1
|
Thakur S, Jindal V, Choi MY. CAPA Neuropeptide and Its Receptor in Insects: A Mini Review. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70061. [PMID: 40304355 DOI: 10.1002/arch.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
A neuropeptide, the CAPA, and its cognate receptor have been diversely characterized in different orders of class Insecta. CAPA peptides are synthesized in the abdominal neurohemal system and activate their corresponding receptor, CAPA receptor (CAPA-R), a type of G protein-coupled receptor (GPCR), to initiate cellular signals for diverse physiological functions in insects. Activation of the CAPA-R in Malpighian tubules results in ion-water homeostasis via antidiuresis in the majority of insect species; however, diuresis and myotropic activities are also known to result. Antidiuretic activity of CAPA peptides has been reported from mosquitoes, assassin bugs, spotted wing drosophila, and more; hence, this group of peptides also holds importance as potential targets when it comes to medical and agricultural entomology. GPCRs form a diverse family of cell membrane receptors responsible for signal transduction across the cell membrane in humans as well as in insects. With the advances in knowledge of human GPCRs, their physiological functions in agriculturally important insects have offered an opportunity for designing and implementing GPCR-targeting compounds in integrated pest management programs. In this review, we present a comprehensive view on physiological factors and peptides responsible for the diuresis/anti-diuresis in insects with special reference to the CAPA peptide-receptor interaction. The major focus is on the role of CAPA peptides in fluid and energy homeostasis, stress tolerance, muscle functioning, regulation of reproduction, and diapause-related processes. We end by outlining the significance of insect excretion with respect to the capa-r gene silencing and pest management.
Collapse
Affiliation(s)
- Sudeshna Thakur
- Insect Molecular Biology Laboratory, Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vikas Jindal
- Insect Molecular Biology Laboratory, Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Rahmani R, Kalankesh LR, Ferdousi R. Computational approaches for identifying neuropeptides: A comprehensive review. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102409. [PMID: 40171446 PMCID: PMC11960512 DOI: 10.1016/j.omtn.2024.102409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Neuropeptides (NPs) are key signaling molecules that interact with G protein-coupled receptors, influencing neuronal activities and developmental pathways, as well as the endocrine and immune systems. They are significant in disease contexts, offering potential therapeutic targets for conditions such as anxiety, neurological disorders, cardiovascular health, and diabetes. Understanding and detecting NPs is crucial because of their complex functions in health and disease. Historically, identifying NPs via wet lab techniques has been time-consuming and costly. However, integrating computational methods has shown the potential to improve efficiency, accuracy, and cost-effectiveness. Computational techniques, such as artificial intelligence and machine learning, have been extensively researched in recent years for the identification of NP. This review explores the application of machine learning (ML) techniques in predicting various aspects of NPs, including their sequences, cleavage sites, and precursors. Additionally, it provides insights into databases containing NP metadata and specialized tools used in this domain.
Collapse
Affiliation(s)
- Roya Rahmani
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila R. Kalankesh
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz University of Medical Sciences, Research Center of Psychiatry and Behavioral Sciences Tabriz, East Azerbaijan, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Yoon H, Price B, Parks R, Jang HS, Hafeez M, Corcoran J, Ahn SJ, Choi MY. Corticotropin-releasing factor-like diuretic hormone 44 and five corresponding GPCRs in Drosophila suzukii: Structural and functional characterization. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104740. [PMID: 39647602 DOI: 10.1016/j.jinsphys.2024.104740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Diuretic hormones (DHs) activate corresponding G protein-coupled receptors (GPCRs), mediating the water and ion homeostasis in arthropods. There are two different DHs known to be expressed in insects, calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized a DH44 and five GPCR variants, DH44-R1 and DH44-R2a/b/c/d, in Drosophila suzukii (spotted-wing drosophila), causing detrimental damage to fresh and soft-skinned fruits. Among the five DH44 receptors, DH44-R1 was the longest GPCR and most strongly responded to DH44, and the other DH44-R2 splicing variants were relatively shorter and over 90 % similar to each other. Some DH44-Rs including DH44-R1 utilized both cAMP and Ca2+ as second messengers. Interestingly, DH44-R1 was dominantly expressed in the brain, whereas DH44-R2 variants were dominant in the digestive organs, particularly the Malpighian tubules (MTs) by their gene expressions. The results suggest that DH44 may have multiple physiological functions, including the regulation of the sleep-wake cycle and diuretic activity. Injection of DH44 stimulated fluid secretion in adults, and the rate of the excretion increased in a dose-dependent manner. Moreover, when the flies were injected with a mixture of DH31 and DH44, a high mortality rate was observed. Here, we demonstrate the gene structures, expressions, characterization of DH44 and five GPCRs, their second messengers, and the effects of DH peptides on the fly. These investigations offer molecular insights into the physiological roles of the DH system and may assist in the fundamental aspects of developing D. suzukii management in the field.
Collapse
Affiliation(s)
- Hojung Yoon
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Briana Price
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA
| | - Ryssa Parks
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA
| | - Hyo Sang Jang
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Muhammad Hafeez
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR 97330, USA
| | - Jacob Corcoran
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; The Biological Control of Insects Research Unit, 1503 S Providence, Research Park, Columbia, MO 65203, USA
| | - Seung-Joon Ahn
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA; Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, USA.
| |
Collapse
|
4
|
Li X, Li Y, Li Z, Chen H. Key Neuropeptides Regulating Molting in Pacific White Shrimp ( Penaeus vannamei): Insights from Transcriptomic Analysis. Animals (Basel) 2025; 15:540. [PMID: 40003023 PMCID: PMC11851517 DOI: 10.3390/ani15040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Molting is a vital physiological process essential for the growth and development of Penaeus vannamei, with significant implications for aquaculture productivity. This study aimed to identify neuropeptide-related genes involved in molting through transcriptomic analysis. RNA sequencing of pre-molt and post-molt samples revealed 1203 differentially expressed genes (DEGs). Functional enrichment analysis indicated that these genes play significant roles in cuticle formation and molting regulation. Among the DEGs, 243 were predicted to be neuropeptides based on the presence of signal peptides and the absence of transmembrane domains. Five key neuropeptide genes-PvCHH, PvMIH, PvEH I, PvCDA I, and PvCDA II-were identified as critical regulators of molting. Their role was further validated through RT-qPCR analysis, confirming their close association with the molting process. These genes were highlighted in this study as pivotal factors driving molting in P. vannamei. The neuropeptides identified in this research are anticipated to offer valuable insights into the regulation of molting. Additionally, their synthetic products hold promise for improving molting consistency in shrimp aquaculture.
Collapse
Affiliation(s)
- Xianliang Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China; (X.L.); (Z.L.)
| | - Yunjiao Li
- Fisheries Research Institute of Sichuan Academy of Agricultural Sciences, Yibin 644000, China;
| | - Zecheng Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China; (X.L.); (Z.L.)
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China; (X.L.); (Z.L.)
| |
Collapse
|
5
|
Wang L, Zeng Z, Xue Z, Wang Y. DeepNeuropePred: A robust and universal tool to predict cleavage sites from neuropeptide precursors by protein language model. Comput Struct Biotechnol J 2024; 23:309-315. [PMID: 38179071 PMCID: PMC10764246 DOI: 10.1016/j.csbj.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
Neuropeptides play critical roles in many biological processes such as growth, learning, memory, metabolism, and neuronal differentiation. A few approaches have been reported for predicting neuropeptides that are cleaved from precursor protein sequences. However, these models for cleavage site prediction of precursors were developed using a limited number of neuropeptide precursor datasets and simple precursors representation models. In addition, a universal method for predicting neuropeptide cleavage sites that can be applied to all species is still lacking. In this paper, we proposed a novel deep learning method called DeepNeuropePred, using a combination of pre-trained language model and Convolutional Neural Networks for feature extraction and predicting the neuropeptide cleavage sites from precursors. To demonstrate the model's effectiveness and robustness, we evaluated the performance of DeepNeuropePred and four models from the NeuroPred server in the independent dataset and our model achieved the highest AUC score (0.916), which are 6.9%, 7.8%, 8.8%, and 10.9% higher than Mammalian (0.857), insects (0.850), Mollusc (0.842) and Motif (0.826), respectively. For the convenience of researchers, we provide a web server (http://isyslab.info/NeuroPepV2/deepNeuropePred.jsp).
Collapse
Affiliation(s)
- Lei Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zilu Zeng
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, China
| | - Zhidong Xue
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
6
|
Thiel D, Yañez Guerra LA, Kieswetter A, Cole AG, Temmerman L, Technau U, Jékely G. Large-scale deorphanization of Nematostella vectensis neuropeptide G protein-coupled receptors supports the independent expansion of bilaterian and cnidarian peptidergic systems. eLife 2024; 12:RP90674. [PMID: 38727714 PMCID: PMC11087051 DOI: 10.7554/elife.90674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.
Collapse
Affiliation(s)
- Daniel Thiel
- Living Systems Institute, University of ExeterExeterUnited Kingdom
| | | | - Amanda Kieswetter
- Animal Physiology & Neurobiology, Department of Biology, University of LeuvenLeuvenBelgium
| | - Alison G Cole
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Liesbet Temmerman
- Animal Physiology & Neurobiology, Department of Biology, University of LeuvenLeuvenBelgium
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of ViennaViennaAustria
| | - Gáspár Jékely
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Centre for Organismal Studies (COS), Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
7
|
Southey BR, Romanova EV, Rodriguez-Zas SL, Sweedler JV. Bioinformatics for Prohormone and Neuropeptide Discovery. Methods Mol Biol 2024; 2758:151-178. [PMID: 38549013 PMCID: PMC11045269 DOI: 10.1007/978-1-0716-3646-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neuropeptides and peptide hormones are signaling molecules produced via complex posttranslational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones-and the neuropeptides created by these prohormones-from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a well-validated methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elena V Romanova
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
8
|
Hou L, Wang N, Sun T, Wang X. Neuropeptide regulations on behavioral plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101119. [PMID: 37741615 DOI: 10.1016/j.cois.2023.101119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Social insects demonstrate remarkable behavioral flexibility in response to complex external and social environments. One of the most striking examples of this adaptability is the context-dependent division of labor among workers of bees and ants. Neuropeptides, the brain's most diverse group of messenger molecules, play an essential role in modulating this phenotypic plasticity related to labor division in social insects. Integrated omics research and mass spectrometry imaging technology have greatly accelerated the identification and spatiotemporal analysis of neuropeptides. Moreover, key roles of several neuropeptides in age- and caste-dependent behavioral plasticity have been uncovered. This review summarizes recent advances in the characterization, expression, distribution, and functions of neuropeptides in controlling behavioral plasticity in social insects, particularly bees and ants. The article concludes with a discussion of future directions and challenges in understanding the regulation of social behavior by neuropeptides.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Nanying Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Tianle Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
9
|
Yun SH, Jang HS, Ahn SJ, Price BE, Hasegawa DK, Choi MY. Identification and characterisation of PRXamide peptides in the western flower thrips, Frankliniella occidentalis. INSECT MOLECULAR BIOLOGY 2023; 32:603-614. [PMID: 37265417 DOI: 10.1111/imb.12859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Insect CAPA-PVK (periviscerokinin) and pyrokinin (PK) neuropeptides belong to the PRX family peptides and are produced from capa and pyrokinin genes. We identified and characterised the two genes from the western flower thrips, Frankliniella occidentalis. The capa gene transcribes three splice variants, capa-a, -b, and -c, encoding two CAPA-PVKs (EVQGLFPFPRVamide; QGLIPFPRVamide) and two PKs (ASWMPSSSPRLamide; DSASFTPRLamide). The pyrokinin mRNA encodes three PKs: DLVTQVLQPGQTGMWFGPRLamide, SEGNLVNFTPRLamide, and ESGEQPEDLEGSMGGAATSRQLRTDSEPTWGFSPRLamide, the most extended pheromone biosynthesis activating neuropeptide (PBAN) ortholog in insects. Multiple potential endoproteolytic cleavage sites were presented in the prepropeptides from the pyrokinin gene, creating ambiguity to predict mature peptides. To solve this difficulty, we used three G protein-coupled receptors (GPCRs) for CAPA-PVK, tryptophan PK (trpPK), and PK peptides, and evaluated the binding affinities of the peptides. The binding activities revealed each subfamily of peptides exclusively bind to their corresponding receptors, and were significant for determining the CAPA-PVK and PK peptides. Our biological method using specific GPCRs would be a valuable tool for determining mature peptides, particularly with multiple and ambiguous cleavage sites in those prepropeptides. Both capa and pyrokinin mRNAs were strongly expressed in the head/thorax, but minimally expressed in the abdomen. The two genes also were clearly expressed during most of the life stages. Whole-mounting immunocytochemistry revealed that neurons contained PRXamide peptides throughout the whole-body: four to six neurosecretory cells in the head, and three and seven pairs of immunostained cells in the thorax and abdomen, respectively. Notably, the unusual PRXamide profiles of Thysanoptera are different from the other insect groups.
Collapse
Affiliation(s)
- Seung-Hwan Yun
- Gyeonggi-do Agricultural Research and Extension Services, Hwaseong-si, Republic of Korea
| | - Hyo Sang Jang
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
- Department of Horticulture, Oregon State University, Corvallis, Oregon, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Briana E Price
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
| | - Daniel K Hasegawa
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, California, USA
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon, USA
| |
Collapse
|
10
|
Yoon HJ, Price BE, Parks RK, Ahn SJ, Choi MY. Diuretic hormone 31 activates two G protein-coupled receptors with differential second messengers for diuresis in Drosophila suzukii. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104025. [PMID: 37813200 DOI: 10.1016/j.ibmb.2023.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Diuretic hormones (DHs) bind to G protein-coupled receptors (GPCRs), regulating water and ion balance to maintain homeostasis in animals. Two distinct DHs are known in insects: calcitonin (CT)-like DH31 and corticotropin-releasing factor (CRF)-like DH44. In this study, we identified and characterized DH31 and two DH31 GPCR variants, DH31-Ra and DH31-Rb, from spotted-wing drosophila, Drosophila suzukii, a globally prevalent vinegar fly causing severe damage to small fruits. Both GPCRs are active, but DH31-Ra is the dominant receptor based on gene expression analyses and DH31 peptide binding affinities. A notable difference between the two variants lies in 1) the GPCR structures of their C-termini and 2) the utilization of second messengers, and the amino acid sequences of the two variants are identical. DH31-Ra contains 12 additional amino acids, providing different intracellular C-terminal configurations. DH31-Ra utilizes both cAMP and Ca2+ as second messengers, whereas DH31-Rb utilizes only cAMP; this is the first time reported for an insect CT-like DH31 peptide. DH31 stimulated fluid secretion in D. suzukii adults, and secretion increased in a dose-dependent manner. However, when the fly was injected with a mixture of DH31 and CAPA, an anti-diuretic hormone, fluid secretion was suppressed. Here, we discuss the structures of the DH31 receptors and the differential signaling pathways, including second messengers, involved in fly diuresis. These findings provide fundamental insights into the characterization of D. suzukii DH31 and DH31-Rs, and facilitate the identification of potential biological targets for D. suzukii management.
Collapse
Affiliation(s)
- Ho Jung Yoon
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Briana E Price
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Ryssa K Parks
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA; Department of Horticulture, Oregon State University, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR, 97330, USA.
| |
Collapse
|
11
|
Thiel D, Guerra LAY, Franz-Wachtel M, Hejnol A, Jékely G. Nemertean, brachiopod and phoronid neuropeptidomics reveals ancestral spiralian signalling systems. Mol Biol Evol 2021; 38:4847-4866. [PMID: 34272863 PMCID: PMC8557429 DOI: 10.1093/molbev/msab211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropeptides are diverse signaling molecules in animals commonly acting through G-protein coupled receptors (GPCRs). Neuropeptides and their receptors underwent extensive diversification in bilaterians and the relationships of many peptide–receptor systems have been clarified. However, we lack a detailed picture of neuropeptide evolution in lophotrochozoans as in-depth studies only exist for mollusks and annelids. Here, we analyze peptidergic systems in Nemertea, Brachiopoda, and Phoronida. We screened transcriptomes from 13 nemertean, 6 brachiopod, and 4 phoronid species for proneuropeptides and neuropeptide GPCRs. With mass spectrometry from the nemertean Lineus longissimus, we validated several predicted peptides and identified novel ones. Molecular phylogeny combined with peptide-sequence and gene-structure comparisons allowed us to comprehensively map spiralian neuropeptide evolution. We found most mollusk and annelid peptidergic systems also in nemerteans, brachiopods, and phoronids. We uncovered previously hidden relationships including the orthologies of spiralian CCWamides to arthropod agatoxin-like peptides and of mollusk APGWamides to RGWamides from annelids, with ortholog systems in nemerteans, brachiopods, and phoronids. We found that pleurin neuropeptides previously only found in mollusks are also present in nemerteans and brachiopods. We also identified cases of gene family duplications and losses. These include a protostome-specific expansion of RFamide/Wamide signaling, a spiralian expansion of GnRH-related peptides, and duplications of vasopressin/oxytocin before the divergence of brachiopods, phoronids, and nemerteans. This analysis expands our knowledge of peptidergic signaling in spiralians and other protostomes. Our annotated data set of nearly 1,300 proneuropeptide sequences and 600 GPCRs presents a useful resource for further studies of neuropeptide signaling.
Collapse
Affiliation(s)
- Daniel Thiel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Mirita Franz-Wachtel
- Eberhard Karls Universität Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, 5006, Norway
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| |
Collapse
|
12
|
Hull JJ, Gross RJ, Brent CS, Christie AE. Filling in the gaps: A reevaluation of the Lygus hesperus peptidome using an expanded de novo assembled transcriptome and molecular cloning. Gen Comp Endocrinol 2021; 303:113708. [PMID: 33388363 DOI: 10.1016/j.ygcen.2020.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Roni J Gross
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
13
|
Wang XF, Chen Z, Wang XB, Xu J, Chen P, Ye H. Bacterial-mediated RNAi and functional analysis of Natalisin in a moth. Sci Rep 2021; 11:4662. [PMID: 33633211 PMCID: PMC7907129 DOI: 10.1038/s41598-021-84104-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
The neuropeptide natalisin (NTL) has been determined to play essential roles in reproduction in two Diptera and one Coleoptera species. Whether NTL has similar or even different functions in Lepidoptera remains to be determined. Here, we cloned the NTL transcript in the common cutworm moth Spodoptera litura. This transcript encodes a 438-amino acid protein. Twelve putative Sl-NTL neuropeptides were defined by cleavage sites. These NTL peptides share a DDPFWxxRamide C-terminal motif. The expressions of Sl-NTL is low during the egg and larval stages, which increased to a higher level during the pupal stage, and then reached the maximum during the adult stage. Moreover, the expression pattern during the pupal stage is similar between sexes while during the adult stage, it is dimorphic. To explore the function of Sl-NTL and assess its potential as a target for pest control, we knocked down the expression of Sl-NTL in both sexes by using bacteria-mediated RNAi. This technique significantly down regulated (reduced up to 83%) the expression of Sl-NTL in both sexes. Knocking down Sl-NTL expression did not significantly affect its development, survival and morphology but significantly reduced adults' reproductive behavior (including female calling, male courtship, mating and remating patterns and rates) and reproductive output (offspring gain reduced more than 70%).
Collapse
Affiliation(s)
- Xia-Fei Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China.,School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhe Chen
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China
| | - Xu-Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China.
| | - Peng Chen
- Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| | - Hui Ye
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| |
Collapse
|
14
|
Shahraki A, Işbilir A, Dogan B, Lohse MJ, Durdagi S, Birgul-Iyison N. Structural and Functional Characterization of Allatostatin Receptor Type-C of Thaumetopoea pityocampa, a Potential Target for Next-Generation Pest Control Agents. J Chem Inf Model 2021; 61:715-728. [PMID: 33476150 DOI: 10.1021/acs.jcim.0c00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Insect neuropeptide receptors, including allatostatin receptor type C (AstR-C), a G protein-coupled receptor, are among the potential targets for designing next-generation pesticides that despite their importance in offering a new mode-of-action have been overlooked. Focusing on AstR-C of Thaumetopoea pityocampa, a common pest in Mediterranean countries, by employing resonance energy transfer-based methods, we showed Gαi/o coupling and β-arrestin recruitment of the receptor at sub-nanomolar and nanomolar ranges of the endogenous ligand, AST-C, respectively. Molecular docking and molecular dynamics simulation studies revealed the importance of extracellular loop 2 in AstRC/AST-C interaction, and a combination of in silico and in vitro approaches showed the substantial role of Q2716.55 in G protein-dependent activation of AstR-C possibly via contributing to the flexibility of the receptor's structure. The functional and structural insights obtained on T. pit AstR-C positively assist future efforts in developing environmentally friendly pest control agents that are needed urgently.
Collapse
Affiliation(s)
- Aida Shahraki
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey.,Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine in Helmholz Association, 13125 Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Berna Dogan
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in Helmholz Association, 13125 Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany.,ISAR Bioscience Institute, Planegg, 82152 Munich, Germany
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | - Necla Birgul-Iyison
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
15
|
Hao K, Ullah H, Jarwar AR, Nong X, Tu X, Zhang Z. Functional identification of an FMRFamide-related peptide gene on diapause induction of the migratory locust, Locusta migratoria L. Genomics 2019; 112:1821-1828. [PMID: 31669703 DOI: 10.1016/j.ygeno.2019.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/30/2023]
Abstract
FMRFamide-related peptides (FaRPs) are a type of neuropeptide, which participate in a variety of physiological processes in insects. Previous study showed that myosuppressin, being a member of FaRPs, initiated pupal diapause in Mamestra brassicae. We presumed that FaRPs genes might play a critical role in photoperiodic diapause induction of L. migratoria. To verify our hypothesis, flrf, a precursor gene of FaRP from L. migratoria, was initially cloned under long and short photoperiods that encoded by flrf gene identified from central nervous system (CNS). Phylogenetic analysis showed that the protein encoded by L. migratoria flrf gene, clustered together with Nilaparvata lugens (Hemiptera: Delphacidae) with 100% bootstrap support, was basically an FMRFamide precursor homologue. We noticed the availability of -RFamide peptides (GSERNFLRFa, DRNFIRFa) under short photoperiod only, which suggested their functions related to photoperiodic diapause induction. RNAi and quantitative real-time PCR (qRT-PCR) results further confirmed that the flrf gene promoted locust's diapause.
Collapse
Affiliation(s)
- Kun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Hidayat Ullah
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Department of Agriculture, The University of Swabi, Anbar, 23561 Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Raza Jarwar
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
16
|
Suhaimi H, Hiramatsu R, Xu J, Kato T, Park EY. Secretory Nanoparticles of Neospora caninum Profilin-Fused with the Transmembrane Domain of GP64 from Silkworm Hemolymph. NANOMATERIALS 2019; 9:nano9040593. [PMID: 30974883 PMCID: PMC6523865 DOI: 10.3390/nano9040593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
Neosporosis, which is caused by Neospora caninum, is a well-known disease in the veterinary field. Infections in pregnant cattle lead to abortion via transplacental (congenitally from mother to fetus) transmission. In this study, a N. caninum profilin (NcPROF), was expressed in silkworm larvae by recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid and was purified from the hemolymph. Three NcPROF constructs were investigated, native NcPROF fused with an N-terminal PA tag (PA-NcPROF), PA-NcPROF fused with the signal sequence of bombyxin from B. mori (bx-PA-NcPROF), and bx-PA-NcPROF with additional C-terminal transmembrane and cytoplasmic domains of GP64 from BmNPV (bx-PA-NcPROF-GP64TM). All recombinant proteins were observed extra- and intracellularly in cultured Bm5 cells and silkworm larvae. The bx-PA-NcPROF-GP64TM was partly abnormally secreted, even though it has the transmembrane domain, and only it was pelleted by ultracentrifugation, but PA-NcPROF and bx-PA-NcPROF were not. Additionally, bx-PA-NcPROF-GP64TM was successfully purified from silkworm hemolymph by anti-PA agarose beads while PA-NcPROF and bx-PA-NcPROF were not. The purified bx-PA-NcPROF-GP64TM protein bound to its receptor, mouse Toll-like receptor 11 (TLR-11), and formed unique nanoparticles. These results suggest that profilin fused with GP64TM was secreted as a nanoparticle with binding affinity to its receptor and this nanoparticle formation is advantageous for the development of vaccines to N. caninum.
Collapse
Affiliation(s)
- Hamizah Suhaimi
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Rikito Hiramatsu
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Jian Xu
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Tatsuya Kato
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
17
|
Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol 2019; 35:54. [PMID: 30900052 DOI: 10.1007/s11274-019-2630-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Filamentous fungi are important microorganisms used in industrial production of proteins and enzymes. Among these organisms, Trichoderma reesei, Aspergilli, and more recently Myceliophthora thermophile are the most widely used and promising ones which have powerful protein secretion capability. In recent years, there have been tremendous achievements in understanding the molecular mechanisms of the secretory pathways in filamentous fungi. The acquired pieces of knowledge can be harnessed to enhance protein production in filamentous fungi with assistance of state-of-the-art genetic engineering techniques.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
18
|
Senthilkumar R, Srinivasan R. Sex-specific spatial and temporal gene expressions of Pheromone biosynthesis activating neuropeptide (PBAN) and binding proteins (PBP/OBP) in Spoladea recurvalis. Sci Rep 2019; 9:3515. [PMID: 30837549 PMCID: PMC6401106 DOI: 10.1038/s41598-019-39822-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022] Open
Abstract
Spoladea recurvalis is one of the most destructive insect pests of amaranth, a leafy vegetable in both Asia and Africa. The present study characterized the pheromone biosynthesis-activating neuropeptide (DH-PBAN) and pheromone/odorant binding proteins in S. recurvalis. The open reading frame of 600 base pairs encodes a 200-amino acid protein possessing five neuropeptide motifs (DH, PBAN, α-, β-, and γ- subesophageal ganglion neuropeptides) and shares a characteristic conserved C-terminal pentapeptide fragment FXPRL. The full-length genome of Spre-DH-PBAN was 4,295 bp in length and comprised of six exons interspersed by five introns. Sequence homology and phylogenetic analysis of Spre-DH-PBAN have high similarity to its homologs in Crambidae of Lepidopteran order. We quantitatively measured the relative expression level (qRT_PCR) of Spre-DH-PBAN gene, the binding proteins such as odorant binding proteins (OBPs) and pheromone binding protein (PBPs) at different developmental stages. The results confirmed their role in recognition and chemoreception of sex pheromone components, and they were distinct, tissue- and sex-specific. This is the first report on the molecular analysis of PBAN gene and binding proteins, which can improve the understanding of molecular mechanisms of growth, development, and reproductive behavior of S. recurvalis, and may become effective targets for controlling this insect.
Collapse
|
19
|
Ahn SJ, Choi MY. Identification and characterization of capa and pyrokinin genes in the brown marmorated stink bug, Halyomorpha halys (Hemiptera): Gene structure, immunocytochemistry, and differential expression. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21500. [PMID: 30188567 DOI: 10.1002/arch.21500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
CAPA and pyrokinin (PK) neuropeptides are produced from two different genes, capa and pyrokinin, respectively. In this study, we identified and characterized the capa and pyrokinin genes from the brown marmorated stink bug, Halyomorpha halys (Hemiptera). The capa gene encodes two CAPA-PVK (periviscerokinin) peptides (DAGLFPFPRVamide and EQLIPFPRVamide) and one CAPA-DH (diapause hormone; NGASGNGGLWFGPRLamide). The pyrokinin gene encodes three PK2 peptides (QLVSFRPRLamide, SPPFAPRLamide, and FYAPFSPRLamide). The whole-mounting immunocytochemistry revealed the neurons contained PRXamide-like peptides throughout the cerebral ganglia (CRG), gnathal ganglia (GNG), thoracic ganglia (TG), and abdominal ganglia (AG). A pair of neurosecretory cells in the CRG and three cell clusters in the GNG were found with the axonal projections extended through the lateral side. A pair of immunostained cells were found in the TG, while three pairs of cells were present in the fused AG. Different expression patterns of capa and pyrokinin genes were observed in the CRG-GNG, TG, and AG. The capa gene was highly expressed in the AG tissue, whereas the pyrokinin gene was strongly expressed in the CRG-GNG. Interestingly, different developmental stages showed similar expressions of both genes, with the highest from the first nymph, gradually decreasing to the female adult. Comparison of peptide sequences encoded from pyrokinin genes showed the PK1 peptide is lost in Heteroptera suborders including H. halys, but retained in other suborders. The missing PK1 from the pyrokinin gene might be compensated by CAPA-DH (=PK1-like) produced by the capa gene.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- USDA-ARS, Horticultural Crops Research Unit, Corvallis, Oregon
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Unit, Corvallis, Oregon
| |
Collapse
|
20
|
Chandra V, Fetter-Pruneda I, Oxley PR, Ritger AL, McKenzie SK, Libbrecht R, Kronauer DJC. Social regulation of insulin signaling and the evolution of eusociality in ants. Science 2018; 361:398-402. [PMID: 30049879 PMCID: PMC6178808 DOI: 10.1126/science.aar5723] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/01/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
Queens and workers of eusocial Hymenoptera are considered homologous to the reproductive and brood care phases of an ancestral subsocial life cycle. However, the molecular mechanisms underlying the evolution of reproductive division of labor remain obscure. Using a brain transcriptomics screen, we identified a single gene, insulin-like peptide 2 (ilp2), which is always up-regulated in ant reproductives, likely because they are better nourished than their nonreproductive nestmates. In clonal raider ants (Ooceraea biroi), larval signals inhibit adult reproduction by suppressing ilp2, thus producing a colony reproductive cycle reminiscent of ancestral subsociality. However, increasing ILP2 peptide levels overrides larval suppression, thereby breaking the colony cycle and inducing a stable division of labor. These findings suggest a simple model for the origin of ant eusociality via nutritionally determined reproductive asymmetries potentially amplified by larval signals.
Collapse
Affiliation(s)
- Vikram Chandra
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Ingrid Fetter-Pruneda
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Peter R Oxley
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Samuel J. Wood Library, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Amelia L Ritger
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sean K McKenzie
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Romain Libbrecht
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
Southey BR, Romanova EV, Rodriguez-Zas SL, Sweedler JV. Bioinformatics for Prohormone and Neuropeptide Discovery. Methods Mol Biol 2018; 1719:71-96. [PMID: 29476505 DOI: 10.1007/978-1-4939-7537-2_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuropeptides and peptide hormones are signaling molecules produced via complex post-translational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones-and the neuropeptides created by these prohormones-from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elena V Romanova
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
22
|
Choi MY, Ahn SJ, Kim AY, Koh Y. Identification and characterization of pyrokinin and CAPA peptides, and corresponding GPCRs from spotted wing drosophila, Drosophila suzukii. Gen Comp Endocrinol 2017; 246:354-362. [PMID: 28069423 DOI: 10.1016/j.ygcen.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/29/2022]
Abstract
The family of FXPRLamide peptides serves as a major insect hormone. It is characterized by a core active amino acid sequence conserved at the C-terminal ends, and provides various physiological roles across the Insecta. In this study we identified and characterized pyrokinin (PK) and CAPA cDNAs encoding two FXPRLamide peptides, pyrokinin and CAPA-DH (diapause hormone), and two corresponding G protein-coupled receptors (GPCRs) from spotted wing drosophila (SWD), Drosophila suzukii. Expressions of PK and CAPA mRNAs were differentially observed during all life stages except the embryo, and the detection of CAPA transcription was relatively strong compared with the PK gene in SWD. Both D. suzukii pyrokinin receptor (DrosuPKr) and CAPA-DH receptor (DrosuCAPA-DHr) were functionally expressed and confirmed through binding to PK and DH peptides. Differential expression of two GPCRs occurred during all life stages; a strong transcription of DrosuPKr was observed in the 3rd instar. DrosuCAPA-DHr was clearly expressed from the embryo to the larva, but not detected in the adult. Gene regulation during the life stages was not synchronized between ligand and receptor. For example, SWD CAPA mRNA has been up-regulated in the adult while CAPA-DHr was down-regulated. The difference could be from the CAPA mRNA translating multiple peptides including CAPA-DH and two CAPA-PVK (periviscerokinin) peptides to act on different receptors. Comparing the genes of SWD PK, CAPA, PKr and CAPA-DHr to four corresponding genes of D. melanogaster, SWD CAPA and the receptor are more similar to D. melanogaster than PK and the receptor. These data suggest that the CAPA gene could be evolutionally more conserved to have a common biological role in insects. In addition, the effect of Kozak sequences was investigated by the expression of the GPCRs with or without Kozak sequences in Sf9 insect cells. The Kozak sequenced PK receptor was significantly less active than the original (= no Kozak sequenced) receptor. Our results provide a knowledge for potential biological function(s) of PK and CAPA-DH peptides in SWD, and possibly offer a novel control method for this pest insect in the future.
Collapse
Affiliation(s)
- Man-Yeon Choi
- USDA-ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA.
| | - Seung-Joon Ahn
- USDA-ARS, Horticultural Crops Research Laboratory, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA; Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA
| | - A Young Kim
- Department of Bio-medical Gerontology, Ilsong Institute of Life Sciences, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Youngho Koh
- Department of Bio-medical Gerontology, Ilsong Institute of Life Sciences, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| |
Collapse
|
23
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Wei H, Chang H, Zheng L, Lin S, Chen Y, Tian H, Zhao J, Chen Y, Cai H, Gu X, Murugan K. Identification and expression profiling of pheromone biosynthesis activating neuropeptide in Chlumetia transversa (Walker). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:89-96. [PMID: 28043337 DOI: 10.1016/j.pestbp.2016.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Insect neuropeptides (NPs) in the pyrokinin/pheromone biosynthesis-activating neuropeptide (PBAN) family are actively involved in many essential endocrine functions. These peptides are potential targets in the search for novel insect control agents. This is the first report on the cloning and sequence determination of Chlumetia transversa (Walker) PBAN (Ct-PBAN) using rapid amplification of cDNA ends. The open reading frame of Ct-PBAN was 588bp in length and encoded 195 amino acids, which were assembled into five putative neuropeptides (diapause hormone homolog, α-neuropeptide, β-neuropeptide, PBAN, and γ-neuropeptide). These peptides were amidated at C-terminus and shared the conserved pentapeptide motif FXPR (or K) L. Moreover, Ct-PBAN had high homology to PBANs in Helicoverpa zea (84.1%), Helicoverpa armigera (83.5%), Helicoverpa assulta (83%), and Heliothis virescens (82.6%). Phylogenetic analysis showed that Ct-PBAN was closely related to its orthologs in the family Noctuidae. In addition, real-time quantitative polymerase chain reaction assays showed that the expression of Ct-PBAN peaked in the female head and was also detected at high levels in 1-d-old adults. These results suggested that Ct-PBAN is associated with sex pheromone biosynthesis in female C. transversa and could be used for developing C. transversa control systems based on molecular techniques.
Collapse
Affiliation(s)
- Hui Wei
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China.
| | - Hong Chang
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxia Dian Road, Fuzhou 350002, China
| | - Lizhen Zheng
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Shuo Lin
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Yixin Chen
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Houjun Tian
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Jianwei Zhao
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Yong Chen
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Hongjiao Cai
- Fishery college, Jimei University, 43 Yindou Road, Xiamen 361021, China
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxia Dian Road, Fuzhou 350002, China.
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
25
|
Brandes N, Ofer D, Linial M. ASAP: a machine learning framework for local protein properties. Database (Oxford) 2016; 2016:baw133. [PMID: 27694209 PMCID: PMC5045867 DOI: 10.1093/database/baw133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/08/2016] [Accepted: 08/28/2016] [Indexed: 11/14/2022]
Abstract
Determining residue-level protein properties, such as sites of post-translational modifications (PTMs), is vital to understanding protein function. Experimental methods are costly and time-consuming, while traditional rule-based computational methods fail to annotate sites lacking substantial similarity. Machine Learning (ML) methods are becoming fundamental in annotating unknown proteins and their heterogeneous properties. We present ASAP (Amino-acid Sequence Annotation Prediction), a universal ML framework for predicting residue-level properties. ASAP extracts numerous features from raw sequences, and supports easy integration of external features such as secondary structure, solvent accessibility, intrinsically disorder or PSSM profiles. Features are then used to train ML classifiers. ASAP can create new classifiers within minutes for a variety of tasks, including PTM prediction (e.g. cleavage sites by convertase, phosphoserine modification). We present a detailed case study for ASAP: CleavePred, an ASAP-based model to predict protein precursor cleavage sites, with state-of-the-art results. Protein cleavage is a PTM shared by a wide variety of proteins sharing minimal sequence similarity. Current rule-based methods suffer from high false positive rates, making them suboptimal. The high performance of CleavePred makes it suitable for analyzing new proteomes at a genomic scale. The tool is attractive to protein design, mass spectrometry search engines and the discovery of new bioactive peptides from precursors. ASAP functions as a baseline approach for residue-level protein sequence prediction. CleavePred is freely accessible as a web-based application. Both ASAP and CleavePred are open-source with a flexible Python API.Database URL: ASAP's and CleavePred source code, webtool and tutorials are available at: https://github.com/ddofer/asap; http://protonet.cs.huji.ac.il/cleavepred.
Collapse
Affiliation(s)
- Nadav Brandes
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Dan Ofer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Michal Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Yue Z, Liu X, Zhou Z, Hou G, Hua J, Zhao Z. Development of a novel-type transgenic cotton plant for control of cotton bollworm. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1747-55. [PMID: 26841044 PMCID: PMC5067616 DOI: 10.1111/pbi.12534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 12/04/2015] [Accepted: 12/22/2015] [Indexed: 05/13/2023]
Abstract
The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants-npf1 and npf2 (with a 120-bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton.
Collapse
Affiliation(s)
- Zhen Yue
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoguang Liu
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Zijing Zhou
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Guangming Hou
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Jinping Hua
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Strand MR, Brown MR, Vogel KJ. Mosquito Peptide Hormones: Diversity, Production, and Function. ADVANCES IN INSECT PHYSIOLOGY 2016; 51:145-188. [PMID: 30662099 PMCID: PMC6338476 DOI: 10.1016/bs.aiip.2016.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mosquitoes, like other insects, produce a diversity of peptide hormones that are processed from different precursor proteins and have a range of activities. Early studies relied on purification of bioactive peptides for hormone identification, but more recently genomic data have provided the information needed to more comprehensively identify peptide hormone genes and associated receptors. The first part of this chapter summarizes the known or predicted peptide hormones that are produced by mosquitoes. The second part of this chapter discusses the sources of these molecules and their functions.
Collapse
Affiliation(s)
- M R Strand
- University of Georgia, Athens, GA, United States
| | - M R Brown
- University of Georgia, Athens, GA, United States
| | - K J Vogel
- University of Georgia, Athens, GA, United States
| |
Collapse
|
28
|
Buček A, Brabcová J, Vogel H, Prchalová D, Kindl J, Valterová I, Pichová I. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing. INSECT MOLECULAR BIOLOGY 2016; 25:295-314. [PMID: 26945888 DOI: 10.1111/imb.12221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Male marking pheromones (MPs) are used by the majority of bumblebee species (Hymenoptera: Apidae), including a commercially important greenhouse pollinator, the buff-tailed bumblebee (Bombus terrestris), to attract conspecific females. MP biosynthetic processes in the cephalic part of the bumblebee male labial gland (LG) are of extraordinary complexity, involving enzymes of fatty acid and isoprenoid biosynthesis, which jointly produce more than 50 compounds. We employed a differential transcriptomic approach to identify candidate genes involved in MP biosynthesis by sequencing Bombus terrestris LG and fat body (FB) transcriptomes. We identified 12 454 abundantly expressed gene products (reads per kilobase of exon model per million mapped reads value > 1) that had significant hits in the GenBank nonredundant database. Of these, 876 were upregulated in the LG (> 4-fold difference). We identified more than 140 candidate genes potentially involved in MP biosynthesis, including esterases, fatty acid reductases, lipases, enzymes involved in limited fatty acid chain shortening, neuropeptide receptors and enzymes involved in biosynthesis of triacylglycerols, isoprenoids and fatty acids. For selected candidates, we confirmed their abundant expression in LG using quantitative real-time reverse transcription-PCR (qRT-PCR). Our study shows that the Bombus terrestris LG transcriptome reflects both fatty acid and isoprenoid MP biosynthetic processes and identifies rational gene targets for future studies to disentangle the molecular basis of MP biosynthesis. Additionally, LG and FB transcriptomes enrich the available transcriptomic resources for Bombus terrestris.
Collapse
Affiliation(s)
- A Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - H Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - D Prchalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Kindl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
29
|
Choi MY, Sanscrainte ND, Estep AS, Vander Meer RK, Becnel JJ. Identification and expression of a new member of the pyrokinin/pban gene family in the sand fly Phlebotomus papatasi. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:55-62. [PMID: 26050919 DOI: 10.1016/j.jinsphys.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
The major family of neuropeptides (NPs) derived from the pk (pyrokinin)/pban (pheromone biosynthesis activating neuropeptide) gene are defined by a common FXPRL-NH2 or similar sequence at the C-termini. This family of peptides has been found in all insect groups investigated to date and is implicated in regulating various physiological functions, including pheromone biosynthesis and diapause, but other functions are still largely unknown in specific life stages. Here we identify two isoforms of pk/pban cDNA encoding the PBAN domain from the sand fly Phlebotomus papatasi. The two pk/pban isoforms have the same sequence except for a 63 nucleotide difference between the long and short forms, and contain no alternative mRNA splicing site. Two NP homologues, DASGDNGSDSQRTRPPFAPRLamide and SLPFSPRLamide are expected, however, sequence corresponding to the diapause hormone was not found in the P. papatasi pk/pban gene. The PBAN-like amino acid sequence homologue SNKYMTPRL is conserved in the gene, but there is no cleavage site for processing a functional peptide. Characterizing the expression of the isoforms in developmental stages and adults indicates that the short form is differentially transcribed depending on the life stage. The P. papatasi pk/pban gene is the only known pk/pban gene with two transcriptional isoforms and from examination of endoproteolytic cleavage sites is expected to produce fewer peptides than most of the pk/pban genes elucidated to date; only Drosophila melanogaster is simpler with a single NP detected by mass spectroscopy. A phylogenetic analysis showed P. papatasi pk/pban grouped more closely with other nematoceran flies rather than higher flies.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Neil D Sanscrainte
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Alden S Estep
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA; Navy Entomology Center of Excellence, Box 43, Naval Air Station, Jacksonville, FL 32212-0043, USA
| | - Robert K Vander Meer
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James J Becnel
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| |
Collapse
|
30
|
Lu Q, Huang LY, Chen P, Yu JF, Xu J, Deng JY, Ye H. Identification and RNA Interference of the Pheromone Biosynthesis Activating Neuropeptide (PBAN) in the Common Cutworm Moth Spodoptera litura (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1344-1353. [PMID: 26470263 DOI: 10.1093/jee/tov108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 04/16/2015] [Indexed: 06/05/2023]
Abstract
Spodoptera litura F. is one of the most destructive insect pests of many agricultural crops and notorious for developing insecticide resistance. Developing environmental friendly control methods such as novel pheromone and RNAi-related control strategies is imperative to control this pest. In the present study, the full-length cDNA encoding the diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) was identified and characterized in S. litura. This 809-bp transcript contains a 573-nucleotide ORF encoding a 191-amino acid protein, from which five putative neuropeptides, including PBAN, DH, and α-, β-, and γ-subesophageal ganglion neuropeptides, were derived. Phylogenetic analysis showed that both the whole protein and each of the five neuropeptides have high similarities to those of DH-PBANs from other insect orders particularly Lepidoptera. Females treated with TKYFSPRLamide (the active core fragment of PBAN) produced significantly more four types of pheromone compounds (A; B; C; D) than controls. RNA interference by injection of PBAN dsRNA significantly reduced the relative expression levels of this gene in adult females (approximately reduced by 60%). As a consequence, females treated with PBAN dsRNA produced significantly less four types of pheromone compounds (A; B; C; D) than controls. These results suggest that PBAN function in activating sex pheromone biosynthesis and the RNAi of DH-PBAN gene can be induced by the injection of dsRNA into the body cavity in S. litura. This study suggests the possibility of novel pheromone-related pest control strategies based on RNAi techniques.
Collapse
Affiliation(s)
- Qin Lu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650091, P.R. China. Department of Plant Protection, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, P.R. China. These authors contributed equally to this work
| | - Ling-Yan Huang
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650091, P.R. China. These authors contributed equally to this work
| | - Peng Chen
- Yunnan Academy of Forestry, Kunming 650201, P.R. China
| | - Jin-Feng Yu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650091, P.R. China
| | - Jin Xu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650091, P.R. China.
| | - Jian-Yu Deng
- Department of Plant Protection, School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Lin'an, Zhejiang 311300, P.R. China
| | - Hui Ye
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|
31
|
The Little Known Universe of Short Proteins in Insects: A Machine Learning Approach. SHORT VIEWS ON INSECT GENOMICS AND PROTEOMICS 2015. [DOI: 10.1007/978-3-319-24235-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Bajracharya P, Lu HL, Pietrantonio PV. The red imported fire ant (Solenopsis invicta Buren) kept Y not F: predicted sNPY endogenous ligands deorphanize the short NPF (sNPF) receptor. PLoS One 2014; 9:e109590. [PMID: 25310341 PMCID: PMC4195672 DOI: 10.1371/journal.pone.0109590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/10/2014] [Indexed: 02/04/2023] Open
Abstract
Neuropeptides and their receptors play vital roles in controlling the physiology and behavior of animals. Short neuropeptide F (sNPF) signaling regulates several physiological processes in insects such as feeding, locomotion, circadian rhythm and reproduction, among others. Previously, the red imported fire ant (Solenopsis invicta) sNPF receptor (S. invicta sNPFR), a G protein-coupled receptor, was immunolocalized in queen and worker brain and queen ovaries. Differential distribution patterns of S. invicta sNPFR protein in fire ant worker brain were associated both with worker subcastes and with presence or absence of brood in the colony. However, the cognate ligand for this sNPFR has not been characterized and attempts to deorphanize the receptor with sNPF peptides from other insect species which ended in the canonical sequence LRLRFamide, failed. Receptor deorphanization is an important step to understand the neuropeptide receptor downstream signaling cascade. We cloned the full length cDNA of the putative S. invicta sNPF prepropeptide and identified the putative “sNPF” ligand within its sequence. The peptide ends with an amidated Tyr residue whereas in other insect species sNPFs have an amidated Phe or Trp residue at the C-terminus. We stably expressed the HA-tagged S. invicta sNPFR in CHO-K1 cells. Two S. invicta sNPFs differing at their N-terminus were synthesized that equally activated the sNPFR, SLRSALAAGHLRYa (EC50 = 3.2 nM) and SALAAGHLRYa (EC50 = 8.6 nM). Both peptides decreased the intracellular cAMP concentration, indicating signaling through the Gαi-subunit. The receptor was not activated by sNPF peptides from other insect species, honey bee long NPF (NPY) or mammalian PYY. Further, a synthesized peptide otherwise identical to the fire ant sequence but in which the C-terminal amidated amino acid residue ‘Y’ was switched to ‘F’, failed to activate the sNPFR. This discovery will now allow us to investigate the function of sNPY and its cognate receptor in fire ant biology.
Collapse
Affiliation(s)
- Prati Bajracharya
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Hsiao-Ling Lu
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Patricia V. Pietrantonio
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Choi MY, Köhler R, Vander Meer RK, Neupert S, Predel R. Identification and expression of capa gene in the fire ant, Solenopsis invicta. PLoS One 2014; 9:e94274. [PMID: 24718032 PMCID: PMC3981796 DOI: 10.1371/journal.pone.0094274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Recent genome analyses suggested the absence of a number of neuropeptide genes in ants. One of the apparently missing genes was the capa gene. Capa gene expression in insects is typically associated with the neuroendocrine system of abdominal ganglia; mature CAPA peptides are known to regulate diuresis and visceral muscle contraction. The apparent absence of the capa gene raised questions about possible compensation of these functions. In this study, we re-examined this controversial issue and searched for a potentially unrecognized capa gene in the fire ant, Solenopsis invicta. We employed a combination of data mining and a traditional PCR-based strategy using degenerate primers designed from conserved amino acid sequences of insect capa genes. Our findings demonstrate that ants possess and express a capa gene. As shown by MALDI-TOF mass spectrometry, processed products of the S. invicta capa gene include three CAPA periviscerokinins and low amounts of a pyrokinin which does not have the C-terminal WFGPRLa motif typical of CAPA pyrokinins in other insects. The capa gene was found with two alternative transcripts in the CNS. Within the ventral nerve cord, two capa neurons were immunostained in abdominal neuromeres 2–5, respectively, and projected into ventrally located abdominal perisympathetic organs (PSOs), which are the major hormone release sites of abdominal ganglia. The ventral location of these PSOs is a characteristic feature and was also found in another ant, Atta sexdens.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
- * E-mail: (MYC); (RP)
| | - Rene Köhler
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Robert K. Vander Meer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
| | - Susanne Neupert
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Reinhard Predel
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
- * E-mail: (MYC); (RP)
| |
Collapse
|
34
|
Identification and expression analysis of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) in the legume pod borer, Maruca vitrata Fabricius. PLoS One 2014; 9:e84916. [PMID: 24409312 PMCID: PMC3883689 DOI: 10.1371/journal.pone.0084916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022] Open
Abstract
Neuropeptides play essential roles in a variety of physiological responses that contribute to the development and reproduction of insects. Both the diapause hormone (DH) and pheromone biosynthesis activating neuropeptide (PBAN) belong to the PBAN/pyrokinin neuropeptide family, which has a conserved pentapeptide motif FXPRL at the C-terminus. We identified the full-length cDNA encoding DH-PBAN in Maruca vitrata, a major lepidopteran pest of leguminous crops. The open reading frame of Marvi-DH-PBAN is 591 bp in length, encoding 197 amino acids, from which five putative neuropeptides [DH, PBAN, α-subesophageal ganglion neuropeptide (SGNP), β-SGNP and γ-SGNP] are derived. Marvi-DH-PBAN was highly similar (83%) to DH-PBAN of Omphisa fuscidentalis (Lepidoptera: Crambidae), but possesses a unique C-terminal FNPRL motif, where asparagine has replaced a serine residue present in other lepidopteran PBAN peptides. The genomic DNA sequence of Marvi-DH-PBAN is 6,231 bp in size and is composed of six exons. Phylogenetic analysis has revealed that the Marvi-DH-PBAN protein sequence is closest to its homolog in Crambidae, but distant from Diptera, Coleoptera and Hymenoptera DH-PBAN, which agrees with the current taxonomy. DH-PBAN transcripts were present in the head and thoracic complex, but absent in the abdomen of M. vitrata. Real-time quantitative PCR assays have demonstrated a relatively higher expression of Marvi-DH-PBAN mRNA in the latter half of the pupal stages and in adults. These findings represent a significant step forward in our understanding of the DH-PBAN gene architecture and phylogeny, and raise the possibility of using Marvi-DH-PBAN to manage M. vitrata populations through molecular techniques.
Collapse
|
35
|
Ofer D, Linial M. NeuroPID: a predictor for identifying neuropeptide precursors from metazoan proteomes. ACTA ACUST UNITED AC 2013; 30:931-40. [PMID: 24336809 DOI: 10.1093/bioinformatics/btt725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MOTIVATION The evolution of multicellular organisms is associated with increasing variability of molecules governing behavioral and physiological states. This is often achieved by neuropeptides (NPs) that are produced in neurons from a longer protein, named neuropeptide precursor (NPP). The maturation of NPs occurs through a sequence of proteolytic cleavages. The difficulty in identifying NPPs is a consequence of their diversity and the lack of applicable sequence similarity among the short functionally related NPs. RESULTS Herein, we describe Neuropeptide Precursor Identifier (NeuroPID), a machine learning scheme that predicts metazoan NPPs. NeuroPID was trained on hundreds of identified NPPs from the UniProtKB database. Some 600 features were extracted from the primary sequences and processed using support vector machines (SVM) and ensemble decision tree classifiers. These features combined biophysical, chemical and informational-statistical properties of NPs and NPPs. Other features were guided by the defining characteristics of the dibasic cleavage sites motif. NeuroPID reached 89-94% accuracy and 90-93% precision in cross-validation blind tests against known NPPs (with an emphasis on Chordata and Arthropoda). NeuroPID also identified NPP-like proteins from extensively studied model organisms as well as from poorly annotated proteomes. We then focused on the most significant sets of features that contribute to the success of the classifiers. We propose that NPPs are attractive targets for investigating and modulating behavior, metabolism and homeostasis and that a rich repertoire of NPs remains to be identified. AVAILABILITY NeuroPID source code is freely available at http://www.protonet.cs.huji.ac.il/neuropid
Collapse
Affiliation(s)
- Dan Ofer
- Department of Biological Chemistry, Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | | |
Collapse
|
36
|
Liu X, Zhang Y, Zhou Z, Zhao Z, Liu X. Cloning and sequence analysis of neuropeptide F from the oriental tobacco budworm Helicoverpa assulta (Guenée). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:115-129. [PMID: 24105726 DOI: 10.1002/arch.21119] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neuropeptide F (NPF), the invertebrate homolog of neuropeptide Y (NPY) in vertebrates, shares similarity of structure and function with NPY. However, a few NPYs were also found in some insect species. In this paper, two neuropeptide genes encoding a NPF and a NPY were cloned from a tobacco budworm Helicoverpa assulta cDNA library. The npf1 gene further produces two splicing variants of rnRNAs, i.e. npf1a (lacks the 120 bp segment) and npf1b (includes a 120 bp segment). These two splicing variants form two mature peptides, NPF1a and NPF1b by modification of transcripts. NPF and NPY co-exist in H. assulta.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
37
|
Choi MY, Estep A, Sanscrainte N, Becnel J, Vander Meer RK. Identification and expression of PBAN/diapause hormone and GPCRs from Aedes aegypti. Mol Cell Endocrinol 2013; 375:113-20. [PMID: 23727337 DOI: 10.1016/j.mce.2013.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/21/2013] [Indexed: 12/30/2022]
Abstract
Neuropeptides control various physiological functions and constitute more than 90% of insect hormones. The pheromone biosynthesis activating neuropeptide (PBAN)/pyrokinin family is a major group of insect neuropeptides and is well conserved in Insecta. This family of peptides has at least two closely related G-protein-coupled receptors (GPCRs) activated by PBAN and a diapause hormone (DH). They have been shown to control several biological activities including pheromone production and diapause induction in moths. However, beyond some moth species, the biological function(s) of PBAN/pyrokinin peptides are largely unknown although these peptides are found in all insects. In this study we identified and characterized PBAN/pyrokinin peptides and corresponding GPCRs from the mosquito, Aedes aegypti. Ae. aegypti PBAN mRNA encodes four putative peptides including PBAN and DH, and is expressed in females and males during all life stages. The PBAN receptor (PBAN-R) and the DH receptor (DH-R) were functionally expressed and confirmed through binding assays with PBAN and DH peptides. These receptors are differentially expressed from eggs to adults with the relative gene expression of the PBAN-R significantly lower during the 4th instar larval (L4) and pupal (P1-P2) stages compared to the 2nd and 3rd instar larval stages (L2 and L3). However, DH-R expression level is consistently 4-10 times higher than the PBAN-R in the same period, suggesting that PBAN-R is downregulated in the late larval and pupal stages, whereas DH-R stays upregulated throughout all developmental stages. PBAN/pyrokinin mRNA expression remains high in all stages since it produces PBAN and DH peptides. This study provides the foundation for determining the function(s) of the PBAN/pyrokinin peptides in mosquitoes and establishes data critical to the development of methods for disruption of these hormone actions as a novel strategy for mosquito control.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | | | | | | | |
Collapse
|
38
|
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of Peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne) 2013; 4:193. [PMID: 24379806 PMCID: PMC3863949 DOI: 10.3389/fendo.2013.00193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022] Open
Abstract
Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized ("orphan") receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, USA
- *Correspondence: Kevin J. Vogel, Department of Entomology, The University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA e-mail:
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, USA
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
39
|
Porter KI, Southey BR, Sweedler JV, Rodriguez-Zas SL. First survey and functional annotation of prohormone and convertase genes in the pig. BMC Genomics 2012; 13:582. [PMID: 23153308 PMCID: PMC3499383 DOI: 10.1186/1471-2164-13-582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/22/2012] [Indexed: 11/18/2022] Open
Abstract
Background The pig is a biomedical model to study human and livestock traits. Many of these traits are controlled by neuropeptides that result from the cleavage of prohormones by prohormone convertases. Only 45 prohormones have been confirmed in the pig. Sequence homology can be ineffective to annotate prohormone genes in sequenced species like the pig due to the multifactorial nature of the prohormone processing. The goal of this study is to undertake the first complete survey of prohormone and prohormone convertases genes in the pig genome. These genes were functionally annotated based on 35 gene expression microarray experiments. The cleavage sites of prohormone sequences into potentially active neuropeptides were predicted. Results We identified 95 unique prohormone genes, 2 alternative calcitonin-related sequences, 8 prohormone convertases and 1 cleavage facilitator in the pig genome 10.2 assembly and trace archives. Of these, 11 pig prohormone genes have not been reported in the UniProt, UniGene or Gene databases. These genes are intermedin, cortistatin, insulin-like 5, orexigenic neuropeptide QRFP, prokineticin 2, prolactin-releasing peptide, parathyroid hormone 2, urocortin, urocortin 2, urocortin 3, and urotensin 2-related peptide. In addition, a novel neuropeptide S was identified in the pig genome correcting the previously reported pig sequence that is identical to the rabbit sequence. Most differentially expressed prohormone genes were under-expressed in pigs experiencing immune challenge relative to the un-challenged controls, in non-pregnant relative to pregnant sows, in old relative to young embryos, and in non-neural relative to neural tissues. The cleavage prediction based on human sequences had the best performance with a correct classification rate of cleaved and non-cleaved sites of 92% suggesting that the processing of prohormones in pigs is similar to humans. The cleavage prediction models did not find conclusive evidence supporting the production of the bioactive neuropeptides urocortin 2, urocortin 3, torsin family 2 member A, tachykinin 4, islet amyloid polypeptide, and calcitonin receptor-stimulating peptide 2 in the pig. Conclusions The present genomic and functional characterization supports the use of the pig as an effective animal model to gain a deeper understanding of prohormones, prohormone convertases and neuropeptides in biomedical and agricultural research.
Collapse
Affiliation(s)
- Kenneth I Porter
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
40
|
Akhtar MN, Southey BR, Andrén PE, Sweedler JV, Rodriguez-Zas SL. Evaluation of database search programs for accurate detection of neuropeptides in tandem mass spectrometry experiments. J Proteome Res 2012; 11:6044-55. [PMID: 23082934 PMCID: PMC3516866 DOI: 10.1021/pr3007123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Neuropeptide identification in mass spectrometry experiments
using
database search programs developed for proteins is challenging. Unlike
proteins, the detection of the complete sequence using a single spectrum
is required to identify neuropeptides or prohormone peptides. This
study compared the performance of three open-source programs used
to identify proteins, OMSSA, X!Tandem and Crux, to identify prohormone
peptides. From a target database of 7850 prohormone peptides, 23550
query spectra were simulated across different scenarios. Crux was
the only program that correctly matched all peptides regardless of p-value and at p-value < 1 × 10–2, 33%, 64%, and >75%, of the 5, 6, and ≥7
amino
acid-peptides were detected. Crux also had the best performance in
the identification of peptides from chimera spectra and in a variety
of missing ion scenarios. OMSSA, X!Tandem and Crux correctly detected
98.9% (99.9%), 93.9% (97.4%) and 88.7% (98.3%) of the peptides at E- or p-value < 1 × 10–6 (< 1 × 10–2), respectively. OMSSA and
X!Tandem outperformed the other programs in significance level and
computational speed, respectively. A consensus approach is not recommended
because some prohormone peptides were only identified by one program.
Collapse
Affiliation(s)
- Malik N Akhtar
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
41
|
Boerjan B, Cardoen D, Verdonck R, Caers J, Schoofs L. Insect omics research coming of age1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As more and more insect genomes are fully sequenced and annotated, omics technologies, including transcriptomic, proteomic, peptidomics, and metobolomic profiling, as well as bioinformatics, can be used to exploit this huge amount of sequence information for the study of different biological aspects of insect model organisms. Omics experiments are an elegant way to deliver candidate genes, the function of which can be further explored by genetic tools for functional inactivation or overexpression of the genes of interest. Such tools include mainly RNA interference and are currently being developed in diverse insect species. In this manuscript, we have reviewed how omics technologies were integrated and applied in insect biology.
Collapse
Affiliation(s)
- Bart Boerjan
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Dries Cardoen
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
- Laboratory of Entomology, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Rik Verdonck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Jelle Caers
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| |
Collapse
|
42
|
Choi MY, Vander Meer RK, Valles SM. Molecular diversity of PBAN family peptides from fire ants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:67-80. [PMID: 20513055 DOI: 10.1002/arch.20356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The PBAN/Pyrokinin peptide family is a major neuropeptide family characterized with a common FXPRLamide in the C-termini. These peptides are ubiquitously distributed in the Insecta and are involved in many essential endocrinal functions, e.g., pheromone production. Previous work demonstrated the localization of PBAN in the fire ant central nervous system, and identified a new family of PBAN from the red imported fire ant, Solenopsis invicta. In this study, we identified five more PBAN/Pyrokinin genes from S. geminata, S. richteri, S. pergandii, S. carolinensis, and a hybrid of S. invicta and S. richteri. The gene sequences were used to determine the phylogenetic relationships of these species and hybrid, which compared well to the morphologically defined fire ant subgroup complexes. The putative PBAN and other peptides were determined from the amino acid sequences of the PBAN/pyrokinin genes. We summarized all known insect PBAN family neuropeptides, and for the first time constructed a phylogenetic tree based on the full amino acid sequences translated from representative PBAN cDNAs. The PBAN/pyrokinin gene is well conserved in Insecta and probably extends into the Arthropod phylum; however, translated pre-propeptides may vary and functional diversity may be retained, lost, or modified during the evolutionary process.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service, Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida 32608, USA.
| | | | | |
Collapse
|
43
|
Rholam M, Fahy C. Processing of peptide and hormone precursors at the dibasic cleavage sites. Cell Mol Life Sci 2009; 66:2075-91. [PMID: 19300906 PMCID: PMC11115611 DOI: 10.1007/s00018-009-0007-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/11/2009] [Accepted: 02/17/2009] [Indexed: 01/31/2023]
Abstract
Many functionally important cellular peptides and proteins, including hormones, neuropeptides, and growth factors, are synthesized as inactive precursor polypeptides, which require post-translational proteolytic processing to become biologically active polypeptides. This is achieved by the action of a relatively small number of proteases that belong to a family of seven subtilisin-like proprotein convertases (PCs) including furin. In view of this, this review focuses on the importance of privileged secondary structures and of given amino acid residues around basic cleavage sites in substrate recognition by these endoproteases. In addition to their participation in normal cell functions, PCs are crucial for the initiation and progress of many important diseases. Hence, these proteases constitute potential drug targets in medicine. Accordingly, this review also discusses the approaches used to shed light on the cleavage preference and the substrate specificity of the PCs, a prerequisite to select which PCs are promising drug targets in each disease.
Collapse
Affiliation(s)
- Mohamed Rholam
- Interfaces, Traitements, Organisation et Dynamique des Systrèmes, Université Paris Diderot (Paris 7), CNRS UMR 7086, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205, Paris Cedex 13, France.
| | | |
Collapse
|
44
|
Southey BR, Rodriguez-Zas SL, Sweedler JV. Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches. BMC Genomics 2009; 10:228. [PMID: 19445702 PMCID: PMC2698874 DOI: 10.1186/1471-2164-10-228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 05/16/2009] [Indexed: 12/30/2022] Open
Abstract
Background Neuropeptides are cell to cell signalling molecules that regulate many critical biological processes including development, growth and reproduction. These peptides result from the complex processing of prohormone proteins, making their characterization both challenging and resource demanding. In fact, only 42 neuropeptide genes have been empirically confirmed in cattle. Neuropeptide research using high-throughput technologies such as microarray and mass spectrometry require accurate annotation of prohormone genes and products. However, the annotation and associated prediction efforts, when based solely on sequence homology to species with known neuropeptides, can be problematic. Results Complementary bioinformatic resources were integrated in the first survey of the cattle neuropeptide complement. Functional neuropeptide characterization was based on gene expression profiles from microarray experiments. Once a gene is identified, knowledge of the enzymatic processing allows determination of the final products. Prohormone cleavage sites were predicted using several complementary cleavage prediction models and validated against known cleavage sites in cattle and other species. Our bioinformatics approach identified 92 cattle prohormone genes, with 84 of these supported by expressed sequence tags. Notable findings included an absence of evidence for a cattle relaxin 1 gene and evidence for a cattle galanin-like peptide pseudogene. The prohormone processing predictions are likely accurate as the mammalian proprotein convertase enzymes, except for proprotein convertase subtilisin/kexin type 9, were also identified. Microarray analysis revealed the differential expression of 21 prohormone genes in the liver associated with nutritional status and 8 prohormone genes in the placentome of embryos generated using different reproductive techniques. The neuropeptide cleavage prediction models had an exceptional performance, correctly predicting cleavage in more than 86% of the prohormone sequence positions. Conclusion A substantial increase in the number of cattle prohormone genes identified and insights into the expression profiles of neuropeptide genes were obtained from the integration of bioinformatics tools and database resources and gene expression information. Approximately 20 prohormones with no empirical evidence were detected and the prohormone cleavage sites were predicted with high accuracy. Most prohormones were supported by expressed sequence tag data and many were differentially expressed across nutritional and reproductive conditions. The complete set of cattle prohormone sequences identified and the cleavage prediction approaches are available at .
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Chemistry, University of Illinois, Urbana, IL, USA.
| | | | | |
Collapse
|
45
|
Choi MY, Vander Meer RK. Identification of a new member of the PBAN family of neuropeptides from the fire ant, Solenopsis invicta. INSECT MOLECULAR BIOLOGY 2009; 18:161-169. [PMID: 19320757 DOI: 10.1111/j.1365-2583.2009.00867.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neuropeptide hormones produced by neurosecretory cells in the central or peripheral nervous systems regulate various physiological and behavioral events during insect development and reproduction. PBAN/Pyrokinin is a major neuropeptide family, characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. This family of peptides has been implicated in regulating various physiological functions including, pheromone biosynthesis, muscle contraction, diapause induction or termination, melanization, and puparium formation in different insect species. In the present study, we report a new member of the PBAN family from the red imported fire ant, Solenopsis invicta, Soi-PBAN, composed of 26-AA (GSGEDLSYGDAYEVDEDDHPLFVPRL). Three additional peptides were deduced from Soi-PBAN cDNA: 15-AA (TSQDIASGMWFGPRL), 8-AA (QPQFTPRL) and 9-AA (LPWIPSPRL), that correspond to diapause hormone (DH), beta-neuropeptide (NP), and gamma-NP, which are found in many lepidopteran moths. Five peptides, DH, alpha, beta, gamma NPs, and PBAN are encoded from PBAN genes of lepidopteran moths, but in the fire ant the alpha-NP is missing. Each of the four synthetic peptides from the fire ant Soi-PBAN cDNA showed significant pheromonotropic activity in a moth model, indicating that these peptides are cross-reactive. Soi-beta-NP induced the highest amount of pheromone production of the four peptides evaluated. The Soi-DH homologue had the lowest pheromonotropic activity, but was still significantly greater than control values. When the deduced amino acid sequences (entire ORF domains) from Soi-PBAN cDNA were compared with other known sequences, the fire ant was most similar to the honey bee, but phylogenetically distant from moth and beetle species. Soi-PBAN (26-AA) unlike the other three peptides shows a low degree of sequence identity with honeybee PBAN (33-AA). Based on the amino acid sequences encoded from insect PBAN genes identified to date, neuropeptide diversity is correlated with the taxonomic or phylogenetic classification of Insecta. From the present study we report the first neuropeptide identified and characterized from the central nervous system of Formicidae.
Collapse
Affiliation(s)
- M-Y Choi
- United States Department of Agriculture, Center of Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA.
| | | |
Collapse
|
46
|
Quantitative peptidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci U S A 2009; 106:2383-8. [PMID: 19179284 DOI: 10.1073/pnas.0813021106] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The honey bee genome predicts approximately 100 peptides from 36 prohormones, but the functions of many of these peptides are unknown. We used differential isotope labeling combined with mass spectrometric analysis to quantify approximately 50% of known bee brain peptides in the context of foraging, with 8 showing robust and dynamic regulation. Some showed differences in brain abundance as a function of experience; specifically, nectar and pollen collection led to quick changes in abundance. These changes were related to the act of food collection, not ingestion, because foragers bring food back to the hive for storage rather than eating it themselves. Other peptide differences in brain abundance were seen in bees that either flew to a nectar feeder or a pollen feeder, but did not yet collect any food. These differences likely reflect well-known predispositions of some bees to collect either nectar or pollen, but not both. Tachykinin, PBAN, and sNPF were among the peptides with the strongest changes in association with nectar and pollen foraging. These peptides are known to be involved in regulating food intake in solitary insects, suggesting an evolutionary connection between that behavior and social foraging. These results demonstrate that it is now possible to use quantitative peptidomics to help determine which brain peptides are bioactive and to elucidate their function in the regulation of behavior.
Collapse
|
47
|
Southey BR, Sweedler JV, Rodriguez-Zas SL. A python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites. Front Neuroinform 2008; 2:7. [PMID: 19169350 PMCID: PMC2610252 DOI: 10.3389/neuro.11.007.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/11/2008] [Indexed: 01/12/2023] Open
Abstract
Neuropeptides and hormones are signaling molecules that support cell–cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Chemistry, University of Illinois Urbana, IL, USA
| | | | | |
Collapse
|
48
|
Romanova EV, Hatcher NG, Rubakhin SS, Sweedler JV. Characterizing intercellular signaling peptides in drug addiction. Neuropharmacology 2008; 56 Suppl 1:196-204. [PMID: 18722391 PMCID: PMC2665169 DOI: 10.1016/j.neuropharm.2008.07.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/23/2008] [Accepted: 07/28/2008] [Indexed: 11/23/2022]
Abstract
Intercellular signaling peptides (SPs) coordinate the activity of cells and influence organism behavior. SPs, a chemically and structurally diverse group of compounds responsible for transferring information between neurons, are broadly involved in neural plasticity, learning and memory, as well as in drug addiction phenomena. Historically, SP discovery and characterization has tracked advances in measurement capabilities. Today, a suite of analytical technologies is available to investigate individual SPs, as well as entire intercellular signaling complements, in samples ranging from individual cells to entire organisms. Immunochemistry and in situ hybridization are commonly used for following preselected SPs. Discovery-type investigations targeting the transcriptome and proteome are accomplished using high-throughput characterization technologies such as microarrays and mass spectrometry. By integrating directed approaches with discovery approaches, multiplatform studies fill critical gaps in our knowledge of drug-induced alterations in intercellular signaling. Throughout the past 35 years, the National Institute on Drug Abuse has made significant resources available to scientists that study the mechanisms of drug addiction. The roles of SPs in the addiction process are highlighted, as are the analytical approaches used to detect and characterize them.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry and Beckman Institute, University of Illinois, 600 South Mathews Avenue 63-5, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|