1
|
Wayment-Steele HK, Ojoawo A, Otten R, Apitz JM, Pitsawong W, Hömberger M, Ovchinnikov S, Colwell L, Kern D. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 2024; 625:832-839. [PMID: 37956700 PMCID: PMC10808063 DOI: 10.1038/s41586-023-06832-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
AlphaFold2 (ref. 1) has revolutionized structural biology by accurately predicting single structures of proteins. However, a protein's biological function often depends on multiple conformational substates2, and disease-causing point mutations often cause population changes within these substates3,4. We demonstrate that clustering a multiple-sequence alignment by sequence similarity enables AlphaFold2 to sample alternative states of known metamorphic proteins with high confidence. Using this method, named AF-Cluster, we investigated the evolutionary distribution of predicted structures for the metamorphic protein KaiB5 and found that predictions of both conformations were distributed in clusters across the KaiB family. We used nuclear magnetic resonance spectroscopy to confirm an AF-Cluster prediction: a cyanobacteria KaiB variant is stabilized in the opposite state compared with the more widely studied variant. To test AF-Cluster's sensitivity to point mutations, we designed and experimentally verified a set of three mutations predicted to flip KaiB from Rhodobacter sphaeroides from the ground to the fold-switched state. Finally, screening for alternative states in protein families without known fold switching identified a putative alternative state for the oxidoreductase Mpt53 in Mycobacterium tuberculosis. Further development of such bioinformatic methods in tandem with experiments will probably have a considerable impact on predicting protein energy landscapes, essential for illuminating biological function.
Collapse
Affiliation(s)
- Hannah K Wayment-Steele
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Adedolapo Ojoawo
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Renee Otten
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
- Treeline Biosciences, Watertown, MA, USA
| | - Julia M Apitz
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
- Biomolecular Discovery, Relay Therapeutics, Cambridge, MA, USA
| | - Marc Hömberger
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
- Treeline Biosciences, Watertown, MA, USA
| | | | - Lucy Colwell
- Google Research, Cambridge, MA, USA
- Cambridge University, Cambridge, UK
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA.
| |
Collapse
|
2
|
Solomon TL, Chao K, Gingras G, Aubin Y, O'Dell WB, Marino JP, Brinson RG. Backbone NMR assignment of the yeast expressed Fab fragment of the NISTmAb reference antibody. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:75-81. [PMID: 36856943 DOI: 10.1007/s12104-023-10123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 06/02/2023]
Abstract
The monoclonal antibody (mAb) protein class has become a primary therapeutic platform for the production of new life saving drug products. MAbs are comprised of two domains: the antigen-binding fragment (Fab) and crystallizable fragment (Fc). Despite the success in the clinic, NMR assignments of the complete Fab domain have been elusive, in part due to problems in production of properly folded, triply-labeled 2H,13C,15N Fab domain. Here, we report the successful recombinant expression of a triply-labeled Fab domain, derived from the standard IgG1κ known as NISTmAb, in yeast. Using the 2H,13C,15N Fab domain, we assigned 94% of the 1H, 13C, and 15N backbone atoms.
Collapse
Affiliation(s)
- Tsega L Solomon
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - Kinlin Chao
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - Genevieve Gingras
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, K1A 0K9, Ottawa, ON, Canada
| | - Yves Aubin
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, K1A 0K9, Ottawa, ON, Canada
| | - William B O'Dell
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA.
| |
Collapse
|
3
|
Daffern N, Radhakrishnan I. A Novel Mechanism of Coactivator Recruitment by the Nurr1 Nuclear Receptor. J Mol Biol 2022; 434:167718. [PMID: 35810793 PMCID: PMC9922031 DOI: 10.1016/j.jmb.2022.167718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/29/2023]
Abstract
Nuclear receptors constitute one of the largest families of transcription factors that regulate genes in metazoans in response to small molecule ligands. Many receptors harbor two transactivation domains, one at each end of the protein sequence. Whereas the molecular mechanisms of transactivation mediated by the ligand-binding domain at the C-terminus of the protein are generally well established, the mechanism involving the N-terminal domain called activation function 1 (AF1) has remained elusive. Previous studies implicated the AF1 domain as a significant contributor towards the overall transcriptional activity of the NR4A family of nuclear receptors and suggested that the steroid receptor coactivators (SRCs) play an important role in this process. Here we show that a short segment within the AF1 domain of the NR4A receptor Nurr1 can directly engage with the SRC1 PAS-B domain. We also show that this segment forms a helix upon binding to a largely hydrophobic groove on PAS-B, overlapping with the surface engaged by the STAT6 transcription factor, suggesting that this mode of recruitment could be shared by diverse transcription factors including other nuclear receptors.
Collapse
Affiliation(s)
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
4
|
Dwarasala A, Rahimi M, Markley JL, Lee W. ssPINE: Probabilistic Algorithm for Automated Chemical Shift Assignment of Solid-State NMR Data from Complex Protein Systems. MEMBRANES 2022; 12:834. [PMID: 36135853 PMCID: PMC9503581 DOI: 10.3390/membranes12090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The heightened dipolar interactions in solids render solid-state NMR (ssNMR) spectra more difficult to interpret than solution NMR spectra. On the other hand, ssNMR does not suffer from severe molecular weight limitations like solution NMR. In recent years, ssNMR has undergone rapid technological developments that have enabled structure-function studies of increasingly larger biomolecules, including membrane proteins. Current methodology includes stable isotope labeling schemes, non-uniform sampling with spectral reconstruction, faster magic angle spinning, and innovative pulse sequences that capture different types of interactions among spins. However, computational tools for the analysis of complex ssNMR data from membrane proteins and other challenging protein systems have lagged behind those for solution NMR. Before a structure can be determined, thousands of signals from individual types of multidimensional ssNMR spectra of samples, which may have differing isotopic composition, must be recognized, correlated, categorized, and eventually assigned to atoms in the chemical structure. To address these tedious steps, we have developed an automated algorithm for ssNMR spectra called "ssPINE". The ssPINE software accepts the sequence of the protein plus peak lists from a variety of ssNMR experiments as inputs and offers automated backbone and side-chain assignments. The alpha version of ssPINE, which we describe here, is freely available through a web submission form.
Collapse
Affiliation(s)
| | - Mehdi Rahimi
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217, USA
| | - John L. Markley
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
5
|
Smith KP, Lee W, Tonelli M, Lee Y, Light SH, Cornilescu G, Chakravarthy S. Solution structure and dynamics of the mitochondrial-targeted GTPase-activating protein (GAP) VopE by an integrated NMR/SAXS approach. Protein Sci 2022; 31:e4282. [PMID: 35137487 PMCID: PMC9047041 DOI: 10.1002/pro.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
The bacterial pathogen Vibrio cholerae use a type III secretion system to inject effector proteins into a host cell. Recently, a putative Toxic GTPase Activating Protein (ToxGAP) called Vibrio outer protein E (VopE) was identified as a T3SS substrate and virulence factor that affected host mitochondrial dynamics and immune response. However, biophysical and structural characterization has been absent. Here, we describe solution NMR structure of the putative GTPase-activating protein (GAP) domain (73-204) of VopE. Using size exclusion chromatography coupled with small-angle x-ray scattering and residual dipolar coupling data, we restrained the MD process to efficiently determine the overall fold and improve the quality of the output calculated structures. Comparing the structure of VopE with other ToxGAP's revealed a similar overall fold with several features unique to VopE. Specifically, the "Bulge 1," α1 helix, and noteworthy "backside linker" elements on the N-terminus are dissimilar to the other ToxGAP's. By using NMR relaxation dispersion experiments, we demonstrate that these regions undergo motions on a > 6 s-1 timescale. Based on the disposition of these mobile regions relative to the putative catalytic arginine residue, we hypothesize that the protein may undergo structural changes to bind cognate GTPases.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental BiologyNorthwestern University ChicagoIllinoisUSA
- Xilio TherapeuticsWalthamMassachusettsUSA
| | - Woonghee Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yeongjoon Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Samuel H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Gabriel Cornilescu
- Advanced Technology Research Facility, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research, Inc., National Cancer Institute, National Institutes of HealthFrederickMarylandUSA
| | | |
Collapse
|
6
|
Hicks SN, Venters RA, Blackshear PJ. Backbone and sidechain 1H, 15N and 13C resonance assignments of the free and RNA-bound tandem zinc finger domain of the tristetraprolin family member from Selaginella moellendorffii. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:153-158. [PMID: 35279790 PMCID: PMC9196822 DOI: 10.1007/s12104-022-10073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Members of the tristetraprolin (TTP) family of RNA binding proteins (RBPs) regulate the metabolism of a variety of mRNA targets. In mammals, these proteins modulate many physiological processes, including immune cell activation, hematopoiesis, and embryonic development. Regulation of mRNA stability by these proteins requires that the tandem zinc finger (TZF) domain binds initially and directly to target mRNAs, ultimately leading to their deadenylation and decay. Proteins of this type throughout eukarya possess a highly conserved TZF domain, suggesting that they are all capable of high-affinity RNA binding. However, the mechanism of TTP-mediated mRNA decay is largely undefined. Given the vital role that these TTP family proteins play in maintaining RNA homeostasis throughout eukaryotes, we focused here on the first, key step in this process: recognition and binding of the TZF domain to target RNA. For these studies, we chose a primitive plant, the spikemoss Selaginella moellendorffii, which last shared a common ancestor with humans more than a billion years ago. Here we report the near complete backbone and side chain resonance assignments of the spikemoss TZF domain, including: (1) the assignment of the RNA-TZF domain complex, representing one of only two data sets currently available for the entire TTP family of proteins; and (2) the first NMR resonance assignments of the entire TZF domain, in the RNA-free form. This work will serve as the basis for further NMR structural investigations aimed at gaining insights into the process of RNA recognition and the mechanisms of TTP-mediated mRNA decay.
Collapse
Affiliation(s)
- Stephanie N Hicks
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - Ronald A Venters
- Duke University NMR Center, Duke University, Durham, NC, 27710, USA
- Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
7
|
Eves BJ, Gebregiworgis T, Gasmi-Seabrook GM, Kuntz DA, Privé GG, Marshall CB, Ikura M. Structures of RGL1 RAS-Association domain in complex with KRAS and the oncogenic G12V mutant. J Mol Biol 2022; 434:167527. [DOI: 10.1016/j.jmb.2022.167527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
|
8
|
Wang Y, Hu H, Yuan S, LI Y, Cao K, Sun H, Liu Y. Cuprous Ions can Disrupt Structure and Functions of the RING Finger Domain of RNF11. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is an essential element that plays crucial roles in a variety of biological processes, while excessive copper is harmful to cells. RNF11 is a RING finger protein associated with...
Collapse
|
9
|
Manthey I, Tonelli M, II LC, Rahimi M, Markley JL, Lee W. POKY software tools encapsulating assignment strategies for solution and solid-state protein NMR data. J Struct Biol X 2022; 6:100073. [PMID: 36081577 PMCID: PMC9445392 DOI: 10.1016/j.yjsbx.2022.100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
New tools support efficient analysis of solution and solid-state NMR spectra of proteins. POKY integrates a powerful suite of software packages for automated assignments. The Versatile Assigner module validates assignments through probabilistic analysis. The operation of these tools is supported by on-line guidance. The performance of these tools is evaluated in reference to competing software.
NMR spectroscopy provides structural and functional information about biomolecules and their complexes. The complexity of these systems can make the NMR data difficult to interpret, particularly for newer users of NMR technology, who may have limited understanding of the tools available and how they are used. To alleviate this problem, we have created software based on standardized workflows for both solution and solid-state NMR spectroscopy of proteins. These tools assist with manual and automated peak picking and with chemical shift assignment and validation. They provide users with an optimized path through spectral analysis that can help them perform the necessary tasks more efficiently.
Collapse
Affiliation(s)
- Ira Manthey
- Department of Chemistry, and URS Scholars Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Mehdi Rahimi
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - John L. Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
- Corresponding author.
| |
Collapse
|
10
|
Sakhrani VV, Ghosh RK, Hilario E, Weiss KL, Coates L, Mueller LJ. Toho-1 β-lactamase: backbone chemical shift assignments and changes in dynamics upon binding with avibactam. JOURNAL OF BIOMOLECULAR NMR 2021; 75:303-318. [PMID: 34218390 PMCID: PMC9122098 DOI: 10.1007/s10858-021-00375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Backbone chemical shift assignments for the Toho-1 β-lactamase (263 amino acids, 28.9 kDa) are reported based on triple resonance solution-state NMR experiments performed on a uniformly 2H,13C,15N-labeled sample. These assignments allow for subsequent site-specific characterization at the chemical, structural, and dynamical levels. At the chemical level, titration with the non-β-lactam β-lactamase inhibitor avibactam is found to give chemical shift perturbations indicative of tight covalent binding that allow for mapping of the inhibitor binding site. At the structural level, protein secondary structure is predicted based on the backbone chemical shifts and protein residue sequence using TALOS-N and found to agree well with structural characterization from X-ray crystallography. At the dynamical level, model-free analysis of 15N relaxation data at a single field of 16.4 T reveals well-ordered structures for the ligand-free and avibactam-bound enzymes with generalized order parameters of ~ 0.85. Complementary relaxation dispersion experiments indicate that there is an escalation in motions on the millisecond timescale in the vicinity of the active site upon substrate binding. The combination of high rigidity on short timescales and active site flexibility on longer timescales is consistent with hypotheses for achieving both high catalytic efficiency and broad substrate specificity: the induced active site dynamics allows variously sized substrates to be accommodated and increases the probability that the optimal conformation for catalysis will be sampled.
Collapse
Affiliation(s)
- Varun V Sakhrani
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Rittik K Ghosh
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Eduardo Hilario
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
11
|
Shao H, Boulton S, Olivieri C, Mohamed H, Akimoto M, Subrahmanian MV, Veglia G, Markley JL, Melacini G, Lee W. CHESPA/CHESCA-SPARKY: automated NMR data analysis plugins for SPARKY to map protein allostery. Bioinformatics 2021; 37:1176-1177. [PMID: 32926121 DOI: 10.1093/bioinformatics/btaa781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Correlated Nuclear Magnetic Resonance (NMR) chemical shift changes identified through the CHEmical Shift Projection Analysis (CHESPA) and CHEmical Shift Covariance Analysis (CHESCA) reveal pathways of allosteric transitions in biological macromolecules. To address the need for an automated platform that implements CHESPA and CHESCA and integrates them with other NMR analysis software packages, we introduce here integrated plugins for NMRFAM-SPARKY that implement the seamless detection and visualization of allosteric networks. AVAILABILITY AND IMPLEMENTATION CHESCA-SPARKY and CHESPA-SPARKY are available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). The assigned spectra involved in this study and tutorial videos using this dataset are available at https://sites.google.com/view/chescachespa-sparky. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics Online.
Collapse
Affiliation(s)
- Hongzhao Shao
- Department of Chemistry and Chemical Biology, Hamilton, ON L8S 4L8, Canada
| | - Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN 55455, USA
| | - Hebatallah Mohamed
- Department of Chemistry and Chemical Biology, Hamilton, ON L8S 4L8, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, Hamilton, ON L8S 4L8, Canada
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - John L Markley
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53717, USA
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, Hamilton, ON L8S 4L8, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Woonghee Lee
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53717, USA.,Department of Chemistry, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
12
|
Yang MJ, Lee W, Park CJ. Resonance assignments and secondary structure of thermophile single-stranded DNA binding protein from Sulfolobus solfataricus at 323K. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:159-164. [PMID: 33405014 DOI: 10.1007/s12104-020-09999-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Single-stranded DNA (ssDNA)-binding proteins (SSBs) are essential for DNA replication, recombination, and repair processes in all organisms. Sulfolobus solfataricus (S. solfataricus), a hyperthermophilic species, overexpresses its SSB (S. solfataricus SSB (SsoSSB)) to protect ssDNA during DNA metabolisms. Even though the crystal structure of apo SsoSSB and its ssDNA-bound solution structure have been reported at room temperature, structural information at high temperature is not yet available. To find out how SsoSSB maintains its structure and ssDNA binding affinity at high temperatures, we performed multidimensional NMR experiments for SsoSSB at 323K. In this study, we present the backbone and side chain chemical shifts and predict the secondary structure of SsoSSB from the chemical shifts. We found that SsoSSB is ordered, even at high temperatures, and has the same fold at high temperature as at room temperature. Our data will help improve structural analyses and our understanding of the features of thermophilic proteins.
Collapse
Affiliation(s)
- Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80217-3364, USA.
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
13
|
Tonelli M, Rienstra C, Anderson TK, Kirchdoerfer R, Henzler-Wildman K. 1H, 13C, and 15N backbone and side chain chemical shift assignments of the SARS-CoV-2 non-structural protein 7. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:73-77. [PMID: 33219414 PMCID: PMC7678775 DOI: 10.1007/s12104-020-09985-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
The SARS-CoV-2 genome encodes for approximately 30 proteins. Within the international project covid19-nmr, we distribute the spectroscopic analysis of the viral proteins and RNA. Here, we report NMR chemical shift assignments for the protein nsp7. The 83 amino acid nsp7 protein is an essential cofactor in the RNA-dependent RNA polymerase. The polymerase activity and processivity of nsp12 are greatly enhanced by binding 1 copy of nsp7 and 2 copies of nsp8 to form a 160 kD complex. A separate hexadecameric complex of nsp7 and nsp8 (8 copies of each) forms a large ring-like structure. Thus, nsp7 is an important component of several large protein complexes that are required for replication of the large and complex coronavirus genome. We here report the near-complete NMR backbone and sidechain resonance assignment (1H,13C,15N) of isolated nsp7 from SARS-CoV-2 in solution. Further, we derive the secondary structure and compare it to the previously reported assignments and structure of the SARS-CoV nsp7.
Collapse
Affiliation(s)
- Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Chad Rienstra
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Thomas K Anderson
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA
- Institute for Molecular Virology, University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Rob Kirchdoerfer
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA
- Institute for Molecular Virology, University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Katherine Henzler-Wildman
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA.
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI, 53706, USA.
| |
Collapse
|
14
|
Lee W, Rahimi M, Lee Y, Chiu A. POKY: a software suite for multidimensional NMR and 3D structure calculation of biomolecules. Bioinformatics 2021; 37:3041-3042. [PMID: 33715003 PMCID: PMC8479676 DOI: 10.1093/bioinformatics/btab180] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023] Open
Abstract
SUMMARY The need for an efficient and cost-effective method is compelling in biomolecular NMR. To tackle this problem, we have developed the Poky suite, the revolutionized platform with boundless possibilities for advancing research and technology development in signal detection, resonance assignment, structure calculation and relaxation studies with the help of many automation and user interface tools. This software is extensible and scalable by scripting and batching as well as providing modern graphical user interfaces and a diverse range of modules right out of the box. AVAILABILITY AND IMPLEMENTATION Poky is freely available to non-commercial users at https://poky.clas.ucdenver.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA,To whom correspondence should be addressed.
| | - Mehdi Rahimi
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Yeongjoon Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Abigail Chiu
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
15
|
Solution NMR Determination of the CDHR3 Rhinovirus-C Binding Domain, EC1. Viruses 2021; 13:v13020159. [PMID: 33499226 PMCID: PMC7911512 DOI: 10.3390/v13020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherin Related Family Member 3 (CDHR3) is the identified and required cellular receptor for all virus isolates in the rhinovirus-C species (RV-C). Cryo-EM determinations recently resolved the atomic structure of RV-C15a, and subsequently, a complex of this virus bound to CDHR3 extracellular domain 1 (EC1), the N-terminal portion of this receptor responsible for virus interactions. The EC1 binds to a hypervariable sequence footprint on the virus surface, near the 3-fold axis of icosahedral symmetry. The key contacts involve discontinuous residues from 3 viral proteins, VP1, VP2 and VP3. That single cryo-EM EC1 structure, however, could not resolve whether the virus-receptor interface was structurally adaptable to accommodate multiple virus sequences. We now report the solution NMR determination of CDHR3 EC1, showing that this protein, in fact, is mostly inflexible, particularly in the virus-binding face. The new, higher resolution dataset identifies 3 cis-Pro residues in important loop regions, where they can influence both rigidity and overall protein conformation. The data also provide clarification about the residues involved in essential calcium ion binding, and a potential CDHR3 surface groove feature that may be involved in native protein interactions with cellular partners.
Collapse
|
16
|
Chen CY, Lee W, Renhowe PA, Jung J, Montfort WR. Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051. Protein Sci 2020; 30:448-463. [PMID: 33236796 DOI: 10.1002/pro.4005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Heme-nitric oxide/oxygen binding (H-NOX) domains bind gaseous ligands for signal transduction in organisms spanning prokaryotic and eukaryotic kingdoms. In the bioluminescent marine bacterium Shewanella woodyi (Sw), H-NOX proteins regulate quorum sensing and biofilm formation. In higher animals, soluble guanylyl cyclase (sGC) binds nitric oxide with an H-NOX domain to induce cyclase activity and regulate vascular tone, wound healing and memory formation. sGC also binds stimulator compounds targeting cardiovascular disease. The molecular details of stimulator binding to sGC remain obscure but involve a binding pocket near an interface between H-NOX and coiled-coil domains. Here, we report the full NMR structure for CO-ligated Sw H-NOX in the presence and absence of stimulator compound IWP-051, and its backbone dynamics. Nonplanar heme geometry was retained using a semi-empirical quantum potential energy approach. Although IWP-051 binding is weak, a single binding conformation was found at the interface of the two H-NOX subdomains, near but not overlapping with sites identified in sGC. Binding leads to rotation of the subdomains and closure of the binding pocket. Backbone dynamics are similar across both domains except for two helix-connecting loops, which display increased dynamics that are further enhanced by compound binding. Structure-based sequence analyses indicate high sequence diversity in the binding pocket, but the pocket itself appears conserved among H-NOX proteins. The largest dynamical loop lies at the interface between Sw H-NOX and its binding partner as well as in the interface with the coiled coil in sGC, suggesting a critical role for the loop in signal transduction.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Joon Jung
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
17
|
Sakhrani VV, Hilario E, Caulkins BG, Hatcher-Skeers ME, Fan L, Dunn MF, Mueller LJ. Backbone assignments and conformational dynamics in the S. typhimurium tryptophan synthase α-subunit from solution-state NMR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:341-354. [PMID: 32415580 PMCID: PMC7451264 DOI: 10.1007/s10858-020-00320-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Backbone assignments for the isolated α-subunit of Salmonella typhimurium tryptophan synthase (TS) are reported based on triple resonance solution-state NMR experiments on a uniformly 2H,13C,15N-labeled sample. From the backbone chemical shifts, secondary structure and random coil index order parameters (RCI-S2) are predicted. Titration with the 3-indole-D-glycerol 3'-phosphate analog, N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), leads to chemical shift perturbations indicative of conformational changes from which an estimate of the dissociation constant is obtained. Comparisons of the backbone chemical-shifts, RCI-S2 values, and site-specific relaxation times with and without F9 reveal allosteric changes including modulation in secondary structures and loop rigidity induced upon ligand binding. A comparison is made to the X-ray crystal structure of the α-subunit in the full TS αββα bi-enzyme complex and to two new X-ray crystal structures of the isolated TS α-subunit reported in this work.
Collapse
Affiliation(s)
- Varun V Sakhrani
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Eduardo Hilario
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Bethany G Caulkins
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mary E Hatcher-Skeers
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Li Fan
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Michael F Dunn
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
18
|
Bortnov V, Tonelli M, Lee W, Lin Z, Annis DS, Demerdash ON, Bateman A, Mitchell JC, Ge Y, Markley JL, Mosher DF. Solution structure of human myeloid-derived growth factor suggests a conserved function in the endoplasmic reticulum. Nat Commun 2019; 10:5612. [PMID: 31819058 PMCID: PMC6901522 DOI: 10.1038/s41467-019-13577-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human myeloid-derived growth factor (hMYDGF) is a 142-residue protein with a C-terminal endoplasmic reticulum (ER) retention sequence (ERS). Extracellular MYDGF mediates cardiac repair in mice after anoxic injury. Although homologs of hMYDGF are found in eukaryotes as distant as protozoans, its structure and function are unknown. Here we present the NMR solution structure of hMYDGF, which consists of a short α-helix and ten β-strands distributed in three β-sheets. Conserved residues map to the unstructured ERS, loops on the face opposite the ERS, and the surface of a cavity underneath the conserved loops. The only protein or portion of a protein known to have a similar fold is the base domain of VNN1. We suggest, in analogy to the tethering of the VNN1 nitrilase domain to the plasma membrane via its base domain, that MYDGF complexed to the KDEL receptor binds cargo via its conserved residues for transport to the ER.
Collapse
Affiliation(s)
- Valeriu Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Woonghee Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ziqing Lin
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas S Annis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Omar N Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ying Ge
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
20
|
Lee W, Tonelli M, Wu C, Aceti DJ, Amarasinghe GK, Markley JL. Backbone resonance assignments and secondary structure of Ebola nucleoprotein 600-739 construct. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:315-319. [PMID: 31076990 PMCID: PMC6715526 DOI: 10.1007/s12104-019-09898-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Ebola viral infections have resulted in several deadly epidemics in recent years in West and Central Africa. Because only one of the seven proteins encoded by the viral genome possesses enzymatic activity, disruption of protein-protein interactions is a promising route for antiviral drug development. We carried out a screening campaign to identify small, drug-like compounds that bind to the C-terminal region of the multifunctional Ebola nucleoprotein (eNP) with the objective of discovering ones that disrupt its binding to other Ebola proteins or to the single-stranded RNA genome. In the course of this effort we assigned the backbone 1H, 15N, and 13C resonances of residues 600‒739, the region that contains the critical eVP30 binding region 600‒615 targeted by host factors, and used the assigned chemical shifts to predict secondary structural features and peptide dynamics. This work supports and extends the previous X-ray crystal structures and NMR studies of residues 641‒739. We found that the 600‒739 domain consists of separate regions that are largely disordered and ordered.
Collapse
Affiliation(s)
- Woonghee Lee
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David J Aceti
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA.
| |
Collapse
|
21
|
Lee W, Bahrami A, Dashti HT, Eghbalnia HR, Tonelli M, Westler WM, Markley JL. I-PINE web server: an integrative probabilistic NMR assignment system for proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:213-222. [PMID: 31165321 PMCID: PMC6579641 DOI: 10.1007/s10858-019-00255-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 05/12/2023]
Abstract
Various methods for understanding the structural and dynamic properties of proteins rely on the analysis of their NMR chemical shifts. These methods require the initial assignment of NMR signals to particular atoms in the sequence of the protein, a step that can be very time-consuming. The probabilistic interaction network of evidence (PINE) algorithm for automated assignment of backbone and side chain chemical shifts utilizes a Bayesian probabilistic network model that analyzes sequence data and peak lists from multiple NMR experiments. PINE, which is one of the most popular and reliable automated chemical shift assignment algorithms, has been available to the protein NMR community for longer than a decade. We announce here a new web server version of PINE, called Integrative PINE (I-PINE), which supports more types of NMR experiments than PINE (including three-dimensional nuclear Overhauser enhancement and four-dimensional J-coupling experiments) along with more comprehensive visualization of chemical shift based analysis of protein structure and dynamics. The I-PINE server is freely accessible at http://i-pine.nmrfam.wisc.edu . Help pages and tutorial including browser capability are available at: http://i-pine.nmrfam.wisc.edu/instruction.html . Sample data that can be used for testing the web server are available at: http://i-pine.nmrfam.wisc.edu/examples.html .
Collapse
Affiliation(s)
- Woonghee Lee
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Arash Bahrami
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- NetSeer, Inc, 555 Ellis Street, Suite B, Mountain View, CA, 94043, USA
| | - Hesam T Dashti
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Hamid R Eghbalnia
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William M Westler
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
22
|
Gobeil SMC, Bobay BG, Spicer LD, Venters RA. 15N, 13C and 1H resonance assignments of FKBP12 proteins from the pathogenic fungi Mucor circinelloides and Aspergillus fumigatus. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:207-212. [PMID: 30707421 PMCID: PMC6439170 DOI: 10.1007/s12104-019-09878-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Invasive fungal infections are a leading cause of death in immunocompromised patients and remain difficult to treat since fungal pathogens, like mammals, are eukaryotes and share many orthologous proteins. As a result, current antifungal drugs have limited clinical value, are sometimes toxic, can adversely affect human reaction pathways and are increasingly ineffective due to emerging resistance. One potential antifungal drug, FK506, establishes a ternary complex between the phosphatase, calcineurin, and the 12-kDa peptidyl-prolyl isomerase FK506-binding protein, FKBP12. It has been well established that calcineurin, highly conserved from yeast to mammals, is necessary for invasive fungal disease and is inhibited when in complex with FK506/FKBP12. Unfortunately, FK506 is also immunosuppressive in humans, precluding its usage as an antifungal drug, especially in immunocompromised patients. Whereas the homology between human and fungal calcineurin proteins is > 80%, the human and fungal FKBP12s share 48-58% sequence identity, making them more amenable candidates for drug targeting efforts. Here we report the backbone and sidechain NMR assignments of recombinant FKBP12 proteins from the pathogenic fungi Mucor circinelloides and Aspergillus fumigatus in the apo form and compare these to the backbone assignments of the FK506 bound form. In addition, we report the backbone assignments of the apo and FK506 bound forms of the Homo sapiens FKBP12 protein for evaluation against the fungal forms. These data are the first steps towards defining, at a residue specific level, the impacts of FK506 binding to fungal and mammalian FKBP12 proteins. Our data highlight differences between the human and fungal FKBP12s that could lead to the design of more selective anti-fungal drugs.
Collapse
Affiliation(s)
| | | | - Leonard D Spicer
- Department of Biochemistry, Duke University, Durham, NC, USA
- Department of Radiology, Duke University, Durham, NC, USA
| | | |
Collapse
|
23
|
Applications of In-Cell NMR in Structural Biology and Drug Discovery. Int J Mol Sci 2019; 20:ijms20010139. [PMID: 30609728 PMCID: PMC6337603 DOI: 10.3390/ijms20010139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 12/29/2018] [Indexed: 01/23/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) is a method to provide the structural information of a target at an atomic level under physiological conditions and a full view of the conformational changes of a protein caused by ligand binding, post-translational modifications or protein⁻protein interactions in living cells. Previous in-cell NMR studies have focused on proteins that were overexpressed in bacterial cells and isotopically labeled proteins injected into oocytes of Xenopus laevis or delivered into human cells. Applications of in-cell NMR in probing protein modifications, conformational changes and ligand bindings have been carried out in mammalian cells by monitoring isotopically labeled proteins overexpressed in living cells. The available protocols and successful examples encourage wide applications of this technique in different fields such as drug discovery. Despite the challenges in this method, progress has been made in recent years. In this review, applications of in-cell NMR are summarized. The successful applications of this method in mammalian and bacterial cells make it feasible to play important roles in drug discovery, especially in the step of target engagement.
Collapse
|
24
|
Li D, Hansen AL, Bruschweiler-Li L, Brüschweiler R. Non-Uniform and Absolute Minimal Sampling for High-Throughput Multidimensional NMR Applications. Chemistry 2018; 24:11535-11544. [PMID: 29566285 PMCID: PMC6488043 DOI: 10.1002/chem.201800954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 11/10/2022]
Abstract
Many biomolecular NMR applications can benefit from the faster acquisition of multidimensional NMR data with high resolution and their automated analysis and interpretation. In recent years, a number of non-uniform sampling (NUS) approaches have been introduced for the reconstruction of multidimensional NMR spectra, such as compressed sensing, thereby bypassing traditional Fourier-transform processing. Such approaches are applicable to both biomacromolecules and small molecules and their complex mixtures and can be combined with homonuclear decoupling (pure shift) and covariance processing. For homonuclear 2D TOCSY experiments, absolute minimal sampling (AMS) permits the drastic shortening of measurement times necessary for high-throughput applications for identification and quantification of components in complex biological mixtures in the field of metabolomics. Such TOCSY spectra can be comprehensively represented by graphic theoretical maximal cliques for the identification of entire spin systems and their subsequent query against NMR databases. Integration of these methods in webservers permits the rapid and reliable identification of mixture components. Recent progress is reviewed in this Minireview.
Collapse
Affiliation(s)
- Dawei Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, U.S.A
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, U.S.A
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, U.S.A
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, U.S.A
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, U.S.A
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|