1
|
Huang YE, Zhou S, Chen S, Chen J, Zhou X, Hou F, Liu H, Yuan M, Jiang W. Mutational signature-based biomarker to predict the response of immune checkpoint inhibitors therapy in cancers. Int J Biol Macromol 2025; 308:142585. [PMID: 40154701 DOI: 10.1016/j.ijbiomac.2025.142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Patients have a limited response rate to immune checkpoint inhibitors (ICIs) therapy. Although several biomarkers have been proposed, their ability to accurately predict the response to ICIs therapy remains unsatisfactory. In addition, mutational signatures were validated to be associated with ICIs therapy. Therefore, we developed a mutational signature-based biomarker (MS-bio) to predict the response to ICIs therapy. Based on differentially mutated genes, we extracted six mutational signatures (single-base substitution (SBS)-A, SBS-B, SBS-C, SBS-D, double-base substitution (DBS)-A, and DBS-B) as MS-bio, and constructed a random forest (RF) model to predict the response. Internal and external validations consistently demonstrated the excellent predictive capability of MS-bio, with an accuracy reaching up to 0.82. Moreover, MS-bio exhibited superior performance compared to existing biomarkers. To further validate the accuracy of MS-bio, we explored its performance in The Cancer Genome Atlas (TCGA) cohort and found that the predicted responders were immunologically "hot". Finally, we found that SBS-C had the highest importance in prediction and was related to T cell differentiation. Overall, here we introduced MS-bio as a novel biomarker for accurately predicting the response to ICIs therapy, thereby contributing to the advancement of precision medicine.
Collapse
Affiliation(s)
- Yu-E Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- School of Computer Sciences, University of South China, Hengyang 421001, China
| | - Sina Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiahao Chen
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
2
|
Samur MK, Aktas Samur A, Shah P, Park JS, Fulciniti M, Shammas M, Corre J, Anderson KC, Parmigiani G, Avet-Loiseau H, Munshi NC. Development of hyperdiploidy starts at an early age and takes a decade to complete. Blood 2025; 145:520-525. [PMID: 39571146 DOI: 10.1182/blood.2024025250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/15/2024] [Indexed: 01/31/2025] Open
Abstract
ABSTRACT Nearly half of patients with multiple myeloma (MM) have hyperdiploidy (HMM) at diagnosis. Although HMM occurs early, the mutational processes before and after hyperdiploidy are still unclear. Here, we used 72 whole-genome sequencing samples from patients with HMM and identified pre- and post-HMM mutations to define the chronology of the development of hyperdiploidy. An MM cell accumulated a median of 0.56 mutations per megabase before HMM, and for every clonal pre-HMM mutation, 1.21 mutations per megabase accumulated after HMM. This analysis using mutations before and after hyperdiploidy shows that hyperdiploidy happens after somatic hypermutation. Prehyperdiploidy mutations are activation-induced cytidine deaminase and age/clock-like signature driven, whereas posthyperdiploidy mutations are from DNA damage and APOBEC. Interestingly, the first hyperdiploidy event occurred within the first 3 decades of life and took a decade to complete. Copy number changes affecting chromosomes 15 and 19 occurred first. Finally, mutations before initiating event affected chromosomes at different rates, whereas post-initiating event mutational processes affect each chromosome equally.
Collapse
Affiliation(s)
- Mehmet K Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Anil Aktas Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Parth Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Department of Hematology, Dartmouth Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Joseph S Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Masood Shammas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jill Corre
- Unité de Genomique du Myélome, University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Giovanni Parmigiani
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Hervé Avet-Loiseau
- Unité de Genomique du Myélome, University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Veterans Affairs Boston Healthcare System, Boston, MA
| |
Collapse
|
3
|
Zhang Q, Xu X, Jiang D, Wang Y, Wang H, Zhu J, Tang S, Wang R, Zhao S, Li K, Feng J, Xiang H, Yao Z, Xu N, Fang R, Guo W, Liu Y, Hou Y, Ding C. Integrated proteogenomic characterization of ampullary adenocarcinoma. Cell Discov 2025; 11:2. [PMID: 39762212 PMCID: PMC11704194 DOI: 10.1038/s41421-024-00742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss causes fatty acid accumulation and cell proliferation. Proteomic analysis has revealed three distinct clusters (C-FAM, C-AD, C-CC), among which the most aggressive cluster, C-AD, is associated with the poorest prognosis and is characterized by focal adhesion. Immune clustering identifies three immune clusters and reveals that immune cluster M1 (macrophage infiltration cluster) and M3 (DC cell infiltration cluster), which exhibit a higher immune score compared to cluster M2 (CD4+ T-cell infiltration cluster), are associated with a poor prognosis due to the potential secretion of IL-6 by tumor cells and its consequential influence. This study provides a comprehensive proteogenomic analysis for seeking for better understanding and potential treatment of AMPAC.
Collapse
Affiliation(s)
- Qiao Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xiaomeng Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Shaoshuai Tang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Li
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Hang Xiang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zhenmei Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Rundong Fang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Wenjia Guo
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, Xinjiang, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, Xinjiang, China.
| |
Collapse
|
4
|
Qiu MZ, Bai Y, Wang J, Gu K, Yang M, He Y, Yi C, Jin Y, Liu B, Wang F, Chen YK, Dai W, Jiang Y, Huang C, Xu RH, Luo HY. Addition of SHR-1701 to first-line capecitabine and oxaliplatin (XELOX) plus bevacizumab for unresectable metastatic colorectal cancer. Signal Transduct Target Ther 2024; 9:349. [PMID: 39676137 DOI: 10.1038/s41392-024-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
This phase 2/3 trial (NCT04856787) assessed the efficacy and safety of SHR-1701, a bifunctional protein targeting PD-L1 and TGF-β, in combination with BP102 (a bevacizumab biosimilar) and XELOX (capecitabine plus oxaliplatin) as a first-line treatment for unresectable metastatic colorectal cancer (mCRC). In this phase 2 study, a total of 62 patients with untreated, histologically confirmed colorectal adenocarcinoma and no prior systemic therapy for metastatic disease were enrolled. Patients received SHR-1701 (30 mg/kg), bevacizumab (7.5 mg/kg), and oxaliplatin (130 mg/m2) intravenously on day 1, along with oral capecitabine (1 g/m2 twice daily) on days 1-14 of 21-day cycles. Up to eight induction cycles were administered, followed by maintenance therapy for responders or those with stable disease. The primary endpoints were safety and objective response rate (ORR) per RECIST v1.1. The combination achieved an ORR of 59.7% and a disease control rate (DCR) of 83.9%. Median progression-free survival (PFS) was 10.3 months (95% CI: 8.3-13.7), with 6- and 12-month PFS rates of 77.2% and 41.3%, respectively. The estimated 12-month overall survival (OS) rate was 67.7%. Grade ≥3 treatment-related adverse events (TRAEs) were reported in 59.7% of patients, with anemia and neutropenia (8.1% each) being the most common. Retrospective DNA sequencing revealed that high tumor mutational burden, neo-antigens, and SBS15 enrichment correlated with better responses. Elevated baseline lactate dehydrogenase was linked to shorter PFS. SHR-1701 combined with XELOX and bevacizumab demonstrated a manageable safety profile and potent antitumor activity in unresectable mCRC.
Collapse
Affiliation(s)
- Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, PR China.
| | - Yuxian Bai
- Department of Gastroenterology 1, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Jufeng Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, PR China
| | - Kangsheng Gu
- Oncology Ward 1, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Mudan Yang
- Gastroenterology Ward (2), Shanxi Provincial Cancer Hospital, Taiyuan, PR China
| | - Yifu He
- Medical Oncology Ward 1, Anhui Provincial Cancer Hospital, Hefei, PR China
| | - Cheng Yi
- Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Yongdong Jin
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, Chengdu, PR China
| | - Bo Liu
- Gastroenterology Ward 3, Cancer Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Feng Wang
- Oncology Department 1, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yu-Kun Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, PR China
| | - Wei Dai
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, PR China
| | - Yingyi Jiang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, PR China
| | - Chuanpei Huang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, PR China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, PR China.
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, PR China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, PR China.
| |
Collapse
|
5
|
Xu G, Yu J, Lyu J, Zhan M, Xu J, Huang M, Zhao R, Li Y, Zhu J, Feng J, Tan S, Ran P, Su Z, Liu X, Zhao J, Zhang H, Xu C, Chang J, Hou Y, Ding C. Proteogenomic Landscape of Breast Ductal Carcinoma Reveals Tumor Progression Characteristics and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401041. [PMID: 39418072 PMCID: PMC11633542 DOI: 10.1002/advs.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Multi-omics studies of breast ductal carcinoma (BRDC) have advanced the understanding of the disease's biology and accelerated targeted therapies. However, the temporal order of a series of biological events in the progression of BRDC is still poorly understood. A comprehensive proteogenomic analysis of 224 samples from 168 patients with malignant and benign breast diseases is carried out. Proteogenomic analysis reveals the characteristics of linear multi-step progression of BRDC, such as tumor protein P53 (TP53) mutation-associated estrogen receptor 1 (ESR1) overexpression is involved in the transition from ductal hyperplasia (DH) to ductal carcinoma in situ (DCIS). 6q21 amplification-associated nuclear receptor subfamily 3 group C member 1 (NR3C1) overexpression helps DCIS_Pure (pure DCIS, no histologic evidence of invasion) cells avoid immune destruction. The T-cell lymphoma invasion and metastasis 1, androgen receptor, and aldo-keto reductase family 1 member C1 (TIAM1-AR-AKR1C1) axis promotes cell invasion and migration in DCIS_adjIDC (DCIS regions of invasive cancers). In addition, AKR1C1 is identified as a potential therapeutic target and demonstrated the inhibitory effect of aspirin and dydrogesterone as its inhibitors on tumor cells. The integrative multi-omics analysis helps to understand the progression of BRDC and provides an opportunity to treat BRDC in different stages.
Collapse
Affiliation(s)
- Ganfei Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Juan Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jiacheng Lyu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Mengna Zhan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jie Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Minjing Huang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular MedicineMOE‐Shanghai Key Laboratory of Children's Environmental HealthXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Yan Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jiajun Zhu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jinwen Feng
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Subei Tan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Peng Ran
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Zhenghua Su
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Xinhua Liu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular MedicineMOE‐Shanghai Key Laboratory of Children's Environmental HealthXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Hongwei Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Chen Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jun Chang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Yingyong Hou
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
- Departments of Cancer Research InstituteAffiliated Cancer Hospital of Xinjiang Medical UniversityXinjiang Key Laboratory of Translational Biomedical EngineeringUrumqi830000P. R. China
| |
Collapse
|
6
|
Peirone S, Tirtei E, Campello A, Parlato C, Guarrera S, Mareschi K, Marini E, Asaftei SD, Bertero L, Papotti M, Priante F, Perrone S, Cereda M, Fagioli F. Impaired neutrophil-mediated cell death drives Ewing's Sarcoma in the background of Down syndrome. Front Oncol 2024; 14:1429833. [PMID: 39421445 PMCID: PMC11484044 DOI: 10.3389/fonc.2024.1429833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Ewing Sarcoma (EWS) has been reported in seven children with Down syndrome (DS). To date, a detailed assessment of this solid tumour in DS patients is yet to be made. Methods Here, we characterise a chemo-resistant mediastinal EWS in a 2-year-old DS child, the youngest ever reported case, by exploiting sequencing approaches. Results The tumour showed a neuroectodermal development driven by the EWSR1-FLI1 fusion. The inherited myeloperoxidase deficiency of the patient caused failure of neutrophil-mediated cell death and promoted genomic instability. Discussion In this context, the tumour underwent genome-wide near haploidisation resulting in a massive overexpression of pro-inflammatory cytokines. Recruitment of defective neutrophils fostered rapid evolution of this EWS.
Collapse
Affiliation(s)
- Serena Peirone
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Elisa Tirtei
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Anna Campello
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
| | - Caterina Parlato
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Katia Mareschi
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Elena Marini
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | | | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, Turin, Italy
| | - Francesca Priante
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Sarah Perrone
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Matteo Cereda
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
| | - Franca Fagioli
- Paediatric Oncology Department, Regina Margherita Children’s Hospital, Turin, Italy
- Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Cannataro VL, Glasmacher KA, Hampson CE. Mutations, substitutions, and selection: Linking mutagenic processes to cancer using evolutionary theory. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167268. [PMID: 38823460 DOI: 10.1016/j.bbadis.2024.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/25/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Cancers are the product of evolutionary events, where molecular variation occurs and accumulates in tissues and tumors. Sequencing of this molecular variation informs not only which variants are driving tumorigenesis, but also the mechanisms behind what is fueling mutagenesis. Both of these details are crucial for preventing premature deaths due to cancer, whether it is by targeting the variants driving the cancer phenotype or by measures to prevent exogenous mutations from contributing to somatic evolution. Here, we review tools to determine both molecular signatures and cancer drivers, and avenues by which these metrics may be linked.
Collapse
Affiliation(s)
| | - Kira A Glasmacher
- Emmanuel College, 400 Fenway, Boston, MA 02115, United States of America
| | - Caralynn E Hampson
- Emmanuel College, 400 Fenway, Boston, MA 02115, United States of America
| |
Collapse
|
8
|
Jensen JM, Sjöstedt SMS, Carmona JL, Ahlborn LB, Vieira FG, Nielsen FC, Kiss K, Grønhøj C, von Buchwald C. Genomic alterations in the stepwise progression from normal mucosa to metastasizing oral squamous cell carcinoma. Front Oncol 2024; 14:1450361. [PMID: 39324009 PMCID: PMC11422351 DOI: 10.3389/fonc.2024.1450361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction The aim of this study was to investigate the genomic changes that occur in the development from dysplasia, cancer and to regional metastases in patients with oral cavity squamous cell carcinoma (OSCC). Material and methods We included OSCC patients with lymph node metastases at diagnosis, treated with primary surgery at Rigshospitalet, University of Copenhagen in the period 2007-2014. The resected tumor specimens were evaluated by a pathologist, who marked areas of morphologically normal tissue and dysplasia surrounding the cancer, two areas from the cancer tissue, and one area within the lymph node metastases. From these areas a punch biopsy was taken, and DNA from each sample was extracted and sequenced using Illumina's TSO500 HT cancer panel. Results From 51 OSCC patients, 255 samples were included, comprising a wide variety of genomic alterations. Substantial intratumor heterogeneity was found. The most commonly mutated gene was TP53, mutated in 65% of all samples. Only two patients had no TP53 mutation in any samples. We found that morphologically normal appearing mucosa as well as surrounding dysplasia also contained malignant mutations, supporting the theory of field cancerization. There was a significant lower average tumor mutational burden (TMB) in the lymph node metastases compared to the primary tumors, supporting the theory of clonal selection. Conclusion Substantial inter- and intratumor genomic heterogeneity was found. Mutation of TP53 was the most common and was present in all but two patients. Our data strongly supports the theory of clonal selection and the theory of field cancerization.
Collapse
Affiliation(s)
- Jakob Myllerup Jensen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sannia Mia Svenningsen Sjöstedt
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department Clinical Physiology and Nuclear Medicine, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| | - Javiera Laing Carmona
- Department of Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Department of Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Filipe Garrett Vieira
- Department of Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Department of Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Liang Y, Xie Y, Yu H, Zhu W, Yin C, Dong Z, Zhang X. Whole-Exome Sequencing and Experimental Validation Unveil the Roles of TMEM229A Q200del Mutation in Lung Adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70006. [PMID: 39188060 PMCID: PMC11347615 DOI: 10.1111/crj.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is one of the major histopathological types of non-small cell lung cancer (NSCLC), including solid, acinar, lepidic, papillary and micropapillary subtypes. Increasing evidence has shown that micropapillary LUAD is positively associated with a higher percentage of driver gene mutations, a higher incidence of metastasis and a poorer prognosis, while lepidic LUAD has a relatively better prognosis. However, the novel genetic change and its underlying mechanism in the progression of micropapillary LUAD have not been exactly determined. METHODS A total of 181 patients with LUAD who underwent surgery at the First Affiliated Hospital of Huzhou University from January 2020 to December 2022 were enrolled. Three predominant lepidic and three predominant micropapillary LUAD tissue samples were carried out using whole-exome sequencing. Comprehensive analysis of genomic variations and the difference between lepidic and micropapillary LUAD was performed. In addition, the TMEM229A Q200del mutation was verified using our cohort and TCGA-LUAD datasets. The correlations between the TMEM229A Q200del mutation and the clinicopathological characteristics of patients with LUAD were further analyzed. The functions and mechanisms of TMEM229A Q200del on NSCLC cell proliferation and migration were also determined. RESULTS The frequency of genomic changes in patients with micropapillary LUAD was higher than that in patients with lepidic LUAD. Mutations in EGFR, ATXN2, C14orf180, MUC12, NOTCH1, and PKD1L2 were concomitantly detected in three predominant micropapillary and three predominant lepidic LUAD cases. The TMEM229A Q200del mutation was only mutated in lepidic LUAD. Additionally, the TMEM229A Q200del mutation had occurred in 16 (8.8%) patients, and not found TMEM229A R76H and M346T mutations in our cohort, while TMEM229A mutations (R76H, M346T, and Q200del) occurred only in 1.0% of the TCGA-LUAD cohort. Further correlation analysis between the TMEM229A Q200del mutation and clinicopathological characteristics suggested that a lower frequency of the Q200del mutation was significantly associated with positive lymph node metastasis, advanced TNM stage, positive cancer thrombus, and pathological features. Finally, overexpression of TMEM229A Q200del suppressed NSCLC cell proliferation and migration in vitro. Mechanistically, overexpression of TMEM229A and TMEM229A Q200del both reduced the expression level of phosphorylated (p)-ERK and p-AKT (Ser473), and the reduced protein level of p-ERK in the TMEM229A Q200del group was more pronounced compared to the TMEM229A group. CONCLUSION Our results demonstrated that the TMEM229A Q200del mutant may play a protective role in the progression of LUAD via inactivating ERK pathway, providing a potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Yi‐Xian Liang
- Department of Cardiothoracic SurgeryFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Yan‐Ping Xie
- Department of Respiratory MedicineFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Huan‐Ming Yu
- Department of Cardiothoracic SurgeryFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Wen‐Juan Zhu
- Department of PathologyThe First People's Hospital of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Cheng‐Yi Yin
- Department of Cardiothoracic SurgeryFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Zhao‐Hui Dong
- Department of Respiratory MedicineFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Xi‐Lin Zhang
- Central Laboratory, Huzhou Key Laboratory of Translational MedicineFirst Affiliated Hospital of Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| |
Collapse
|
10
|
Moorthi S, Paguirigan A, Itagi P, Ko M, Pettinger M, Hoge AC, Nag A, Patel NA, Wu F, Sather C, Levine KM, Fitzgibbon MP, Thorner AR, Anderson GL, Ha G, Berger AH. The genomic landscape of lung cancer in never-smokers from the Women's Health Initiative. JCI Insight 2024; 9:e174643. [PMID: 39052387 PMCID: PMC11385083 DOI: 10.1172/jci.insight.174643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Over 200,000 individuals are diagnosed with lung cancer in the United States every year, with a growing proportion of cases, especially lung adenocarcinoma, occurring in individuals who have never smoked. Women over the age of 50 comprise the largest affected demographic. To understand the genomic drivers of lung adenocarcinoma and therapeutic response in this population, we performed whole genome and/or whole exome sequencing on 73 matched lung tumor/normal pairs from postmenopausal women who participated in the Women's Health Initiative. Somatic copy number alterations showed little variation by smoking status, suggesting that aneuploidy may be a general characteristic of lung cancer regardless of smoke exposure. Similarly, clock-like and APOBEC mutation signatures were prevalent but did not differ in tumors from smokers and never-smokers. However, mutations in both EGFR and KRAS showed unique allelic differences determined by smoking status that are known to alter tumor response to targeted therapy. Mutations in the MYC-network member MGA were more prevalent in tumors from smokers. Fusion events in ALK, RET, and ROS1 were absent, likely due to age-related differences in fusion prevalence. Our work underscores the profound effect of smoking status, age, and sex on the tumor mutational landscape and identifies areas of unmet medical need.
Collapse
Affiliation(s)
| | | | - Pushpa Itagi
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Minjeong Ko
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mary Pettinger
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anna Ch Hoge
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anwesha Nag
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Neil A Patel
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Cassie Sather
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kevin M Levine
- Human Biology Division
- Division of Hematology and Oncology, Department of Medicine and
| | - Matthew P Fitzgibbon
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Aaron R Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Garnet L Anderson
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Gavin Ha
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Alice H Berger
- Human Biology Division
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Xiang H, Luo R, Wang Y, Yang B, Xu S, Huang W, Tang S, Fang R, Chen L, Zhu N, Yu Z, Akesu S, Wei C, Xu C, Zhou Y, Gu J, Zhao J, Hou Y, Ding C. Proteogenomic insights into the biology and treatment of pan-melanoma. Cell Discov 2024; 10:78. [PMID: 39039072 PMCID: PMC11263678 DOI: 10.1038/s41421-024-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/03/2024] [Indexed: 07/24/2024] Open
Abstract
Melanoma is one of the most prevalent skin cancers, with high metastatic rates and poor prognosis. Understanding its molecular pathogenesis is crucial for improving its diagnosis and treatment. Integrated analysis of multi-omics data from 207 treatment-naïve melanomas (primary-cutaneous-melanomas (CM, n = 28), primary-acral-melanomas (AM, n = 81), primary-mucosal-melanomas (MM, n = 28), metastatic-melanomas (n = 27), and nevi (n = 43)) provides insights into melanoma biology. Multivariate analysis reveals that PRKDC amplification is a prognostic molecule for melanomas. Further proteogenomic analysis combined with functional experiments reveals that the cis-effect of PRKDC amplification may lead to tumor proliferation through the activation of DNA repair and folate metabolism pathways. Proteome-based stratification of primary melanomas defines three prognosis-related subtypes, namely, the ECM subtype, angiogenesis subtype (with a high metastasis rate), and cell proliferation subtype, which provides an essential framework for the utilization of specific targeted therapies for particular melanoma subtypes. The immune classification identifies three immune subtypes. Further analysis combined with an independent anti-PD-1 treatment cohort reveals that upregulation of the MAPK7-NFKB signaling pathway may facilitate T-cell recruitment and increase the sensitivity of patients to immunotherapy. In contrast, PRKDC may reduce the sensitivity of melanoma patients to immunotherapy by promoting DNA repair in melanoma cells. These results emphasize the clinical value of multi-omics data and have the potential to improve the understanding of melanoma treatment.
Collapse
Affiliation(s)
- Hang Xiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Wen Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaoshuai Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rundong Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Na Zhu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sujie Akesu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Shanghai, China.
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Ji Q, Zheng Y, Zhou L, Chen F, Li W. Unveiling divergent treatment prognoses in IDHwt-GBM subtypes through multiomics clustering: a swift dual MRI-mRNA model for precise subtype prediction. J Transl Med 2024; 22:578. [PMID: 38890658 PMCID: PMC11186189 DOI: 10.1186/s12967-024-05401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND IDH1-wildtype glioblastoma multiforme (IDHwt-GBM) is a highly heterogeneous and aggressive brain tumour characterised by a dismal prognosis and significant challenges in accurately predicting patient outcomes. To address these issues and personalise treatment approaches, we aimed to develop and validate robust multiomics molecular subtypes of IDHwt-GBM. Through this, we sought to uncover the distinct molecular signatures underlying these subtypes, paving the way for improved diagnosis and targeted therapy for this challenging disease. METHODS To identify stable molecular subtypes among 184 IDHwt-GBM patients from TCGA, we used the consensus clustering method to consolidate the results from ten advanced multiomics clustering approaches based on mRNA, lncRNA, and mutation data. We developed subtype prediction models using the PAM and machine learning algorithms based on mRNA and MRI data for enhanced clinical utility. These models were validated in five independent datasets, and an online interactive system was created. We conducted a comprehensive assessment of the clinical impact, drug treatment response, and molecular associations of the IDHwt-GBM subtypes. RESULTS In the TCGA cohort, two molecular subtypes, class 1 and class 2, were identified through multiomics clustering of IDHwt-GBM patients. There was a significant difference in survival between Class 1 and Class 2 patients, with a hazard ratio (HR) of 1.68 [1.15-2.47]. This difference was validated in other datasets (CGGA: HR = 1.75[1.04, 2.94]; CPTAC: HR = 1.79[1.09-2.91]; GALSS: HR = 1.66[1.09-2.54]; UCSF: HR = 1.33[1.00-1.77]; UPENN HR = 1.29[1.04-1.58]). Additionally, class 2 was more sensitive to treatment with radiotherapy combined with temozolomide, and this sensitivity was validated in the GLASS cohort. Correspondingly, class 2 and class 1 exhibited significant differences in mutation patterns, enriched pathways, programmed cell death (PCD), and the tumour immune microenvironment. Class 2 had more mutation signatures associated with defective DNA mismatch repair (P = 0.0021). Enriched pathways of differentially expressed genes in class 1 and class 2 (P-adjust < 0.05) were mainly related to ferroptosis, the PD-1 checkpoint pathway, the JAK-STAT signalling pathway, and other programmed cell death and immune-related pathways. The different cell death modes and immune microenvironments were validated across multiple datasets. Finally, our developed survival prediction model, which integrates molecular subtypes, age, and sex, demonstrated clinical benefits based on the decision curve in the test set. We deployed the molecular subtyping prediction model and survival prediction model online, allowing interactive use and facilitating user convenience. CONCLUSIONS Molecular subtypes were identified and verified through multiomics clustering in IDHwt-GBM patients. These subtypes are linked to specific mutation patterns, the immune microenvironment, prognoses, and treatment responses.
Collapse
Affiliation(s)
- Qiang Ji
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, China
| | - Yi Zheng
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lili Zhou
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Zhu Z, Dong S, Qin S, Gu K, Zhou Y. ANOS1 accelerates the progression of esophageal cancer identified by multi-omic approaches. Am J Cancer Res 2024; 14:2343-2370. [PMID: 38859828 PMCID: PMC11162658 DOI: 10.62347/spcp3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
To assess the role of ANOS1 in esophageal cancer (ESCA) progression, multi-omic analysis and experimental validation were employed. It was revealed that ANOS1 expression is significantly enhanced in ESCA patients and cell lines. The expression level of ANOS1 in ESCA patients can distinguish the malignancy from normal tissue with an area under curve (AUC) >0.75. Moreover, increased expression of ANOS1 is associated with advanced T stage and worse disease-free survival of ESCA patients. Therefore, a clinically applicable nomogram with ANOS1 was established with strong predictive power. Furthermore, high expression of ANOS1 in ESCA is correlated with (i) the enrichment of epithelial-mesenchymal transition by gene set enrichment analysis, (ii) the involvement in hypoxia, angiogenesis, WNT signaling pathway, and TGFβ signaling pathway by gene set variation analysis, (iii) the presence of the small insertion and deletion mutational signature ID9, associated with chromothripsis, in the single-nucleotide polymorphism analysis, (iv) the amplification of 11q13.3 in the copy number variants analysis, (v) the enrichment of cancer-associated fibroblasts and mesenchymal stromal cells in the tumor microenvironment. All the results from multi-omic analysis indicate that ANOS1 plays a pivotal role in accelerating the progression of ESCA. Results from in vivo and in vitro experiments show that the knockdown of ANOS1 hampers the proliferation of ESCA cells, further validating the oncogenic role of ANOS1 in ESCA. Additionally, potential chemotherapeutics with sensitivity were identified in the high-ANOS1 group. In conclusion, ANOS1 accelerates the progression of ESCA.
Collapse
Affiliation(s)
- Zuoquan Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Shikun Dong
- Department of Otorhinolaryngology, Zhongda Hospital, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Shaolei Qin
- Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| | - Yanjun Zhou
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan UniversityWuxi 214000, Jiangsu, China
| |
Collapse
|
14
|
Sun Y, Qin S, Wang S, Pang J, Ou Q, Liang W, Zhong H. Comprehensive genomic profiling of pulmonary spindle cell carcinoma using tissue and plasma samples: insights from a real-world cohort analysis. J Pathol Clin Res 2024; 10:e12375. [PMID: 38661052 PMCID: PMC11044156 DOI: 10.1002/2056-4538.12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pulmonary spindle cell carcinoma (PSCC) is a rare and aggressive non-small cell lung cancer (NSCLC) subtype with a dismal prognosis. The molecular characteristics of PSCC are largely unknown due to its rarity, which limits the diagnosis and treatment of this historically poorly characterized malignancy. We present comprehensive genomic profiling results of baseline tumor samples from 22 patients histologically diagnosed with PSCC, representing the largest cohort to date. Somatic genetic variant detection was compared between paired plasma samples and primary tumors from 13 patients within our cohort. The associations among genomic features, treatment, and prognosis were also analyzed in representative patient cases. TP53 (54.5%), TERT (36.4%), CDKN2A (27.3%), and MET (22.7%) were most frequently mutated. Notably, 81.8% of patients had actionable targets in their baseline tumors, including MET (22.7%), ERBB2 (13.6%), EGFR (9.1%), KRAS (9.1%), ALK (9.1%), and ROS1 (4.5%). The median tumor mutation burden (TMB) for PSCC tumors was 5.5 mutations per megabase (muts/Mb). TMB-high tumors (>10 muts/Mb) exhibited a significantly higher mutation frequency in genes such as KRAS, ARID2, FOXL2, and LRP1B, as well as within the DNA mismatch repair pathway. The detection rates for single nucleotide variants and structural variants were comparable between matched tumor and plasma samples, with 48.6% of genetic variants being mutually identified in both sample types. Additionally, a patient with a high mutation load and positive PD-L1 expression demonstrated a 7-month survival benefit from chemoimmunotherapy. Furthermore, a patient with an ALK-rearranged tumor achieved a remarkable 3-year progression-free survival following crizotinib treatment. Overall, our findings deepen the understanding of the complex genomic landscape of PSCC, revealing actionable targets amenable to tailored treatment of this poorly characterized malignancy.
Collapse
Affiliation(s)
- Yi Sun
- Department of PathologyThe Second Xiangya Hospital of Central South UniversityChangshaPR China
| | - Shilei Qin
- Department of Thoracic SurgeryAffiliated Hospital of Guilin Medical UniversityGuilinPR China
| | - Song Wang
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingPR China
| | - Jiaohui Pang
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingPR China
| | - Qiuxiang Ou
- Geneseeq Research InstituteNanjing Geneseeq Technology Inc.NanjingPR China
| | - Weiquan Liang
- Department of Respiratory and Critical Care MedicineThe Second People's Hospital of FoshanFoshanPR China
| | - Hai Zhong
- Department of Thoracic Surgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouPR China
| |
Collapse
|
15
|
Li Q, Jiang M, Hong S, Yang J, Wu X, Pang J, Chen Y, Zhao X, Ding X. Comprehensive genomic and clinical analyses identify APOBEC mutational signatures as a brain metastasis risk factor in lung adenocarcinoma patients. Transl Oncol 2024; 43:101921. [PMID: 38402722 PMCID: PMC10904272 DOI: 10.1016/j.tranon.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma is the most common source of brain metastasis (BM), resulting in significant morbidity and mortality. We aimed to identify patients with high BM risk who possibly benefit from brain-penetrant drugs, prophylactic cranial irradiation, or close brain magnetic resonance imaging surveillance. METHODS Metastatic lung adenocarcinoma patients with extracranial tumor samples profiled by a next-generation sequencing panel targeting 425 tumor-related genes were retrospectively enrolled between February 2008 and July 2021. We compared BM and non-BM patients' genomic and clinical features and studied their associations with BM risk. Two external cohorts were used for result validation and molecular mechanisms investigation, respectively. RESULTS We included 174 eligible patients, including 90 having developed BM by the end of follow-up. Age≤60, EGFR activating mutations, and high-level apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) mutational signatures were associated with elevated BM risk. Similar findings in BM-free survival were obtained by fitting Fine-Gray subdistribution hazard models addressing competing risks. Increased BM risk related to APOBEC mutational signatures was validated in an external cohort (N = 440). RNA sequencing data analyses performed in another external cohort (N = 230) revealed that expressions of metastasis-related pathways such as transforming growth factor (TGF)β and epithelial-mesenchymal transition (EMT) were upregulated in the patients with high-level APOBEC mutational signatures. CONCLUSION APOBEC mutational signatures related to upregulated TGFβ and EMT, could serve as an independent risk factor for BM and BM-free survival in metastatic lung adenocarcinoma patients. Further investigations are warranted to tailor personalized treatments to improve the susceptible patient's outcomes.
Collapse
Affiliation(s)
- Qiang Li
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China; Cancer Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Meng Jiang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China; Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Shiqiang Hong
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China; Cancer Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Jing Yang
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China; Cancer Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Xiaoying Wu
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, China
| | - Jiaohui Pang
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, China
| | - Yedan Chen
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, China
| | - Xiaotian Zhao
- Nanjing Geneseeq Technology Inc., Nanjing, 210032, China
| | - Xiao Ding
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China; Cancer Center, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
| |
Collapse
|
16
|
Kong LR, Gupta K, Wu AJ, Perera D, Ivanyi-Nagy R, Ahmed SM, Tan TZ, Tan SLW, Fuddin A, Sundaramoorthy E, Goh GS, Wong RTX, Costa ASH, Oddy C, Wong H, Patro CPK, Kho YS, Huang XZ, Choo J, Shehata M, Lee SC, Goh BC, Frezza C, Pitt JJ, Venkitaraman AR. A glycolytic metabolite bypasses "two-hit" tumor suppression by BRCA2. Cell 2024; 187:2269-2287.e16. [PMID: 38608703 DOI: 10.1016/j.cell.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore
| | - Komal Gupta
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Andy Jialun Wu
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - David Perera
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | | | - Syed Moiz Ahmed
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Shawn Lu-Wen Tan
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore
| | | | | | | | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Callum Oddy
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Hannan Wong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - C Pawan K Patro
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Yun Suen Kho
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Joan Choo
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mona Shehata
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; University of Cologne, 50923 Köln, Germany
| | - Jason J Pitt
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Genome Institute of Singapore, A(∗)STAR, Singapore 138673, Singapore
| | - Ashok R Venkitaraman
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
17
|
Krull JE, Wenzl K, Hopper MA, Manske MK, Sarangi V, Maurer MJ, Larson MC, Mondello P, Yang Z, Novak JP, Serres M, Whitaker KR, Villasboas Bisneto JC, Habermann TM, Witzig TE, Link BK, Rimsza LM, King RL, Ansell SM, Cerhan JR, Novak AJ. Follicular lymphoma B cells exhibit heterogeneous transcriptional states with associated somatic alterations and tumor microenvironments. Cell Rep Med 2024; 5:101443. [PMID: 38428430 PMCID: PMC10983045 DOI: 10.1016/j.xcrm.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/14/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.
Collapse
Affiliation(s)
| | - Kerstin Wenzl
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - ZhiZhang Yang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Brian K Link
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Pei X, Yan X, Ding C. Proteogenomic Workflow for Characterization of Microphthalmia Transcription Factor (MiT) Family Translocation Renal Cell Carcinoma. Methods Mol Biol 2024; 2823:109-127. [PMID: 39052217 DOI: 10.1007/978-1-0716-3922-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare, aggressive, and heterogeneous subtype of kidney cancer, which is not well characterized. Since genetic alterations are always associated with carcinogenesis, and proteins are the major executors of biological features, multi-omics studies can reveal the systematic tRCC biological process comprehensively. Here, we describe the proteogenomic workflow for characterization of tRCC in detail to provide the knowledge foundation for integrated proteogenomic analysis of tRCC and other malignant tumors in the future.
Collapse
Affiliation(s)
- Xiaoru Pei
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute , Fudan University, Shanghai, China
| | - Xin Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan center for outstanding overseas scientists of pulmonary fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute , Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Wang L, Diao M, Zhang Z, Jiang M, Chen S, Zhao D, Liu Z, Zhou C. Comparison of the somatic genomic landscape between central- and peripheral-type non-small cell lung cancer. Lung Cancer 2024; 187:107439. [PMID: 38113653 DOI: 10.1016/j.lungcan.2023.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Lung cancer is classified into central and peripheral types based on the anatomic location. The present study aimed to explore the distinct patterns of genomic alterations between central- and peripheral-type non-small cell lung cancers (NSCLCs) with negative driver genes and identify potential driver genes and biomarkers to improve therapy strategies for NSCLC. METHODS Whole-exome sequencing (WES) was performed with 182 tumor/control pairs of samples from 145 Chinese NSCLC patients without EGFR, ALK, or ROS1 alterations. Significantly mutated genes (SMGs) and somatic copy number alterations (SCNAs) were identified. Subsequently, tumor mutation burden (TMB), weighted genome integrity index (wGII), copy number alteration (CNA) burden, Shannon diversity index (SDI), intratumor heterogeneity (ITH), neoantigen load (NAL), and clonal variations were evaluated in central- and peripheral-type NSCLCs. Furthermore, mutational signature analysis and survival analysis were performed. RESULTS TP53 was the most frequently mutated gene in NSCLC and more frequently mutated in central-type NSCLC. Higher wGII, ITH, and SDI were found in central-type lung adenocarcinoma (LUAD) than in peripheral-type LUAD. The NAL of central-type lung squamous cell carcinoma (LUSC) with stage III/IV was significantly higher than that of peripheral-type LUSC. Mutational signature analysis revealed that SBS10b, SBS24, and ID7 were significantly different in central- and peripheral-type NSCLCs. Furthermore, central-type NSCLC was found to evolve at a higher level with fewer clones and more subclones, particularly in central-type LUSC. Survival analysis revealed that TMB, CNA burden, NAL, subclonal driver mutations, and subclonal mutations were negatively related to the overall survival (OS) and the progression-free survival (PFS) of central-type LUAD. CONCLUSIONS Central-type NSCLC tended to evolve at a higher level and might suggest a favorable response to immunotherapy. Our study also identified several potential driver genes and promising biomarkers for the prognosis and prediction of chemotherapy responses in NSCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Meng Diao
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Zheng Zhang
- Department of Radiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Minlin Jiang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Shifu Chen
- HaploX Biotechnology Co., Shenzhen, PR China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| | - Zhenguo Liu
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong Province, PR China.
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| |
Collapse
|
20
|
Jiang W, Wang PY, Zhou Q, Lin QT, Yao Y, Huang X, Tan X, Yang S, Ye W, Yang Y, Bao YJ. Tri©DB: an integrated platform of knowledgebase and reporting system for cancer precision medicine. J Transl Med 2023; 21:885. [PMID: 38057859 PMCID: PMC10702018 DOI: 10.1186/s12967-023-04773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND With the development of cancer precision medicine, a huge amount of high-dimensional cancer information has rapidly accumulated regarding gene alterations, diseases, therapeutic interventions and various annotations. The information is highly fragmented across multiple different sources, making it highly challenging to effectively utilize and exchange the information. Therefore, it is essential to create a resource platform containing well-aggregated, carefully mined, and easily accessible data for effective knowledge sharing. METHODS In this study, we have developed "Consensus Cancer Core" (Tri©DB), a new integrative cancer precision medicine knowledgebase and reporting system by mining and harmonizing multifaceted cancer data sources, and presenting them in a centralized platform with enhanced functionalities for accessibility, annotation and analysis. RESULTS The knowledgebase provides the currently most comprehensive information on cancer precision medicine covering more than 40 annotation entities, many of which are novel and have never been explored previously. Tri©DB offers several unique features: (i) harmonizing the cancer-related information from more than 30 data sources into one integrative platform for easy access; (ii) utilizing a variety of data analysis and graphical tools for enhanced user interaction with the high-dimensional data; (iii) containing a newly developed reporting system for automated annotation and therapy matching for external patient genomic data. Benchmark test indicated that Tri©DB is able to annotate 46% more treatments than two officially recognized resources, oncoKB and MCG. Tri©DB was further shown to have achieved 94.9% concordance with administered treatments in a real clinical trial. CONCLUSIONS The novel features and rich functionalities of the new platform will facilitate full access to cancer precision medicine data in one single platform and accommodate the needs of a broad range of researchers not only in translational medicine, but also in basic biomedical research. We believe that it will help to promote knowledge sharing in cancer precision medicine. Tri©DB is freely available at www.biomeddb.org , and is hosted on a cutting-edge technology architecture supporting all major browsers and mobile handsets.
Collapse
Affiliation(s)
- Wei Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Peng-Ying Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Qiu-Tong Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yao Yao
- Wuxi Shengrui Bio-Pharmaceuticals Co., Ltd, Wuxi, 214174, Jiangsu, China
| | - Xun Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weicai Ye
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 510000, China
- Guangdong Province Key Laboratory of Computational Science, and National Engineering Laboratory for Big Data Analysis and Application, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Yun-Juan Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
21
|
Rajeh A, Cornman HL, Gupta A, Szeto MD, Kambala A, Oladipo O, Parthasarathy V, Deng J, Wheelan S, Pritchard T, Kwatra MM, Semenov YR, Gusev A, Yegnasubramanian S, Kwatra SG. Somatic mutations reveal hyperactive Notch signaling and racial disparities in prurigo nodularis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.25.23295810. [PMID: 37808834 PMCID: PMC10557842 DOI: 10.1101/2023.09.25.23295810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Prurigo nodularis (PN) is a chronic inflammatory skin disease that disproportionately affects African Americans and is characterized by pruritic skin nodules of unknown etiology. Little is known about genetic alterations in PN pathogenesis, especially relating to somatic events which are often implicated in inflammatory conditions. We thus performed whole-exome sequencing on 54 lesional and nonlesional skin biopsies from 17 PN patients and 10 atopic dermatitis (AD) patients for comparison. Somatic mutational analysis revealed that PN lesional skin harbors pervasive somatic mutations in fibrotic, neurotropic, and cancer-associated genes. Nonsynonymous mutations were most frequent in NOTCH1 and the Notch signaling pathway, a regulator of cellular proliferation and tissue fibrosis, and NOTCH1 mutations were absent in AD. Somatic copy-number analysis, combined with expression data, showed that recurrently deleted and downregulated genes in PN lesional skin are associated with axonal guidance and extension. Follow-up immunofluorescence validation demonstrated increased NOTCH1 expression in PN lesional skin fibroblasts and increased Notch signaling in PN lesional dermis. Finally, multi-center data revealed a significantly increased risk of NOTCH1-associated diseases in PN patients. In characterizing the somatic landscape of PN, we uncover novel insights into its pathophysiology and identify a role for dysregulated Notch signaling in PN.
Collapse
Affiliation(s)
- Ahmad Rajeh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah L. Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Mindy D. Szeto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anusha Kambala
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olusola Oladipo
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Varsha Parthasarathy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junwen Deng
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Wheelan
- Present affiliation: National Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA
| | - Thomas Pritchard
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madan M. Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Yevgeniy R. Semenov
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Alexander Gusev
- Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Srinivasan Yegnasubramanian
- The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Wu AJ, Perera A, Kularatnarajah L, Korsakova A, Pitt JJ. Mutational signature assignment heterogeneity is widespread and can be addressed by ensemble approaches. Brief Bioinform 2023; 24:bbad331. [PMID: 37742051 PMCID: PMC10518036 DOI: 10.1093/bib/bbad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/25/2023] Open
Abstract
Single-base substitution (SBS) mutational signatures have become standard practice in cancer genomics. In lieu of de novo signature extraction, reference signature assignment allows users to estimate the activities of pre-established SBS signatures within individual malignancies. Several tools have been developed for this purpose, each with differing methodologies. However, due to a lack of standardization, there may be inter-tool variability in signature assignment. We deeply characterized three assignment strategies and five SBS signature assignment tools. We observed that assignment strategy choice can significantly influence results and interpretations. Despite varying recommendations by tools, Refit performed best by reducing overfitting and maximizing reconstruction of the original mutational spectra. Even after uniform application of Refit, tools varied remarkably in signature assignments both qualitatively (Jaccard index = 0.38-0.83) and quantitatively (Kendall tau-b = 0.18-0.76). This phenomenon was exacerbated for 'flat' signatures such as the homologous recombination deficiency signature SBS3. An ensemble approach (EnsembleFit), which leverages output from all five tools, increased SBS3 assignment accuracy in BRCA1/2-deficient breast carcinomas. After generating synthetic mutational profiles for thousands of pan-cancer tumors, EnsembleFit reduced signature activity assignment error 15.9-24.7% on average using Catalogue of Somatic Mutations In Cancer and non-standard reference signature sets. We have also released the EnsembleFit web portal (https://www.ensemblefit.pittlabgenomics.com) for users to generate or download ensemble-based SBS signature assignments using any strategy and combination of tools. Overall, we show that signature assignment heterogeneity across tools and strategies is non-negligible and propose a viable, ensemble solution.
Collapse
Affiliation(s)
- Andy J Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Medicine, National University of Singapore, Singapore, Singapore
| | - Akila Perera
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | | | - Anna Korsakova
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jason J Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
23
|
Yao Z, Xu N, Shang G, Wang H, Tao H, Wang Y, Qin Z, Tan S, Feng J, Zhu J, Ma F, Tian S, Zhang Q, Qu Y, Hou J, Guo J, Zhao J, Hou Y, Ding C. Proteogenomics of different urothelial bladder cancer stages reveals distinct molecular features for papillary cancer and carcinoma in situ. Nat Commun 2023; 14:5670. [PMID: 37704624 PMCID: PMC10499981 DOI: 10.1038/s41467-023-41139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
The progression of urothelial bladder cancer (UC) is a complicated multi-step process. We perform a comprehensive multi-omics analysis of 448 samples from 190 UC patients, covering the whole spectrum of disease stages and grades. Proteogenomic integration analysis indicates the mutations of HRAS regulated mTOR signaling to form urothelial papilloma rather than papillary urothelial cancer (PUC). DNA damage is a key signaling pathway in the progression of carcinoma in situ (CIS) and related to APOBEC signature. Glucolipid metabolism increase and lower immune cell infiltration are associated with PUC compared to CIS. Proteomic analysis distinguishes the origins of invasive tumors (PUC-derived and CIS-derived), related to distinct clinical prognosis and molecular features. Additionally, loss of RBPMS, associated with CIS-derived tumors, is validated to increase the activity of AP-1 and promote metastasis. This study reveals the characteristics of two distinct branches (PUC and CIS) of UC progression and may eventually benefit clinical practice.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2022YFA1303200 [C.D.], 2022YFA1303201 [C.D.], 2020YFE0201600 [C.D.], 2018YFE0201600 [C.D.], 2018YFE0201603 [C.D.], 2018YFA0507500 [C.D.], 2018YFA0507501 [C.D.], 2017YFA0505100 [C.D.], 2017YFA0505102 [C.D.], 2017YFA0505101 [C.D.], 2017YFC0908404 [C.D.], and 2016YFA0502500 [C.D.]), Program of Shanghai Academic/Technology Research Leader (22XD1420100 [C.D.]), Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (19SG02 [C.D.]),the Major Project of Special Development Funds of Zhangjiang National Independent Innovation Demonstration Zone (ZJ2019‐ZD‐004 [C.D.]), the Science and Technology Commission of Shanghai Municipality (2017SHZDZX01 [C.D.]).
Collapse
Affiliation(s)
- Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Guoguo Shang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Haixing Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hui Tao
- Department of Cardiothoracic Surgery, Second Hospital of Anhui Medical University, and Cardiovascular Research Center, Anhui Medical University, Hefei, 230601, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jun Hou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jianming Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yingyong Hou
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Lee TH, Jang B, Chang JH, Kim E, Park JH, Chie EK. Genomic landscape of locally advanced rectal adenocarcinoma: Comparison between before and after neoadjuvant chemoradiation and effects of genetic biomarkers on clinical outcomes and tumor response. Cancer Med 2023; 12:15664-15675. [PMID: 37260182 PMCID: PMC10417181 DOI: 10.1002/cam4.6169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/05/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE To explore genomic biomarkers in rectal cancer by performing whole-exome sequencing. MATERIALS AND METHODS Pre-chemoradiation (CRT) biopsy and post-CRT surgical specimens were obtained from 27 patients undergoing neoadjuvant CRT followed by definitive resection. Exomes were sequenced to a mean coverage of 30×. Somatic single-nucleotide variants (SNVs) and insertions/deletions (indels) were identified. Tumor mutational burden was defined as the number of SNVs or indels. Mutational signatures were extracted and fitted to COSMIC reference signatures. Tumor heterogeneity was quantified with a mutant-allele tumor heterogeneity (MATH) score. Genetic biomarkers and frequently occurred copy number alterations (CNAs) were compared between pre- and post-CRT specimens. Their associations with tumor regression grade (TRG) and clinical outcomes were explored. RESULTS Top five mutated genes were APC, TP53, NF1, KRAS, and NOTCH1 for pre-CRT samples and APC, TP53, NF1, CREBBP, and ATM for post-CRT samples. Several gene mutations including RUNX1, EGFR, and TP53 in pre-CRT samples showed significant association with clinical outcomes, but not with TRG. However, no such association was found in post-CRT samples. Discordance of driver mutation status was found between pre- and post-CRT samples. In tumor mutational burden analysis, higher number of SNVs or indels was associated with worse treatment outcomes. Six single-base substitution (SBS) signatures identified were SBS1, SBS30, SBS29, SBS49, SBS3, and SBS44. The MATH score decreased after CRT on paired analysis. Less than half of CNAs frequent in post-CRT samples were present in pre-CRT samples. CONCLUSION Pre- and post-CRT samples showed different genomic landscape. Potential genetic biomarkers of pre-CRT samples found in the current analysis call for external validation.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Radiation OncologySeoul National University HospitalSeoulRepublic of Korea
- Department of Clinical Medical ScienceSeoul National University College of MedicineSeoulRepublic of Korea
| | - Bum‐Sup Jang
- Department of Radiation OncologySeoul National University HospitalSeoulRepublic of Korea
| | - Ji Hyun Chang
- Department of Radiation OncologySeoul National University HospitalSeoulRepublic of Korea
| | - Eunji Kim
- Department of Radiation OncologySeoul Metropolitan Government‐Seoul National University Boramae Medical CenterSeoulRepublic of Korea
| | - Jeong Hwan Park
- Department of PathologySeoul Metropolitan Government‐Seoul National University Boramae Medical CenterSeoulRepublic of Korea
| | - Eui Kyu Chie
- Department of Radiation OncologySeoul National University HospitalSeoulRepublic of Korea
- Department of Clinical Medical ScienceSeoul National University College of MedicineSeoulRepublic of Korea
- Department of Radiation OncologySeoul National University College of MedicineSeoulRepublic of Korea
- Medical Research Center, Institute of Radiation MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
25
|
Samur MK, Roncador M, Aktas Samur A, Fulciniti M, Bazarbachi AH, Szalat R, Shammas MA, Sperling AS, Richardson PG, Magrangeas F, Minvielle S, Perrot A, Corre J, Moreau P, Thakurta A, Parmigiani G, Anderson KC, Avet-Loiseau H, Munshi NC. High-dose melphalan treatment significantly increases mutational burden at relapse in multiple myeloma. Blood 2023; 141:1724-1736. [PMID: 36603186 PMCID: PMC10273091 DOI: 10.1182/blood.2022017094] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
High-dose melphalan (HDM) improves progression-free survival in multiple myeloma (MM), yet melphalan is a DNA-damaging alkylating agent; therefore, we assessed its mutational effect on surviving myeloma cells by analyzing paired MM samples collected at diagnosis and relapse in the IFM 2009 study. We performed deep whole-genome sequencing on samples from 68 patients, 43 of whom were treated with RVD (lenalidomide, bortezomib, and dexamethasone) and 25 with RVD + HDM. Although the number of mutations was similar at diagnosis in both groups (7137 vs 7230; P = .67), the HDM group had significantly more mutations at relapse (9242 vs 13 383, P = .005). No change in the frequency of copy number alterations or structural variants was observed. The newly acquired mutations were typically associated with DNA damage and double-stranded breaks and were predominantly on the transcribed strand. A machine learning model, using this unique pattern, predicted patients who would receive HDM with high sensitivity, specificity, and positive prediction value. Clonal evolution analysis showed that all patients treated with HDM had clonal selection, whereas a static progression was observed with RVD. A significantly higher percentage of mutations were subclonal in the HDM cohort. Intriguingly, patients treated with HDM who achieved complete remission (CR) had significantly more mutations at relapse yet had similar survival rates as those treated with RVD who achieved CR. This similarity could have been due to HDM relapse samples having significantly more neoantigens. Overall, our study identifies increased genomic changes associated with HDM and provides rationale to further understand clonal complexity.
Collapse
Affiliation(s)
- Mehmet Kemal Samur
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | | | - Anil Aktas Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, MA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, MA
| | - Abdul Hamid Bazarbachi
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, New York, NY
| | - Raphael Szalat
- Department of Hematology and Medical Oncology, Boston University Medical Center, Boston, MA
| | - Masood A. Shammas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, MA
| | - Adam S. Sperling
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, MA
| | - Paul G. Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, MA
| | - Florence Magrangeas
- Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), INSERM, French National Centre for Scientific Research (CNRS), Angers University, and Nantes University, Nantes, France
| | - Stephane Minvielle
- Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), INSERM, French National Centre for Scientific Research (CNRS), Angers University, and Nantes University, Nantes, France
| | - Aurore Perrot
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Jill Corre
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Philippe Moreau
- Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), INSERM, French National Centre for Scientific Research (CNRS), Angers University, and Nantes University, Nantes, France
| | | | - Giovanni Parmigiani
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Kenneth C. Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, MA
| | - Hervé Avet-Loiseau
- University Cancer Center of Toulouse Institut National de la Santé, Toulouse, France
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
26
|
Tao Z, Wang S, Wu C, Wu T, Zhao X, Ning W, Wang G, Wang J, Chen J, Diao K, Chen F, Liu XS. The repertoire of copy number alteration signatures in human cancer. Brief Bioinform 2023; 24:7048898. [PMID: 36806386 PMCID: PMC10025440 DOI: 10.1093/bib/bbad053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/01/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
Copy number alterations (CNAs) are a predominant source of genetic alterations in human cancer and play an important role in cancer progression. However comprehensive understanding of the mutational processes and signatures of CNA is still lacking. Here we developed a mechanism-agnostic method to categorize CNA based on various fragment properties, which reflect the consequences of mutagenic processes and can be extracted from different types of data, including whole genome sequencing (WGS) and single nucleotide polymorphism (SNP) array. The 14 signatures of CNA have been extracted from 2778 pan-cancer analysis of whole genomes WGS samples, and further validated with 10 851 the cancer genome atlas SNP array dataset. Novel patterns of CNA have been revealed through this study. The activities of some CNA signatures consistently predict cancer patients' prognosis. This study provides a repertoire for understanding the signatures of CNA in cancer, with potential implications for cancer prognosis, evolution and etiology.
Collapse
Affiliation(s)
- Ziyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Bioinformatics Platform, Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Chenxu Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Xiangyu Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Wei Ning
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Guangshuai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Jinyu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Jing Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Kaixuan Diao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
27
|
Moorthi S, Paguirigan A, Ko M, Pettinger M, Hoge ACH, Nag A, Patel NA, Wu F, Sather C, Fitzgibbon MP, Thorner AR, Anderson GL, Ha G, Berger AH. Somatic mutation but not aneuploidy differentiates lung cancer in never-smokers and smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522947. [PMID: 36712079 PMCID: PMC9881937 DOI: 10.1101/2023.01.05.522947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lung cancer in never-smokers disproportionately affects older women. To understand the mutational landscape of this cohort, we performed detailed genome characterization of 73 lung adenocarcinomas from participants of the Women’s Health Initiative (WHI). We find enrichment of EGFR mutations in never-/light-smokers and KRAS mutations in heavy smokers as expected, but we also show that the specific variants of these genes differ by smoking status, with important therapeutic implications. Mutational signature analysis revealed signatures of clock, APOBEC, and DNA repair deficiency in never-/light-smokers; however, the mutational load of these signatures did not differ significantly from those found in smokers. Last, tumors from both smokers and never-/light-smokers shared copy number subtypes, with no significant differences in aneuploidy. Thus, the genomic landscape of lung cancer in never-/light-smokers and smokers is predominantly differentiated by somatic mutations and not copy number alterations.
Collapse
|
28
|
Qu Y, Wu X, Anwaier A, Feng J, Xu W, Pei X, Zhu Y, Liu Y, Bai L, Yang G, Tian X, Su J, Shi GH, Cao DL, Xu F, Wang Y, Gan HL, Ni S, Sun MH, Zhao JY, Zhang H, Ye D, Ding C. Proteogenomic characterization of MiT family translocation renal cell carcinoma. Nat Commun 2022; 13:7494. [PMID: 36470859 PMCID: PMC9722939 DOI: 10.1038/s41467-022-34460-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Microphthalmia transcription factor (MiT) family translocation renal cell carcinoma (tRCC) is a rare type of kidney cancer, which is not well characterized. Here we show the comprehensive proteogenomic analysis of tRCC tumors and normal adjacent tissues to elucidate the molecular landscape of this disease. Our study reveals that defective DNA repair plays an important role in tRCC carcinogenesis and progression. Metabolic processes are markedly dysregulated at both the mRNA and protein levels. Proteomic and phosphoproteome data identify mTOR signaling pathway as a potential therapeutic target. Moreover, molecular subtyping and immune infiltration analysis characterize the inter-tumoral heterogeneity of tRCC. Multi-omic integration reveals the dysregulation of cellular processes affected by genomic alterations, including oxidative phosphorylation, autophagy, transcription factor activity, and proteasome function. This study represents a comprehensive proteogenomic analysis of tRCC, providing valuable insights into its biological mechanisms, disease diagnosis, and prognostication.
Collapse
Affiliation(s)
- Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Xiaohui Wu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jinwen Feng
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Xiaoru Pei
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yang Liu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Lin Bai
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Guojian Yang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jiaqi Su
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Fujiang Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Hua-Lei Gan
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Shujuan Ni
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Meng-Hong Sun
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Chen Ding
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
29
|
Webster ALH, Sanders MA, Patel K, Dietrich R, Noonan RJ, Lach FP, White RR, Goldfarb A, Hadi K, Edwards MM, Donovan FX, Hoogenboezem RM, Jung M, Sridhar S, Wiley TF, Fedrigo O, Tian H, Rosiene J, Heineman T, Kennedy JA, Bean L, Rosti RO, Tryon R, Gonzalez AM, Rosenberg A, Luo JD, Carroll TS, Shroff S, Beaumont M, Velleuer E, Rastatter JC, Wells SI, Surrallés J, Bagby G, MacMillan ML, Wagner JE, Cancio M, Boulad F, Scognamiglio T, Vaughan R, Beaumont KG, Koren A, Imielinski M, Chandrasekharappa SC, Auerbach AD, Singh B, Kutler DI, Campbell PJ, Smogorzewska A. Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer. Nature 2022; 612:495-502. [PMID: 36450981 PMCID: PMC10202100 DOI: 10.1038/s41586-022-05253-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/18/2022] [Indexed: 12/03/2022]
Abstract
Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.
Collapse
Affiliation(s)
- Andrew L H Webster
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Krupa Patel
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ralf Dietrich
- Deutsche Fanconi-Anämie-Hilfe e.V, Unna-Siddinghausen, Germany
| | - Raymond J Noonan
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ryan R White
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Audrey Goldfarb
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Kevin Hadi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Moonjung Jung
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Tom F Wiley
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genomes Laboratory, Rockefeller University, New York, NY, USA
| | - Huasong Tian
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Thomas Heineman
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Jennifer A Kennedy
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Bean
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Rasim O Rosti
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Rebecca Tryon
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Allana Rosenberg
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, Rockefeller University, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, Rockefeller University, New York, NY, USA
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Michael Beaumont
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Eunike Velleuer
- Institute for Pathology, Department for Cytopathology, University Hospital of Düsseldorf, Düsseldorf, Germany
- Pediatric Cancer Center, Helios Hospital Krefeld, Düsseldorf, Germany
| | - Jeff C Rastatter
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jordi Surrallés
- Genomic Instability and DNA Repair Syndromes Group and Joint Research Unit on Genomic Medicine UAB-Sant Pau Biomedical Research Institute (IIB Sant Pau), Institut de Recerca Hospital de la Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Grover Bagby
- Departments of Medicine and Molecular and Medical Genetics, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - John E Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Cancio
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Farid Boulad
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arleen D Auerbach
- Human Genetics and Hematology Program, The Rockefeller University, New York, NY, USA
| | - Bhuvanesh Singh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David I Kutler
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA.
| |
Collapse
|
30
|
Huo Y, Sun L, Yuan J, Zhang H, Zhang Z, Zhang L, Huang W, Sun X, Tang Z, Feng Y, Mo H, Yang Z, Zhang C, Yu Z, Yue D, Zhang B, Wang C. Comprehensive analyses unveil novel genomic and immunological characteristics of micropapillary pattern in lung adenocarcinoma. Front Oncol 2022; 12:931209. [PMID: 35992814 PMCID: PMC9381833 DOI: 10.3389/fonc.2022.931209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Lung adenocarcinoma (LUAD) usually contains heterogeneous histological subtypes, among which the micropapillary (MIP) subtype was associated with poor prognosis while the lepidic (LEP) subtype possessed the most favorable outcome. However, the genomic features of the MIP subtype responsible for its malignant behaviors are substantially unknown. In this study, eight FFPE samples from LUAD patients were micro-dissected to isolate MIP and LEP components, then sequenced by whole-exome sequencing. More comprehensive analyses involving our samples and public validation cohorts on the two subtypes were performed to better decipher the key biological and evolutionary mechanisms. As expected, the LEP and MIP subtypes exhibited the largest disease-free survival (DFS) differences in our patients. EGFR was found with the highest mutation frequency. Additionally, shared mutations were observed between paired LEP and MIP components from single patients, and recurrent mutations were verified in the Lung-Broad, Lung-OncoSG, and TCGA-LUAD cohorts. Distinct biological processes or pathways were involved in the evolution of the two components. Besides, analyses of copy number variation (CNV) and intratumor heterogeneity (ITH) further discovered the possible immunosurveillance escape, the discrepancy between mutation and CNV level, ITH, and the pervasive DNA damage response and WNT pathway gene alternations in the MIP component. Phylogenetic analysis of five pairs of LEP and MIP components further confirmed the presence of ancestral EGFR mutations. Through comprehensive analyses combining our samples and public cohorts, PTP4A3, NAPRT, and RECQL4 were identified to be co-amplified. Multi-omics data also demonstrated the immunosuppression prevalence in the MIP component. Our results uncovered the evolutionary pattern of the concomitant LEP and MIP components from the same patient that they were derived from the same initiation cells and the pathway-specific mutations acquired after EGFR clonal mutation could shape the subtype-specificity. We also confirmed the immunosuppression prevalence in the MIP subtype by multi-omics data analyses, which may have resulted in its unfavorable prognosis.
Collapse
Affiliation(s)
- Yansong Huo
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Leina Sun
- Department of Pathology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jie Yuan
- GenePlus-Shenzhen, Shenzhen, China
| | - Hua Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lianmin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wuhao Huang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaoyan Sun
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhe Tang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yingnan Feng
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huilan Mo
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | | | | | - Dongsheng Yue
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Changli Wang, ; Bin Zhang, ; Dongsheng Yue,
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Changli Wang, ; Bin Zhang, ; Dongsheng Yue,
| | - Changli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Changli Wang, ; Bin Zhang, ; Dongsheng Yue,
| |
Collapse
|
31
|
Xu N, Yao Z, Shang G, Ye D, Wang H, Zhang H, Qu Y, Xu F, Wang Y, Qin Z, Zhu J, Zhang F, Feng J, Tian S, Liu Y, Zhao J, Hou J, Guo J, Hou Y, Ding C. Integrated proteogenomic characterization of urothelial carcinoma of the bladder. J Hematol Oncol 2022; 15:76. [PMID: 35659036 PMCID: PMC9164575 DOI: 10.1186/s13045-022-01291-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
Background Urothelial carcinoma (UC) is the most common pathological type of bladder cancer, a malignant tumor. However, an integrated multi-omics analysis of the Chinese UC patient cohort is lacking. Methods We performed an integrated multi-omics analysis, including whole-exome sequencing, RNA-seq, proteomic, and phosphoproteomic analysis of 116 Chinese UC patients, comprising 45 non-muscle-invasive bladder cancer patients (NMIBCs) and 71 muscle-invasive bladder cancer patients (MIBCs). Result Proteogenomic integration analysis indicated that SND1 and CDK5 amplifications on chromosome 7q were associated with the activation of STAT3, which was relevant to tumor proliferation. Chromosome 5p gain in NMIBC patients was a high-risk factor, through modulating actin cytoskeleton implicating in tumor cells invasion. Phosphoproteomic analysis of tumors and morphologically normal human urothelium produced UC-associated activated kinases, including CDK1 and PRKDC. Proteomic analysis identified three groups, U-I, U-II, and U-III, reflecting distinct clinical prognosis and molecular signatures. Immune subtypes of UC tumors revealed a complex immune landscape and suggested the amplification of TRAF2 related to the increased expression of PD-L1. Additionally, increased GARS, related to subtype U-II, was validated to promote pentose phosphate pathway by inhibiting activities of PGK1 and PKM2. Conclusions This study provides a valuable resource for researchers and clinicians to further identify molecular pathogenesis and therapeutic opportunities in urothelial carcinoma of the bladder. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01291-7.
Collapse
Affiliation(s)
- Ning Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zhenmei Yao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Guoguo Shang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fujiang Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jiajun Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jianyuan Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.,Institute for Development and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
32
|
Wu T, Wu C, Zhao X, Wang G, Ning W, Tao Z, Chen F, Liu XS. Extrachromosomal DNA formation enables tumor immune escape potentially through regulating antigen presentation gene expression. Sci Rep 2022; 12:3590. [PMID: 35246593 PMCID: PMC8897507 DOI: 10.1038/s41598-022-07530-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
Extrachromosomal DNA (ecDNA) is a type of circular and tumor specific genetic element. EcDNA has been reported to display open chromatin structure, facilitate oncogene amplification and genetic material unequal segregation, and is associated with poor cancer patients' prognosis. The ability of immune evasion is a typical feature for cancer progression, however the tumor intrinsic factors that determine immune evasion remain poorly understood. Here we show that the presence of ecDNA is associated with markers of tumor immune evasion, and obtaining ecDNA could be one of the mechanisms employed by tumor cells to escape immune surveillance. Tumors with ecDNA usually have comparable TMB and neoantigen load, however they have lower immune cell infiltration and lower cytotoxic T cell activity. The microenvironment of tumors with ecDNA shows increased immune-depleted, decreased immune-enriched fibrotic types. Both MHC class I and class II antigen presentation genes' expression are decreased in tumors with ecDNA, and this could be the underlying mechanism for ecDNA associated immune evasion. This study provides evidence that ecDNA formation is an immune escape mechanism for cancer cells.
Collapse
Affiliation(s)
- Tao Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, People's Republic of China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenxu Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, People's Republic of China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, People's Republic of China
| | - Guangshuai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, People's Republic of China
| | - Wei Ning
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, People's Republic of China
| | - Ziyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, People's Republic of China
| | - Fuxiang Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201203, People's Republic of China.
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, Shanghai, 201210, People's Republic of China.
| |
Collapse
|
33
|
Zou B, Guo D, Kong P, Wang Y, Cheng X, Cui Y. Integrative Genomic Analyses of 1,145 Patient Samples Reveal New Biomarkers in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2022; 8:792779. [PMID: 35127817 PMCID: PMC8814608 DOI: 10.3389/fmolb.2021.792779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Due to the lack of effective diagnostic markers and therapeutic targets, esophageal squamous cell carcinoma (ESCC) shows a poor 5 years survival rate of less than 30%. To explore the potential therapeutic targets of ESCC, we integrated and reanalyzed the mutation data of WGS (whole genome sequencing) or WES (whole exome sequencing) from a total of 1,145 samples in 7 large ESCC cohorts, including 270 ESCC gene expression data. Two new mutation signatures and 20 driver genes were identified in our study. Among them, AP3S1, MUC16, and RPS15 were reported for the first time. We also discovered that the KMT2D was associated with the multiple clinical characteristics of ESCC, and KMT2D knockdown cells showed enhanced cell migration and cell invasion. Furthermore, a few neoantigens were shared between ESCC patients. For ESCC, compared to TMB, neoantigen might be treated as a better immunotherapy biomarker. Our research expands the understanding of ESCC mutations and helps the identification of ESCC biomarkers, especially for immunotherapy biomarkers.
Collapse
Affiliation(s)
- Binbin Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Dinghe Guo
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yanqiang Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| | - Yongping Cui
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| |
Collapse
|