensional biomarker analysis and molecular targeting in POD intervention.
Collapse
Affiliation(s)
- Fuhui Yan
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Bowang Chen
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China
| | - Zhen Ma
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China
| | - Qirong Chen
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China
| | - Zhi Jin
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China
| | - Yujie Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Feng Qu
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China.
| | - Qiang Meng
- Department of Intensive Care Unit, Affiliated Jining First People's Hospital of Shandong First Medical University, Jining, Shandong, China.
| |
Collapse
|
35
|
Ahmed S, Ahmed A, Rådegran G. Circulating biomarkers in pulmonary arterial hypertension: State-of-the-art review and future directions. JHLT OPEN 2024; 6:100152. [PMID: 40145036 PMCID: PMC11935499 DOI: 10.1016/j.jhlto.2024.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Pulmonary arterial hypertension is a complex and heterogeneous condition, associated with a considerable diagnostic delay, diminished exercise capacity, and poor outcomes. In pulmonary arterial hypertension, biomarker research has become a subject of intense inquiry, and novel circulating biomarkers acknowledged in a multitude of mechanistic pathways are emerging. Beyond the widely used natriuretic peptides, novel biomarkers may provide deeper pathophysiological understanding, support clinical decision-making, and prompt the incorporation of precision medicine by enabling a more precise individual phenotyping. In this state-of-the-art review, the recent advances in circulating biomarkers in pulmonary arterial hypertension from a clinical perspective are discussed, with particular emphasis on the current state of knowledge, gaps in evidence, and future perspectives.
Collapse
Affiliation(s)
- Salaheldin Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Abdulla Ahmed
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
- Department of Education and Research, Helsingborg Hospital, Helsingborg, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, The Section for Cardiology, Lund University, Lund, Sweden
- The Haemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
36
|
Zhao N, Liu C, Ji C, Jiang X, Zhao J, Qiang L, Jin H. A multi-omics approach reveals differences in toxicity and mechanisms in rice (Oryza sativa L.) exposed to anatase or rutile TiO 2 nanoparticles. NANOIMPACT 2024; 36:100530. [PMID: 39369818 DOI: 10.1016/j.impact.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in agriculture, which increased the risk to soil-plant systems. Studies have demonstrated that TiO2 NPs can induce phytotoxicity. However, the toxicity mechanisms, particularly under the stress of TiO2 NPs with different crystalline forms, remain inadequately reported. In this study, we combined transcriptomics and metabolomics to analyze the toxicity mechanisms in rice (Oryza sativa L.) under the stress of anatase (AT) or rutile (RT) TiO2 NPs (50 mg/kg, 40 days). The length (decreased by 1.1-fold, p = 0.021) and malondialdehyde concentration (decreased by 1.4-fold, p = 0.0027) of rice shoots was significantly reduced after AT exposure, while no significant changes were observed following RT exposure. Antioxidant enzyme activities were significantly altered both in the AT and RT groups, indicating TiO2 NPs induced rice oxidative damage (with changes of 1.1 to 1.4-fold, p < 0.05). Additionally, compared to the control, AT exposure altered 3247 differentially expressed genes (DEGs) and 56 significantly differentially metabolites in rice (collectively involved in pyrimidine metabolism, TCA cycle, fatty acid metabolism, and amino acid metabolism). After RT exposure, 2814 DEGs and 55 significantly differentially metabolites were identified, which were collectively involved in fatty acid metabolism and amino acid metabolism. Our results indicated that AT exposure led to more pronounced changes in biological responses related to oxidative stress and had more negative effects on rice growth compared to RT exposure. These findings provide new insights into the phytotoxic mechanisms of TiO2 NPs with different crystalline forms. Based on the observed adverse effects, the study emphasizes that any form of TiO2 NPs should be used with caution in rice ecosystems. This study is the first to demonstrate that AT is more toxic than RT in paddy ecosystems, providing crucial insights into the differential impacts and toxic mechanisms of TiO2 NPs with different crystalline forms. These findings suggest prioritizing the use of RT when TiO2 NPs are necessary in agricultural development to minimize toxicity risks.
Collapse
Affiliation(s)
- Nan Zhao
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chang Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chenyang Ji
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xuefeng Jiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Jinyu Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Liwen Qiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China.
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
37
|
Velasco HM, Bertoli-Avella A, Jaramillo CJ, Cardona DS, González LA, Vanegas MN, Arango JPV, Buitrago CA, González JAG, Marcello J, Bauer P, Moncada JE. Facing the challenges to shorten the diagnostic odyssey: first Whole Genome Sequencing experience of a Colombian cohort with suspected rare diseases. Eur J Hum Genet 2024; 32:1327-1337. [PMID: 38909121 PMCID: PMC11499989 DOI: 10.1038/s41431-024-01609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 06/24/2024] Open
Abstract
Exome and genome sequencing (ES/GS) are routinely used for the diagnosis of genetic diseases in developed countries. However, their implementation is limited in countries from Latin America. We aimed to describe the results of GS in patients with suspected rare genetic diseases in Colombia. We studied 501 patients from 22 healthcare sites from January to December 2022. GS was performed in the index cases using dried blood spots on filtercards. Ancestry analysis was performed under iAdmix. Multiomic testing was performed when needed (biomarker, enzymatic activity, RNA-seq). All tests were performed at an accredited genetic laboratory. Ethnicity prediction data confirmed that 401 patients (80%) were mainly of Amerindian origin. A genetic diagnosis was established for 142 patients with a 28.3% diagnostic yield. The highest diagnostic yield was achieved for pathologies with a metabolic component and syndromic disorders (p < 0.001). Young children had a median of 1 year of diagnostic odyssey, while the median time for adults was significantly longer (15 years). Patients with genetic syndromes have spent more than 75% of their life without a diagnosis, while for patients with neurologic and neuromuscular diseases, the time of the diagnostic odyssey tended to decrease with age. Previous testing, specifically karyotyping or chromosomal microarray were significantly associated with a longer time to reach a definitive diagnosis (p < 0.01). Furthermore, one out of five patients that had an ES before could be diagnosed by GS. The Colombian genome project is the first Latin American study reporting the experience of systematic use of diagnostic GS in rare diseases.
Collapse
Affiliation(s)
- Harvy Mauricio Velasco
- Personalized Medicine Group, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia.
| | | | - Carolina Jaramillo Jaramillo
- Sura Omics Science Center, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | - Danny Styvens Cardona
- Data Science Department, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | - Leonel Andrés González
- Personalized Medicine Group, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | - Melisa Naranjo Vanegas
- Medical Imaging & AI in Health SURA, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | | | - Cesar Augusto Buitrago
- Personalized Medicine Group, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | | | | | - Peter Bauer
- CENTOGENE GmbH, Rostock, Germany
- University Hospital of Rostock, Hematology, Oncology, and Palliative Medicine, Rostock, Germany
| | - Juliana Espinosa Moncada
- Sura Omics Science Center, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| |
Collapse
|
38
|
Dai Z, Huang Z, Hu D, Naz M, Afzal MR, Raza MA, Benavides-Mendoza A, Tariq M, Qi S, Du D. Role of nanofertilization in plant nutrition under abiotic stress conditions. CHEMOSPHERE 2024; 366:143496. [PMID: 39374674 DOI: 10.1016/j.chemosphere.2024.143496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
Plants require nutrients for growth, which they obtain from the soil via the root system. Fertilizers offer the essential nutrients (nitrogen, phosphorus, and potassium, as well as critical secondary elements) required by plants. Soil productivity falls with each crop until nutrients are provided. A wide range of so-called fertilizer products, such as organic fertilizers, argon mineral fertilizers, and mineral fertilizers, can assist farmers in adjusting fertilization methods based on the environment and agricultural conditions (inhibitors, restricted materials, growth mediums, plant bio-stimulants, etc.). Agricultural land is reduced by erosion, pollution, careless irrigation, and fertilization. On the other hand, more agricultural production is needed to meet the demands of expanding industries and the nutritional needs of a growing population. Nano fertilizers have recently started to be manufactured to obtain the highest yield and its quality per unit area. Previous researchers found that nano fertilizers could improve plant nutrient uptake efficiency, lower soil toxicity, mitigate the potential negative effects of excessive chemical fertilizer use, and reduce the frequency of fertilization. To maximize crop yields and optimize nutrient use while reducing the overuse of chemical fertilizers, nano fertilizersNFs are crucial in agriculture. The key component of these fertilizers is that they contain one or more macro- and micronutrients that can be applied regularly in minute doses while not damaging the environment. However, they have a minimal effect on plant growth and agricultural yields when employed in high numbers, like synthetic fertilizers. This article explains the features, relevance and classification of nano-fertilizers, their use in plant development, their advantages and disadvantages, and the results achieved in this field.
Collapse
Affiliation(s)
- Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, PR China.
| | - Zhiyun Huang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Die Hu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Prov-ince, PR China.
| | - Misbah Naz
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Ammar Raza
- School of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, 310018, PR China.
| | | | - Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy Collage, Lahore, 54000, Pakistan.
| | - Shanshan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Prov-ince, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
39
|
Parker N, Koch E, Shadrin AA, Fuhrer J, Hindley GFL, Stinson S, Jaholkowski P, Tesfaye M, Dale AM, Wingo TS, Wingo AP, Frei O, O'Connell KS, Smeland OB, Andreassen OA. Leveraging the Genetics of Psychiatric Disorders to Prioritize Potential Drug Targets and Compounds. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.24.24314069. [PMID: 39399035 PMCID: PMC11469398 DOI: 10.1101/2024.09.24.24314069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Genetics has the potential to inform biologically relevant drug treatment and repurposing which may ultimately improve patient care. In this study, we combine methods which leverage the genetics of psychiatric disorders to prioritize potential drug targets and compounds. Methods We used the largest available genome-wide association studies, in European ancestry, of four psychiatric disorders [i.e., attention deficit hyperactivity disorder (ADHD), bipolar disorder, depression, and schizophrenia] along with genes encoding drug targets. With this data, we conducted drug enrichment analyses incorporating the novel and biologically specific GSA-MiXeR tool. We then conducted a series of molecular trait analyses using large-scale transcriptomic and proteomic datasets sampled from brain and blood tissue. This included the novel use of the UK Biobank proteomic data for a proteome-wide association study of psychiatric disorders. With the accumulated evidence, we prioritize potential drug targets and compounds for each disorder. Findings We reveal candidate drug targets shared across multiple disorders as well as disorder-specific targets. Drug prioritization indicated genetic support for several currently used psychotropic medications including the antipsychotic paliperidone as the top ranked drug for schizophrenia. We also observed genetic support for other commonly used psychotropics (e.g., clozapine, risperidone, duloxetine, lithium, and valproic acid). Opportunities for drug repurposing were revealed such as cholinergic drugs for ADHD, estrogens for depression, and gabapentin enacarbil for schizophrenia. Our findings also indicate the genetic liability to schizophrenia is associated with reduced brain and blood expression of CYP2D6, a gene encoding a metabolizer of drugs and neurotransmitters, suggesting a genetic risk for poor drug response and altered neurotransmission. Interpretation Here we present a series of complimentary and comprehensive analyses that highlight the utility of genetics for informing drug development and repurposing for psychiatric disorders. Our findings present novel opportunities for refining psychiatric treatment.
Collapse
Affiliation(s)
- Nadine Parker
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Elise Koch
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Julian Fuhrer
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guy F L Hindley
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sara Stinson
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Markos Tesfaye
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Thomas S Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA USA
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA, USA
- Division of Mental Health, VA Medical Center, Mather, CA, USA
| | - Oleksandr Frei
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Olav B Smeland
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
40
|
Suksa-Ard P, Nuanlaong S, Pooljun C, Azzeme AM, Suraninpong P. Decoding the Transcriptomics of Oil Palm Seed Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:2680. [PMID: 39409550 PMCID: PMC11479028 DOI: 10.3390/plants13192680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Seed dormancy and germination are critical factors affecting oil palm production efficiency. The typical dormancy-breaking process involves dry heat treatment (38-40 °C for 40-60 days) followed by germination at 30-32 °C. To understand the molecular mechanisms behind this process and improve germination rates and speed, we conducted transcriptome analysis at three stages: pre-incubation, 45-day incubation at 40 °C, and 14-day germination at 32 °C. Our findings, supported by qRT-PCR and DEGs analysis, identified four key stages: ABA degradation, energy mobilization, starch mobilization, and cell elongation and division. ABA pathway genes (SnRK2, PYR/PYL) were active during dormancy release, while GAE and GPI were upregulated after heat treatment, indicating increased energy metabolism and structural changes. During germination, genes involved in starch/sucrose metabolism (SPS, TPP, SS, MGAM) and cell wall biosynthesis (GAUT1, PE, GAE) supported embryo expansion, with BAM, PGM, GlgB fueling early growth. Auxin (TIR1, AUX/IAA, ARF), brassinosteroid (BRI1, BSK, BIN2, CYCD3), ethylene (ETR, CTR1), and jasmonic acid (JAR1, COI1) pathway genes regulated cell growth and stress response, promoting seedling development. Though gibberellins were not crucial for this oil palm variety, gene expression varied between varieties. This study provides information on oil palm seed germination that could be applied to other oil palm species, particularly in terms of incubation times and chemical treatments.
Collapse
Affiliation(s)
- Padungsak Suksa-Ard
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand; (P.S.-A.); (S.N.)
| | - Sunya Nuanlaong
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand; (P.S.-A.); (S.N.)
| | - Chettupon Pooljun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Azzreena Mohamad Azzeme
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Potjamarn Suraninpong
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand; (P.S.-A.); (S.N.)
- Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
41
|
An Z, Shi L, Zhou H, Hou G, Xun W. Exploratory Metabolomics and Lipidomics Profiling Contributes to Understanding How Curcumin Improves Quality of Goat Semen Stored at 16 °C in Tropical Areas. Int J Mol Sci 2024; 25:10200. [PMID: 39337684 PMCID: PMC11432619 DOI: 10.3390/ijms251810200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) exert a vital role in sperm quality during semen preservation, where excessive ROS leads to oxidative damage and undermines sperm integrity. Curcumin, a botanical extract, is capable of neutralizing ROS and enhancing the activity of antioxidant enzymes. This study was aimed at evaluating the effects of curcumin on sperm viability, acrosome integrity, and antioxidant levels, as well as metabolomic and lipidomic profiles. The results demonstrated that curcumin at 25 µmol/L significantly enhanced sperm motility, plasma membrane, and acrosome integrity, elevated the levels of antioxidant enzymes (T-AOC, CAT, SOD), and decreased ROS production (p < 0.05). Metabolomic analysis identified 93 distinct metabolites that showed significant differences between the control and curcumin-treated groups. KEGG pathways emphasized the participation of these metabolites in key metabolic processes such as the citric acid cycle, cholesterol metabolism, and fatty acid metabolism. Curcumin treatment brought about notable variations in lipid profiles, including increased levels of phosphatidylcholine, acylcarnitine, and triglyceride over the storage time, suggesting enhanced lipid anabolic activity. Overall, the supplementation of curcumin at 25 µmol/L effectively mitigates oxidative stress and prolongs the viability of semen storage at 16 °C by modulating specific metabolic and lipid profiles.
Collapse
Affiliation(s)
- Zhaoxiang An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Wenjuan Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
42
|
Madeira D, Madeira C, Calosi P, Vermandele F, Carrier-Belleau C, Barria-Araya A, Daigle R, Findlay HS, Poisot T. Multilayer biological networks to upscale marine research to global change-smart management and sustainable resource use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173837. [PMID: 38866145 DOI: 10.1016/j.scitotenv.2024.173837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Human activities are having a massive negative impact on biodiversity and ecological processes worldwide. The rate and magnitude of ecological transformations induced by climate change, habitat destruction, overexploitation and pollution are now so substantial that a sixth mass extinction event is currently underway. The biodiversity crisis of the Anthropocene urges scientists to put forward a transformative vision to promote the conservation of biodiversity, and thus indirectly the preservation of ecosystem functions. Here, we identify pressing issues in global change biology research and propose an integrative framework based on multilayer biological networks as a tool to support conservation actions and marine risk assessments in multi-stressor scenarios. Multilayer networks can integrate different levels of environmental and biotic complexity, enabling us to combine information on molecular, physiological and behaviour responses, species interactions and biotic communities. The ultimate aim of this framework is to link human-induced environmental changes to species physiology, fitness, biogeography and ecosystem impacts across vast seascapes and time frames, to help guide solutions to address biodiversity loss and ecological tipping points. Further, we also define our current ability to adopt a widespread use of multilayer networks within ecology, evolution and conservation by providing examples of case-studies. We also assess which approaches are ready to be transferred and which ones require further development before use. We conclude that multilayer biological networks will be crucial to inform (using reliable multi-levels integrative indicators) stakeholders and support their decision-making concerning the sustainable use of resources and marine conservation.
Collapse
Affiliation(s)
- Diana Madeira
- Laboratory for Innovation and Sustainability of Marine Biological Resources (ECOMARE), Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Carolina Madeira
- Applied Molecular Biosciences Unit, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Piero Calosi
- Laboratory of Marine Ecological and Evolutionary Physiology, Department of Biology, Chemistry and Geography, University of Quebec in Rimouski, 300 Allée des Ursulines, Rimouski, G5L 3A1, Québec, Canada
| | - Fanny Vermandele
- Laboratory of Marine Ecological and Evolutionary Physiology, Department of Biology, Chemistry and Geography, University of Quebec in Rimouski, 300 Allée des Ursulines, Rimouski, G5L 3A1, Québec, Canada
| | | | - Aura Barria-Araya
- Laboratory of Marine Ecological and Evolutionary Physiology, Department of Biology, Chemistry and Geography, University of Quebec in Rimouski, 300 Allée des Ursulines, Rimouski, G5L 3A1, Québec, Canada
| | - Remi Daigle
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada; Marine Affairs Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Timothée Poisot
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| |
Collapse
|
43
|
Drouard G, Wang Z, Heikkinen A, Foraster M, Julvez J, Kanninen KM, van Kamp I, Pirinen M, Ollikainen M, Kaprio J. Lifestyle differences between co-twins are associated with decreased similarity in their internal and external exposome profiles. Sci Rep 2024; 14:21261. [PMID: 39261679 PMCID: PMC11390871 DOI: 10.1038/s41598-024-72354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Whether differences in lifestyle between co-twins are reflected in differences in their internal or external exposome profiles remains largely underexplored. We therefore investigated whether within-pair differences in lifestyle were associated with within-pair differences in exposome profiles across four domains: the external exposome, proteome, metabolome and epigenetic age acceleration (EAA). For each domain, we assessed the similarity of co-twin profiles using Gaussian similarities in up to 257 young adult same-sex twin pairs (54% monozygotic). We additionally tested whether similarity in one domain translated into greater similarity in another. Results suggest that a lower degree of similarity in co-twins' exposome profiles was associated with greater differences in their behavior and substance use. The strongest association was identified between excessive drinking behavior and the external exposome. Overall, our study demonstrates how social behavior and especially substance use are connected to the internal and external exposomes, while controlling for familial confounders.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Zhiyang Wang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Foraster
- PHAGEX Research Group, Blanquerna School of Health Science, Universitat Ramon Llull (URL), Barcelona, Spain
| | - Jordi Julvez
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- ISGlobal, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Irene van Kamp
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
44
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
45
|
Liu H, Wang J, Wang L, Tang W, Hou X, Zhu YZ, Chen X. Multi-Omics Exploration of the Mechanism of Curcumol to Reduce Invasion and Metastasis of Nasopharyngeal Carcinoma by Inhibiting NCL/EBNA1-Mediated UBE2C Upregulation. Biomolecules 2024; 14:1142. [PMID: 39334908 PMCID: PMC11430640 DOI: 10.3390/biom14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is closely linked to Epstein-Barr virus (EBV) infection. Curcumae Rhizoma, a traditional Chinese herb, has shown antitumor effects, primarily through its component curcumol (Cur), which has been shown to reduce NPC cell invasion and migration by targeting nucleolin (NCL) and Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). We constructed an EBV-positive NPC cell model using C666-1 cells and performed transcriptomics studies after treatment with curcumol, which revealed a significant enrichment of ubiquitin-mediated proteolysis, the PI3K-AKT and mTOR signaling pathways, cell cycle and apoptosis involved in tumor invasion and migration. To investigate the importance of NCL and EBNA1 in curcumol-resistant EBV-positive NPC, we performed a multi-omics study using short hairpin NCL (shNCL) and shEBNA1 EBV-positive NPC cells, and the proteomics results showed enrichment in complement and coagulation cascades and ubiquitin-mediated proteolysis signaling pathways. Here, we focused on ubiquitin-conjugating enzyme E2C (UBE2C), which plays an important role in the ubiquitin-mediated proteolysis signaling pathway. In addition, metabolomics revealed that UBE2C is highly associated with 4-Aminobutanoic acid (GABA). In vitro studies further validated the function of the key targets, suggesting that UBE2C plays an important role in NCL and EBNA1-mediated curcumol resistance to nasopharyngeal carcinoma invasion and metastasis.
Collapse
Affiliation(s)
- Haiping Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; (H.L.); (L.W.); (W.T.)
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Juan Wang
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Lin Wang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; (H.L.); (L.W.); (W.T.)
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Wei Tang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; (H.L.); (L.W.); (W.T.)
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Xinyue Hou
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China; (H.L.); (L.W.); (W.T.)
| | - Xu Chen
- Pharmacology Laboratory of Prevention and Treatment of High Incidence of Disease, Guilin Medical University, Guilin 541199, China; (J.W.); (X.H.)
| |
Collapse
|
46
|
Riaz IB, Khan MA, Haddad TC. Potential application of artificial intelligence in cancer therapy. Curr Opin Oncol 2024; 36:437-448. [PMID: 39007164 DOI: 10.1097/cco.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW This review underscores the critical role and challenges associated with the widespread adoption of artificial intelligence in cancer care to enhance disease management, streamline clinical processes, optimize data retrieval of health information, and generate and synthesize evidence. RECENT FINDINGS Advancements in artificial intelligence models and the development of digital biomarkers and diagnostics are applicable across the cancer continuum from early detection to survivorship care. Additionally, generative artificial intelligence has promised to streamline clinical documentation and patient communications, generate structured data for clinical trial matching, automate cancer registries, and facilitate advanced clinical decision support. Widespread adoption of artificial intelligence has been slow because of concerns about data diversity and data shift, model reliability and algorithm bias, legal oversight, and high information technology and infrastructure costs. SUMMARY Artificial intelligence models have significant potential to transform cancer care. Efforts are underway to deploy artificial intelligence models in the cancer practice, evaluate their clinical impact, and enhance their fairness and explainability. Standardized guidelines for the ethical integration of artificial intelligence models in cancer care pathways and clinical operations are needed. Clear governance and oversight will be necessary to gain trust in artificial intelligence-assisted cancer care by clinicians, scientists, and patients.
Collapse
Affiliation(s)
- Irbaz Bin Riaz
- Department of AI and Informatics, Mayo Clinic, Minnesota
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Tufia C Haddad
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
47
|
Gao Z, Lu Y, Li M, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Application of Pan-Omics Technologies in Research on Important Economic Traits for Ruminants. Int J Mol Sci 2024; 25:9271. [PMID: 39273219 PMCID: PMC11394796 DOI: 10.3390/ijms25179271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The economic significance of ruminants in agriculture underscores the need for advanced research methodologies to enhance their traits. This review aims to elucidate the transformative role of pan-omics technologies in ruminant research, focusing on their application in uncovering the genetic mechanisms underlying complex traits such as growth, reproduction, production performance, and rumen function. Pan-omics analysis not only helps in identifying key genes and their regulatory networks associated with important economic traits but also reveals the impact of environmental factors on trait expression. By integrating genomics, epigenomics, transcriptomics, metabolomics, and microbiomics, pan-omics enables a comprehensive analysis of the interplay between genetics and environmental factors, offering a holistic understanding of trait expression. We explore specific examples of economic traits where these technologies have been pivotal, highlighting key genes and regulatory networks identified through pan-omics approaches. Additionally, we trace the historical evolution of each omics field, detailing their progression from foundational discoveries to high-throughput platforms. This review provides a critical synthesis of recent advancements, offering new insights and practical recommendations for the application of pan-omics in the ruminant industry. The broader implications for modern animal husbandry are discussed, emphasizing the potential for these technologies to drive sustainable improvements in ruminant production systems.
Collapse
Affiliation(s)
- Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
48
|
Ong SS, Ho PJ, Khng AJ, Tan BKT, Tan QT, Tan EY, Tan SM, Putti TC, Lim SH, Tang ELS, Li J, Hartman M. Genomic Insights into Idiopathic Granulomatous Mastitis through Whole-Exome Sequencing: A Case Report of Eight Patients. Int J Mol Sci 2024; 25:9058. [PMID: 39201744 PMCID: PMC11354296 DOI: 10.3390/ijms25169058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Idiopathic granulomatous mastitis (IGM) is a rare condition characterised by chronic inflammation and granuloma formation in the breast. The aetiology of IGM is unclear. By focusing on the protein-coding regions of the genome, where most disease-related mutations often occur, whole-exome sequencing (WES) is a powerful approach for investigating rare and complex conditions, like IGM. We report WES results on paired blood and tissue samples from eight IGM patients. Samples were processed using standard genomic protocols. Somatic variants were called with two analytical pipelines: nf-core/sarek with Strelka2 and GATK4 with Mutect2. Our WES study of eight patients did not find evidence supporting a clear genetic component. The discrepancies between variant calling algorithms, along with the considerable genetic heterogeneity observed amongst the eight IGM cases, indicate that common genetic drivers are not readily identifiable. With only three genes, CHIT1, CEP170, and CTR9, recurrently altering in multiple cases, the genetic basis of IGM remains uncertain. The absence of validation for somatic variants by Sanger sequencing raises further questions about the role of genetic mutations in the disease. Other potential contributors to the disease should be explored.
Collapse
Affiliation(s)
- Seeu Si Ong
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Peh Joo Ho
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
| | - Alexis Jiaying Khng
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
| | - Benita Kiat Tee Tan
- Department of General Surgery, Sengkang General Hospital, Singapore 544886, Singapore
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
- Division of Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Qing Ting Tan
- Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Su-Ming Tan
- Division of Breast Surgery, Changi General Hospital, Singapore 529889, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Swee Ho Lim
- Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | | | - Jingmei Li
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (S.S.O.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117597, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
49
|
Sandhanam K, Tamilanban T, Manasa K, Bhattacharjee B. Unlocking novel therapeutic avenues in glioblastoma: Harnessing 4-amino cyanine and miRNA synergy for next-gen treatment convergence. Neuroscience 2024; 553:1-18. [PMID: 38944146 DOI: 10.1016/j.neuroscience.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) poses a formidable challenge in oncology due to its aggressive nature and dismal prognosis, with average survival rates around 15 months despite conventional treatments. This review proposes a novel therapeutic strategy for GBM by integrating microRNA (miRNA) therapy with 4-amino cyanine molecules possessing near-infrared (NIR) properties. miRNA holds promise in regulating gene expression, particularly in GBM, making it an attractive therapeutic target. 4-amino cyanine molecules, especially those with NIR properties, have shown efficacy in targeted tumor cell degradation. The combined approach addresses gene expression regulation and precise tumor cell degradation, offering a breakthrough in GBM treatment. Additionally, the review explores noncoding RNAs classification and characteristics, highlighting their role in GBM pathogenesis. Advanced technologies such as antisense oligonucleotides (ASOs), locked nucleic acids (LNAs), and peptide nucleic acids (PNAs) show potential in targeting noncoding RNAs therapeutically, paving the way for precision medicine in GBM. This synergistic combination presents an innovative approach with the potential to advance cancer therapy in the challenging landscape of GBM.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy 502294, Telangana, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501 Assam, India
| |
Collapse
|
50
|
Xu W, John Martin JJ, Li X, Liu X, Zhang R, Hou M, Cao H, Cheng S. Unveiling the Secrets of Oil Palm Genetics: A Look into Omics Research. Int J Mol Sci 2024; 25:8625. [PMID: 39201312 PMCID: PMC11354864 DOI: 10.3390/ijms25168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Oil palm is a versatile oil crop with numerous applications. Significant progress has been made in applying histological techniques in oil palm research in recent years. Whole genome sequencing of oil palm has been carried out to explain the function and structure of the order genome, facilitating the development of molecular markers and the construction of genetic maps, which are crucial for studying important traits and genetic resources in oil palm. Transcriptomics provides a powerful tool for studying various aspects of plant biology, including abiotic and biotic stresses, fatty acid composition and accumulation, and sexual reproduction, while proteomics and metabolomics provide opportunities to study lipid synthesis and stress responses, regulate fatty acid composition based on different gene and metabolite levels, elucidate the physiological mechanisms in response to abiotic stresses, and explain intriguing biological processes in oil palm. This paper summarizes the current status of oil palm research from a multi-omics perspective and hopes to provide a reference for further in-depth research on oil palm.
Collapse
Affiliation(s)
- Wen Xu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Ruimin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Mingming Hou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Shuanghong Cheng
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| |
Collapse
|