1
|
Zhou X, Liu G, Cao S, Lv J. Deep Learning for Antimicrobial Peptides: Computational Models and Databases. J Chem Inf Model 2025; 65:1708-1717. [PMID: 39927895 DOI: 10.1021/acs.jcim.5c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Antimicrobial peptides are a promising strategy to combat antimicrobial resistance. However, the experimental discovery of antimicrobial peptides is both time-consuming and laborious. In recent years, the development of computational technologies (especially deep learning) has provided new opportunities for antimicrobial peptide prediction. Various computational models have been proposed to predict antimicrobial peptide. In this review, we focus on deep learning models for antimicrobial peptide prediction. We first collected and summarized available data resources for antimicrobial peptides. Subsequently, we summarized existing deep learning models for antimicrobial peptides and discussed their limitations and challenges. This study aims to help computational biologists design better deep learning models for antimicrobial peptide prediction.
Collapse
Affiliation(s)
- Xiangrun Zhou
- College of Computer Science and Technology, Jilin University, Changchun, 130000, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130000, China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun, 130000, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130000, China
| | - Shuyuan Cao
- College of Computer Science and Technology, Jilin University, Changchun, 130000, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130000, China
| | - Ji Lv
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
2
|
Kumar N, Du Z, Li Y. pLM4CPPs: Protein Language Model-Based Predictor for Cell Penetrating Peptides. J Chem Inf Model 2025; 65:1128-1139. [PMID: 39878455 DOI: 10.1021/acs.jcim.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model for CPP classification. We evaluated peptide embeddings generated from BEPLER, CPCProt, SeqVec, various ESM variants (ESM, ESM-2 with expanded feature set, ESM-1b, and ESM-1v), ProtT5-XL UniRef50, ProtT5-XL BFD, and ProtBERT. We developed pLM4CCPs, a novel deep learning architecture using convolutional neural networks (CNNs) as the classifier for binary classification of CPPs. pLM4CCPs demonstrated superior performance over existing state-of-the-art CPP prediction models, achieving improvements in accuracy (ACC) by 4.9-5.5%, Matthews correlation coefficient (MCC) by 9.3-10.2%, and sensitivity (Sn) by 14.1-19.6%. Among all the tested models, ESM-1280 and ProtT5-XL BFD demonstrated the highest overall performance on the kelm data set. ESM-1280 achieved an ACC of 0.896, an MCC of 0.796, a Sn of 0.844, and a specificity (Sp) of 0.978. ProtT5-XL BFD exhibited superior performance with an ACC of 0.901, an MCC of 0.802, an Sn of 0.885, and an Sp of 0.917. pLM4CCPs combine predictions from multiple models to provide a consensus on whether a given peptide sequence is classified as a CPP or non-CPP. This approach will enhance prediction reliability by leveraging the strengths of each individual model. A user-friendly web server for bioactivity predictions, along with data sets, is available at https://ry2acnp6ep.us-east-1.awsapprunner.com. The source code and protocol for adapting pLM4CPPs can be accessed on GitHub at https://github.com/drkumarnandan/pLM4CPPs. This platform aims to advance CPP prediction and peptide functionality modeling, aiding researchers in exploring peptide functionality effectively.
Collapse
Affiliation(s)
- Nandan Kumar
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
3
|
Zhang W, Ding Y, Wei L, Guo X, Ni F. Therapeutic peptides identification via kernel risk sensitive loss-based k-nearest neighbor model and multi-Laplacian regularization. Brief Bioinform 2024; 25:bbae534. [PMID: 39438076 PMCID: PMC11495874 DOI: 10.1093/bib/bbae534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Therapeutic peptides are therapeutic agents synthesized from natural amino acids, which can be used as carriers for precisely transporting drugs and can activate the immune system for preventing and treating various diseases. However, screening therapeutic peptides using biochemical assays is expensive, time-consuming, and limited by experimental conditions and biological samples, and there may be ethical considerations in the clinical stage. In contrast, screening therapeutic peptides using machine learning and computational methods is efficient, automated, and can accurately predict potential therapeutic peptides. In this study, a k-nearest neighbor model based on multi-Laplacian and kernel risk sensitive loss was proposed, which introduces a kernel risk loss function derived from the K-local hyperplane distance nearest neighbor model as well as combining the Laplacian regularization method to predict therapeutic peptides. The findings indicated that the suggested approach achieved satisfactory results and could effectively predict therapeutic peptide sequences.
Collapse
Affiliation(s)
- Wenyu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, High tech Zone, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, No.1 Chengdian Road, Kecheng District, Quzhou 324000, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, No.1 Chengdian Road, Kecheng District, Quzhou 324000, China
| | - Leyi Wei
- Macao Polytechnic University, Gomes Street, Macau Peninsula, Macau 999078, China
| | - Xiaoyi Guo
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, No.1 Chengdian Road, Kecheng District, Quzhou 324000, China
| | - Fengming Ni
- Department of Gastroenterology, The First Hospital of Jilin University, No. 71 Xinmin Street, Chaoyang District, Changchun 130021, China
| |
Collapse
|
4
|
Yadav AK, Gupta PK, Singh TR. PMTPred: machine-learning-based prediction of protein methyltransferases using the composition of k-spaced amino acid pairs. Mol Divers 2024; 28:2301-2315. [PMID: 39033257 DOI: 10.1007/s11030-024-10937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Protein methyltransferases (PMTs) are a group of enzymes that help catalyze the transfer of a methyl group to its substrates. These enzymes play an important role in epigenetic regulation and can methylate various substrates with DNA, RNA, protein, and small-molecule secondary metabolites. Dysregulation of methyltransferases is implicated in various human cancers. However, in light of the well-recognized significance of PMTs, reliable and efficient identification methods are essential. In the present work, we propose a machine-learning-based method for the identification of PMTs. Various sequence-based features were calculated, and prediction models were trained using various machine-learning algorithms using a tenfold cross-validation technique. After evaluating each model on the dataset, the SVM-based CKSAAP model achieved the highest prediction accuracy with balanced sensitivity and specificity. Also, this SVM model outperformed deep-learning algorithms for the prediction of PMTs. In addition, cross-database validation was performed to ensure the robustness of the model. Feature importance was assessed using shapley additive explanations (SHAP) values, providing insights into the contributions of different features to the model's predictions. Finally, the SVM-based CKSAAP model was implemented in a standalone tool, PMTPred, due to its consistent performance during independent testing and cross-database evaluation. We believe that PMTPred will be a useful and efficient tool for the identification of PMTs. The PMTPred is freely available for download at https://github.com/ArvindYadav7/PMTPred and http://www.bioinfoindia.org/PMTPred/home.html for research and academic use.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India
| | - Pradeep Kumar Gupta
- Department of Computer Science and Engineering, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India
- School of Computing, Department of Data Science and Engineering, Mohan Babu University, Tirupati- 517102, Andhra Pradesh, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India.
- Centre of Excellence in Healthcare Technologies and Informatics (CHETI), Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan- 173234, Himachal Pradesh, India.
| |
Collapse
|
5
|
Zhang Z, Pan Y, Hussain W, Chen G, Li E. BBSdb, an open resource for bacterial biofilm-associated proteins. Front Cell Infect Microbiol 2024; 14:1428784. [PMID: 39149420 PMCID: PMC11324577 DOI: 10.3389/fcimb.2024.1428784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial biofilms are organized heterogeneous assemblages of microbial cells encased within a self-produced matrix of exopolysaccharides, extracellular DNA and proteins. Over the last decade, more and more biofilm-associated proteins have been discovered and investigated. Furthermore, omics techniques such as transcriptomes, proteomes also play important roles in identifying new biofilm-associated genes or proteins. However, those important data have been uploaded separately to various databases, which creates obstacles for biofilm researchers to have a comprehensive access to these data. In this work, we constructed BBSdb, a state-of-the-art open resource of bacterial biofilm-associated protein. It includes 48 different bacteria species, 105 transcriptome datasets, 21 proteome datasets, 1205 experimental samples, 57,823 differentially expressed genes (DEGs), 13,605 differentially expressed proteins (DEPs), 1,930 'Top 5% differentially expressed genes', 444 'Threshold-based DEGs' and a predictor for prediction of biofilm-associated protein. In addition, 1,781 biofilm-associated proteins, including annotation and sequences, were extracted from 942 articles and public databases via text-mining analysis. We used E. coli as an example to represent how to explore potential biofilm-associated proteins in bacteria. We believe that this study will be of broad interest to researchers in field of bacteria, especially biofilms, which are involved in bacterial growth, pathogenicity, and drug resistance. Availability and implementation: The BBSdb is freely available at http://124.222.145.44/#!/.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu, China
| | - Yuanyuan Pan
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu, China
| | - Wajid Hussain
- Advanced Biomaterials and Tissue Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Xin R, Zhang F, Zheng J, Zhang Y, Yu C, Feng X. SDBA: Score Domain-Based Attention for DNA N4-Methylcytosine Site Prediction from Multiperspectives. J Chem Inf Model 2024; 64:2839-2853. [PMID: 37646411 DOI: 10.1021/acs.jcim.3c00688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In tasks related to DNA sequence classification, choosing the appropriate encoding methods is challenging. Some of the methods encode sequences based on prior knowledge that limits the ability of the model to obtain multiperspective information from the sequences. We introduced a new trainable ensemble method based on the attention mechanism SDBA, which stands for Score Domain-Based Attention. Unlike other methods, we fed the task-independent encoding results into the models and dynamically ensembled features from different perspectives using the SDBA mechanism. This approach allows the model to acquire and weight sequence features voluntarily. SDBA is conceptually general and empirically powerful. It has achieved new state-of-the-art results on the benchmark data sets associated with DNA N4-methylcytosine site prediction.
Collapse
Affiliation(s)
- Ruihao Xin
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 130000, P.R. China
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P.R. China
| | - Fan Zhang
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 130000, P.R. China
| | - Jiaxin Zheng
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P.R. China
| | - Yangyi Zhang
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Cuinan Yu
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P.R. China
| | - Xin Feng
- School of Science, Jilin Institute of Chemical Technology, Jilin 130000, P.R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
7
|
Kumar S, Balaya RDA, Kanekar S, Raju R, Prasad TSK, Kandasamy RK. Computational tools for exploring peptide-membrane interactions in gram-positive bacteria. Comput Struct Biotechnol J 2023; 21:1995-2008. [PMID: 36950221 PMCID: PMC10025024 DOI: 10.1016/j.csbj.2023.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The vital cellular functions in Gram-positive bacteria are controlled by signaling molecules known as quorum sensing peptides (QSPs), considered promising therapeutic interventions for bacterial infections. In the bacterial system QSPs bind to membrane-coupled receptors, which then auto-phosphorylate and activate intracellular response regulators. These response regulators induce target gene expression in bacteria. One of the most reliable trends in drug discovery research for virulence-associated molecular targets is the use of peptide drugs or new functionalities. In this perspective, computational methods act as auxiliary aids for biologists, where methodologies based on machine learning and in silico analysis are developed as suitable tools for target peptide identification. Therefore, the development of quick and reliable computational resources to identify or predict these QSPs along with their receptors and inhibitors is receiving considerable attention. The databases such as Quorumpeps and Quorum Sensing of Human Gut Microbes (QSHGM) provide a detailed overview of the structures and functions of QSPs. The tools and algorithms such as QSPpred, QSPred-FL, iQSP, EnsembleQS and PEPred-Suite have been used for the generic prediction of QSPs and feature representation. The availability of compiled key resources for utilizing peptide features based on amino acid composition, positional preferences, and motifs as well as structural and physicochemical properties, including biofilm inhibitory peptides, can aid in elucidating the QSP and membrane receptor interactions in infectious Gram-positive pathogens. Herein, we present a comprehensive survey of diverse computational approaches that are suitable for detecting QSPs and QS interference molecules. This review highlights the utility of these methods for developing potential biomarkers against infectious Gram-positive pathogens.
Collapse
Key Words
- 3-HBA, 3–Hydroxybenzoic Acid
- AAC, Amino Acid Composition
- ABC, ATP-binding cassette
- ACD, Available Chemicals Database
- AIP, Autoinducing Peptide
- AMP, Anti-Microbial Peptide
- ATP, Adenosine Triphosphate
- Agr, Accessory gene regulator
- BFE, Binding Free Energy
- BIP Inhibitors
- BIP, Biofilm Inhibitory Peptides
- BLAST, Basic Local Alignment Search Tool
- BNB, Bernoulli Naïve-Bayes
- CADD, Computer-Aided Drug Design
- CSP, Competence Stimulating Peptide
- CTD, Composition-Transition-Distribution
- D, Aspartate
- DCH, 3,3′-(3,4-dichlorobenzylidene)-bis-(4-hydroxycoumarin)
- DT, Decision Tree
- FDA, Food and Drug Administration
- GBM, Gradient Boosting Machine
- GDC, g-gap Dipeptide
- GNB, Gaussian NB
- Gram-positive bacteria
- H, Histidine
- H-Kinase, Histidine Kinase
- H-phosphotransferase, Histidine Phosphotransferase
- HAM, Hamamelitannin
- HGM, Human Gut Microbiota
- HNP, Human Neutrophil Peptide
- IT, Information Theory Features
- In silico approaches
- KNN, K-Nearest Neighbors
- MCC, Mathew Co-relation Coefficient
- MD, Molecular Dynamics
- MDR, Multiple Drug Resistance
- ML, Machine Learning
- MRSA, Methicillin Resistant S. aureus
- MSL, Multiple Sequence Alignment
- OMR, Omargliptin
- OVP, Overlapping Property Features
- PCP, Physicochemical Properties
- PDB, Protein Data Bank
- PPIs, Protein-Protein Interactions
- PSM, Phenol-Soluble Modulin
- PTM, Post Translational Modification
- QS, Quorum Sensing
- QSCN, QS communication network
- QSHGM, Quorum Sensing of Human Gut Microbes
- QSI, QS Inhibitors
- QSIM, QS Interference Molecules
- QSP inhibitors
- QSP predictors
- QSP, QS Peptides
- QSPR, Quantitative Structure Property Relationship
- Quorum sensing peptides
- RAP, RNAIII-activating protein
- RF, Random Forest
- RIP, RNAIII-inhibiting peptide
- ROC, Receiver Operating Characteristic
- SAR, Structure-Activity Relationship
- SFS, Sequential Forward Search
- SIT, Sitagliptin
- SVM, Support Vector Machine
- TCS, Two-Component Sensory
- TRAP, Target of RAP
- TRG, Trelagliptin
- WHO, World Health Organization
- mRMR, minimum Redundancy and Maximum Relevance
Collapse
Affiliation(s)
- Shreya Kumar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore 575018, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Saptami Kanekar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore 575018, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Ebrahimi Tarki F, Zarrabi M, Abdiali A, Sharbatdar M. Integration of Machine Learning and Structural Analysis for Predicting Peptide Antibiofilm Effects: Advancements in Drug Discovery for Biofilm-Related Infections. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e138704. [PMID: 38450220 PMCID: PMC10916117 DOI: 10.5812/ijpr-138704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 03/08/2024]
Abstract
Background The rise of antibiotic resistance has become a major concern, signaling the end of the golden age of antibiotics. Bacterial biofilms, which exhibit high resistance to antibiotics, significantly contribute to the emergence of antibiotic resistance. Therefore, there is an urgent need to discover new therapeutic agents with specific characteristics to effectively combat biofilm-related infections. Studies have shown the promising potential of peptides as antimicrobial agents. Objectives This study aimed to establish a cost-effective and streamlined computational method for predicting the antibiofilm effects of peptides. This method can assist in addressing the intricate challenge of designing peptides with strong antibiofilm properties, a task that can be both challenging and costly. Methods A positive library, consisting of peptide sequences with antibiofilm activity exceeding 50%, was assembled, along with a negative library containing quorum-sensing peptides. For each peptide sequence, feature vectors were calculated, while considering the primary structure, the order of amino acids, their physicochemical properties, and their distributions. Multiple supervised learning algorithms were used to classify peptides with significant antibiofilm effects for subsequent experimental evaluations. Results The computational approach exhibited high accuracy in predicting the antibiofilm effects of peptides, with accuracy, precision, Matthew's correlation coefficient (MCC), and F1 score of 99%, 99%, 0.97, and 0.99, respectively. The performance level of this computational approach was comparable to that of previous methods. This study introduced a novel approach by combining the feature space with high antibiofilm activity. Conclusions In this study, a reliable and cost-effective method was developed for predicting the antibiofilm effects of peptides using a computational approach. This approach allows for the identification of peptide sequences with substantial antibiofilm activities for further experimental investigations. Accessible source codes and raw data of this study can be found online (hiABF), providing easy access and enabling future updates.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi Tarki
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahboobeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ahya Abdiali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahkame Sharbatdar
- Department of Mechanical Engineering, Khajeh Nasir Toosi University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Niu M, Zou Q. SgRNA-RF: Identification of SgRNA On-Target Activity With Imbalanced Datasets. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2442-2453. [PMID: 33979289 DOI: 10.1109/tcbb.2021.3079116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-guide RNA is a guide RNA (gRNA), which guides the insertion or deletion of uridine residues into kinetoplastid during RNA editing. It is a small non-coding RNA that can be combined with pre -mRNA pairing. SgRNA is a critical component of the CRISPR/Cas9 gene knockout system and play an important role in gene editing and gene regulation. It is important to accurately and quickly identify highly on-target activity sgRNAs. Due to its importance, several computational predictors have been proposed to predict sgRNAs on-target activity. All these methods have clearly contributed to the development of this very important field. However, they also have certain limitations. In the paper, we developed a new classifier SgRNA-RF, which extracts the features of nucleic acid composition and structure of on-target activity sgRNA sequence and identified by random forest algorithm. In addition to solving an imbalanced dataset, this paper proposed a new method called CS-Smote. We compared sgRNA-RF with state-of-the-art predictors on the five datasets, and found SgRNA-RF significantly improved the identification accuracy, with accuracies of 0.8636,0.9161,0.894,0.938,0.965,0.77,0.979,0.973, respectively. The user-friendly web server that implements sgRNA-RF is freely available at http://server.malab.cn/sgRNA-RF/.
Collapse
|
10
|
Feng C, Wu J, Wei H, Xu L, Zou Q. CRCF: A Method of Identifying Secretory Proteins of Malaria Parasites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2149-2157. [PMID: 34061749 DOI: 10.1109/tcbb.2021.3085589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Malaria is a mosquito-borne disease that results in millions of cases and deaths annually. The development of a fast computational method that identifies secretory proteins of the malaria parasite is important for research on antimalarial drugs and vaccines. Thus, a method was developed to identify the secretory proteins of malaria parasites. In this method, a reduced alphabet was selected to recode the original protein sequence. A feature synthesis method was used to synthesise three different types of feature information. Finally, the random forest method was used as a classifier to identify the secretory proteins. In addition, a web server was developed to share the proposed algorithm. Experiments using the benchmark dataset demonstrated that the overall accuracy achieved by the proposed method was greater than 97.8 percent using the 10-fold cross-validation method. Furthermore, the reduced schemes and characteristic performance analyses are discussed.
Collapse
|
11
|
Wu X, Zeng W, Lin F, Xu P, Li X. Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model. Front Genet 2022; 13:887894. [PMID: 35571059 PMCID: PMC9092594 DOI: 10.3389/fgene.2022.887894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Modern lifestyles mean that people are more likely to suffer from some form of cancer. As anticancer peptides can effectively kill cancer cells and play an important role in fighting cancer, they have been a subject of increasing research interest. Methods: This study presents a useful tool to identify the anticancer peptides based on a multi-kernel CNN and attention model, called ACP-MCAM. This model can automatically learn adaptive embedding and the context sequence features of ACP. In addition, to obtain better interpretability and integrity, we visualized the model. Results: Benchmarking comparison shows that ACP-MCAM significantly outperforms several state-of-the-art models. Different encoding schemes have different impacts on the performance of the model. We also studied tmethod parameter optimization. Conclusion: The ACP-MCAM can integrate multi-kernel CNN and self-attention mechanism, which outperforms the previous model in identifying anticancer peptides. It is expected that the work will provide new research ideas for anticancer peptide prediction in the future. In addition, this work will promote the development of the interdisciplinary field of artificial intelligence and biomedicine.
Collapse
Affiliation(s)
- Xiujin Wu
- School of Informatics, Xiamen University, Xiamen, China
| | - Wenhua Zeng
- School of Informatics, Xiamen University, Xiamen, China
| | - Fan Lin
- School of Informatics, Xiamen University, Xiamen, China
- Boston Children’s Hospital, Boston, MA, United States
| | - Peng Xu
- Chongqing Michong Technology Co., Ltd., Chongqing, China
| | | |
Collapse
|
12
|
Zhang H, Zou Q, Ju Y, Song C, Chen D. Distance-based support vector machine to predict DNA N6-methyladenine modification. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220404145517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
DNA N6-methyladenine plays an important role in the restriction-modification system to isolate invasion from adventive DNA. The shortcomings of the high time-consumption and high costs of experimental methods have been exposed, and some computational methods have emerged. The support vector machine theory has received extensive attention in the bioinformatics field due to its solid theoretical foundation and many good characteristics.
Objective:
General machine learning methods include an important step of extracting features. The research has omitted this step and replaced with easy-to-obtain sequence distances matrix to obtain better results
Method:
First sequence alignment technology was used to achieve the similarity matrix. Then a novel transformation turned the similarity matrix into a distance matrix. Next, the similarity-distance matrix is made positive semi-definite so that it can be used in the kernel matrix. Finally, the LIBSVM software was applied to solve the support vector machine.
Results:
The five-fold cross-validation of this model on rice and mouse data has achieved excellent accuracy rates of 92.04% and 96.51%, respectively. This shows that the DB-SVM method has obvious advantages compared with traditional machine learning methods. Meanwhile this model achieved 0.943,0.982 and 0.818 accuracy,0.944, 0.982, and 0.838 Matthews correlation coefficient and 0.942, 0.982 and 0.840 F1 scores for the rice, M. musculus and cross-species genome datasets, respectively.
Conclusion:
These outcomes show that this model outperforms the iIM-CNN and csDMA in the prediction of DNA 6mA modification, which are the lastest research on DNA 6mA.
Collapse
Affiliation(s)
- Haoyu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Chenggang Song
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
13
|
Chen Z, Jiao S, Zhao D, Zou Q, Xu L, Zhang L, Su X. The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning. Front Cell Dev Biol 2022; 10:845622. [PMID: 35178393 PMCID: PMC8844512 DOI: 10.3389/fcell.2022.845622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Recurrence and new cases of cancer constitute a challenging human health problem. Aquaporins (AQPs) can be expressed in many types of tumours, including the brain, breast, pancreas, colon, skin, ovaries, and lungs, and the histological grade of cancer is positively correlated with AQP expression. Therefore, the identification of aquaporins is an area to explore. Computational tools play an important role in aquaporin identification. In this research, we propose reliable, accurate and automated sequence predictor iAQPs-RF to identify AQPs. In this study, the feature extraction method was 188D (global protein sequence descriptor, GPSD). Six common classifiers, including random forest (RF), NaiveBayes (NB), support vector machine (SVM), XGBoost, logistic regression (LR) and decision tree (DT), were used for AQP classification. The classification results show that the random forest (RF) algorithm is the most suitable machine learning algorithm, and the accuracy was 97.689%. Analysis of Variance (ANOVA) was used to analyse these characteristics. Feature rank based on the ANOVA method and IFS strategy was applied to search for the optimal features. The classification results suggest that the 26th feature (neutral/hydrophobic) and 21st feature (hydrophobic) are the two most powerful and informative features that distinguish AQPs from non-AQPs. Previous studies reported that plasma membrane proteins have hydrophobic characteristics. Aquaporin subcellular localization prediction showed that all aquaporins were plasma membrane proteins with highly conserved transmembrane structures. In addition, the 3D structure of aquaporins was consistent with the localization results. Therefore, these studies confirmed that aquaporins possess hydrophobic properties. Although aquaporins are highly conserved transmembrane structures, the phylogenetic tree shows the diversity of aquaporins during evolution. The PCA showed that positive and negative samples were well separated by 54D features, indicating that the 54D feature can effectively classify aquaporins. The online prediction server is accessible at http://lab.malab.cn/∼acy/iAQP.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, China
| |
Collapse
|
14
|
Kabir M, Nantasenamat C, Kanthawong S, Charoenkwan P, Shoombuatong W. Large-scale comparative review and assessment of computational methods for phage virion proteins identification. EXCLI JOURNAL 2022; 21:11-29. [PMID: 35145365 PMCID: PMC8822302 DOI: 10.17179/excli2021-4411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Phage virion proteins (PVPs) are effective at recognizing and binding to host cell receptors while having no deleterious effects on human or animal cells. Understanding their functional mechanisms is regarded as a critical goal that will aid in rational antibacterial drug discovery and development. Although high-throughput experimental methods for identifying PVPs are considered the gold standard for exploring crucial PVP features, these procedures are frequently time-consuming and labor-intensive. Thusfar, more than ten sequence-based predictors have been established for the in silico identification of PVPs in conjunction with traditional experimental approaches. As a result, a revised and more thorough assessment is extremely desirable. With this purpose in mind, we first conduct a thorough survey and evaluation of a vast array of 13 state-of-the-art PVP predictors. Among these PVP predictors, they can be classified into three groups according to the types of machine learning (ML) algorithms employed (i.e. traditional ML-based methods, ensemble-based methods and deep learning-based methods). Subsequently, we explored which factors are important for building more accurate and stable predictors and this included training/independent datasets, feature encoding algorithms, feature selection methods, core algorithms, performance evaluation metrics/strategies and web servers. Finally, we provide insights and future perspectives for the design and development of new and more effective computational approaches for the detection and characterization of PVPs.
Collapse
Affiliation(s)
- Muhammad Kabir
- School of Systems and Technology, Department of Computer Science, University of Management and Technology, Lahore, Pakistan, 54770
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand, 10700
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, 40002
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand, 10700
| |
Collapse
|
15
|
Zhao Z, Yang W, Zhai Y, Liang Y, Zhao Y. Identify DNA-Binding Proteins Through the Extreme Gradient Boosting Algorithm. Front Genet 2022; 12:821996. [PMID: 35154264 PMCID: PMC8837382 DOI: 10.3389/fgene.2021.821996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The exploration of DNA-binding proteins (DBPs) is an important aspect of studying biological life activities. Research on life activities requires the support of scientific research results on DBPs. The decline in many life activities is closely related to DBPs. Generally, the detection method for identifying DBPs is achieved through biochemical experiments. This method is inefficient and requires considerable manpower, material resources and time. At present, several computational approaches have been developed to detect DBPs, among which machine learning (ML) algorithm-based computational techniques have shown excellent performance. In our experiments, our method uses fewer features and simpler recognition methods than other methods and simultaneously obtains satisfactory results. First, we use six feature extraction methods to extract sequence features from the same group of DBPs. Then, this feature information is spliced together, and the data are standardized. Finally, the extreme gradient boosting (XGBoost) model is used to construct an effective predictive model. Compared with other excellent methods, our proposed method has achieved better results. The accuracy achieved by our method is 78.26% for PDB2272 and 85.48% for PDB186. The accuracy of the experimental results achieved by our strategy is similar to that of previous detection methods.
Collapse
Affiliation(s)
- Ziye Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yingjian Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yingjian Liang, ; Yuming Zhao,
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Yingjian Liang, ; Yuming Zhao,
| |
Collapse
|
16
|
Manavalan B, Basith S, Lee G. Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2. Brief Bioinform 2022; 23:bbab412. [PMID: 34595489 PMCID: PMC8500067 DOI: 10.1093/bib/bbab412] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has impacted public health as well as societal and economic well-being. In the last two decades, various prediction algorithms and tools have been developed for predicting antiviral peptides (AVPs). The current COVID-19 pandemic has underscored the need to develop more efficient and accurate machine learning (ML)-based prediction algorithms for the rapid identification of therapeutic peptides against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Several peptide-based ML approaches, including anti-coronavirus peptides (ACVPs), IL-6 inducing epitopes and other epitopes targeting SARS-CoV-2, have been implemented in COVID-19 therapeutics. Owing to the growing interest in the COVID-19 field, it is crucial to systematically compare the existing ML algorithms based on their performances. Accordingly, we comprehensively evaluated the state-of-the-art IL-6 and AVP predictors against coronaviruses in terms of core algorithms, feature encoding schemes, performance evaluation metrics and software usability. A comprehensive performance assessment was then conducted to evaluate the robustness and scalability of the existing predictors using well-constructed independent validation datasets. Additionally, we discussed the advantages and disadvantages of the existing methods, providing useful insights into the development of novel computational tools for characterizing and identifying epitopes or ACVPs. The insights gained from this review are anticipated to provide critical guidance to the scientific community in the rapid design and development of accurate and efficient next-generation in silico tools against SARS-CoV-2.
Collapse
Affiliation(s)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
17
|
Zhang Z, Gong Y, Gao B, Li H, Gao W, Zhao Y, Dong B. SNAREs-SAP: SNARE Proteins Identification With PSSM Profiles. Front Genet 2022; 12:809001. [PMID: 34987554 PMCID: PMC8721734 DOI: 10.3389/fgene.2021.809001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) proteins are a large family of transmembrane proteins located in organelles and vesicles. The important roles of SNARE proteins include initiating the vesicle fusion process and activating and fusing proteins as they undergo exocytosis activity, and SNARE proteins are also vital for the transport regulation of membrane proteins and non-regulatory vesicles. Therefore, there is great significance in establishing a method to efficiently identify SNARE proteins. However, the identification accuracy of the existing methods such as SNARE CNN is not satisfied. In our study, we developed a method based on a support vector machine (SVM) that can effectively recognize SNARE proteins. We used the position-specific scoring matrix (PSSM) method to extract features of SNARE protein sequences, used the support vector machine recursive elimination correlation bias reduction (SVM-RFE-CBR) algorithm to rank the importance of features, and then screened out the optimal subset of feature data based on the sorted results. We input the feature data into the model when building the model, used 10-fold crossing validation for training, and tested model performance by using an independent dataset. In independent tests, the ability of our method to identify SNARE proteins achieved a sensitivity of 68%, specificity of 94%, accuracy of 92%, area under the curve (AUC) of 84%, and Matthew’s correlation coefficient (MCC) of 0.48. The results of the experiment show that the common evaluation indicators of our method are excellent, indicating that our method performs better than other existing classification methods in identifying SNARE proteins.
Collapse
Affiliation(s)
- Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
18
|
Zhang L, Lv Y, Xu L, Zhou M. A Review of DNA Data Storage Technologies Based on Biomolecules. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210813101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In the information age, data storage technology has become the key to improving computer
systems. Since traditional storage technologies cannot meet the demand for massive storage, new DNA
storage technology based on biomolecules attracts much attention. DNA storage refers to the technology
that uses artificially synthesized deoxynucleotide chains to store and read all information, such as documents,
pictures, and audio. First, data are encoded into binary number strings. Then, the four types of
base, A(Adenine), T(Thymine), C(Cytosine), and G(Guanine), are used to encode the corresponding binary
numbers so that the data can be used to construct the target DNA molecules in the form of deoxynucleotide
chains. Subsequently, the corresponding DNA molecules are artificially synthesized, enabling
the data to be stored within them. Compared with traditional storage systems, DNA storage has
major advantages, such as high storage density, long duration, as well as low hardware cost, high access
parallelism, and strong scalability, which satisfies the demands for big data storage. This manuscript
first reviews the origin and development of DNA storage technology, then the storage principles, contents,
and methods are introduced. Finally, the development of DNA storage technology is analyzed.
From the initial research to the cutting edge of this field and beyond, the advantages, disadvantages, and
practical applications of DNA storage technology require continuous exploration.
Collapse
Affiliation(s)
- Lichao Zhang
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Lv
- Yangtze Delta Region Institute
(Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, Zhejiang, China
| | - Lei Xu
- School of
Electronic and Communication Engineering, ShenZhen Polytechnic, Shenzhen 518000, China
| | - Murong Zhou
- College of Information
and Computer Engineering, Northeast Forestry University, Harbin, 150000, China
| |
Collapse
|
19
|
Zhou H, Wang H, Ding Y, Tang J. Multivariate Information Fusion for Identifying Antifungal Peptides with
Hilbert-Schmidt Independence Criterion. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210727161003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Antifungal Peptides (AFP) have been found to be effective against many fungal
infections.
Objective:
However, it is difficult to identify AFP. Therefore, it is great practical significance to identify
AFP via machine learning methods (with sequence information).
Method:
In this study, a Multi-Kernel Support Vector Machine (MKSVM) with Hilbert-Schmidt Independence
Criterion (HSIC) is proposed. Proteins are encoded with five types of features (188-bit,
AAC, ASDC, CKSAAP, DPC), and then construct kernels using Gaussian kernel function. HSIC are
used to combine kernels and multi-kernel SVM model is built.
Results:
Our model performed well on three AFPs datasets and the performance is better than or comparable
to other state-of-art predictive models.
Conclusion:
Our method will be a useful tool for identifying antifungal peptides.
Collapse
Affiliation(s)
- Haohao Zhou
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin,
300354, China
| | - Hao Wang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin,
300354, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou,
215009, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of
China, Quzhou, 324000, China
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055,
China
| |
Collapse
|
20
|
Zhao D, Teng Z, Li Y, Chen D. iAIPs: Identifying Anti-Inflammatory Peptides Using Random Forest. Front Genet 2021; 12:773202. [PMID: 34917130 PMCID: PMC8669811 DOI: 10.3389/fgene.2021.773202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the inflammatory response, and these peptides have been used to treat some inflammatory and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino acid sequences is critical for the discovery of novel and efficient anti-inflammatory peptide-based therapeutics and the acceleration of their application in therapy. In this paper, a random forest-based model called iAIPs for identifying AIPs is proposed. First, the original samples were encoded with three feature extraction methods, including g-gap dipeptide composition (GDC), dipeptide deviation from the expected mean (DDE), and amino acid composition (AAC). Second, the optimal feature subset is generated by a two-step feature selection method, in which the feature is ranked by the analysis of variance (ANOVA) method, and the optimal feature subset is generated by the incremental feature selection strategy. Finally, the optimal feature subset is inputted into the random forest classifier, and the identification model is constructed. Experiment results showed that iAIPs achieved an AUC value of 0.822 on an independent test dataset, which indicated that our proposed model has better performance than the existing methods. Furthermore, the extraction of features for peptide sequences provides the basis for evolutionary analysis. The study of peptide identification is helpful to understand the diversity of species and analyze the evolutionary history of species.
Collapse
Affiliation(s)
- Dongxu Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yanjuan Li
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
21
|
Lin X. Genomic Variation Prediction: A Summary From Different Views. Front Cell Dev Biol 2021; 9:795883. [PMID: 34901036 PMCID: PMC8656232 DOI: 10.3389/fcell.2021.795883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
Structural variations in the genome are closely related to human health and the occurrence and development of various diseases. To understand the mechanisms of diseases, find pathogenic targets, and carry out personalized precision medicine, it is critical to detect such variations. The rapid development of high-throughput sequencing technologies has accelerated the accumulation of large amounts of genomic mutation data, including synonymous mutations. Identifying pathogenic synonymous mutations that play important roles in the occurrence and development of diseases from all the available mutation data is of great importance. In this paper, machine learning theories and methods are reviewed, efficient and accurate pathogenic synonymous mutation prediction methods are developed, and a standardized three-level variant analysis framework is constructed. In addition, multiple variation tolerance prediction models are studied and integrated, and new ideas for structural variation detection based on deep information mining are explored.
Collapse
Affiliation(s)
- Xiuchun Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Jiao S, Zou Q, Guo H, Shi L. iTTCA-RF: a random forest predictor for tumor T cell antigens. J Transl Med 2021; 19:449. [PMID: 34706730 PMCID: PMC8554859 DOI: 10.1186/s12967-021-03084-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer is one of the most serious diseases threatening human health. Cancer immunotherapy represents the most promising treatment strategy due to its high efficacy and selectivity and lower side effects compared with traditional treatment. The identification of tumor T cell antigens is one of the most important tasks for antitumor vaccines development and molecular function investigation. Although several machine learning predictors have been developed to identify tumor T cell antigen, more accurate tumor T cell antigen identification by existing methodology is still challenging. METHODS In this study, we used a non-redundant dataset of 592 tumor T cell antigens (positive samples) and 393 tumor T cell antigens (negative samples). Four types feature encoding methods have been studied to build an efficient predictor, including amino acid composition, global protein sequence descriptors and grouped amino acid and peptide composition. To improve the feature representation ability of the hybrid features, we further employed a two-step feature selection technique to search for the optimal feature subset. The final prediction model was constructed using random forest algorithm. RESULTS Finally, the top 263 informative features were selected to train the random forest classifier for detecting tumor T cell antigen peptides. iTTCA-RF provides satisfactory performance, with balanced accuracy, specificity and sensitivity values of 83.71%, 78.73% and 88.69% over tenfold cross-validation as well as 73.14%, 62.67% and 83.61% over independent tests, respectively. The online prediction server was freely accessible at http://lab.malab.cn/~acy/iTTCA . CONCLUSIONS We have proven that the proposed predictor iTTCA-RF is superior to the other latest models, and will hopefully become an effective and useful tool for identifying tumor T cell antigens presented in the context of major histocompatibility complex class I.
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Huannan Guo
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
23
|
Liu T, Chen J, Zhang Q, Hippe K, Hunt C, Le T, Cao R, Tang H. The Development of Machine Learning Methods in discriminating Secretory Proteins of Malaria Parasite. Curr Med Chem 2021; 29:807-821. [PMID: 34636289 DOI: 10.2174/0929867328666211005140625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/28/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
Malaria caused by Plasmodium falciparum is one of the major infectious diseases in the world. It is essential to exploit an effective method to predict secretory proteins of malaria parasites to develop effective cures and treatment. Biochemical assays can provide details for accurate identification of the secretory proteins, but these methods are expensive and time-consuming. In this paper, we summarized the machine learning-based identification algorithms and compared the construction strategies between different computational methods. Also, we discussed the use of machine learning to improve the ability of algorithms to identify proteins secreted by malaria parasites.
Collapse
Affiliation(s)
- Ting Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Jiamao Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Qian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Kyle Hippe
- Department of Computer Science, Pacific Lutheran University. United States
| | - Cassandra Hunt
- Department of Computer Science, Pacific Lutheran University. United States
| | - Thu Le
- Department of Computer Science, Pacific Lutheran University. United States
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University. United States
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| |
Collapse
|
24
|
Xue Y, Ye X, Wei L, Zhang X, Sakurai T, Wei L. Better Performance with Transformer: CPPFormer in precise prediction of cell-Penetrating Peptides. Curr Med Chem 2021; 29:881-893. [PMID: 34544332 DOI: 10.2174/0929867328666210920103140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
With its superior performance, the Transformer model, which is based on the 'Encoder-Decoder' paradigm, has become the mainstream in natural language processing. On the other hand, bioinformatics has embraced machine learning and made great progress in drug design and protein property prediction. Cell-penetrating peptides (CPPs) are one kind of permeable protein that is convenient as a kind of 'postman' in drug penetration tasks. However, a small number of CPPs have been discovered by research, let alone practical applications in drug permeability. Therefore, correctly identifying the CPPs has opened up a new way to take macromolecules into cells without other potentially harmful materials in the drug. Most of the previous work only uses trivial machine learning techniques and hand-crafted features to construct a simple classifier. In CPPFormer, we learn from the idea of implementing the attention structure of Transformer, rebuilding the network based on the characteristics of CPPs according to its short length, and using an automatic feature extractor with a few manual engineered features to co-direct the predicted results. Compared to all previous methods and other classic text classification models, the empirical result has shown that our proposed deep model-based method has achieved the best performance of 92.16% accuracy in the CPP924 dataset and has passed various index tests.
Collapse
Affiliation(s)
- Yuyang Xue
- Department of Computer Science, University of Tsukuba, Tsukuba. Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba. Japan
| | - Lesong Wei
- Department of Computer Science, University of Tsukuba, Tsukuba. Japan
| | - Xin Zhang
- School of Software, Shandong University, Jinan. China
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba. Japan
| | - Leyi Wei
- School of Software, Shandong University, Jinan. China
| |
Collapse
|
25
|
Niu M, Wu J, Zou Q, Liu Z, Xu L. rBPDL:Predicting RNA-Binding Proteins Using Deep Learning. IEEE J Biomed Health Inform 2021; 25:3668-3676. [PMID: 33780344 DOI: 10.1109/jbhi.2021.3069259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-binding protein (RBP) is a powerful and wide-ranging regulator that plays an important role in cell development, differentiation, metabolism, health and disease. The prediction of RBPs provides valuable guidance for biologists. Although experimental methods have made great progress in predicting RBP, they are time-consuming and not flexible. Therefore, we developed a network model, rBPDL, by combining a convolutional neural network and long short-term memory for multilabel classification of RBPs. Moreover, to achieve better prediction results, we used a voting algorithm for ensemble learning of the model. We compared rBPDL with state-of-the-art methods and found that rBPDL significantly improved identification performance for the RBP68 dataset, with a macro-Area Under Curve (AUC), micro-AUC, and weighted AUC of 0.936, 0.962, and 0.946, respectively. Furthermore, through AUC statistical analysis of the RBP domain, we analyzed the performance of rBPDL and found that the RBP identification performance in the same domain was similar. In addition, we analyzed the performance preferences and physicochemical properties of the binding protein amino acids and explored the characteristics that affect the binding by using the RBP86 dataset.
Collapse
|
26
|
Zhang J, Zhang Z, Pu L, Tang J, Guo F. AIEpred: An Ensemble Predictive Model of Classifier Chain to Identify Anti-Inflammatory Peptides. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1831-1840. [PMID: 31985437 DOI: 10.1109/tcbb.2020.2968419] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Anti-inflammatory peptides (AIEs) have recently emerged as promising therapeutic agent for treatment of various inflammatory diseases, such as rheumatoid arthritis and Alzheimer's disease. Therefore, detecting the correlation between amino acid sequence and its anti-inflammatory property is of great importance for the discovery of new AIEs. To address this issue, we propose a novel prediction tool for accurate identification of peptides as anti-inflammatory epitopes or non anti-inflammatory epitopes. Most of all, we encode the original peptide sequence for better mining and exploring the information and patterns, based on the three feature representations as amino acid contact, position specific scoring matrix, physicochemical property. At the same time, we exploit several feature extraction models and utilize one feature selection model, in order to construct many base classifiers from various feature representations. More specifically, we develop an effective classification model, with which we can extract and learn a set of informative features from the ensemble classifier chain model with different group of base classifiers. Furthermore, in order to test the predictive power of our model, we conduct the comparative experiments on the leave-one-out cross-validation and the independent test. It shows that our novel predictor performs great accurate for identification of AIEs as well as existing outstanding prediction tools. Source codes are available at https://github.com/guofei-tju/Ensemble-classifier-chain-model.
Collapse
|
27
|
Liang X, Li F, Chen J, Li J, Wu H, Li S, Song J, Liu Q. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification. Brief Bioinform 2021; 22:bbaa312. [PMID: 33316035 PMCID: PMC8294543 DOI: 10.1093/bib/bbaa312] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Anti-cancer peptides (ACPs) are known as potential therapeutics for cancer. Due to their unique ability to target cancer cells without affecting healthy cells directly, they have been extensively studied. Many peptide-based drugs are currently evaluated in the preclinical and clinical trials. Accurate identification of ACPs has received considerable attention in recent years; as such, a number of machine learning-based methods for in silico identification of ACPs have been developed. These methods promote the research on the mechanism of ACPs therapeutics against cancer to some extent. There is a vast difference in these methods in terms of their training/testing datasets, machine learning algorithms, feature encoding schemes, feature selection methods and evaluation strategies used. Therefore, it is desirable to summarize the advantages and disadvantages of the existing methods, provide useful insights and suggestions for the development and improvement of novel computational tools to characterize and identify ACPs. With this in mind, we firstly comprehensively investigate 16 state-of-the-art predictors for ACPs in terms of their core algorithms, feature encoding schemes, performance evaluation metrics and webserver/software usability. Then, comprehensive performance assessment is conducted to evaluate the robustness and scalability of the existing predictors using a well-prepared benchmark dataset. We provide potential strategies for the model performance improvement. Moreover, we propose a novel ensemble learning framework, termed ACPredStackL, for the accurate identification of ACPs. ACPredStackL is developed based on the stacking ensemble strategy combined with SVM, Naïve Bayesian, lightGBM and KNN. Empirical benchmarking experiments against the state-of-the-art methods demonstrate that ACPredStackL achieves a comparative performance for predicting ACPs. The webserver and source code of ACPredStackL is freely available at http://bigdata.biocie.cn/ACPredStackL/ and https://github.com/liangxiaoq/ACPredStackL, respectively.
Collapse
Affiliation(s)
- Xiao Liang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| | - Fuyi Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Centre for Data Science, Monash University, Melbourne, VIC 3800, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jinxiang Chen
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Junlong Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Hao Wu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Shuqin Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Centre for Data Science, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| | - Quanzhong Liu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
- Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Hunt C, Montgomery S, Berkenpas JW, Sigafoos N, Oakley JC, Espinosa J, Justice N, Kishaba K, Hippe K, Si D, Hou J, Ding H, Cao R. Recent Progress of Machine Learning in Gene Therapy. Curr Gene Ther 2021; 22:132-143. [PMID: 34161210 DOI: 10.2174/1566523221666210622164133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
With new developments in biomedical technology, it is now a viable therapeutic treatment to alter genes with techniques like CRISPR. At the same time, it is increasingly cheaper to do whole genome sequencing, resulting in rapid advancement in gene therapy and editing in precision medicine. Thus, understanding the current industry and academic applications of gene therapy provides an important backdrop to future scientific developments. Additionally, machine learning and artificial intelligence techniques allow for the reduction of time and money spent in the development of new gene therapy products and techniques. In this paper, we survey the current progress of gene therapy treatments for several diseases and explore machine learning applications in gene therapy. We also discuss the ethical implications of gene therapy and the use of machine learning in precision medicine. Machine learning and gene therapy are both topics gaining popularity in various publications, and we conclude that there is still room for continued research and application of machine learning techniques in the gene therapy field.
Collapse
Affiliation(s)
- Cassandra Hunt
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| | - Sandra Montgomery
- Department of Physics, Pacific Lutheran University, Tacoma, WA, United States
| | | | - Noel Sigafoos
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| | - John Christian Oakley
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| | - Jacob Espinosa
- Department of Mathematics, Pacific Lutheran University, Tacoma, WA, United States
| | - Nicola Justice
- Department of Mathematics, Pacific Lutheran University, Tacoma, WA, United States
| | - Kiyomi Kishaba
- Department of Humanities, Pacific Lutheran University, Tacoma, WA, United States
| | - Kyle Hippe
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| | - Dong Si
- Division of Computing Software Systems, University of Washington-Bothell, Bothell, WA, United States
| | - Jie Hou
- Department of Computer Science, Saint Louis University, St. Louis, MO, United States
| | - Hui Ding
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, United States
| |
Collapse
|
29
|
Zeng R, Cheng S, Liao M. 4mCPred-MTL: Accurate Identification of DNA 4mC Sites in Multiple Species Using Multi-Task Deep Learning Based on Multi-Head Attention Mechanism. Front Cell Dev Biol 2021; 9:664669. [PMID: 34041243 PMCID: PMC8141656 DOI: 10.3389/fcell.2021.664669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
DNA methylation is one of the most extensive epigenetic modifications. DNA 4mC modification plays a key role in regulating chromatin structure and gene expression. In this study, we proposed a generic 4mC computational predictor, namely, 4mCPred-MTL using multi-task learning coupled with Transformer to predict 4mC sites in multiple species. In this predictor, we utilize a multi-task learning framework, in which each task is to train species-specific data based on Transformer. Extensive experimental results show that our multi-task predictive model can significantly improve the performance of the model based on single task and outperform existing methods on benchmarking comparison. Moreover, we found that our model can sufficiently capture better characteristics of 4mC sites as compared to existing commonly used feature descriptors, demonstrating the strong feature learning ability of our model. Therefore, based on the above results, it can be expected that our 4mCPred-MTL can be a useful tool for research communities of interest.
Collapse
Affiliation(s)
- Rao Zeng
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| | - Song Cheng
- Department of Thoracic Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Minghong Liao
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Yang X, Ye X, Li X, Wei L. iDNA-MT: Identification DNA Modification Sites in Multiple Species by Using Multi-Task Learning Based a Neural Network Tool. Front Genet 2021; 12:663572. [PMID: 33868390 PMCID: PMC8044371 DOI: 10.3389/fgene.2021.663572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Motivation DNA N4-methylcytosine (4mC) and N6-methyladenine (6mA) are two important DNA modifications and play crucial roles in a variety of biological processes. Accurate identification of the modifications is essential to better understand their biological functions and mechanisms. However, existing methods to identify 4mA or 6mC sites are all single tasks, which demonstrates that they can identify only a certain modification in one species. Therefore, it is desirable to develop a novel computational method to identify the modification sites in multiple species simultaneously. Results In this study, we proposed a computational method, called iDNA-MT, to identify 4mC sites and 6mA sites in multiple species, respectively. The proposed iDNA-MT mainly employed multi-task learning coupled with the bidirectional gated recurrent units (BGRU) to capture the sharing information among different species directly from DNA primary sequences. Experimental comparative results on two benchmark datasets, containing different species respectively, show that either for identifying 4mA or for 6mC site in multiple species, the proposed iDNA-MT outperforms other state-of-the-art single-task methods. The promising results have demonstrated that iDNA-MT has great potential to be a powerful and practically useful tool to accurately identify DNA modifications.
Collapse
Affiliation(s)
- Xiao Yang
- School of Software, Shandong University, Jinan, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Xuehong Li
- Department of Rehabilitation, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Lesong Wei
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
31
|
Nilamyani AN, Auliah FN, Moni MA, Shoombuatong W, Hasan MM, Kurata H. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features. Int J Mol Sci 2021; 22:2704. [PMID: 33800121 PMCID: PMC7962192 DOI: 10.3390/ijms22052704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Nitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.
Collapse
Affiliation(s)
- Andi Nur Nilamyani
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| | - Firda Nurul Auliah
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; (A.N.N.); (F.N.A.)
| |
Collapse
|
32
|
Huang Q, Zhou W, Guo F, Xu L, Zhang L. 6mA-Pred: identifying DNA N6-methyladenine sites based on deep learning. PeerJ 2021; 9:e10813. [PMID: 33604189 PMCID: PMC7866889 DOI: 10.7717/peerj.10813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
With the accumulation of data on 6mA modification sites, an increasing number of scholars have begun to focus on the identification of 6mA sites. Despite the recognized importance of 6mA sites, methods for their identification remain lacking, with most existing methods being aimed at their identification in individual species. In the present study, we aimed to develop an identification method suitable for multiple species. Based on previous research, we propose a method for 6mA site recognition. Our experiments prove that the proposed 6mA-Pred method is effective for identifying 6mA sites in genes from taxa such as rice, Mus musculus, and human. A series of experimental results show that 6mA-Pred is an excellent method. We provide the source code used in the study, which can be obtained from http://39.100.246.211:5004/6mA_Pred/.
Collapse
Affiliation(s)
- Qianfei Huang
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
33
|
Recent Advances in Predicting Protein S-Nitrosylation Sites. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5542224. [PMID: 33628788 PMCID: PMC7892234 DOI: 10.1155/2021/5542224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023]
Abstract
Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues. SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will provide insights into research on SNO site prediction.
Collapse
|
34
|
Using a low correlation high orthogonality feature set and machine learning methods to identify plant pentatricopeptide repeat coding gene/protein. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.02.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Dai R, Zhang W, Tang W, Wynendaele E, Zhu Q, Bin Y, De Spiegeleer B, Xia J. BBPpred: Sequence-Based Prediction of Blood-Brain Barrier Peptides with Feature Representation Learning and Logistic Regression. J Chem Inf Model 2021; 61:525-534. [PMID: 33426873 DOI: 10.1021/acs.jcim.0c01115] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood-brain barrier peptides (BBPs) have a large range of biomedical applications since they can cross the blood-brain barrier based on different mechanisms. As experimental methods for the identification of BBPs are laborious and expensive, computational approaches are necessary to be developed for predicting BBPs. In this work, we describe a computational method, BBPpred (blood-brain barrier peptides prediction), that can efficiently identify BBPs using logistic regression. We investigate a wide variety of features from amino acid sequence information, and then a feature learning method is adopted to represent the informative features. To improve the prediction performance, seven informative features are selected for classification by eliminating redundant and irrelevant features. In addition, we specifically create two benchmark data sets (training and independent test), which contain a total of 119 BBPs from public databases and the literature. On the training data set, BBPpred shows promising performances with an AUC score of 0.8764 and an AUPR score of 0.8757 using the 10-fold cross-validation. We also test our new method on the independent test data set and obtain a favorable performance. We envision that BBPpred will be a useful tool for identifying, annotating, and characterizing BBPs. BBPpred is freely available at http://BBPpred.xialab.info.
Collapse
Affiliation(s)
- Ruyu Dai
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wei Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wending Tang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Qizhi Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
36
|
Li Y, Zhang Z, Teng Z, Liu X. PredAmyl-MLP: Prediction of Amyloid Proteins Using Multilayer Perceptron. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:8845133. [PMID: 33294004 PMCID: PMC7700051 DOI: 10.1155/2020/8845133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/31/2020] [Indexed: 01/20/2023]
Abstract
Amyloid is generally an aggregate of insoluble fibrin; its abnormal deposition is the pathogenic mechanism of various diseases, such as Alzheimer's disease and type II diabetes. Therefore, accurately identifying amyloid is necessary to understand its role in pathology. We proposed a machine learning-based prediction model called PredAmyl-MLP, which consists of the following three steps: feature extraction, feature selection, and classification. In the step of feature extraction, seven feature extraction algorithms and different combinations of them are investigated, and the combination of SVMProt-188D and tripeptide composition (TPC) is selected according to the experimental results. In the step of feature selection, maximum relevant maximum distance (MRMD) and binomial distribution (BD) are, respectively, used to remove the redundant or noise features, and the appropriate features are selected according to the experimental results. In the step of classification, we employed multilayer perceptron (MLP) to train the prediction model. The 10-fold cross-validation results show that the overall accuracy of PredAmyl-MLP reached 91.59%, and the performance was better than the existing methods.
Collapse
Affiliation(s)
- Yanjuan Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zitong Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyan Liu
- College of Computer Science and Technology, Harbin Institute of Technology, Harbin 150040, China
| |
Collapse
|
37
|
Wang C, Zhang H, Li Z, Zhou X, Cheng Y, Chen R. White Blood Cell Image Segmentation Based on Color Component Combination and Contour Fitting. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191017102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
White Blood Cell (WBC) image segmentation plays a key role in cell
morphology analysis. However, WBC segmentation is still a challenging task due to the diversity
of WBCs under different staining conditions.
Objective:
In this paper, we propose a novel WBC segmentation method based on color component
combination and contour fitting to segment WBC images accurately.
Methods:
Specifically, the proposed method first uses color component combination and image
thresholding to achieve nucleus segmentation, then uses a color prior to remove image background,
and extracts the initial WBC contour via Canny edge detection, and finally judges and
closes the unclosed WBC contour by contour fitting. Accordingly, cytoplasm segmentation is
achieved by subtracting the nucleus region from the WBC region.
Results:
Experimental results on 100 WBC images under rapid staining condition and 50 WBC
images under standard staining condition showed that the proposed method improved segmentation
accuracy of white blood cells under rapid and standard staining conditions.
Conclusion:
The proposed color component combination and contour fitting is effective in WBC
segmentation task.
Collapse
Affiliation(s)
- Chuansheng Wang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Hong Zhang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Zuoyong Li
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China
| | - Xiaogen Zhou
- College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
| | - Yong Cheng
- School of Information Mechanical & Electrical Engineering, Jiangsu Open University, Nanjing, China
| | - Rongyan Chen
- Department of Clinical Laboratory, the People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
38
|
Manavalan B, Hasan MM, Basith S, Gosu V, Shin TH, Lee G. Empirical Comparison and Analysis of Web-Based DNA N 4-Methylcytosine Site Prediction Tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:406-420. [PMID: 33230445 PMCID: PMC7533314 DOI: 10.1016/j.omtn.2020.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
DNA N4-methylcytosine (4mC) is a crucial epigenetic modification involved in various biological processes. Accurate genome-wide identification of these sites is critical for improving our understanding of their biological functions and mechanisms. As experimental methods for 4mC identification are tedious, expensive, and labor-intensive, several machine learning-based approaches have been developed for genome-wide detection of such sites in multiple species. However, the predictions projected by these tools are difficult to quantify and compare. To date, no systematic performance comparison of 4mC tools has been reported. The aim of this study was to compare and critically evaluate 12 publicly available 4mC site prediction tools according to species specificity, based on a huge independent validation dataset. The tools 4mCCNN (Escherichia coli), DNA4mC-LIP (Arabidopsis thaliana), iDNA-MS (Fragaria vesca), DNA4mC-LIP and 4mCCNN (Drosophila melanogaster), and four tools for Caenorhabditis elegans achieved excellent overall performance compared with their counterparts. However, none of the existing methods was suitable for Geoalkalibacter subterraneus, Geobacter pickeringii, and Mus musculus, thereby limiting their practical applicability. Model transferability to five species and non-transferability to three species are also discussed. The presented evaluation will assist researchers in selecting appropriate prediction tools that best suit their purpose and provide useful guidelines for the development of improved 4mC predictors in the future.
Collapse
Affiliation(s)
- Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae-Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
39
|
Bin Y, Zhang W, Tang W, Dai R, Li M, Zhu Q, Xia J. Prediction of Neuropeptides from Sequence Information Using Ensemble Classifier and Hybrid Features. J Proteome Res 2020; 19:3732-3740. [DOI: 10.1021/acs.jproteome.0c00276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wei Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wending Tang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Ruyu Dai
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Menglu Li
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Qizhi Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
40
|
Xu ZC, Feng PM, Yang H, Qiu WR, Chen W, Lin H. iRNAD: a computational tool for identifying D modification sites in RNA sequence. Bioinformatics 2020; 35:4922-4929. [PMID: 31077296 DOI: 10.1093/bioinformatics/btz358] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/01/2019] [Accepted: 04/27/2019] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Dihydrouridine (D) is a common RNA post-transcriptional modification found in eukaryotes, bacteria and a few archaea. The modification can promote the conformational flexibility of individual nucleotide bases. And its levels are increased in cancerous tissues. Therefore, it is necessary to detect D in RNA for further understanding its functional roles. Since wet-experimental techniques for the aim are time-consuming and laborious, it is urgent to develop computational models to identify D modification sites in RNA. RESULTS We constructed a predictor, called iRNAD, for identifying D modification sites in RNA sequence. In this predictor, the RNA samples derived from five species were encoded by nucleotide chemical property and nucleotide density. Support vector machine was utilized to perform the classification. The final model could produce the overall accuracy of 96.18% with the area under the receiver operating characteristic curve of 0.9839 in jackknife cross-validation test. Furthermore, we performed a series of validations from several aspects and demonstrated the robustness and reliability of the proposed model. AVAILABILITY AND IMPLEMENTATION A user-friendly web-server called iRNAD can be freely accessible at http://lin-group.cn/server/iRNAD, which will provide convenience and guide to users for further studying D modification.
Collapse
Affiliation(s)
- Zhao-Chun Xu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China.,Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng-Mian Feng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wang-Ren Qiu
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
41
|
Identification of Human Enzymes Using Amino Acid Composition and the Composition of k-Spaced Amino Acid Pairs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9235920. [PMID: 32596396 PMCID: PMC7273372 DOI: 10.1155/2020/9235920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 11/17/2022]
Abstract
Enzymes are proteins that can efficiently catalyze specific biochemical reactions, and they are widely present in the human body. Developing an efficient method to identify human enzymes is vital to select enzymes from the vast number of human proteins and to investigate their functions. Nevertheless, only a limited amount of research has been conducted on the classification of human enzymes and nonenzymes. In this work, we developed a support vector machine- (SVM-) based predictor to classify human enzymes using the amino acid composition (AAC), the composition of k-spaced amino acid pairs (CKSAAP), and selected informative amino acid pairs through the use of a feature selection technique. A training dataset including 1117 human enzymes and 2099 nonenzymes and a test dataset including 684 human enzymes and 1270 nonenzymes were constructed to train and test the proposed model. The results of jackknife cross-validation showed that the overall accuracy was 76.46% for the training set and 76.21% for the test set, which are higher than the 72.6% achieved in previous research. Furthermore, various feature extraction methods and mainstream classifiers were compared in this task, and informative feature parameters of k-spaced amino acid pairs were selected and compared. The results suggest that our classifier can be used in human enzyme identification effectively and efficiently and can help to understand their functions and develop new drugs.
Collapse
|
42
|
Manavalan B, Basith S, Shin TH, Wei L, Lee G. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Bioinformatics 2020; 35:2757-2765. [PMID: 30590410 DOI: 10.1093/bioinformatics/bty1047] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Cardiovascular disease is the primary cause of death globally accounting for approximately 17.7 million deaths per year. One of the stakes linked with cardiovascular diseases and other complications is hypertension. Naturally derived bioactive peptides with antihypertensive activities serve as promising alternatives to pharmaceutical drugs. So far, there is no comprehensive analysis, assessment of diverse features and implementation of various machine-learning (ML) algorithms applied for antihypertensive peptide (AHTP) model construction. RESULTS In this study, we utilized six different ML algorithms, namely, Adaboost, extremely randomized tree (ERT), gradient boosting (GB), k-nearest neighbor, random forest (RF) and support vector machine (SVM) using 51 feature descriptors derived from eight different feature encodings for the prediction of AHTPs. While ERT-based trained models performed consistently better than other algorithms regardless of various feature descriptors, we treated them as baseline predictors, whose predicted probability of AHTPs was further used as input features separately for four different ML-algorithms (ERT, GB, RF and SVM) and developed their corresponding meta-predictors using a two-step feature selection protocol. Subsequently, the integration of four meta-predictors through an ensemble learning approach improved the balanced prediction performance and model robustness on the independent dataset. Upon comparison with existing methods, mAHTPred showed superior performance with an overall improvement of approximately 6-7% in both benchmarking and independent datasets. AVAILABILITY AND IMPLEMENTATION The user-friendly online prediction tool, mAHTPred is freely accessible at http://thegleelab.org/mAHTPred. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.,Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Leyi Wei
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.,Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
43
|
Liang P, Yang W, Chen X, Long C, Zheng L, Li H, Zuo Y. Machine Learning of Single-Cell Transcriptome Highly Identifies mRNA Signature by Comparing F-Score Selection with DGE Analysis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:155-163. [PMID: 32169803 PMCID: PMC7066034 DOI: 10.1016/j.omtn.2020.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/27/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Human preimplantation development is a complex process involving dramatic changes in transcriptional architecture. For a better understanding of their time-spatial development, it is indispensable to identify key genes. Although the single-cell RNA sequencing (RNA-seq) techniques could provide detailed clustering signatures, the identification of decisive factors remains difficult. Additionally, it requires high experimental cost and a long experimental period. Thus, it is highly desired to develop computational methods for identifying effective genes of development signature. In this study, we first developed a predictor called EmPredictor to identify developmental stages of human preimplantation embryogenesis. First, we compared the F-score of feature selection algorithms with differential gene expression (DGE) analysis to find specific signatures of the development stage. In addition, by training the support vector machine (SVM), four types of signature subsets were comprehensively discussed. The prediction results showed that a feature subset with 1,881 genes from the F-score algorithm obtained the best predictive performance, which achieved the highest accuracy of 93.3% on the cross-validation set. Further function enrichment demonstrated that the gene set selected by the feature selection method was involved in more development-related pathways and cell fate determination biomarkers. This indicates that the F-score algorithm should be preferentially proposed for detecting key genes of multi-period data in mammalian early development.
Collapse
Affiliation(s)
- Pengfei Liang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wuritu Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xing Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Zheng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hanshuang Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
44
|
Liu B, Gao X, Zhang H. BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res 2020; 47:e127. [PMID: 31504851 PMCID: PMC6847461 DOI: 10.1093/nar/gkz740] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022] Open
Abstract
As the first web server to analyze various biological sequences at sequence level based on machine learning approaches, many powerful predictors in the field of computational biology have been developed with the assistance of the BioSeq-Analysis. However, the BioSeq-Analysis can be only applied to the sequence-level analysis tasks, preventing its applications to the residue-level analysis tasks, and an intelligent tool that is able to automatically generate various predictors for biological sequence analysis at both residue level and sequence level is highly desired. In this regard, we decided to publish an important updated server covering a total of 26 features at the residue level and 90 features at the sequence level called BioSeq-Analysis2.0 (http://bliulab.net/BioSeq-Analysis2.0/), by which the users only need to upload the benchmark dataset, and the BioSeq-Analysis2.0 can generate the predictors for both residue-level analysis and sequence-level analysis tasks. Furthermore, the corresponding stand-alone tool was also provided, which can be downloaded from http://bliulab.net/BioSeq-Analysis2.0/download/. To the best of our knowledge, the BioSeq-Analysis2.0 is the first tool for generating predictors for biological sequence analysis tasks at residue level. Specifically, the experimental results indicated that the predictors developed by BioSeq-Analysis2.0 can achieve comparable or even better performance than the existing state-of-the-art predictors.
Collapse
Affiliation(s)
- Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xin Gao
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Hanyu Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| |
Collapse
|
45
|
Fallah Atanaki F, Behrouzi S, Ariaeenejad S, Boroomand A, Kavousi K. BIPEP: Sequence-based Prediction of Biofilm Inhibitory Peptides Using a Combination of NMR and Physicochemical Descriptors. ACS OMEGA 2020; 5:7290-7297. [PMID: 32280870 PMCID: PMC7144140 DOI: 10.1021/acsomega.9b04119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 05/26/2023]
Abstract
Biofilms are biological systems that are formed by a community of microorganisms in which microbial cells are connected on a surface within a self-produced matrix of an extracellular polymeric substance. On some occasions, microorganisms use biofilms to protect themselves against the harmful effects of the host body immune system and the surrounding environment, hence increasing their chances of survival against the various anti-microbial agents. Biofilms play a crucial role in medicine and industry because of the problems they cause. Designing agents that inhibit bacterial biofilm formation is very costly and takes too much time in the laboratory to be discovered and validated. Therefore, developing computational tools for the prediction of biofilm inhibitor peptides is inevitable and important. Here, we present a computational prediction tool to screen the vast number of peptide sequences and select potential candidate peptides for further lab experiments and validation. In this learning model, different feature vectors, extracted from the peptide primary structure, are exploited to learn patterns from the sequence of biofilm inhibitory peptides. Various classification algorithms including SVM, random forest, and k-nearest neighbor have been examined to evaluate their performance. Overall, our approach showed better prediction in comparison with other prediction methods. In this study, for the first time, we applied features extracted from NMR spectra of amino acids along with physicochemical features. Although each group of features showed good discrimination potential alone, we used a combination of features to enhance the performance of our method. Our prediction tool is freely available.
Collapse
Affiliation(s)
- Fereshteh Fallah Atanaki
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417466191, Iran
| | - Saman Behrouzi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417466191, Iran
| | - Shohreh Ariaeenejad
- Department
of Systems and Synthetic Biology, Agricultural
Biotechnology Research Institute of Iran (ABRII), Agricultural Research,
Education, and Extension Organization (AREEO), Karaj 31535-1897, Iran
| | - Amin Boroomand
- School
of Natural Sciences, University of California
Merced, Merced 95343-5001, California, United States of America
| | - Kaveh Kavousi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417466191, Iran
| |
Collapse
|
46
|
Meng C, Hu Y, Zhang Y, Guo F. PSBP-SVM: A Machine Learning-Based Computational Identifier for Predicting Polystyrene Binding Peptides. Front Bioeng Biotechnol 2020; 8:245. [PMID: 32296690 PMCID: PMC7137786 DOI: 10.3389/fbioe.2020.00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Polystyrene binding peptides (PSBPs) play a key role in the immobilization process. The correct identification of PSBPs is the first step of all related works. In this paper, we proposed a novel support vector machine-based bioinformatic identification model. This model contains four machine learning steps, including feature extraction, feature selection, model training and optimization. In a five-fold cross validation test, this model achieves 90.38, 84.62, 87.50, and 0.90% SN, SP, ACC, and AUC, respectively. The performance of this model outperforms the state-of-the-art identifier in terms of the SN and ACC with a smaller feature set. Furthermore, we constructed a web server that includes the proposed model, which is freely accessible at http://server.malab.cn/PSBP-SVM/index.jsp.
Collapse
Affiliation(s)
- Chaolu Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, China.,College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yang Hu
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
47
|
iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou's 5-Steps Rule and Informative Physicochemical Properties. Int J Mol Sci 2019; 21:ijms21010075. [PMID: 31861928 PMCID: PMC6981611 DOI: 10.3390/ijms21010075] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
Understanding of quorum-sensing peptides (QSPs) in their functional mechanism plays an essential role in finding new opportunities to combat bacterial infections by designing drugs. With the avalanche of the newly available peptide sequences in the post-genomic age, it is highly desirable to develop a computational model for efficient, rapid and high-throughput QSP identification purely based on the peptide sequence information alone. Although, few methods have been developed for predicting QSPs, their prediction accuracy and interpretability still requires further improvements. Thus, in this work, we proposed an accurate sequence-based predictor (called iQSP) and a set of interpretable rules (called IR-QSP) for predicting and analyzing QSPs. In iQSP, we utilized a powerful support vector machine (SVM) cooperating with 18 informative features from physicochemical properties (PCPs). Rigorous independent validation test showed that iQSP achieved maximum accuracy and MCC of 93.00% and 0.86, respectively. Furthermore, a set of interpretable rules IR-QSP was extracted by using random forest model and the 18 informative PCPs. Finally, for the convenience of experimental scientists, the iQSP web server was established and made freely available online. It is anticipated that iQSP will become a useful tool or at least as a complementary existing method for predicting and analyzing QSPs.
Collapse
|
48
|
Zhang M, Li F, Marquez-Lago TT, Leier A, Fan C, Kwoh CK, Chou KC, Song J, Jia C. MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics 2019; 35:2957-2965. [PMID: 30649179 PMCID: PMC6736106 DOI: 10.1093/bioinformatics/btz016] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/09/2018] [Accepted: 01/05/2019] [Indexed: 12/22/2022] Open
Abstract
MOTIVATION Promoters are short DNA consensus sequences that are localized proximal to the transcription start sites of genes, allowing transcription initiation of particular genes. However, the precise prediction of promoters remains a challenging task because individual promoters often differ from the consensus at one or more positions. RESULTS In this study, we present a new multi-layer computational approach, called MULTiPly, for recognizing promoters and their specific types. MULTiPly took into account the sequences themselves, including both local information such as k-tuple nucleotide composition, dinucleotide-based auto covariance and global information of the entire samples based on bi-profile Bayes and k-nearest neighbour feature encodings. Specifically, the F-score feature selection method was applied to identify the best unique type of feature prediction results, in combination with other types of features that were subsequently added to further improve the prediction performance of MULTiPly. Benchmarking experiments on the benchmark dataset and comparisons with five state-of-the-art tools show that MULTiPly can achieve a better prediction performance on 5-fold cross-validation and jackknife tests. Moreover, the superiority of MULTiPly was also validated on a newly constructed independent test dataset. MULTiPly is expected to be used as a useful tool that will facilitate the discovery of both general and specific types of promoters in the post-genomic era. AVAILABILITY AND IMPLEMENTATION The MULTiPly webserver and curated datasets are freely available at http://flagshipnt.erc.monash.edu/MULTiPly/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Meng Zhang
- School of Science, Dalian Maritime University, Dalian, China
| | - Fuyi Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
| | - Tatiana T Marquez-Lago
- Department of Genetics, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cunshuo Fan
- College of Information Engineering, Northwest A&F University, Yangling, China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian, China
- College of Information Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
AtbPpred: A Robust Sequence-Based Prediction of Anti-Tubercular Peptides Using Extremely Randomized Trees. Comput Struct Biotechnol J 2019; 17:972-981. [PMID: 31372196 PMCID: PMC6658830 DOI: 10.1016/j.csbj.2019.06.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis is one of the most dangerous pathogens in humans. It acts as an etiological agent of tuberculosis (TB), infecting almost one-third of the world's population. Owing to the high incidence of multidrug-resistant TB and extensively drug-resistant TB, there is an urgent need for novel and effective alternative therapies. Peptide-based therapy has several advantages, such as diverse mechanisms of action, low immunogenicity, and selective affinity to bacterial cell envelopes. However, the identification of anti-tubercular peptides (AtbPs) via experimentation is laborious and expensive; hence, the development of an efficient computational method is necessary for the prediction of AtbPs prior to both in vitro and in vivo experiments. To this end, we developed a two-layer machine learning (ML)-based predictor called AtbPpred for the identification of AtbPs. In the first layer, we applied a two-step feature selection procedure and identified the optimal feature set individually for nine different feature encodings, whose corresponding models were developed using extremely randomized tree (ERT). In the second-layer, the predicted probability of AtbPs from the above nine models were considered as input features to ERT and developed the final predictor. AtbPpred respectively achieved average accuracies of 88.3% and 87.3% during cross-validation and an independent evaluation, which were ~8.7% and 10.0% higher than the state-of-the-art method. Furthermore, we established a user-friendly webserver which is currently available at http://thegleelab.org/AtbPpred. We anticipate that this predictor could be useful in the high-throughput prediction of AtbPs and also provide mechanistic insights into its functions. We developed a novel computational framework for the identification of anti-tubercular peptides using Extremely randomized tree. AtbPpred displayed superior performance compared to the existing method on both benchmark and independent datasets. We constructed a user-friendly web server that implements the proposed AtbPpred method.
Collapse
|
50
|
Ye M, Wang W, Yao C, Fan R, Wang P. Gene Selection Method for Microarray Data Classification Using Particle Swarm Optimization and Neighborhood Rough Set. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190204150918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Mining knowledge from microarray data is one of the popular research
topics in biomedical informatics. Gene selection is a significant research trend in biomedical data
mining, since the accuracy of tumor identification heavily relies on the genes biologically relevant
to the identified problems.
Objective:
In order to select a small subset of informative genes from numerous genes for tumor
identification, various computational intelligence methods were presented. However, due to the
high data dimensions, small sample size, and the inherent noise available, many computational
methods confront challenges in selecting small gene subset.
Methods:
In our study, we propose a novel algorithm PSONRS_KNN for gene selection based on
the particle swarm optimization (PSO) algorithm along with the neighborhood rough set (NRS) reduction
model and the K-nearest neighborhood (KNN) classifier.
Results:
First, the top-ranked candidate genes are obtained by the GainRatioAttributeEval preselection
algorithm in WEKA. Then, the minimum possible meaningful set of genes is selected by
combining PSO with NRS and KNN classifier.
Conclusion:
Experimental results on five microarray gene expression datasets demonstrate that the
performance of the proposed method is better than existing state-of-the-art methods in terms of
classification accuracy and the number of selected genes.
Collapse
Affiliation(s)
- Mingquan Ye
- School of Medical Information, Wannan Medical College, Wuhu 241002, China
| | - Weiwei Wang
- School of Medical Information, Wannan Medical College, Wuhu 241002, China
| | - Chuanwen Yao
- School of Medical Information, Wannan Medical College, Wuhu 241002, China
| | - Rong Fan
- School of Medical Information, Wannan Medical College, Wuhu 241002, China
| | - Peipei Wang
- School of Medical Information, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|