1
|
Vanderlinden G, Vandenberghe R, Vandenbulcke M, Van Laere K. The Current Role of Tau PET Imaging in Neurodegeneration. Semin Nucl Med 2025:S0001-2998(25)00031-5. [PMID: 40263023 DOI: 10.1053/j.semnuclmed.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025]
Abstract
Neurodegenerative tauopathies are characterized by the pathological hyperphosphorylation of tau proteins that subsequently form aggregates. Tau PET tracers with affinity to bind these pathological tau aggregates have been developed to measure disease progression and to support therapeutic drug development. In this review, we summarize the pathophysiology of tau throughout the range of neurodegenerative tauopathies. We outline the available first- and second-generation tau PET tracers, with a focus on new tau PET tracer developments, and discuss the quantification of tau PET images. Next, we summarize how tau PET relates to cerebrospinal fluid and plasma tau biomarkers. Finally, we review the current recommendations on the clinical use of tau PET versus fluid tau biomarkers in diagnosis, prognosis and treatment development.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium; Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Research Group Psychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Geriatric Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Division of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Baidya AT, Dante D, Das B, Wang L, Darreh-Shori T, Kumar R. Discovery and characterization of novel pyridone and furan substituted ligands of choline acetyltransferase. Eur J Pharmacol 2025; 998:177638. [PMID: 40252901 DOI: 10.1016/j.ejphar.2025.177638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The key to the management of two devastating diseases, namely Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) lies in an early diagnosis, which is difficult due to its multifactorial nature. However, a common hallmark of AD and ALS is degeneration of cholinergic system. Choline acetyltransferase (ChAT) has been proposed as a potential target for development of cholinergic-specific biomarker. However, lack of selective, potent, brain permeable molecular probes of ChAT hinder development of ChAT biomarkers. In this study, we have successfully utilised structure-based virtual screening approach and identified two ChAT inhibitors from a database of 1.4 million compounds. The compounds were then subjected to rigorous in vitro characterization. Compound V6 showed Ki value of 11 μM and IC50 value of 21.73 μM, while V15 showed Ki and IC50 values of 4.5 and 9.42 μM, respectively for ChAT enzyme. V6 and V15 showed good solubility of 0.21 mg/mL and 0.17 mg/mL respectively and cytotoxicity analysis indicated no toxicity. We also performed a 200 ns molecular dynamics simulation, which revealed the intricate interaction dynamics for V6 and V15 with ChAT binding pocket. Moreover, the Tanimoto similarity analysis indicated the novelty and structural diversity of the hits. In conclusion, these validated hits provide a platform to develop potent, selective, blood-brain barrier permeable small molecules as chemical probes of ChAT or as Positron Emission Tomography tracer for early diagnosis and/or in vivo monitoring of the effect of new therapeutic candidates in spectrum of neurodegenerative disorders, in which cholinergic deficit is one of the hallmarks.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India
| | - Davide Dante
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India
| | - Lisha Wang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India.
| |
Collapse
|
3
|
Cummings JL, Teunissen CE, Fiske BK, Le Ber I, Wildsmith KR, Schöll M, Dunn B, Scheltens P. Biomarker-guided decision making in clinical drug development for neurodegenerative disorders. Nat Rev Drug Discov 2025:10.1038/s41573-025-01165-w. [PMID: 40185982 DOI: 10.1038/s41573-025-01165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Neurodegenerative disorders are characterized by complex neurobiological changes that are reflected in biomarker alterations detectable in blood, cerebrospinal fluid (CSF) and with brain imaging. As accessible proxies for processes that are difficult to measure, biomarkers are tools that hold increasingly important roles in drug development and clinical trial decision making. In the past few years, biomarkers have been the basis for accelerated approval of new therapies for Alzheimer disease and amyotrophic lateral sclerosis as surrogate end points reasonably likely to predict clinical benefit.Blood-based biomarkers are emerging for Alzheimer disease and other neurodegenerative disorders (for example, Parkinson disease, frontotemporal dementia), and some biomarkers may be informative across multiple disease states. Collection of CSF provides access to biomarkers not available in plasma, including markers of synaptic dysfunction and neuroinflammation. Molecular imaging is identifying an increasing array of targets, including amyloid plaques, neurofibrillary tangles, inflammation, mitochondrial dysfunction and synaptic density. In this Review, we consider how biomarkers can be implemented in clinical trials depending on their context of use, including providing information on disease risk and/or susceptibility, diagnosis, prognosis, pharmacodynamic outcomes, monitoring, prediction of response to therapy and safety. Informed choice of increasingly available biomarkers and rational deployment in clinical trials support drug development decision making and de-risk the drug development process for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Brian K Fiske
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Göteborg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Philip Scheltens
- Alzheimer's Center Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
- EQT Group, Dementia Fund, Stockholm, Sweden
| |
Collapse
|
4
|
Thal DR, Poesen K, Vandenberghe R, De Meyer S. Alzheimer's disease neuropathology and its estimation with fluid and imaging biomarkers. Mol Neurodegener 2025; 20:33. [PMID: 40087672 PMCID: PMC11907863 DOI: 10.1186/s13024-025-00819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the extracellular deposition of the amyloid-β peptide (Aβ) and the intraneuronal accumulation of abnormal phosphorylated tau (τ)-protein (p-τ). Most frequently, these hallmark lesions are accompanied by other co-pathologies in the brain that may contribute to cognitive impairment, such as vascular lesions, intraneuronal accumulation of phosphorylated transactive-response DNA-binding protein 43 (TDP-43), and/or α-synuclein (αSyn) aggregates. To estimate the extent of these AD and co-pathologies in patients, several biomarkers have been developed. Specific tracers target and visualize Aβ plaques, p-τ and αSyn pathology or inflammation by positron emission tomography. In addition to these imaging biomarkers, cerebrospinal fluid, and blood-based biomarker assays reflecting AD-specific or non-specific processes are either already in clinical use or in development. In this review, we will introduce the pathological lesions of the AD brain, the related biomarkers, and discuss to what extent the respective biomarkers estimate the pathology determined at post-mortem histopathological analysis. It became evident that initial stages of Aβ plaque and p-τ pathology are not detected with the currently available biomarkers. Interestingly, p-τ pathology precedes Aβ deposition, especially in the beginning of the disease when biomarkers are unable to detect it. Later, Aβ takes the lead and accelerates p-τ pathology, fitting well with the known evolution of biomarker measures over time. Some co-pathologies still lack clinically established biomarkers today, such as TDP-43 pathology or cortical microinfarcts. In summary, specific biomarkers for AD-related pathologies allow accurate clinical diagnosis of AD based on pathobiological parameters. Although current biomarkers are excellent measures for the respective pathologies, they fail to detect initial stages of the disease for which post-mortem analysis of the brain is still required. Accordingly, neuropathological studies remain essential to understand disease development especially in early stages. Moreover, there is an urgent need for biomarkers reflecting co-pathologies, such as limbic predominant, age-related TDP-43 encephalopathy-related pathology, which is known to modify the disease by interacting with p-τ. Novel biomarker approaches such as extracellular vesicle-based assays and cryptic RNA/peptides may help to better detect these co-pathologies in the future.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Department of Imaging and Pathology, Laboratory for Neuropathology, Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium.
| | - Koen Poesen
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Steffi De Meyer
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Cognitive Neurology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Yokoyama Y, Harada R, Kudo K, Iwata R, Kudo Y, Okamura N, Furumoto S. Transmembrane protein 106B amyloid is a potential off-target molecule of tau PET tracers in the choroid plexus. Nucl Med Biol 2025; 142-143:108986. [PMID: 39647268 DOI: 10.1016/j.nucmedbio.2024.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
PURPOSE Tau positron emission tomography (PET) has become an essential tool for the clinical diagnosis of neurodegenerative diseases and the study of tau pathology in the brain. However, some tau tracers exhibit off-target binding in the basal ganglia, choroid plexus, and meninges. Recently, transmembrane protein 106B (TMEM106B) was identified to form novel amyloid filaments in the brain during aging. In this study, we explored the possibility that TMEM106B aggregates might be responsible for off-target binding of tau PET tracers in the choroid plexus. METHODS The binding properties of 18F-labeled tau and amyloid tracers against choroid plexus tissues from postmortem human brains were evaluated through in vitro autoradiography and in vitro binding assays and compared with histochemical staining. RESULTS Autoradiography showed strong binding of [18F]PM-PBB3 followed by [18F]flortaucipir in the choroid plexus. Immunostaining of the same sections revealed a high level of transmembrane protein 106B aggregates, which are thioflavin-S-labeled Biondi ring structures, in the choroid plexus epithelium and co-localization with PM-PBB3-stained structures. In contrast, co-localization of flortaucipir with TMEM106B immunoreactivity was not confirmed because flortaucipir had a low fluorescence intensity. In vitro binding assays for [18F]PM-PBB3 and [18F]flortaucipir demonstrated high affinities for collagenase A-treated choroid plexus homogenate containing transmembrane protein 106B aggregates. CONCLUSION This study demonstrated high affinity of [18F]PM-PBB3 for TMEM106B aggregates in the choroid plexus. In vivo off-target binding of [18F]PM-PBB3 to the choroid plexus might result from binding to TMEM106B aggregates.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai, Japan; Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan
| | - Ryuichi Harada
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai, Japan; Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan; Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Kaede Kudo
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ren Iwata
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shozo Furumoto
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai, Japan; Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
6
|
Alosco ML, Mejía Pérez J, Culhane JE, Shankar R, Nowinski CJ, Bureau S, Mundada N, Smith K, Amuiri A, Asken B, Groh JR, Miner A, Pettway E, Mosaheb S, Tripodis Y, Windon C, Mercier G, Stern RA, Grinberg LT, Soleimani-Meigooni DN, Christian BT, Betthauser TJ, Stein TD, McKee AC, Mathis CA, Abrahamson EE, Ikonomovic MD, Johnson SC, Mez J, La Joie R, Schonhaut D, Rabinovici GD. 18F-MK-6240 tau PET in patients at-risk for chronic traumatic encephalopathy. Mol Neurodegener 2025; 20:23. [PMID: 39994806 PMCID: PMC11852567 DOI: 10.1186/s13024-025-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Molecular biomarkers of chronic traumatic encephalopathy (CTE) are lacking. We evaluated 18F-MK-6240 tau PET as a biomarker for CTE. Two studies were done: (1) 3H-MK-6240 autoradiography and an in-vitro brain homogenate binding studies on postmortem CTE tissue, (2) an in-vivo 18F-MK-6240 tau PET study in former American football players. METHODS Autoradiography and in-vitro binding studies were done using 3H-MK-6240 on frozen temporal and frontal cortex tissue from six autopsy cases with stage III CTE compared to Alzheimer's disease. Thirty male former National Football League (NFL) players with cognitive concerns (mean age = 58.9, SD = 7.8) completed tau (18F-MK-6240) and Aβ (18F-Florbetapir) PET. Controls included 39 Aβ-PET negative, cognitively normal males (mean age = 65.7, SD = 6.3). 18F-MK-6240 SUVr images were created using 70-90 min post-injection data with inferior cerebellar gray matter as the reference. We compared SUVr between players and controls using voxelwise and region-of-interest approaches. Correlations between 18F-MK-6240 SUVr and cognitive scores were tested. RESULTS All six CTE stage III cases had Braak NFT stage III but no neuritic plaques. Two had Thal Phase 1 for Aβ; one showed a laminar pattern of 3H-MK-6240 autoradiography binding in the superior temporal cortex and less so in the dorsolateral frontal cortex, corresponding to tau-immunoreactive lesions detected using the AT8 antibody (pSer202/pThr205 tau) in adjacent tissue sections. The other CTE cases had low frequencies of cortical tau-immunoreactive deposits and no well-defined autoradiography binding. In-vitro 3H-MK-6240 binding studies to CTE brain homogenates in the case with autoradiography signal indicated high binding affinity (KD = 2.0 ± 0.9 nM, Bmax = 97 ± 24 nM, n = 3). All NFL players had negative Aβ-PET. There was variable, low-to-intermediate intensity 18F-MK-6240 uptake across participants: 16 had no cortical signal, 7 had medial temporal lobe (MTL) uptake, 2 had frontal uptake, and 4 had MTL and frontal uptake. NFL players had higher SUVr in the entorhinal cortex (d = 0.86, p = 0.001), and the parahippocampal gyrus (d = 0.39, p = 0.08). Voxelwise regressions showed increased uptake in NFL players in two bilateral anterior MTL clusters (p < 0.05 FWE). Higher parahippocampal and frontal-temporal SUVrs correlated with worse memory (r = -0.38, r = -0.40) and semantic fluency (r = -0.38, r = -0.48), respectively. CONCLUSION We present evidence of 3H-MK-6240 in-vitro binding to post-mortem CTE tissue homogenates and in vivo 18F-MK-6240 PET binding in the MTL among a subset of participants. Additional studies in larger samples and PET-to-autopsy correlations are required to further elucidate the potential of 18F-MK-6240 to detect tau pathology in CTE.
Collapse
Affiliation(s)
- Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston Medical Center, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jhony Mejía Pérez
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Julia E Culhane
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ranjani Shankar
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Nidhi Mundada
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Karen Smith
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Alinda Amuiri
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Breton Asken
- Department of Clinical & Health Psychology, 1Florida Alzheimer's Disease Research Center, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jenna R Groh
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Annalise Miner
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Erika Pettway
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sydney Mosaheb
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Charles Windon
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Gustavo Mercier
- Molecular Imaging and Nuclear Medicine, Boston Medical Center, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lea T Grinberg
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - David N Soleimani-Meigooni
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Bradley T Christian
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S.Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Psychiatry and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S.Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Psychiatry and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
- School of Medicine and Public Health, Wisconsin Alzheimer's Institute, University of Wisconsin-Madison, Madison, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Renaud La Joie
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Schonhaut
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Department of Neurology, Alzheimer's Disease Research Center, Memory & Aging Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
- University of California, San Francisco (UCSF), Memory and Aging Center MC: 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.
| |
Collapse
|
7
|
Ioannou K, Bucci M, Tzortzakakis A, Savitcheva I, Nordberg A, Chiotis K. Tau PET positivity predicts clinically relevant cognitive decline driven by Alzheimer's disease compared to comorbid cases; proof of concept in the ADNI study. Mol Psychiatry 2025; 30:587-599. [PMID: 39179903 PMCID: PMC11746147 DOI: 10.1038/s41380-024-02672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 08/26/2024]
Abstract
β-amyloid (Aβ) pathology is not always coupled with Alzheimer's disease (AD) relevant cognitive decline. We assessed the accuracy of tau PET to identify Aβ(+) individuals who show prospective disease progression. 396 cognitively unimpaired and impaired individuals with baseline Aβ and tau PET and a follow-up of ≥ 2 years were selected from the Alzheimer's Disease Neuroimaging Initiative dataset. The participants were dichotomously grouped based on either clinical conversion (i.e., change of diagnosis) or cognitive deterioration (fast (FDs) vs. slow decliners (SDs)) using data-driven clustering of the individual annual rates of cognitive decline. To assess cognitive decline in individuals with isolated Aβ(+) or absence of both Aβ and tau (T) pathologies, we investigated the prevalence of non-AD comorbidities and FDG PET hypometabolism patterns suggestive of AD. Baseline tau PET uptake was higher in Aβ(+)FDs than in Aβ(-)FD/SDs and Aβ(+)SDs, independently of baseline cognitive status. Baseline tau PET uptake identified MCI Aβ(+) Converters and Aβ(+)FDs with an area under the curve of 0.85 and 0.87 (composite temporal region of interest) respectively, and was linearly related to the annual rate of cognitive decline in Aβ(+) individuals. The T(+) individuals constituted largely a subgroup of those being Aβ(+) and those clustered as FDs. The most common biomarker profiles in FDs (n = 70) were Aβ(+)T(+) (n = 34, 49%) and Aβ(+)T(-) (n = 19, 27%). Baseline Aβ load was higher in Aβ(+)T(+)FDs (M = 83.03 ± 31.42CL) than in Aβ(+)T(-)FDs (M = 63.67 ± 26.75CL) (p-value = 0.038). Depression diagnosis was more prevalent in Aβ(+)T(-)FDs compared to Aβ(+)T(+)FDs (47% vs. 15%, p-value = 0.021), as were FDG PET hypometabolism pattern not suggestive of AD (86% vs. 50%, p-value = 0.039). Our findings suggest that high tau PET uptake is coupled with both Aβ pathology and accelerated cognitive decline. In cases of isolated Aβ(+), cognitive decline may be associated with changes within the AD spectrum in a multi-morbidity context, i.e., mixed AD.
Collapse
Affiliation(s)
- Konstantinos Ioannou
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Marco Bucci
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Irina Savitcheva
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Rabinovici GD, Knopman DS, Arbizu J, Benzinger TLS, Donohoe KJ, Hansson O, Herscovitch P, Kuo PH, Lingler JH, Minoshima S, Murray ME, Price JC, Salloway SP, Weber CJ, Carrillo MC, Johnson KA. Updated Appropriate Use Criteria for Amyloid and Tau PET: A Report from the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging Workgroup. J Nucl Med 2025:jnumed.124.268756. [PMID: 39778970 DOI: 10.2967/jnumed.124.268756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 01/11/2025] Open
Abstract
The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. Methods: The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate each scenario by consensus as "rarely appropriate," "uncertain," or "appropriate." Ratings were performed separately for amyloid and tau PET as stand-alone modalities. Results: For amyloid PET, 7 scenarios were rated as appropriate, 2 as uncertain, and 8 as rarely appropriate. For tau PET, 5 scenarios were rated as appropriate, 6 as uncertain, and 6 as rarely appropriate. Conclusion: AUC for amyloid and tau PET provide expert recommendations for clinical use of these technologies in the evolving landscape of diagnostics and therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Gil D Rabinovici
- Department of Neurology and Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California;
| | - David S Knopman
- Mayo Clinic Neurology and Neurosurgery, Rochester, Minnesota
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri; Knight Alzheimer's Disease Research Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin J Donohoe
- Nuclear Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Phillip H Kuo
- Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Jennifer H Lingler
- Department of Health and Community Systems, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen P Salloway
- Department of Neurology and Psychiatry the Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
- Butler Hospital Memory and Aging Program, Providence, Rhode Island
| | | | | | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Molecular Neuroimaging, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Wang YT, Ashton NJ, Therriault J, Benedet AL, Macedo AC, Pola I, Aumont E, Di Molfetta G, Fernandez-Arias J, Tan K, Rahmouni N, Servaes SJG, Isaacson R, Chan T, Hosseini SA, Tissot C, Mathotaarachchi S, Stevenson J, Lussier FZ, Pascoal TA, Gauthier S, Blennow K, Zetterberg H, Rosa-Neto P. Identify biological Alzheimer's disease using a novel nucleic acid-linked protein immunoassay. Brain Commun 2025; 7:fcaf004. [PMID: 39845736 PMCID: PMC11753389 DOI: 10.1093/braincomms/fcaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Blood-based biomarkers have been revolutionizing the detection, diagnosis and screening of Alzheimer's disease. Specifically, phosphorylated-tau variants (p-tau181, p-tau217 and p-tau231) are promising biomarkers for identifying Alzheimer's disease pathology. Antibody-based assays such as single molecule arrays immunoassays are powerful tools to investigate pathological changes indicated by blood-based biomarkers and have been studied extensively in the Alzheimer's disease research field. A novel proteomic technology-NUcleic acid Linked Immuno-Sandwich Assay (NULISA)-was developed to improve the sensitivity of traditional proximity ligation assays and offer a comprehensive outlook for 120 protein biomarkers in neurodegenerative diseases. Due to the relative novelty of the NULISA technology in quantifying Alzheimer's disease biomarkers, validation through comparisons with more established methods is required. The main objective of the current study was to determine the capability of p-tau variants quantified using NULISA for identifying abnormal amyloid-β and tau pathology. We assessed 397 participants [mean (standard deviation) age, 64.8 (15.7) years; 244 females (61.5%) and 153 males (38.5%)] from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort where participants had plasma measurements of p-tau181, p-tau217 and p-tau231 from NULISA and single molecule arrays immunoassays. Participants also underwent neuroimaging assessments, including structural MRI, amyloid-PET and tau-PET. Our findings suggest an excellent agreement between plasma p-tau variants quantified using NULISA and single molecule arrays immunoassays. Plasma p-tau217 measured with NULISA shows excellent discriminative accuracy for abnormal amyloid-PET (area under the receiver operating characteristic curve = 0.918, 95% confidence interval = 0.883 to 0.953, P < 0.0001) and tau-PET (area under the receiver operating characteristic curve = 0.939; 95% confidence interval = 0.909 to 0.969, P < 0.0001). It also presents the capability for differentiating tau-PET staging. Validation of the NULISA-measured plasma biomarkers adds to the current analytical methods for Alzheimer's disease diagnosis, screening and staging and could potentially expedite the development of a blood-based biomarker panel.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada H3A 0G4
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 39 Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RX, UK
- NIHR Maudsley Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AZ, UK
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 39 Mölndal, Sweden
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada H3A 0G4
| | - Ilaria Pola
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 39 Mölndal, Sweden
| | - Etienne Aumont
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada H3A 0G4
| | - Guglielmo Di Molfetta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 39 Mölndal, Sweden
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada H3A 0G4
| | - Kubra Tan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 39 Mölndal, Sweden
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada H3A 0G4
| | - Stijn Johannes G Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medicine and New York-Presbyterian, New York, NY 10065, USA
- Department of Neurology, Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL 33431, USA
| | - Tevy Chan
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
| | - Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada H3A 0G4
| | - Cécile Tissot
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
| | - Firoza Z Lussier
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tharick A Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada H3A 0G4
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 101127, P. R.China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 413 45 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London W1CE 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, QC, Canada H4H 1R2
- Montreal Neurological Institute, Montreal, QC, Canada H3A 2B4
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada H3A 0G4
| |
Collapse
|
10
|
Rabinovici GD, Knopman DS, Arbizu J, Benzinger TLS, Donohoe KJ, Hansson O, Herscovitch P, Kuo PH, Lingler JH, Minoshima S, Murray ME, Price JC, Salloway SP, Weber CJ, Carrillo MC, Johnson KA. Updated appropriate use criteria for amyloid and tau PET: A report from the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging Workgroup. Alzheimers Dement 2025; 21:e14338. [PMID: 39776249 PMCID: PMC11772739 DOI: 10.1002/alz.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. METHODS The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate each scenario by consensus as "rarely appropriate," "uncertain," or "appropriate." Ratings were performed separately for amyloid and tau PET as stand-alone modalities. RESULTS For amyloid PET, seven scenarios were rated as appropriate, two as uncertain, and eight as rarely appropriate. For tau PET, five scenarios were rated as appropriate, six as uncertain, and six as rarely appropriate. DISCUSSION AUC for amyloid and tau PET provide expert recommendations for clinical use of these technologies in the evolving landscape of diagnostics and therapeutics for Alzheimer's disease. HIGHLIGHTS A multidisciplinary workgroup convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging updated the appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. The goal of these updated AUC is to assist clinicians in identifying clinical scenarios in which amyloid or tau PET may be useful for guiding the diagnosis and management of patients who have, or are at risk for, cognitive decline These updated AUC are intended for dementia specialists who spend a significant proportion of their clinical effort caring for patients with cognitive complaints, as well as serve as a general reference for a broader audience interested in implementation of amyloid and tau PET in clinical practice.
Collapse
Affiliation(s)
- Gil D. Rabinovici
- Department of Neurology and Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Javier Arbizu
- Department of Nuclear MedicineUniversity of Navarra ClinicPamplonaSpain
| | - Tammie L. S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Knight Alzheimer's Disease Research CenterWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Kevin J. Donohoe
- Nuclear Medicine, Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Oskar Hansson
- Department of Clinical Sciences MalmöClinical Memory Research UnitFaculty of MedicineLund UniversityLundSweden
- Memory Clinic, Skåne University HospitalSkånes universitetssjukhusMalmöSweden
| | - Peter Herscovitch
- Positron Emission Tomography DepartmentNational Institutes of Health Clinical CenterBethesdaMarylandUSA
| | - Phillip H. Kuo
- Medical Imaging, Medicine, and Biomedical EngineeringUniversity of ArizonaTucsonArizonaUSA
| | - Jennifer H. Lingler
- Department of Health and Community SystemsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Satoshi Minoshima
- Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUtahUSA
| | | | - Julie C. Price
- Department of RadiologyMassachusetts General Hospital, BostonCharlestownMassachusettsUSA
| | - Stephen P. Salloway
- Department of Neurology and Psychiatry the Warren Alpert School of Medicine at Brown UniversityProvidenceRhode IslandUSA
- Butler Hospital Memory and Aging ProgramProvidenceRhode IslandUSA
| | | | - Maria C. Carrillo
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Keith A. Johnson
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Molecular Neuroimaging, Massachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Departments of Neurology and RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
11
|
Lavrova A, Satoh R, Pham NTT, Nguyen A, Jack CR, Petersen RC, Ross RR, Dickson DW, Lowe VJ, Whitwell JL, Josephs KA. Investigating the feasibility of 18F-flortaucipir PET imaging in the antemortem diagnosis of primary age-related tauopathy (PART): An observational imaging-pathological study. Alzheimers Dement 2024; 20:8605-8614. [PMID: 39417408 DOI: 10.1002/alz.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is characterized by neurofibrillary tangles and minimal β-amyloid deposition, diagnosed postmortem. This study investigates 18F-flortaucipir (FTP) PET imaging for antemortem PART diagnosis. METHODS We analyzed FTP PET scans from 50 autopsy-confirmed PART and 13 control subjects. Temporal lobe uptake was assessed both qualitatively and quantitatively. Demographic and clinicopathological characteristics and voxel-level uptake using SPM12 were compared between FTP-positive and FTP-negative cases. Intra-reader reproducibility was evaluated with Krippendorff's alpha. RESULTS Minimal/mild and moderate FTP uptake was seen in 32% of PART cases and 62% of controls, primarily in the left inferior temporal lobe. No demographic or clinicopathological differences were found between FTP-positive and FTP-negative cases. High intra-reader reproducibility (α = 0.83) was noted. DISCUSSION FTP PET imaging did not show a specific uptake pattern for PART diagnosis, indicating that in vivo PART identification using FTP PET is challenging. Similar uptake in controls suggests non-specific uptake in PART. HIGHLIGHTS 18F-flortaucipir (FTP) PET scans were analyzed for diagnosing PART antemortem. 32% of PART cases had minimal/mild FTP uptake in the left inferior temporal lobe. Similar to PART FTP uptake was found in 62% of control subjects. No specific uptake pattern was found, challenging in vivo PART diagnosis.
Collapse
Affiliation(s)
- Anna Lavrova
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryota Satoh
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Reichard R Ross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Vermeiren MR, Somsen J, Luurtsema G, Reesink FE, Verwey NA, Hempenius L, Tolboom N, Biessels GJ, Biesbroek JM, Vernooij MW, Veldhuijzen van Zanten SEM, Seelaar H, Coomans EM, Teunissen CE, Lemstra AW, van Harten AC, Visser LNC, van der Flier WM, van de Giessen E, Ossenkoppele R. The impact of tau-PET in a selected memory clinic cohort: rationale and design of the TAP-TAU study. Alzheimers Res Ther 2024; 16:230. [PMID: 39427210 PMCID: PMC11490118 DOI: 10.1186/s13195-024-01588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Tau-PET is a diagnostic tool with high sensitivity and specificity for discriminating Alzheimer's disease (AD) dementia from other neurodegenerative disorders in well-controlled research environments. The role of tau-PET in real-world clinical practice, however, remains to be established. The aim of the TAP-TAU study is therefore to investigate the impact of tau-PET in clinical practice. METHODS TAP-TAU is a prospective, longitudinal multi-center study in 300 patients (≥ 50 years old) with mild cognitive impairment or mild dementia across five Dutch memory clinics. Patients are eligible if diagnostic certainty is < 85% after routine dementia screening and if the differential diagnosis includes AD. More specifically, we will include patients who (i) are suspected of having mixed pathology (e.g., AD and vascular pathology), (ii) have an atypical clinical presentation, and/or (iii) show conflicting or inconclusive outcomes on other tests (e.g., magnetic resonance imaging or cerebrospinal fluid). Participants will undergo a [18F]flortaucipir tau-PET scan, blood-based biomarker sampling, and fill out questionnaires on patient reported outcomes and experiences. The primary outcomes are change (pre- versus post- tau-PET) in diagnosis, diagnostic certainty, patient management and patient anxiety and uncertainty. Secondary outcome measures are head-to-head comparisons between tau-PET and less invasive and lower cost diagnostic tools such as novel blood-based biomarkers and artificial intelligence-based classifiers. RESULTS TAP-TAU has been approved by the Medical Ethics Committee of the Amsterdam UMC. The first participant is expected to be included in October 2024. CONCLUSIONS In TAP-TAU, we will investigate the added clinical value of tau-PET in a real-world clinical setting, including memory clinic patients with diagnostic uncertainty after routine work-up. Findings of our study may contribute to recommendations regarding which patients would benefit most from assessment with tau-PET. This study is timely in the dawning era of disease modifying treatments as an accurate etiological diagnosis becomes increasingly important. TRIAL REGISTRATION This trial is registered and authorized on December 21st, 2023 in EU Clinical Trials with registration number 2023-505430-10-00.
Collapse
Affiliation(s)
- Marie R Vermeiren
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands.
| | - Joost Somsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fransje E Reesink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nicolaas A Verwey
- Department of Neurology, Medical Center Leeuwarden, Leeuwarden, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | | | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Neurology, Diakonessenhuis Hospital, Utrecht, Netherlands
| | - Meike W Vernooij
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | | | - Afina W Lemstra
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Argonde C van Harten
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Leonie N C Visser
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Psychology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Epidemiology and Data Science, Amsterdam UMC, Amsterdam, Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands.
- Clinical Memory Research Unit, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Vermeiren MR, Calandri IL, van der Flier WM, van de Giessen E, Ossenkoppele R. Survey among experts on the future role of tau-PET in clinical practice and trials. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70033. [PMID: 39583643 PMCID: PMC11582687 DOI: 10.1002/dad2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Recent advancements in Alzheimer's disease (AD) biomarker research and clinical trials prompt reflection on the value and consequently appropriate use of tau positron emission tomography (tau-PET) in the future. METHODS We conducted an online survey among dementia and PET experts worldwide to investigate the anticipated future role of tau-PET in clinical practice and trials. RESULTS Two hundred sixty-eight dementia experts, comprising 143 clinicians and 121 researchers, covering six continents participated. The vast majority (90%) fostered a positive attitude toward the added value of tau-PET in clinical practice, particularly for staging, diagnosing, monitoring, and prognostication in a cognitively impaired memory clinic population. Experts anticipated an important role for tau-PET for participant selection (76%-100%) and measuring endpoints (75%-97%), in both anti-amyloid and anti-tau drug trials. DISCUSSION Our global survey study shows that dementia experts envision an important role for tau-PET in the future, both in clinical practice and in drug trials, beyond current guidelines and practices. Highlights Dementia experts envision an important role for tau-PET in the future.Experts indicate that a tau-PET scan could influence patient management.Experts anticipate the utility of tau-PET for participant selection and endpoints in drug trials.There is a gap between the anticipated usefulness of tau-PET and current clinical practices.
Collapse
Affiliation(s)
- Marie R. Vermeiren
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
| | - Ismael L. Calandri
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Department of Cognitive NeurologyFleniBuenos AiresArgentina
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
- Epidemiology and Data ScienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Elsmarieke van de Giessen
- Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
- Clinical Memory Research UnitLund UniversityLundSweden
| |
Collapse
|
14
|
Freiburghaus T, Pawlik D, Oliveira Hauer K, Ossenkoppele R, Strandberg O, Leuzy A, Rittmo J, Tremblay C, Serrano GE, Pontecorvo MJ, Beach TG, Smith R, Hansson O. Association of in vivo retention of [ 18f] flortaucipir pet with tau neuropathology in corresponding brain regions. Acta Neuropathol 2024; 148:44. [PMID: 39297933 DOI: 10.1007/s00401-024-02801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
[18F]Flortaucipir is an FDA-approved tau-PET tracer that is increasingly utilized in clinical settings for the diagnosis of Alzheimer's disease. Still, a large-scale comparison of the in vivo PET uptake to quantitative post-mortem tau pathology and to other co-pathologies is lacking. Here, we examined the correlation between in vivo [18F]flortaucipir PET uptake and quantitative post-mortem tau pathology in corresponding brain regions from the AVID A16 end-of-life study (n = 63). All participants underwent [18F]flortaucipir PET scans prior to death, followed by a detailed post-mortem neuropathological examination using AT8 (tau) immunohistochemistry. Correlations between [18F]flortaucipir standardized uptake value ratios (SUVRs) and AT8 immunohistochemistry were assessed across 18 regions-of-interest (ROIs). To assess [18F]flortaucipir specificity and level of detection for tau pathology, correlations between [18F]flortaucipir SUVR and neuritic plaque score and TDP-43 stage were also computed and retention was further assessed in individuals with possible primary age-related tauopathy (PART), defined as Thal phase ≤ 2 and Braak stage I-IV. We found modest-to-strong correlations between in vivo [18F]flortaucipir SUVR and post-mortem tau pathology density in corresponding brain regions in all neocortical regions analyzed (rho-range = 0.61-0.79, p < 0.0001 for all). The detection threshold of [18F]flortaucipir PET was determined to be 0.85% of surface area affected by tau pathology in a temporal meta-ROI, and 0.15% in a larger cortical meta-ROI. No significant associations were found between [18F]flortaucipir SUVRs and post-mortem tau pathology in individuals with possible PART. Further, there was no correlation observed between [18F]flortaucipir and level of amyloid-β neuritic plaque load (rho-range = - 0.16-0.12; p = 0.48-0.61) or TDP-43 stage (rho-range = - 0.10 to - 0.30; p = 0.18-0.65). In conclusion, our in vivo vs post-mortem study shows that the in vivo [18F]flortaucipir PET signal primarily reflects tau pathology, also at relatively low densities of tau proteinopathy, and does not bind substantially to tau neurites in neuritic plaques or in individuals with PART.
Collapse
Affiliation(s)
- Tove Freiburghaus
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Daria Pawlik
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Kevin Oliveira Hauer
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ, Amsterdam, The Netherlands
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jonathan Rittmo
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | | | | | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden.
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, 20502, Malmö, Sweden.
| |
Collapse
|
15
|
Soleimani-Meigooni DN, Smith R, Provost K, Lesman-Segev OH, Allen IE, Chen MK, Cho H, Edwards L, Janelidze S, La Joie R, Mundada N, Ossenkoppele R, Stomrud E, Strandberg O, Strom A, Boxer AL, Dage JL, Gorno-Tempini ML, Kramer JH, Miller BL, Rojas JC, Rosen HJ, Lyoo CH, Hansson O, Rabinovici GD. Head-to-Head Comparison of Tau and Amyloid Positron Emission Tomography Visual Reads for Differential Diagnosis of Neurodegenerative Disorders: An International, Multicenter Study. Ann Neurol 2024; 96:476-487. [PMID: 38888212 PMCID: PMC11324380 DOI: 10.1002/ana.27008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE We compared the accuracy of amyloid and [18F]Flortaucipir (FTP) tau positron emission tomography (PET) visual reads for distinguishing patients with mild cognitive impairment (MCI) or dementia with fluid biomarker support of Alzheimer's disease (AD). METHODS Participants with FTP-PET, amyloid-PET, and diagnosis of dementia-AD (n = 102), MCI-AD (n = 41), non-AD diseases (n = 76), and controls (n = 20) were included. AD status was determined independent of PET by cerebrospinal fluid or plasma biomarkers. The mean age was 66.9 years, and 44.8% were women. Three readers interpreted scans blindly and independently. Amyloid-PET was classified as positive/negative using tracer-specific criteria. FTP-PET was classified as positive with medial temporal lobe (MTL) binding as the minimum uptake indicating AD tau (tau-MTL+), positive with posterolateral temporal or extratemporal cortical binding in an AD-like pattern (tau-CTX+), or negative. The majority of scan interpretations were used to calculate diagnostic accuracy of visual reads in detecting MCI/dementia with fluid biomarker support for AD (MCI/dementia-AD). RESULTS Sensitivity of amyloid-PET for MCI/dementia-AD was 95.8% (95% confidence interval 91.1-98.4%), which was comparable to tau-CTX+ 92.3% (86.7-96.1%, p = 0.67) and tau-MTL+ 97.2% (93.0-99.2%, p = 0.27). Specificity of amyloid-PET for biomarker-negative healthy and disease controls was 84.4% (75.5-91.0%), which was like tau-CTX+ 88.5% (80.4-94.1%, p = 0.34), and trended toward being higher than tau-MTL+ 75.0% (65.1-83.3%, p = 0.08). Tau-CTX+ had higher specificity than tau-MTL+ (p = 0.0002), but sensitivity was lower (p = 0.02), driven by decreased sensitivity for MCI-AD (80.5% [65.1-91.2] vs. 95.1% [83.5-99.4], p = 0.03). INTERPRETATION Amyloid- and tau-PET visual reads have similar sensitivity/specificity for detecting AD in cognitively impaired patients. Visual tau-PET interpretations requiring cortical binding outside MTL increase specificity, but lower sensitivity for MCI-AD. ANN NEUROL 2024;96:476-487.
Collapse
Affiliation(s)
- David N. Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Karine Provost
- Department of Nuclear Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, Canada
| | - Orit H. Lesman-Segev
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Miranda K. Chen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Lauren Edwards
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Clinical Psychology, San Diego State University & University of California, San Diego, CA, USA
| | | | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Erik Stomrud
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Health Sciences and Technology, Harvard & Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Jeffrey L. Dage
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Julio C. Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard J. Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Chul H. Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Josephs KA, Tosakulwong N, Weigand SD, Graff-Radford J, Schwarz CG, Senjem ML, Machulda MM, Kantarci K, Knopman DS, Nguyen A, Reichard RR, Dickson DW, Petersen RC, Lowe VJ, Jack CR, Whitwell JL. Flortaucipir PET uncovers relationships between tau and amyloid-β in primary age-related tauopathy and Alzheimer's disease. Sci Transl Med 2024; 16:eado8076. [PMID: 39047115 PMCID: PMC11423951 DOI: 10.1126/scitranslmed.ado8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
[18F]-Flortaucipir positron emission tomography (PET) is considered a good biomarker of Alzheimer's disease. However, it is unknown how flortaucipir is associated with the distribution of tau across brain regions and how these associations are influenced by amyloid-β. It is also unclear whether flortaucipir can detect tau in definite primary age-related tauopathy (PART). We identified 248 individuals at Mayo Clinic who had undergone [18F]-flortaucipir PET during life, had died, and had undergone an autopsy, 239 cases of which also had amyloid-β PET. We assessed nonlinear relationships between flortaucipir uptake in nine medial temporal and cortical regions, Braak tau stage, and Thal amyloid-β phase using generalized additive models. We found that flortaucipir uptake was greater with increasing tau stage in all regions. Increased uptake at low tau stages in medial temporal regions was only observed in cases with a high amyloid-β phase. Flortaucipir uptake linearly increased with the amyloid-β phase in medial temporal and cortical regions. The highest flortaucipir uptake occurred with high Alzheimer's disease neuropathologic change (ADNC) scores, followed by low-intermediate ADNC scores, then PART, with the entorhinal cortex providing the best differentiation between groups. Flortaucipir PET had limited ability to detect PART, and imaging-defined PART did not correspond with pathologically defined PART. In summary, spatial patterns of flortaucipir mirrored the histopathological tau distribution, were influenced by the amyloid-β phase, and were useful for distinguishing different ADNC scores and PART.
Collapse
Affiliation(s)
- Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
17
|
Tetzloff KA, Martin PR, Duffy JR, Utianski RL, Clark HM, Botha H, Machulda MM, Thu Pham NT, Schwarz CG, Senjem ML, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Longitudinal flortaucipir, metabolism and volume differ between phonetic and prosodic speech apraxia. Brain 2024; 147:1696-1709. [PMID: 38217867 PMCID: PMC11068100 DOI: 10.1093/brain/awae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024] Open
Abstract
Progressive apraxia of speech (PAOS) is a neurodegenerative motor-speech disorder that most commonly arises from a four-repeat tauopathy. Recent studies have established that progressive apraxia of speech is not a homogenous disease but rather there are distinct subtypes: the phonetic subtype is characterized by distorted sound substitutions, the prosodic subtype by slow and segmented speech and the mixed subtype by a combination of both but lack of predominance of either. There is some evidence that cross-sectional patterns of neurodegeneration differ across subtypes, although it is unknown whether longitudinal patterns of neurodegeneration differ. We examined longitudinal patterns of atrophy on MRI, hypometabolism on 18F-fluorodeoxyglucose-PET and tau uptake on flortaucipir-PET in a large cohort of subjects with PAOS that had been followed for many years. Ninety-one subjects with PAOS (51 phonetic, 40 prosodic) were recruited by the Neurodegenerative Research Group. Of these, 54 (27 phonetic, 27 prosodic) returned for annual follow-up, with up to seven longitudinal visits (total visits analysed = 217). Volumes, metabolism and flortaucipir uptake were measured for subcortical and cortical regions, for all scans. Bayesian hierarchical models were used to model longitudinal change across imaging modalities with PAOS subtypes being compared at baseline, 4 years from baseline, and in terms of rates of change. The phonetic group showed smaller volumes and worse metabolism in Broca's area and the striatum at baseline and after 4 years, and faster rates of change in these regions, compared with the prosodic group. There was also evidence of faster spread of hypometabolism and flortaucipir uptake into the temporal and parietal lobes in the phonetic group. In contrast, the prosodic group showed smaller cerebellar dentate, midbrain, substantia nigra and thalamus volumes at baseline and after 4 years, as well as faster rates of atrophy, than the phonetic group. Greater hypometabolism and flortaucipir uptake were also observed in the cerebellar dentate and substantia nigra in the prosodic group. Mixed findings were observed in the supplementary motor area and precentral cortex, with no clear differences observed across phonetic and prosodic groups. These findings support different patterns of disease spread in PAOS subtypes, with corticostriatal patterns in the phonetic subtype and brainstem and thalamic patterns in the prosodic subtype, providing insight into the pathophysiology and heterogeneity of PAOS.
Collapse
Affiliation(s)
| | - Peter R Martin
- Department of Quantitative Health Sciences (Biostatistics), Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry (Neuropsychology), Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
18
|
Gérard T, Colmant L, Malotaux V, Salman Y, Huyghe L, Quenon L, Dricot L, Ivanoiu A, Lhommel R, Hanseeuw B. The spatial extent of tauopathy on [ 18F]MK-6240 tau PET shows stronger association with cognitive performances than the standard uptake value ratio in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:1662-1674. [PMID: 38228971 PMCID: PMC11043108 DOI: 10.1007/s00259-024-06603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
PURPOSE [18F]MK-6240, a second-generation tau PET tracer, is increasingly used for the detection and the quantification of in vivo cerebral tauopathy in Alzheimer's disease (AD). Given that neurological symptoms are better explained by the topography rather than by the nature of brain lesions, our study aimed to evaluate whether cognitive impairment would be more closely associated with the spatial extent than with the intensity of tau-PET signal, as measured by the standard uptake value ratio (SUVr). METHODS [18F]MK6240 tau-PET data from 82 participants in the AD spectrum were quantified in three different brain regions (Braak ≤ 2, Braak ≤ 4, and Braak ≤ 6) using SUVr and the extent of tauopathy (EOT, percentage of voxels with SUVr ≥ 1.3). PET data were first compared between diagnostic categories, and ROC curves were computed to evaluate sensitivity and specificity. PET data were then correlated to cognitive performances and cerebrospinal fluid (CSF) tau values. RESULTS The EOT in the Braak ≤ 2 region provided the highest diagnostic accuracies, distinguishing between amyloid-negative and positive clinically unimpaired individuals (threshold = 9%, sensitivity = 79%, specificity = 82%) as well as between prodromal AD and preclinical AD (threshold = 38%, sensitivity = 81%, specificity = 93%). The EOT better correlated with cognition than SUVr (∆R2 + 0.08-0.09) with the best correlation observed for EOT in the Braak ≤ 4 region (R2 = 0.64). Cognitive performances were more closely associated with PET metrics than with CSF values. CONCLUSIONS Quantifying [18F]MK-6240 tau PET in terms of EOT rather than SUVr significantly increases the correlation with cognitive performances. Quantification in the mesiotemporal lobe is the most useful to diagnose preclinical AD or prodromal AD.
Collapse
Affiliation(s)
- Thomas Gérard
- Nuclear Medicine Department, Cliniques Universitaires Saint Luc, Brussels, Belgium.
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium.
| | - Lise Colmant
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
- Neurology Department, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Vincent Malotaux
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
| | - Yasmine Salman
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
| | - Lara Huyghe
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
| | - Lisa Quenon
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
- Neurology Department, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
| | - Adrian Ivanoiu
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
- Neurology Department, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Renaud Lhommel
- Nuclear Medicine Department, Cliniques Universitaires Saint Luc, Brussels, Belgium
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Hanseeuw
- Institute of Neurosciences, Université Catholique de Louvain, Brussels, Belgium
- Neurology Department, Cliniques Universitaires Saint Luc, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Mathoux G, Boccalini C, Lathuliere A, Scheffler M, Frisoni GB, Garibotto V. Neuroimaging-guided diagnosis of possible FTLD-FUS pathology: a case report. EJNMMI Res 2024; 14:35. [PMID: 38573556 PMCID: PMC10994884 DOI: 10.1186/s13550-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND This case report presents a patient with progressive memory loss and choreiform movements. CASE PRESENTATION Neuropsychological tests indicated multi-domain amnestic mild cognitive impairment (aMCI), and neurological examination revealed asymmetrical involuntary hyperkinetic movements. Imaging studies showed severe left-sided atrophy and hypometabolism in the left frontal and temporoparietal cortex. [18F]Flortaucipir PET exhibited moderately increased tracer uptake in hypometabolic areas. The diagnosis initially considered Alzheimer's disease (AD), frontotemporal degeneration (FTD), and corticobasal degeneration (CBD), cerebral hemiatrophy syndrome, but imaging and cerebrospinal fluid analysis excluded AD and suggested fused-in-sarcoma-associated FTD (FTLD-FUS), a subtype of the behavioural variant of FTD. CONCLUSIONS Our case highlights that despite the lack of specific FUS biomarkers the combination of clinical features and neuroimaging biomarkers can guide choosing the most likely differential diagnosis in a complex neurological case. Imaging in particular allowed an accurate measure of the topography and severity of neurodegeneration and the exclusion of AD-related pathology.
Collapse
Affiliation(s)
- Gregory Mathoux
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Cecilia Boccalini
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Faculty of Medicine, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Aurelien Lathuliere
- Department of Rehabilitation and Geriatrics, Memory Clinic, Geneva University and University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- Department of Rehabilitation and Geriatrics, Memory Clinic, Geneva University and University Hospitals, Geneva, Switzerland
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland.
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Faculty of Medicine, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland.
- CIBM Center for Biomedical Imaging, Geneva, Switzerland.
- Neuroimaging and Innovative Molecular Traces Lab, Hôpitaux Universitaires de Genève (HUG) & University of Genève, Rue Gabrielle-Perret-Gentil 4, Genève 14, CH-1205, Switzerland.
| |
Collapse
|
20
|
Costoya-Sánchez A, Moscoso A, Sobrino T, Ruibal Á, Grothe MJ, Schöll M, Silva-Rodríguez J, Aguiar P. Partial volume correction in longitudinal tau PET studies: is it really needed? Neuroimage 2024; 289:120537. [PMID: 38367651 DOI: 10.1016/j.neuroimage.2024.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND [18F]flortaucipir (FTP) tau PET quantification is known to be affected by non-specific binding in off-target regions. Although partial volume correction (PVC) techniques partially account for this effect, their inclusion may also introduce noise and variability into the quantification process. While the impact of these effects has been studied in cross-sectional designs, the benefits and drawbacks of PVC on longitudinal FTP studies is still under scrutiny. The aim of this work was to study the performance of the most common PVC techniques for longitudinal FTP imaging. METHODS A cohort of 247 individuals from the Alzheimer's Disease Neuroimaging Initiative with concurrent baseline FTP-PET, amyloid-beta (Aβ) PET and structural MRI, as well as with follow-up FTP-PET and MRI were included in the study. FTP-PET scans were corrected for partial volume effects using Meltzer's, a simple and popular analytical PVC, and both the region-based voxel-wise (RBV) and the iterative Yang (iY) corrections. FTP SUVR values and their longitudinal rates of change were calculated for regions of interest (ROI) corresponding to Braak Areas I-VI, for a temporal meta-ROI and for regions typically displaying off-target FTP binding (caudate, putamen, pallidum, thalamus, choroid plexus, hemispheric white matter, cerebellar white matter, and cerebrospinal fluid). The longitudinal correlation between binding in off-target and target ROIs was analysed for the different PVCs. Additionally, group differences in longitudinal FTP SUVR rates of change between Aβ-negative (A-) and Aβ-positive (A+), and between cognitively unimpaired (CU) and cognitively impaired (CI) individuals, were studied. Finally, we compared the ability of different partial-volume-corrected baseline FTP SUVRs to predict longitudinal brain atrophy and cognitive decline. RESULTS Among off-target ROIs, hemispheric white matter showed the highest correlation with longitudinal FTP SUVR rates from cortical target ROIs (R2=0.28-0.82), with CSF coming in second (R2=0.28-0.42). Application of voxel-wise PVC techniques minimized this correlation, with RBV performing best (R2=0.00-0.07 for hemispheric white matter). PVC also increased group differences between CU and CI individuals in FTP SUVR rates of change across all target regions, with RBV again performing best (No PVC: Cohen's d = 0.26-0.66; RBV: Cohen's d = 0.43-0.74). These improvements were not observed for differentiating A- from A+ groups. Additionally, voxel-wise PVC techniques strengthened the correlation between baseline FTP SUVR and longitudinal grey matter atrophy and cognitive decline. CONCLUSION Quantification of longitudinal FTP SUVR rates of change is affected by signal from off-target regions, especially the hemispheric white matter and the CSF. Voxel-wise PVC techniques significantly reduce this effect. PVC provided a significant but modest benefit for tasks involving the measurement of group-level longitudinal differences. These findings are particularly relevant for the estimations of sample sizes and analysis methodologies of longitudinal group studies.
Collapse
Affiliation(s)
- Alejandro Costoya-Sánchez
- Molecular Imaging Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Av. Barcelona SN, 15782, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Tomás Sobrino
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Ruibal
- Molecular Imaging Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Av. Barcelona SN, 15782, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain
| | - Michel J Grothe
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Reina Sofía Alzheimer's Centre, CIEN Foundation, ISCIII, Madrid, 28031, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden; Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Reina Sofía Alzheimer's Centre, CIEN Foundation, ISCIII, Madrid, 28031, Spain.
| | - Pablo Aguiar
- Molecular Imaging Group. Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela, Av. Barcelona SN, 15782, Santiago de Compostela, Galicia, Spain; Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Travesía da Choupana s/n, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Lu J, Ge J, Yu H, Zhao G, Chen X. Colocalization of Increased Midbrain Signals in Neuroinflammation and Tau PET Imaging Suggests the Diagnosis of Progressive Supranuclear Palsy. Clin Nucl Med 2024; 49:346-347. [PMID: 38271226 DOI: 10.1097/rlu.0000000000005062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
ABSTRACT Clinical overlap with multiple other neurological diseases makes the diagnosis of autoimmune encephalitis challenging; consequently, a broad range of neurological diseases are misdiagnosed as autoimmune encephalitis. A 58-year-old man presented with abnormal behavior, irritability for 3 years, oculomotor disturbance, unsteady walking, and dysphagia and was suspected as having anti-dipeptidyl-peptidase-like protein 6 (DPPX) encephalitis as the anti-DPPX antibody was positive in the serum. However, the therapeutic effect of immunotherapy was unsatisfactory. Subsequently, colocalization of increased midbrain signals was observed in neuroinflammation PET using [ 18 F]DPA-714 and in tau PET using [ 18 F]florzolotau, suggesting the diagnosis of progressive supranuclear palsy.
Collapse
|
22
|
Su Y, Protas H, Luo J, Chen K, Alosco ML, Adler CH, Balcer LJ, Bernick C, Au R, Banks SJ, Barr WB, Coleman MJ, Dodick DW, Katz DI, Marek KL, McClean MD, McKee AC, Mez J, Daneshvar DH, Palmisano JN, Peskind ER, Turner RW, Wethe JV, Rabinovici G, Johnson K, Tripodis Y, Cummings JL, Shenton ME, Stern RA, Reiman EM. Flortaucipir tau PET findings from former professional and college American football players in the DIAGNOSE CTE research project. Alzheimers Dement 2024; 20:1827-1838. [PMID: 38134231 PMCID: PMC10984430 DOI: 10.1002/alz.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Tau is a key pathology in chronic traumatic encephalopathy (CTE). Here, we report our findings in tau positron emission tomography (PET) measurements from the DIAGNOSE CTE Research Project. METHOD We compare flortaucipir PET measures from 104 former professional players (PRO), 58 former college football players (COL), and 56 same-age men without exposure to repetitive head impacts (RHI) or traumatic brain injury (unexposed [UE]); characterize their associations with RHI exposure; and compare players who did or did not meet diagnostic criteria for traumatic encephalopathy syndrome (TES). RESULTS Significantly elevated flortaucipir uptake was observed in former football players (PRO+COL) in prespecified regions (p < 0.05). Association between regional flortaucipir uptake and estimated cumulative head impact exposure was only observed in the superior frontal region in former players over 60 years old. Flortaucipir PET was not able to differentiate TES groups. DISCUSSION Additional studies are needed to further understand tau pathology in CTE and other individuals with a history of RHI.
Collapse
Affiliation(s)
- Yi Su
- Banner Alzheimer's Institute and Arizona Alzheimer's ConsortiumPhoenixArizonaUSA
| | - Hillary Protas
- Banner Alzheimer's Institute and Arizona Alzheimer's ConsortiumPhoenixArizonaUSA
| | - Ji Luo
- Banner Alzheimer's Institute and Arizona Alzheimer's ConsortiumPhoenixArizonaUSA
| | - Kewei Chen
- Banner Alzheimer's Institute and Arizona Alzheimer's ConsortiumPhoenixArizonaUSA
| | - Michael L. Alosco
- Department of NeurologyBoston University Alzheimer's Disease Research CenterBoston University CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Charles H. Adler
- Department of NeurologyMayo Clinic College of Medicine, Mayo Clinic ArizonaScottsdaleArizonaUSA
| | - Laura J. Balcer
- Departments of NeurologyNYU Grossman School of MedicineNew YorkNew YorkUSA
- Department of Population Health and OphthalmologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain HealthLas VegasNevadaUSA
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Rhoda Au
- Department of NeurologyBoston University Alzheimer's Disease Research CenterBoston University CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyFraminghamMassachusettsUSA
- Slone Epidemiology Center; Departments of Anatomy & Neurobiology, Neurology, and MedicineDepartment of EpidemiologyBoston University Chobanian & Avedisian School of Medicine; Boston University School of Public HealthBostonMassachusettsUSA
| | - Sarah J. Banks
- Departments of Neuroscience and PsychiatryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - William B. Barr
- Departments of NeurologyNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Michael J. Coleman
- Departments of Psychiatry and RadiologyPsychiatry Neuroimaging LaboratoryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David W. Dodick
- Department of NeurologyMayo Clinic College of Medicine, Mayo Clinic ArizonaScottsdaleArizonaUSA
| | - Douglas I. Katz
- Department of NeurologyBoston University Alzheimer's Disease Research CenterBoston University CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Encompass Health Braintree Rehabilitation HospitalBraintreeMassachusettsUSA
| | - Kenneth L. Marek
- Institute for Neurodegenerative Disorders, Invicro, LLCNew HavenConnecticutUSA
| | - Michael D. McClean
- Department of Environmental HealthBoston University School of Public HealthBostonMassachusettsUSA
| | - Ann C. McKee
- Department of NeurologyBoston University Alzheimer's Disease Research CenterBoston University CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
| | - Jesse Mez
- Department of NeurologyBoston University Alzheimer's Disease Research CenterBoston University CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Framingham Heart StudyFraminghamMassachusettsUSA
| | - Daniel H. Daneshvar
- Department of Physical Medicine & RehabilitationMassachusetts General Hospital, Spaulding Rehabilitation Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Joseph N. Palmisano
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public HealthBostonMassachusettsUSA
| | - Elaine R. Peskind
- Department of Psychiatry and Behavioral SciencesVA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System; University of Washington School of MedicineSeattleWashingtonUSA
| | - Robert W. Turner
- Department of Clinical Research & LeadershipThe George Washington University School of Medicine & Health SciencesWashingtonDistrict of ColumbiaUSA
| | - Jennifer V. Wethe
- Department of Psychiatry and PsychologyMayo Clinic School of Medicine, Mayo Clinic ArizonaScottsdaleArizonaUSA
| | - Gil Rabinovici
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Mass General Research Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yorghos Tripodis
- Department of NeurologyBoston University Alzheimer's Disease Research CenterBoston University CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Jeffrey L. Cummings
- Department of Brain HealthChambers‐Grundy Center for Transformative NeuroscienceSchool of Integrated Health Sciences, University of Nevada Las VegasLas VegasNevadaUSA
| | - Martha E. Shenton
- Departments of Psychiatry and RadiologyPsychiatry Neuroimaging LaboratoryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Robert A. Stern
- Department of NeurologyBoston University Alzheimer's Disease Research CenterBoston University CTE CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Eric M. Reiman
- Banner Alzheimer's Institute and Arizona Alzheimer's ConsortiumPhoenixArizonaUSA
- University of Arizona, Arizona State University, Translational Genomics Research InstitutePhoenixArizonaUSA
| | | |
Collapse
|
23
|
Lee J, Burkett BJ, Min HK, Senjem ML, Dicks E, Corriveau-Lecavalier N, Mester CT, Wiste HJ, Lundt ES, Murray ME, Nguyen AT, Reichard RR, Botha H, Graff-Radford J, Barnard LR, Gunter JL, Schwarz CG, Kantarci K, Knopman DS, Boeve BF, Lowe VJ, Petersen RC, Jack CR, Jones DT. Synthesizing images of tau pathology from cross-modal neuroimaging using deep learning. Brain 2024; 147:980-995. [PMID: 37804318 PMCID: PMC10907092 DOI: 10.1093/brain/awad346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023] Open
Abstract
Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Brian J Burkett
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Carly T Mester
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Emily S Lundt
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Yang J, Liu X, Oveisgharan S, Zammit AR, Nag S, Bennett DA, Buchman AS. Inferring Alzheimer's disease pathologic traits from clinical measures in living adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.08.23289668. [PMID: 37214885 PMCID: PMC10197717 DOI: 10.1101/2023.05.08.23289668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Alzheimer's disease neuropathologic changes (AD-NC) are important for identify people with high risk for AD dementia (ADD) and subtyping ADD. Objective Develop imputation models based on clinical measures to infer AD-NC. Methods We used penalized generalized linear regression to train imputation models for four AD-NC traits (amyloid-β, tangles, global AD pathology, and pathologic AD) in Rush Memory and Aging Project decedents, using clinical measures at the last visit prior to death as predictors. We validated these models by inferring AD-NC traits with clinical measures at the last visit prior to death for independent Religious Orders Study (ROS) decedents. We inferred baseline AD-NC traits for all ROS participants at study entry, and then tested if inferred AD-NC traits at study entry predicted incident ADD and postmortem pathologic AD. Results Inferred AD-NC traits at the last visit prior to death were related to postmortem measures with R2=(0.188,0.316,0.262) respectively for amyloid-β, tangles, and global AD pathology, and prediction Area Under the receiver operating characteristic Curve (AUC) 0.765 for pathologic AD. Inferred baseline levels of all four AD-NC traits predicted ADD. The strongest prediction was obtained by the inferred baseline probabilities of pathologic AD with AUC=(0.919,0.896) for predicting the development of ADD in 3 and 5 years from baseline. The inferred baseline levels of all four AD-NC traits significantly discriminated pathologic AD profiled eight years later with p-values<1.4 × 10-10. Conclusion Inferred AD-NC traits based on clinical measures may provide effective AD biomarkers that can estimate the burden of AD-NC traits in aging adults.
Collapse
Affiliation(s)
- Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA, 30322, USA
| | - Xizhu Liu
- Department of Biostatistics, Yale University School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Shahram Oveisgharan
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| | - Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| | - Sukriti Nag
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| | - Aron S Buchman
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
25
|
Yang J, Liu X, Oveisgharan S, Zammit AR, Nag S, Bennett DA, Buchman AS. Inferring Alzheimer's Disease Pathologic Traits from Clinical Measures in Living Adults. J Alzheimers Dis 2024; 98:95-107. [PMID: 38427476 PMCID: PMC11034758 DOI: 10.3233/jad-230639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease neuropathologic changes (AD-NC) are important to identify people with high risk for AD dementia (ADD) and subtyping ADD. Objective Develop imputation models based on clinical measures to infer AD-NC. Methods We used penalized generalized linear regression to train imputation models for four AD-NC traits (amyloid-β, tangles, global AD pathology, and pathologic AD) in Rush Memory and Aging Project decedents, using clinical measures at the last visit prior to death as predictors. We validated these models by inferring AD-NC traits with clinical measures at the last visit prior to death for independent Religious Orders Study (ROS) decedents. We inferred baseline AD-NC traits for all ROS participants at study entry, and then tested if inferred AD-NC traits at study entry predicted incident ADD and postmortem pathologic AD. Results Inferred AD-NC traits at the last visit prior to death were related to postmortem measures with R2 = (0.188,0.316,0.262) respectively for amyloid-β, tangles, and global AD pathology, and prediction Area Under the receiver operating characteristic Curve (AUC) 0.765 for pathologic AD. Inferred baseline levels of all four AD-NC traits predicted ADD. The strongest prediction was obtained by the inferred baseline probabilities of pathologic AD with AUC = (0.919,0.896) for predicting the development of ADD in 3 and 5 years from baseline. The inferred baseline levels of all four AD-NC traits significantly discriminated pathologic AD profiled eight years later with p-values < 1.4×10-10. Conclusions Inferred AD-NC traits based on clinical measures may provide effective AD biomarkers that can estimate the burden of AD-NC traits in aging adults.
Collapse
Affiliation(s)
- Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA, 30322, USA
| | - Xizhu Liu
- Department of Biostatistics, Yale University School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Shahram Oveisgharan
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| | - Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| | - Sukriti Nag
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| | - Aron S Buchman
- Rush Alzheimer’s Disease Center, Rush University Medicine Center, 1620 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
26
|
Wang Y, Zhang Y, Yu E. Targeted examination of amyloid beta and tau protein accumulation via positron emission tomography for the differential diagnosis of Alzheimer's disease based on the A/T(N) research framework. Clin Neurol Neurosurg 2024; 236:108071. [PMID: 38043158 DOI: 10.1016/j.clineuro.2023.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the older population. Its main pathological features include the abnormal deposition of extracellular amyloid-β plaques and the intracellular neurofibrillary tangles of tau proteins. Its clinical presentation is complex. This review introduces the pathological processes in AD and other common neurodegenerative diseases. It then discusses the positron emission tomography (PET) probes that target amyloid-β plaques and tau proteins for diagnosing AD. According to the A/T(N) research framework, combined targeted amyloid-β and tau protein detection via PET to further improve the diagnostic accuracy of AD. In particular, the properties of the 18F-flortaucipir and 18F-MK6240 tracers-may be more beneficial in helping to differentiate AD from other common neurodegenerative diseases, such as dementia with Lewy bodies, Parkinson's disease dementia, and frontotemporal dementia. Furthermore, the A/T(N) research framework should be used as the clinical diagnosis model of AD in the future.
Collapse
Affiliation(s)
- Ye Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Psychiatry, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, China
| | - Yuhan Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Enyan Yu
- Department of Psychiatry, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, China.
| |
Collapse
|
27
|
Strobel J, Müller HP, Ludolph AC, Beer AJ, Sollmann N, Kassubek J. New Perspectives in Radiological and Radiopharmaceutical Hybrid Imaging in Progressive Supranuclear Palsy: A Systematic Review. Cells 2023; 12:2776. [PMID: 38132096 PMCID: PMC10742083 DOI: 10.3390/cells12242776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by four-repeat tau deposition in various cell types and anatomical regions, and can manifest as several clinical phenotypes, including the most common phenotype, Richardson's syndrome. The limited availability of biomarkers for PSP relates to the overlap of clinical features with other neurodegenerative disorders, but identification of a growing number of biomarkers from imaging is underway. One way to increase the reliability of imaging biomarkers is to combine different modalities for multimodal imaging. This review aimed to provide an overview of the current state of PSP hybrid imaging by combinations of positron emission tomography (PET) and magnetic resonance imaging (MRI). Specifically, combined PET and MRI studies in PSP highlight the potential of [18F]AV-1451 to detect tau, but also the challenge in differentiating PSP from other neurodegenerative diseases. Studies over the last years showed a reduced synaptic density in [11C]UCB-J PET, linked [11C]PK11195 and [18F]AV-1451 markers to disease progression, and suggested the potential role of [18F]RO948 PET for identifying tau pathology in subcortical regions. The integration of quantitative global and regional gray matter analysis by MRI may further guide the assessment of reduced cortical thickness or volume alterations, and diffusion MRI could provide insight into microstructural changes and structural connectivity in PSP. Challenges in radiopharmaceutical biomarkers and hybrid imaging require further research targeting markers for comprehensive PSP diagnosis.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Hans-Peter Müller
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
| | - Albert C. Ludolph
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| | - Ambros J. Beer
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany;
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Jan Kassubek
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (H.-P.M.); (A.C.L.); (J.K.)
- German Center for Neurodegenerative Diseases (DZNE), Ulm University, 89081 Ulm, Germany
| |
Collapse
|
28
|
Blazhenets G, Soleimani-Meigooni DN, Thomas W, Mundada N, Brendel M, Vento S, VandeVrede L, Heuer HW, Ljubenkov P, Rojas JC, Chen MK, Amuiri AN, Miller Z, Gorno-Tempini ML, Miller BL, Rosen HJ, Litvan I, Grossman M, Boeve B, Pantelyat A, Tartaglia MC, Irwin DJ, Dickerson BC, Baker SL, Boxer AL, Rabinovici GD, La Joie R. [ 18F]PI-2620 Binding Patterns in Patients with Suspected Alzheimer Disease and Frontotemporal Lobar Degeneration. J Nucl Med 2023; 64:1980-1989. [PMID: 37918868 PMCID: PMC10690126 DOI: 10.2967/jnumed.123.265856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Tau PET has enabled the visualization of paired helical filaments of 3 or 4 C-terminal repeat tau in Alzheimer disease (AD), but its ability to detect aggregated tau in frontotemporal lobar degeneration (FTLD) spectrum disorders is uncertain. We investigated 2-(2-([18F]fluoro)pyridin-4-yl)-9H-pyrrolo[2,3-b:4,5c']dipyridine ([18F]PI-2620), a newer tracer with ex vivo evidence for binding to FTLD tau, in a convenience sample of patients with suspected FTLD and AD using a static acquisition protocol and parametric SUV ratio (SUVr) images. Methods: We analyzed [18F]PI-2620 PET data from 65 patients with clinical diagnoses associated with AD or FTLD neuropathology; most (60/65) also had amyloid-β (Aβ) PET. Scans were acquired 30-60 min after injection; SUVr maps (reference, inferior cerebellar cortex) were created for the full acquisition and for 10-min truncated sliding windows (30-40, 35-45,…50-60 min). Age- and sex-adjusted z score maps were computed for each patient, relative to 23 Aβ-negative cognitively healthy controls (HC). Mean SUVr in the globus pallidus, substantia nigra, subthalamic nuclei, dentate nuclei, white matter, and temporal gray matter was extracted for the full and truncated windows. Results: Patients with suspected AD neuropathology (Aβ-positive patients with mild cognitive impairment or AD dementia) showed high-intensity temporoparietal cortex-predominant [18F]PI-2620 binding. At the group level, patients with clinical diagnoses associated with FTLD (progressive supranuclear palsy with Richardson syndrome [PSP Richardson syndrome], corticobasal syndrome, and nonfluent-variant primary progressive aphasia) exhibited higher globus pallidus SUVr than did HCs; pallidal retention was highest in the PSP Richardson syndrome group, in whom SUVr was correlated with symptom severity (ρ = 0.53, P = 0.05). At the individual level, only half of PSP Richardson syndrome, corticobasal syndrome, and nonfluent-variant primary progressive aphasia patients had a pallidal SUVr above that of HCs. Temporal SUVr discriminated AD patients from HCs with high accuracy (area under the receiver operating characteristic curve, 0.94 [95% CI, 0.83-1.00]) for all time windows, whereas discrimination between patients with PSP Richardson syndrome and HCs using pallidal SUVr was fair regardless of time window (area under the receiver operating characteristic curve, 0.77 [95% CI, 0.61-0.92] at 30-40 min vs. 0.81 [95% CI, 0.66-0.96] at 50-60 min; P = 0.67). Conclusion: [18F]PI-2620 SUVr shows an intense and consistent signal in AD but lower-intensity, heterogeneous, and rapidly decreasing binding in patients with suspected FTLD. Further work is needed to delineate the substrate of [18F]PI-2620 binding and the usefulness of [18F]PI2620 SUVr quantification outside the AD continuum.
Collapse
Affiliation(s)
- Ganna Blazhenets
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Wesley Thomas
- Lawrence Berkeley National Laboratory, Berkeley, California
| | - Nidhi Mundada
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stephanie Vento
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Hilary W Heuer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Peter Ljubenkov
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Miranda K Chen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Alinda N Amuiri
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Zachary Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Maria L Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Howie J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Irene Litvan
- University of California, San Diego, San Diego, California
| | - Murray Grossman
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - David J Irwin
- Penn FTD Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California;
| |
Collapse
|
29
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
30
|
Cho H, Mundada NS, Apostolova LG, Carrillo MC, Shankar R, Amuiri AN, Zeltzer E, Windon CC, Soleimani-Meigooni DN, Tanner JA, Heath CL, Lesman-Segev OH, Aisen P, Eloyan A, Lee HS, Hammers DB, Kirby K, Dage JL, Fagan A, Foroud T, Grinberg LT, Jack CR, Kramer J, Kukull WA, Murray ME, Nudelman K, Toga A, Vemuri P, Atri A, Day GS, Duara R, Graff-Radford NR, Honig LS, Jones DT, Masdeu J, Mendez M, Musiek E, Onyike CU, Riddle M, Rogalski EJ, Salloway S, Sha S, Turner RS, Wingo TS, Wolk DA, Koeppe R, Iaccarino L, Dickerson BC, La Joie R, Rabinovici GD. Amyloid and tau-PET in early-onset AD: Baseline data from the Longitudinal Early-onset Alzheimer's Disease Study (LEADS). Alzheimers Dement 2023; 19 Suppl 9:S98-S114. [PMID: 37690109 PMCID: PMC10807231 DOI: 10.1002/alz.13453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION We aimed to describe baseline amyloid-beta (Aβ) and tau-positron emission tomograrphy (PET) from Longitudinal Early-onset Alzheimer's Disease Study (LEADS), a prospective multi-site observational study of sporadic early-onset Alzheimer's disease (EOAD). METHODS We analyzed baseline [18F]Florbetaben (Aβ) and [18F]Flortaucipir (tau)-PET from cognitively impaired participants with a clinical diagnosis of mild cognitive impairment (MCI) or AD dementia aged < 65 years. Florbetaben scans were used to distinguish cognitively impaired participants with EOAD (Aβ+) from EOnonAD (Aβ-) based on the combination of visual read by expert reader and image quantification. RESULTS 243/321 (75.7%) of participants were assigned to the EOAD group based on amyloid-PET; 231 (95.1%) of them were tau-PET positive (A+T+). Tau-PET signal was elevated across cortical regions with a parietal-predominant pattern, and higher burden was observed in younger and female EOAD participants. DISCUSSION LEADS data emphasizes the importance of biomarkers to enhance diagnostic accuracy in EOAD. The advanced tau-PET binding at baseline might have implications for therapeutic strategies in patients with EOAD. HIGHLIGHTS 72% of patients with clinical EOAD were positive on both amyloid- and tau-PET. Amyloid-positive patients with EOAD had high tau-PET signal across cortical regions. In EOAD, tau-PET mediated the relationship between amyloid-PET and MMSE. Among EOAD patients, younger onset and female sex were associated with higher tau-PET.
Collapse
Affiliation(s)
- Hanna Cho
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Global Brain Health Institute, University of California, San Francisco, California, USA
| | - Nidhi S Mundada
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maria C Carrillo
- Medical & Scientific Relations Division, Alzheimer's Association, Chicago, Illinois, USA
| | - Ranjani Shankar
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Alinda N Amuiri
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Ehud Zeltzer
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Charles C Windon
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - David N Soleimani-Meigooni
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Jeremy A Tanner
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Courtney Lawhn Heath
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Orit H Lesman-Segev
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
- Department of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Paul Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, California, USA
| | - Ani Eloyan
- Department of Biostatistics, Center for Statistical Sciences, Brown University, Rhode Island, USA
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dustin B Hammers
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kala Kirby
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeffrey L Dage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anne Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lea T Grinberg
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
- Department of Pathology, University of California - San Francisco, San Francisco, California, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel Kramer
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, California, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami, Florida, USA
| | | | - Lawrence S Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph Masdeu
- Nantz National Alzheimer Center, Houston Methodist and Weill Cornell Medicine, Houston, Texas, USA
| | - Mario Mendez
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Erik Musiek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meghan Riddle
- Department of Neurology, Alpert Medical School, Brown University, Rhode Island, USA
| | - Emily J Rogalski
- Department of Psychiatry and Behavioral Sciences, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen Salloway
- Department of Neurology, Alpert Medical School, Brown University, Rhode Island, USA
| | - Sharon Sha
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, California, USA
| | | | - Thomas S Wingo
- Department of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert Koeppe
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Renaud La Joie
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Gil D Rabinovici
- Memory and Aging Center, UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
31
|
Hong J, Lu J, Liu F, Wang M, Li X, Clement C, Lopes L, Brendel M, Rominger A, Yen TC, Guan Y, Tian M, Wang J, Zuo C, Shi K. Uncovering distinct progression patterns of tau deposition in progressive supranuclear palsy using [ 18F]Florzolotau PET imaging and subtype/stage inference algorithm. EBioMedicine 2023; 97:104835. [PMID: 37839135 PMCID: PMC10590768 DOI: 10.1016/j.ebiom.2023.104835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a primary 4-repeat tauopathy with diverse clinical phenotypes. Previous post-mortem studies examined tau deposition sequences in PSP, but in vivo scrutiny is lacking. METHODS We conducted [18F]Florzolotau tau positron emission tomography (PET) scans on 148 patients who were clinically diagnosed with PSP and 20 healthy controls. We employed the Subtype and Stage Inference (SuStaIn) algorithm to identify PSP subtype/stage and related tau patterns, comparing clinical features across subtypes and assessing PSP stage-clinical severity association. We also evaluated functional connectivity differences among subtypes through resting-state functional magnetic resonance imaging. FINDINGS We identified two distinct subtypes of PSP: Subtype1 and Subtype2. Subtype1 typically exhibits a sequential progression of the disease, starting from subcortical and gradually moving to cortical regions. Conversely, Subtype2 is characterized by an early, simultaneous onset in both regions. Interestingly, once the disease is initiated, Subtype1 tends to spread more rapidly within each region compared to Subtype2. Individuals categorized as Subtype2 are generally older and exhibit less severe dysfunctions in areas such as cognition, bulbar, limb motor, and general motor functions compared to those with Subtype1. Moreover, they have a more favorable prognosis in terms of limb motor function. We found significant correlations between several clinical variables and the identified PSP SuStaIn stages. Furthermore, Subtype2 displayed a remarkable reduction in functional connectivity compared to Subtype1. INTERPRETATION We present the evidence of distinct in vivo spatiotemporal tau trajectories in PSP. Our findings can contribute to precision medicine advancements for PSP. FUNDING This work was supported by grants from the National Natural Science Foundation of China (number 82272039, 81971641, 82021002, and 92249302); Swiss National Science Foundation (number 188350); the STI2030-Major Project of China (number 2022ZD0211600); the Clinical Research Plan of Shanghai Hospital Development Center of China (number SHDC2020CR1038B); and the National Key R&D Program of China (number 2022YFC2009902, 2022YFC2009900), the China Scholarship Council (number 202006100181); the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198).
Collapse
Affiliation(s)
- Jimin Hong
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland; National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai, China; Department of Informatics, Technical University of Munich, Munich, Germany
| | - Xinyi Li
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Christoph Clement
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Leonor Lopes
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Matthias Brendel
- Department of Nuclear Medicine, University of Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland
| | | | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Tian
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China; International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Jian Wang
- National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China; Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland; Department of Informatics, Technical University of Munich, Munich, Germany
| |
Collapse
|
32
|
Vöglein J, Levin J, Höglinger G. [Treatment-Quo vadis neurodegeneration?]. DER NERVENARZT 2023; 94:904-912. [PMID: 37801166 DOI: 10.1007/s00115-023-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Hallmarks of neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease are pathological protein aggregation, neuroinflammation, neurodegeneration and progressive symptoms. Due to the limited causal treatment options they represent a big challenge. OBJECTIVE Overview of disease-modifying strategies in neurodegenerative diseases and outlook regarding future treatment development. MATERIAL AND METHODS Literature search regarding treatment development in neurodegenerative diseases and integration of the results. Additionally, consideration of expert opinions. RESULTS The development of biomarkers and genetic parameters for the detection of causal pathologies of neurodegenerative diseases as an indispensable basis for the development of disease-modifying treatment is rapidly advancing. Targets for causal interventions are all steps in the pathophysiological cascade of neurodegenerative diseases. Therapeutic antibodies are most advanced in the development and are able to remove protein deposits from the brain and to reduce the clinical progression in Alzheimer's disease. A combination of biomarkers, genetic characteristics and clinical parameters could enable an individualized treatment. CONCLUSION The future of the treatment of neurodegenerative diseases focuses on disease modification using molecular-based approaches. Targeted interventions against protein aggregation, inflammation and genetic factors as well as a personalized stratification of treatment hold promise for more effective forms of treatment. Although challenges still remain, current research and clinical studies give optimism for the development of disease-modifying treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut, LMU Klinikum, Ludwig-Maximilians-Universität (LMU) München, Marchioninistr. 15, 81377, München, Deutschland
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) München, München, Deutschland
| | - Johannes Levin
- Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut, LMU Klinikum, Ludwig-Maximilians-Universität (LMU) München, Marchioninistr. 15, 81377, München, Deutschland
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) München, München, Deutschland
| | - Günter Höglinger
- Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut, LMU Klinikum, Ludwig-Maximilians-Universität (LMU) München, Marchioninistr. 15, 81377, München, Deutschland.
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) München, München, Deutschland.
| |
Collapse
|
33
|
Costoya-Sánchez A, Moscoso A, Silva-Rodríguez J, Pontecorvo MJ, Devous MD, Aguiar P, Schöll M, Grothe MJ. Increased Medial Temporal Tau Positron Emission Tomography Uptake in the Absence of Amyloid-β Positivity. JAMA Neurol 2023; 80:1051-1061. [PMID: 37578787 PMCID: PMC10425864 DOI: 10.1001/jamaneurol.2023.2560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Importance An increased tau positron emission tomography (PET) signal in the medial temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-β (Aβ) pathology. Little is known about the longitudinal course of this condition, and its association with Alzheimer disease (AD) remains unclear. Objective To study the pathologic and clinical course of older individuals with PET-evidenced MTL tau deposition (TMTL+) in the absence of Aβ pathology (A-), and the association of this condition with the AD continuum. Design, Setting, and Participants A multicentric, observational, longitudinal cohort study was conducted using pooled data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and the AVID-A05 study, collected between July 2, 2015, and August 23, 2021. Participants in the ADNI, HABS, and AVID-A05 studies (N = 1093) with varying degrees of cognitive performance were deemed eligible if they had available tau PET, Aβ PET, and magnetic resonance imaging scans at baseline. Of these, 128 participants did not meet inclusion criteria based on Aβ PET and tau PET biomarker profiles (A+ TMTL-). Exposures Tau and Aβ PET, magnetic resonance imaging, cerebrospinal fluid biomarkers, and cognitive assessments. Main Outcomes and Measures Cross-sectional and longitudinal measures for tau and Aβ PET, cortical atrophy, cognitive scores, and core AD cerebrospinal fluid biomarkers (Aβ42/40 and tau phosphorylated at threonine 181 p-tau181 available in a subset). Results Among the 965 individuals included in the study, 503 were women (52.1%) and the mean (SD) age was 73.9 (8.1) years. A total of 51% of A- individuals and 78% of A+ participants had increased tau PET signal in the entorhinal cortex (TMTL+) compared with healthy younger (aged <39 years) controls. Compared with A- TMTL-, A- TMTL+ participants showed statistically significant, albeit moderate, longitudinal (mean [SD], 1.83 [0.84] years) tau PET increases that were largely limited to the temporal lobe, whereas those with A+ TMTL+ showed faster and more cortically widespread tau PET increases. In contrast to participants with A+ TMTL+, those with A- TMTL+ did not show any noticeable Aβ accumulation over follow-up (mean [SD], 2.36 [0.76] years). Complementary cerebrospinal fluid analysis confirmed longitudinal p-tau181 increases in A- TMTL+ in the absence of increased Aβ accumulation. Participants with A- TMTL+ had accelerated MTL atrophy, whereas those with A+ TMTL+ showed accelerated atrophy in widespread temporoparietal brain regions. Increased MTL tau PET uptake in A- individuals was associated with cognitive decline, but at a significantly slower rate compared with A+ TMTL+. Conclusions and Relevance In this study, individuals with A- TMTL+ exhibited progressive tau accumulation and neurodegeneration, but these processes were comparably slow, remained largely restricted to the MTL, were associated with only subtle changes in global cognitive performance, and were not accompanied by detectable accumulation of Aβ biomarkers. These data suggest that individuals with A- TMTL+ are not on a pathologic trajectory toward AD.
Collapse
Affiliation(s)
- Alejandro Costoya-Sánchez
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Michael J. Pontecorvo
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Michael D. Devous
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Pablo Aguiar
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Michel J. Grothe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
34
|
Quattrini G, Ferrari C, Pievani M, Geviti A, Ribaldi F, Scheffler M, Frisoni GB, Garibotto V, Marizzoni M. Unsupervised [ 18F]Flortaucipir cutoffs for tau positivity and staging in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:3265-3275. [PMID: 37272955 PMCID: PMC10542510 DOI: 10.1007/s00259-023-06280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Several [18F]Flortaucipir cutoffs have been proposed for tau PET positivity (T+) in Alzheimer's disease (AD), but none were data-driven. The aim of this study was to establish and validate unsupervised T+ cutoffs by applying Gaussian mixture models (GMM). METHODS Amyloid negative (A-) cognitively normal (CN) and amyloid positive (A+) AD-related dementia (ADRD) subjects from ADNI (n=269) were included. ADNI (n=475) and Geneva Memory Clinic (GMC) cohorts (n=98) were used for validation. GMM-based cutoffs were extracted for the temporal meta-ROI, and validated against previously published cutoffs and visual rating. RESULTS GMM-based cutoffs classified less subjects as T+, mainly in the A- CN (<3.4% vs >28.5%) and A+ CN (<14.5% vs >42.9%) groups and showed higher agreement with visual rating (ICC=0.91 vs ICC<0.62) than published cutoffs. CONCLUSION We provided reliable data-driven [18F]Flortaucipir cutoffs for in vivo T+ detection in AD. These cutoffs might be useful to select participants in clinical and research studies.
Collapse
Affiliation(s)
- Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Clarissa Ferrari
- FONDAZIONE POLIAMBULANZA ISTITUTO OSPEDALIERO via Bissolati, 57, 25124, Brescia, Italy
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Andrea Geviti
- Unit of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Federica Ribaldi
- LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, 1205, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, 1205, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocentre, Faculty of Medicine, University of Geneva, 1205, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, 1205, Geneva, Switzerland
- Centre for Biomedical Imaging (CIBM), 1205, Geneva, Switzerland
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy.
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy.
| |
Collapse
|
35
|
Horie K, Salvadó G, Barthélemy NR, Janelidze S, Li Y, He Y, Saef B, Chen CD, Jiang H, Strandberg O, Pichet Binette A, Palmqvist S, Sato C, Sachdev P, Koyama A, Gordon BA, Benzinger TLS, Holtzman DM, Morris JC, Mattsson-Carlgren N, Stomrud E, Ossenkoppele R, Schindler SE, Hansson O, Bateman RJ. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer's disease. Nat Med 2023; 29:1954-1963. [PMID: 37443334 PMCID: PMC10427417 DOI: 10.1038/s41591-023-02443-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Aggregated insoluble tau is one of two defining features of Alzheimer's disease. Because clinical symptoms are strongly correlated with tau aggregates, drug development and clinical diagnosis need cost-effective and accessible specific fluid biomarkers of tau aggregates; however, recent studies suggest that the fluid biomarkers currently available cannot specifically track tau aggregates. We show that the microtubule-binding region (MTBR) of tau containing the residue 243 (MTBR-tau243) is a new cerebrospinal fluid (CSF) biomarker specific for insoluble tau aggregates and compared it to multiple other phosphorylated tau measures (p-tau181, p-tau205, p-tau217 and p-tau231) in two independent cohorts (BioFINDER-2, n = 448; and Knight Alzheimer Disease Research Center, n = 219). MTBR-tau243 was most strongly associated with tau-positron emission tomography (PET) and cognition, whereas showing the lowest association with amyloid-PET. In combination with p-tau205, MTBR-tau243 explained most of the total variance in tau-PET burden (0.58 ≤ R2 ≤ 0.75) and the performance in predicting cognitive measures (0.34 ≤ R2 ≤ 0.48) approached that of tau-PET (0.44 ≤ R2 ≤ 0.52). MTBR-tau243 levels longitudinally increased with insoluble tau aggregates, unlike CSF p-tau species. CSF MTBR-tau243 is a specific biomarker of tau aggregate pathology, which may be utilized in interventional trials and in the diagnosis of patients. Based on these findings, we propose to revise the A/T/(N) criteria to include MTBR-tau243 as representing insoluble tau aggregates ('T').
Collapse
Grants
- P30 AG066444 NIA NIH HHS
- R01 AG070941 NIA NIH HHS
- P01 AG003991 NIA NIH HHS
- P01 AG026276 NIA NIH HHS
- P30 NS048056 NINDS NIH HHS
- S10 OD025214 NIH HHS
- The Tracy Family SILQ Center established by the Tracy Family, Richard Frimel and Gary Werths, GHR Foundation, David Payne, and the Willman Family brought together by The Foundation for Barnes-Jewish Hospital.
- Eisai industry grant
- The European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie action grant agreement No 101061836, from Greta och Johan Kocks research grants and, travel grants from the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University
- U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- The Swedish Research Council (2016-00906), the Knut and Alice Wallenberg foundation (2017-0383), the Marianne and Marcus Wallenberg foundation (2015.0125), the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University, the Swedish Alzheimer Foundation (AF-939932), the Swedish Brain Foundation (FO2021-0293), The Parkinson foundation of Sweden (1280/20), the Cure Alzheimer’s fund, the Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, the Skåne University Hospital Foundation (2020-O000028), Regionalt Forskningsstöd (2020-0314) and the Swedish federal government under the ALF agreement (2018-Projekt0279)
- The Knight ADRC developmental project
Collapse
Affiliation(s)
- Kanta Horie
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Eisai Inc., Nutley, NJ, USA
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Nicolas R Barthélemy
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yingxin He
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Saef
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles D Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Chihiro Sato
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Brian A Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| | - Randall J Bateman
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, USA.
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Limpengco RR, Liang C, Sandhu YK, Mukherjee J. [ 125I]INFT: Synthesis and Evaluation of a New Imaging Agent for Tau Protein in Post-Mortem Human Alzheimer's Disease Brain. Molecules 2023; 28:5769. [PMID: 37570739 PMCID: PMC10421386 DOI: 10.3390/molecules28155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Aggregation of Tau protein into paired helical filaments causing neurofibrillary tangles (NFT) is a neuropathological feature in Alzheimer's disease (AD). This study aimed to develop and evaluate the effectiveness of a novel radioiodinated tracer, 4-[125I]iodo-3-(1H-pyrrolo[2,3-c]pyridine-1-yl)pyridine ([125I]INFT), for binding to Tau protein in postmortem human AD brain. Radiosynthesis of [125I]INFT was carried out using electrophilic destannylation by iodine-125 and purified chromatographically. Computational modeling of INFT binding on Tau fibril was compared with IPPI. In vitro, autoradiography studies were conducted with [125I]INFT for Tau in AD and cognitively normal (CN) brains. [125I]INFT was produced in >95% purity. Molecular modeling of INFT revealed comparable binding energies to IPPI at site-1 of the Tau fibril with an affinity of IC50 = 7.3 × 10-8 M. Binding of [125I]INFT correlated with the presence of Tau in the AD brain, confirmed by anti-Tau immunohistochemistry. The ratio of average grey matter (GM) [125I]INFT in AD versus CN was found to be 5.9, and AD GM/white matter (WM) = 2.5. Specifically bound [125I]INFT to Tau in AD brains was displaced by IPPI (>90%). Monoamine oxidase inhibitor deprenyl had no effect and clorgyline had little effect on [125I]INFT binding. [125I]INFT is a less lipophilic imaging agent for Tau in AD.
Collapse
Affiliation(s)
- Roz R Limpengco
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Christopher Liang
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Yasmin K Sandhu
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
37
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. How Many Alzheimer-Perusini's Atypical Forms Do We Still Have to Discover? Biomedicines 2023; 11:2035. [PMID: 37509674 PMCID: PMC10377159 DOI: 10.3390/biomedicines11072035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer-Perusini's (AD) disease represents the most spread dementia around the world and constitutes a serious problem for public health. It was first described by the two physicians from whom it took its name. Nowadays, we have extensively expanded our knowledge about this disease. Starting from a merely clinical and histopathologic description, we have now reached better molecular comprehension. For instance, we passed from an old conceptualization of the disease based on plaques and tangles to a more modern vision of mixed proteinopathy in a one-to-one relationship with an alteration of specific glial and neuronal phenotypes. However, no disease-modifying therapies are yet available. It is likely that the only way to find a few "magic bullets" is to deepen this aspect more and more until we are able to draw up specific molecular profiles for single AD cases. This review reports the most recent classifications of AD atypical variants in order to summarize all the clinical evidence using several discrimina (for example, post mortem neurofibrillary tangle density, cerebral atrophy, or FDG-PET studies). The better defined four atypical forms are posterior cortical atrophy (PCA), logopenic variant of primary progressive aphasia (LvPPA), behavioral/dysexecutive variant and AD with corticobasal degeneration (CBS). Moreover, we discuss the usefulness of such classifications before outlining the molecular-genetic aspects focusing on microglial activity or, more generally, immune system control of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
38
|
Lu J, Ma X, Zhang H, Xiao Z, Li M, Wu J, Ju Z, Chen L, Zheng L, Ge J, Liang X, Bao W, Wu P, Ding D, Yen TC, Guan Y, Zuo C, Zhao Q. Head-to-head comparison of plasma and PET imaging ATN markers in subjects with cognitive complaints. Transl Neurodegener 2023; 12:34. [PMID: 37381042 PMCID: PMC10308642 DOI: 10.1186/s40035-023-00365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Gaining more information about the reciprocal associations between different biomarkers within the ATN (Amyloid/Tau/Neurodegeneration) framework across the Alzheimer's disease (AD) spectrum is clinically relevant. We aimed to conduct a comprehensive head-to-head comparison of plasma and positron emission tomography (PET) ATN biomarkers in subjects with cognitive complaints. METHODS A hospital-based cohort of subjects with cognitive complaints with a concurrent blood draw and ATN PET imaging (18F-florbetapir for A, 18F-Florzolotau for T, and 18F-fluorodeoxyglucose [18F-FDG] for N) was enrolled (n = 137). The β-amyloid (Aβ) status (positive versus negative) and the severity of cognitive impairment served as the main outcome measures for assessing biomarker performances. RESULTS Plasma phosphorylated tau 181 (p-tau181) level was found to be associated with PET imaging of ATN biomarkers in the entire cohort. Plasma p-tau181 level and PET standardized uptake value ratios of AT biomarkers showed a similarly excellent diagnostic performance for distinguishing between Aβ+ and Aβ- subjects. An increased tau burden and glucose hypometabolism were significantly associated with the severity of cognitive impairment in Aβ+ subjects. Additionally, glucose hypometabolism - along with elevated plasma neurofilament light chain level - was related to more severe cognitive impairment in Aβ- subjects. CONCLUSION Plasma p-tau181, as well as 18F-florbetapir and 18F-Florzolotau PET imaging can be considered as interchangeable biomarkers in the assessment of Aβ status in symptomatic stages of AD. 18F-Florzolotau and 18F-FDG PET imaging could serve as biomarkers for the severity of cognitive impairment. Our findings have implications for establishing a roadmap to identifying the most suitable ATN biomarkers for clinical use.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxi Ma
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwei Zhang
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenxu Xiao
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Wu
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zizhao Ju
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiqi Bao
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Ding Ding
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yihui Guan
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Qianhua Zhao
- National Clinical Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Samudra N, Lane-Donovan C, VandeVrede L, Boxer AL. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest 2023; 133:e168553. [PMID: 37317972 PMCID: PMC10266783 DOI: 10.1172/jci168553] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Tauopathies are disorders associated with tau protein dysfunction and insoluble tau accumulation in the brain at autopsy. Multiple lines of evidence from human disease, as well as nonclinical translational models, suggest that tau has a central pathologic role in these disorders, historically thought to be primarily related to tau gain of toxic function. However, a number of tau-targeting therapies with various mechanisms of action have shown little promise in clinical trials in different tauopathies. We review what is known about tau biology, genetics, and therapeutic mechanisms that have been tested in clinical trials to date. We discuss possible reasons for failures of these therapies, such as use of imperfect nonclinical models that do not predict human effects for drug development; heterogeneity of human tau pathologies which may lead to variable responses to therapy; and ineffective therapeutic mechanisms, such as targeting of the wrong tau species or protein epitope. Innovative approaches to human clinical trials can help address some of the difficulties that have plagued our field's development of tau-targeting therapies thus far. Despite limited clinical success to date, as we continue to refine our understanding of tau's pathogenic mechanism(s) in different neurodegenerative diseases, we remain optimistic that tau-targeting therapies will eventually play a central role in the treatment of tauopathies.
Collapse
|
40
|
Shi Y, Ghetti B, Goedert M, Scheres SHW. Cryo-EM Structures of Chronic Traumatic Encephalopathy Tau Filaments with PET Ligand Flortaucipir. J Mol Biol 2023; 435:168025. [PMID: 37330290 PMCID: PMC7615338 DOI: 10.1016/j.jmb.2023.168025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Positron emission tomography (PET) imaging allows monitoring the progression of amyloid aggregation in the living brain. [18F]-Flortaucipir is the only approved PET tracer compound for the visualisation of tau aggregation. Here, we describe cryo-EM experiments on tau filaments in the presence and absence of flortaucipir. We used tau filaments isolated from the brain of an individual with Alzheimer's disease (AD), and from the brain of an individual with primary age-related tauopathy (PART) with a co-pathology of chronic traumatic encephalopathy (CTE). Unexpectedly, we were unable to visualise additional cryo-EM density for flortaucipir for AD paired helical or straight filaments (PHFs or SFs), but we did observe density for flortaucipir binding to CTE Type I filaments from the case with PART. In the latter, flortaucipir binds in a 1:1 molecular stoichiometry with tau, adjacent to lysine 353 and aspartate 358. By adopting a tilted geometry with respect to the helical axis, the 4.7 Å distance between neighbouring tau monomers is reconciled with the 3.5 Å distance consistent with π-π-stacking between neighbouring molecules of flortaucipir.
Collapse
Affiliation(s)
- Yang Shi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. https://twitter.com/GhettiBernardi1
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
41
|
Jack CR, Wiste HJ, Algeciras-Schimnich A, Figdore DJ, Schwarz CG, Lowe VJ, Ramanan VK, Vemuri P, Mielke MM, Knopman DS, Graff-Radford J, Boeve BF, Kantarci K, Cogswell PM, Senjem ML, Gunter JL, Therneau TM, Petersen RC. Predicting amyloid PET and tau PET stages with plasma biomarkers. Brain 2023; 146:2029-2044. [PMID: 36789483 PMCID: PMC10151195 DOI: 10.1093/brain/awad042] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023] Open
Abstract
Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aβ1-42 and Aβ1-40 (analysed as the Aβ42/Aβ40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.
Collapse
Affiliation(s)
- Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Dan J Figdore
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Terry M Therneau
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
42
|
Soleimani-Meigooni DN, Rabinovici GD. Tau PET Visual Reads: Research and Clinical Applications and Future Directions. J Nucl Med 2023; 64:822-824. [PMID: 37116910 PMCID: PMC10152121 DOI: 10.2967/jnumed.122.265017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California; and
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California; and
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
43
|
Liu FT, Lu JY, Li XY, Liang XN, Jiao FY, Ge JJ, Wu P, Li G, Shen B, Wu B, Sun YM, Zhu YH, Luo JF, Yen TC, Wu JJ, Zuo CT, Wang J. 18F-Florzolotau PET imaging captures the distribution patterns and regional vulnerability of tau pathology in progressive supranuclear palsy. Eur J Nucl Med Mol Imaging 2023; 50:1395-1405. [PMID: 36627498 PMCID: PMC10027831 DOI: 10.1007/s00259-022-06104-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Human post mortem studies have described the topographical patterns of tau pathology in progressive supranuclear palsy (PSP). Recent advances in tau PET tracers are expected to herald the next era of PSP investigation for early detection of tau pathology in living brains. This study aimed to investigate whether 18F-Florzolotau PET imaging may capture the distribution patterns and regional vulnerability of tau pathology in PSP, and to devise a novel image-based staging system. METHODS The study cohort consisted of 148 consecutive patients with PSP who had undergone 18F-Florzolotau PET imaging. The PSP rating scale (PSPrs) was used to measure disease severity. Similarities and differences of tau deposition among different clinical phenotypes were examined at the regional and voxel levels. An 18F-Florzolotau pathological staging system was devised according to the scheme originally developed for post mortem data. In light of conditional probabilities for the sequence of events, an 18F-Florzolotau modified staging system by integrating clusters at the regional level was further developed. The ability of 18F-Florzolotau staging systems to reflect disease severity in terms of PSPrs score was assessed by analysis of variance. RESULTS The distribution patterns of 18F-Florzolotau accumulation in living brains of PSP showed a remarkable similarity to those reported in post mortem studies, with the binding intensity being markedly higher in Richardson's syndrome. Moreover, 18F-Florzolotau PET imaging allowed detecting regional vulnerability and tracking tau accumulation in an earlier fashion compared with post mortem immunostaining. The 18F-Florzolotau staging systems were positively correlated with clinical severity as reflected by PSPrs scores. CONCLUSIONS 18F-Florzolotau PET imaging can effectively capture the distribution patterns and regional vulnerability of tau pathology in PSP. The 18F-Florzolotau modified staging system holds promise for early tracking of tau deposition in living brains.
Collapse
Affiliation(s)
- Feng-Tao Liu
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Jia-Ying Lu
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, China
| | - Xin-Yi Li
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Xiao-Niu Liang
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Fang-Yang Jiao
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, China
| | - Jing-Jie Ge
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, China
| | - Ping Wu
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, China
| | - Gen Li
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Bo Shen
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Bin Wu
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yi-Min Sun
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yu-Hua Zhu
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, China
| | - Jian-Feng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | | | - Jian-Jun Wu
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Chuan-Tao Zuo
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine, & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Jian Wang
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| | | |
Collapse
|
44
|
Santillo AF, Leuzy A, Honer M, Landqvist Waldö M, Tideman P, Harper L, Ohlsson T, Moes S, Giannini L, Jögi J, Groot C, Ossenkoppele R, Strandberg O, van Swieten J, Smith R, Hansson O. [ 18F]RO948 tau positron emission tomography in genetic and sporadic frontotemporal dementia syndromes. Eur J Nucl Med Mol Imaging 2023; 50:1371-1383. [PMID: 36513817 PMCID: PMC10027632 DOI: 10.1007/s00259-022-06065-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To examine [18F]RO948 retention in FTD, sampling the underlying protein pathology heterogeneity. METHODS A total of 61 individuals with FTD (n = 35), matched cases of AD (n = 13) and Aβ-negative cognitively unimpaired individuals (n = 13) underwent [18F]RO948PET and MRI. FTD included 21 behavioral variant FTD (bvFTD) cases, 11 symptomatic C9orf72 mutation carriers, one patient with non-genetic bvFTD-ALS, one individual with bvFTD due to a GRN mutation, and one due to a MAPT mutation (R406W). Tracer retention was examined using a region-of-interest and voxel-wise approaches. Two individuals (bvFTD due to C9orf72) underwent postmortem neuropathological examination. Tracer binding was additionally assessed in vitro using [3H]RO948 autoradiography in six separate cases. RESULTS [18F]RO948 retention across ROIs was clearly lower than in AD and comparable to that in Aβ-negative cognitively unimpaired individuals. Only minor loci of tracer retention were seen in bvFTD; these did not overlap with the observed cortical atrophy in the cases, the expected pattern of atrophy, nor the expected or verified protein pathology distribution. Autoradiography analyses showed no specific [3H]RO948 binding. The R406W MAPT mutation carriers were clear exceptions with AD-like retention levels and specific in-vitro binding. CONCLUSION [18F]RO948 uptake is not significantly increased in the majority of FTD patients, with a clear exception being specific MAPT mutations.
Collapse
Affiliation(s)
- Alexander F Santillo
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden.
- Memory Clinic, Skåne University Hospital, SE-20502, Malmö, Sweden.
| | - Antoine Leuzy
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Maria Landqvist Waldö
- Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pontus Tideman
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Luke Harper
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Tomas Ohlsson
- Radiation Physics, Skane University Hospital, Scania, Sweden
| | - Svenja Moes
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Lucia Giannini
- Alzheimer Center, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jonas Jögi
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Colin Groot
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Rik Ossenkoppele
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Olof Strandberg
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - John van Swieten
- Alzheimer Center, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ruben Smith
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
- Memory Clinic, Skåne University Hospital, SE-20502, Malmö, Sweden
| |
Collapse
|
45
|
Salvadó G, Ossenkoppele R, Ashton NJ, Beach TG, Serrano GE, Reiman EM, Zetterberg H, Mattsson-Carlgren N, Janelidze S, Blennow K, Hansson O. Specific associations between plasma biomarkers and postmortem amyloid plaque and tau tangle loads. EMBO Mol Med 2023; 15:e17123. [PMID: 36912178 PMCID: PMC10165361 DOI: 10.15252/emmm.202217123] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Several promising plasma biomarkers for Alzheimer's disease have been recently developed, but their neuropathological correlates have not yet been fully determined. To investigate and compare independent associations between multiple plasma biomarkers (p-tau181, p-tau217, p-tau231, Aβ42/40, GFAP, and NfL) and neuropathologic measures of amyloid and tau, we included 105 participants from the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND) with antemortem plasma samples and a postmortem neuropathological exam, 48 of whom had longitudinal p-tau217 and p-tau181. When simultaneously including plaque and tangle loads, the Aβ42/40 ratio and p-tau231 were only associated with plaques (ρAβ42/40 [95%CI] = -0.53[-0.65, -0.35], ρp-tau231 [95%CI] = 0.28[0.10, 0.43]), GFAP was only associated with tangles (ρGFAP [95%CI] = 0.39[0.17, 0.57]), and p-tau217 and p-tau181 were associated with both plaques (ρp-tau217 [95%CI] = 0.40[0.21, 0.56], ρp-tau181 [95%CI] = 0.36[0.15, 0.50]) and tangles (ρp-tau217 [95%CI] = 0.52[0.34, 0.66]; ρp-tau181 [95%CI] = 0.36[0.17, 0.52]). A model combining p-tau217 and the Aβ42/40 ratio showed the highest accuracy for predicting the presence of Alzheimer's disease neuropathological change (ADNC, AUC[95%CI] = 0.89[0.82, 0.96]) and plaque load (R2 = 0.55), while p-tau217 alone was optimal for predicting tangle load (R2 = 0.45). Our results suggest that high-performing assays of plasma p-tau217 and Aβ42/40 might be an optimal combination to assess Alzheimer's-related pathology in vivo.
Collapse
Affiliation(s)
- Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley, NHS Foundation, London, UK
| | | | | | - Eric M Reiman
- Banner Alzheimer's Institute, Arizona State University and University of Arizona, Phoenix, AZ, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
46
|
Protas H, Ghisays V, Goradia DD, Bauer R, Devadas V, Chen K, Reiman EM, Su Y. Individualized network analysis: A novel approach to investigate tau PET using graph theory in the Alzheimer's disease continuum. Front Neurosci 2023; 17:1089134. [PMID: 36937677 PMCID: PMC10017746 DOI: 10.3389/fnins.2023.1089134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Tau PET imaging has emerged as an important tool to detect and monitor tangle burden in vivo in the study of Alzheimer's disease (AD). Previous studies demonstrated the association of tau burden with cognitive decline in probable AD cohorts. This study introduces a novel approach to analyze tau PET data by constructing individualized tau network structure and deriving its graph theory-based measures. We hypothesize that the network- based measures are a measure of the total tau load and the stage through disease. Methods Using tau PET data from the AD Neuroimaging Initiative from 369 participants, we determine the network measures, global efficiency, global strength, and limbic strength, and compare with two regional measures entorhinal and tau composite SUVR, in the ability to differentiate, cognitively unimpaired (CU), MCI and AD. We also investigate the correlation of these network and regional measures and a measure of memory performance, auditory verbal learning test for long-term recall memory (AVLT-LTM). Finally, we determine the stages based on global efficiency and limbic strength using conditional inference trees and compare with Braak staging. Results We demonstrate that the derived network measures are able to differentiate three clinical stages of AD, CU, MCI, and AD. We also demonstrate that these network measures are strongly correlated with memory performance overall. Unlike regional tau measurements, the tau network measures were significantly associated with AVLT-LTM even in cognitively unimpaired individuals. Stages determined from global efficiency and limbic strength, visually resembled Braak staging. Discussion The strong correlations with memory particularly in CU suggest the proposed technique may be used to characterize subtle early tau accumulation. Further investigation is ongoing to examine this technique in a longitudinal setting.
Collapse
Affiliation(s)
- Hillary Protas
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Valentina Ghisays
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Dhruman D. Goradia
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Robert Bauer
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Vivek Devadas
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Department of Neurology, The University of Arizona, Tucson, AZ, United States
- Department of Psychiatry, The University of Arizona, Tucson, AZ, United States
- Department of Neuroscience, School of Computing and Augmented Intelligence, Biostatistical Core, School of Mathematics and Statistics, College of Health Solutions, Arizona State University, Tempe, AZ, United States
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Department of Neurology, The University of Arizona, Tucson, AZ, United States
- Department of Psychiatry, The University of Arizona, Tucson, AZ, United States
- Department of Neuroscience, School of Computing and Augmented Intelligence, Biostatistical Core, School of Mathematics and Statistics, College of Health Solutions, Arizona State University, Tempe, AZ, United States
- Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- Department of Neuroscience, School of Computing and Augmented Intelligence, Biostatistical Core, School of Mathematics and Statistics, College of Health Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
47
|
Mohammadi Z, Alizadeh H, Marton J, Cumming P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Biomolecules 2023; 13:290. [PMID: 36830659 PMCID: PMC9953528 DOI: 10.3390/biom13020290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperphosphorylated tau aggregates, also known as neurofibrillary tangles, are a hallmark neuropathological feature of Alzheimer's disease (AD). Molecular imaging of tau by positron emission tomography (PET) began with the development of [18F]FDDNP, an amyloid β tracer with off-target binding to tau, which obtained regional specificity through the differing distributions of amyloid β and tau in AD brains. A concerted search for more selective and affine tau PET tracers yielded compounds belonging to at least eight structural categories; 18F-flortaucipir, known variously as [18F]-T807, AV-1451, and Tauvid®, emerged as the first tau tracer approved by the American Food and Drug Administration. The various tau tracers differ concerning their selectivity over amyloid β, off-target binding at sites such as monoamine oxidase and neuromelanin, and degree of uptake in white matter. While there have been many reviews of molecular imaging of tau in AD and other conditions, there has been no systematic comparison of the fitness of the various tracers for discriminating between AD patient and healthy control (HC) groups. In this narrative review, we endeavored to compare the binding properties of the various tau tracers in vitro and the effect size (Cohen's d) for the contrast by PET between AD patients and age-matched HC groups. The available tracers all gave good discrimination, with Cohen's d generally in the range of two-three in culprit brain regions. Overall, Cohen's d was higher for AD patient groups with more severe illness. Second-generation tracers, while superior concerning off-target binding, do not have conspicuously higher sensitivity for the discrimination of AD and HC groups. We suppose that available pharmacophores may have converged on a maximal affinity for tau fibrils, which may limit the specific signal imparted in PET studies.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hadi Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Straße 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
48
|
McKenna MC, Lope J, Bede P, Tan EL. Thalamic pathology in frontotemporal dementia: Predilection for specific nuclei, phenotype-specific signatures, clinical correlates, and practical relevance. Brain Behav 2023; 13:e2881. [PMID: 36609810 PMCID: PMC9927864 DOI: 10.1002/brb3.2881] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) phenotypes are classically associated with distinctive cortical atrophy patterns and regional hypometabolism. However, the spectrum of cognitive and behavioral manifestations in FTD arises from multisynaptic network dysfunction. The thalamus is a key hub of several corticobasal and corticocortical circuits. The main circuits relayed via the thalamic nuclei include the dorsolateral prefrontal circuit, the anterior cingulate circuit, and the orbitofrontal circuit. METHODS In this paper, we have reviewed evidence for thalamic pathology in FTD based on radiological and postmortem studies. Original research papers were systematically reviewed for preferential involvement of specific thalamic regions, for phenotype-associated thalamic disease burden patterns, characteristic longitudinal changes, and genotype-associated thalamic signatures. Moreover, evidence for presymptomatic thalamic pathology was also reviewed. Identified papers were systematically scrutinized for imaging methods, cohort sizes, clinical profiles, clinicoradiological associations, and main anatomical findings. The findings of individual research papers were amalgamated for consensus observations and their study designs further evaluated for stereotyped shortcomings. Based on the limitations of existing studies and conflicting reports in low-incidence FTD variants, we sought to outline future research directions and pressing research priorities. RESULTS FTD is associated with focal thalamic degeneration. Phenotype-specific thalamic traits mirror established cortical vulnerability patterns. Thalamic nuclei mediating behavioral and language functions are preferentially involved. Given the compelling evidence for considerable thalamic disease burden early in the course of most FTD subtypes, we also reflect on the practical relevance, diagnostic role, prognostic significance, and monitoring potential of thalamic metrics in FTD. CONCLUSIONS Cardinal manifestations of FTD phenotypes are likely to stem from thalamocortical circuitry dysfunction and are not exclusively driven by focal cortical changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
49
|
Dang M, Chen Q, Zhao X, Chen K, Li X, Zhang J, Lu J, Ai L, Chen Y, Zhang Z. Tau as a biomarker of cognitive impairment and neuropsychiatric symptom in Alzheimer's disease. Hum Brain Mapp 2023; 44:327-340. [PMID: 36647262 PMCID: PMC9842886 DOI: 10.1002/hbm.26043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
The A/T/N research framework has been proposed for the diagnosis and prognosis of Alzheimer's disease (AD). However, the spatial distribution of ATN biomarkers and their relationship with cognitive impairment and neuropsychiatric symptoms (NPS) need further clarification in patients with AD. We scanned 83 AD patients and 38 cognitively normal controls who independently completed the mini-mental state examination and Neuropsychiatric Inventory scales. Tau, Aβ, and hypometabolism spatial patterns were characterized using Statistical Parametric Mapping together with [18F]flortaucipir, [18F]florbetapir, and [18F]FDG positron emission tomography. Piecewise linear regression, two-sample t-tests, and support vector machine algorithms were used to explore the relationship between tau, Aβ, and hypometabolism and cognition, NPS, and AD diagnosis. The results showed that regions with tau deposition are region-specific and mainly occurred in inferior temporal lobes in AD, which extensively overlaps with the hypometabolic regions. While the deposition regions of Aβ were unique and the regions affected by hypometabolism were widely distributed. Unlike Aβ, tau and hypometabolism build up monotonically with increasing cognitive impairment in the late stages of AD. In addition, NPS in AD were associated with tau deposition closely, followed by hypometabolism, but not with Aβ. Finally, hypometabolism and tau had higher accuracy in differentiating the AD patients from controls (accuracy = 0.88, accuracy = 0.85) than Aβ (accuracy = 0.81), and the combined three were the highest (accuracy = 0.95). These findings suggest tau pathology is superior over Aβ and glucose metabolism to identify cognitive impairment and NPS. Its results support tau accumulation can be used as a biomarker of clinical impairment in AD.
Collapse
Affiliation(s)
- Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
| | - Qian Chen
- Department of Nuclear Medicine, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Kewei Chen
- Banner Alzheimer's InstitutePhoenixArizonaUSA
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
| | - Junying Zhang
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
| |
Collapse
|
50
|
Abstract
Brain PET adds value in diagnosing neurodegenerative disorders, especially frontotemporal dementia (FTD) due to its syndromic presentation that overlaps with a variety of other neurodegenerative and psychiatric disorders. 18F-FDG-PET has improved sensitivity and specificity compared with structural MR imaging, with optimal diagnostic results achieved when both techniques are utilized. PET demonstrates superior sensitivity compared with SPECT for FTD diagnosis that is primarily a supplement to other imaging and clinical evaluations. Tau-PET and amyloid-PET primary use in FTD diagnosis is differentiation from Alzheimer disease, although these methods are limited mainly to research settings.
Collapse
Affiliation(s)
- Joshua Ward
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA
| | - Maria Ly
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA
| | - Cyrus A. Raji
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130, USA,Department of Neurology, Washington University in St. Louis, 4525 Scott Avenue, St. Louis, MO 63110, USA,Corresponding author. Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in Saint. Louis, Saint Louis, MO 63130.
| |
Collapse
|