1
|
Oeztuerk M, Henes A, Schroeter CB, Nelke C, Quint P, Theissen L, Meuth SG, Ruck T. Current Biomarker Strategies in Autoimmune Neuromuscular Diseases. Cells 2023; 12:2456. [PMID: 37887300 PMCID: PMC10605022 DOI: 10.3390/cells12202456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Inflammatory neuromuscular disorders encompass a diverse group of immune-mediated diseases with varying clinical manifestations and treatment responses. The identification of specific biomarkers has the potential to provide valuable insights into disease pathogenesis, aid in accurate diagnosis, predict disease course, and monitor treatment efficacy. However, the rarity and heterogeneity of these disorders pose significant challenges in the identification and implementation of reliable biomarkers. Here, we aim to provide a comprehensive review of biomarkers currently established in Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), myasthenia gravis (MG), and idiopathic inflammatory myopathy (IIM). It highlights the existing biomarkers in these disorders, including diagnostic, prognostic, predictive and monitoring biomarkers, while emphasizing the unmet need for additional specific biomarkers. The limitations and challenges associated with the current biomarkers are discussed, and the potential implications for disease management and personalized treatment strategies are explored. Collectively, biomarkers have the potential to improve the management of inflammatory neuromuscular disorders. However, novel strategies and further research are needed to establish clinically meaningful biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.O.); (A.H.); (P.Q.)
| |
Collapse
|
2
|
Margotta C, Fabbrizio P, Ceccanti M, Cambieri C, Ruffolo G, D'Agostino J, Trolese MC, Cifelli P, Alfano V, Laurini C, Scaricamazza S, Ferri A, Sorarù G, Palma E, Inghilleri M, Bendotti C, Nardo G. Immune-mediated myogenesis and acetylcholine receptor clustering promote a slow disease progression in ALS mouse models. Inflamm Regen 2023; 43:19. [PMID: 36895050 PMCID: PMC9996869 DOI: 10.1186/s41232-023-00270-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease in terms of onset and progression rate. This may account for therapeutic clinical trial failure. Transgenic SOD1G93A mice on C57 or 129Sv background have a slow and fast disease progression rate, mimicking the variability observed in patients. Based on evidence inferring the active influence of skeletal muscle on ALS pathogenesis, we explored whether dysregulation in hindlimb skeletal muscle reflects the phenotypic difference between the two mouse models. METHODS Ex vivo immunohistochemical, biochemical, and biomolecular methodologies, together with in vivo electrophysiology and in vitro approaches on primary cells, were used to afford a comparative and longitudinal analysis of gastrocnemius medialis between fast- and slow-progressing ALS mice. RESULTS We reported that slow-progressing mice counteracted muscle denervation atrophy by increasing acetylcholine receptor clustering, enhancing evoked currents, and preserving compound muscle action potential. This matched with prompt and sustained myogenesis, likely triggered by an early inflammatory response switching the infiltrated macrophages towards a M2 pro-regenerative phenotype. Conversely, upon denervation, fast-progressing mice failed to promptly activate a compensatory muscle response, exhibiting a rapidly progressive deterioration of muscle force. CONCLUSIONS Our findings further pinpoint the pivotal role of skeletal muscle in ALS, providing new insights into underestimated disease mechanisms occurring at the periphery and providing useful (diagnostic, prognostic, and mechanistic) information to facilitate the translation of cost-effective therapeutic strategies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Cassandra Margotta
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Marco Ceccanti
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Chiara Cambieri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Gabriele Ruffolo
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.,IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - Jessica D'Agostino
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Maria Chiara Trolese
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Christian Laurini
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Institute of Translational Pharmacology (IFT-CNR), Rome, Italy
| | - Gianni Sorarù
- Department of Neuroscience, Azienda Ospedaliera di Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - Eleonora Palma
- Laboratory Affiliated to Istituto Pasteur Italia, Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.,IRCCS San Raffaele Roma, 00163, Rome, Italy
| | - Maurizio Inghilleri
- Department of Human Neurosciences, Rare Neuromuscular Diseases Centre, Sapienza University of Rome, 00185, Rome, Italy
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| |
Collapse
|
3
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
4
|
Gorovits B. Current Considerations for Immunoglobulin Isotype Characterization of Antibody Response against Biotherapeutics. AAPS JOURNAL 2020; 22:144. [PMID: 33161459 DOI: 10.1208/s12248-020-00530-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
The ability of biotherapeutics to induce immune response in patients has been broadly accepted. Humoral immune response to biotherapeutics is expected to be polyclonal in nature with a high degree of diversity, including treatment-induced anti-drug antibodies (ADA) immunoglobulin isotype composition. Therapeutics with strong potential to induce immunity may produce a T cell-dependent response resulting in a gradual transition from initial IgM based to mature, IgG-based ADAs. Immunoglobulin class switch and transition to high affinity IgG1 and IgG4 antibodies were linked to a reduced drug efficacy, accelerated clearance, development of drug neutralizing antibodies, and modulation of hypersensitivity reaction rates. Examples presented herein demonstrate that understanding of isotype composition of ADA response can be highly important to predict future of disease progression. Isotype characterization of ADA response can be viewed highly useful, particularly for high immunogenicity risk biotherapeutics although may be less relevant or used as a research tool only for medium and low immunogenicity risk level therapeutics. Isotype-specific characteristics, methods of detection, and several case studies are presented herein.
Collapse
|
5
|
Ojeda J, Bermedo-García F, Pérez V, Mella J, Hanna P, Herzberg D, Tejero R, López-Manzaneda M, Tabares L, Henríquez JP. The Mouse Levator Auris Longus Muscle: An Amenable Model System to Study the Role of Postsynaptic Proteins to the Maintenance and Regeneration of the Neuromuscular Synapse. Front Cell Neurosci 2020; 14:225. [PMID: 32848618 PMCID: PMC7405910 DOI: 10.3389/fncel.2020.00225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
The neuromuscular junction (NMJ) is the peripheral synapse that controls the coordinated movement of many organisms. The NMJ is also an archetypical model to study synaptic morphology and function. As the NMJ is the primary target of neuromuscular diseases and traumatic injuries, the establishment of suitable models to study the contribution of specific postsynaptic muscle-derived proteins on NMJ maintenance and regeneration is a permanent need. Considering the unique experimental advantages of the levator auris longus (LAL) muscle, here we present a method allowing for efficient electroporation-mediated gene transfer and subsequent detailed studies of the morphology and function of the NMJ and muscle fibers. Also, we have standardized efficient facial nerve injury protocols to analyze LAL muscle NMJ degeneration and regeneration. Our results show that the expression of a control fluorescent protein does not alter either the muscle structural organization, the apposition of the pre- and post-synaptic domains, or the functional neurotransmission parameters of the LAL muscle NMJs; in turn, the overexpression of MuSK, a major regulator of postsynaptic assembly, induces the formation of ectopic acetylcholine receptor clusters. Our NMJ denervation experiments showed complete reinnervation of LAL muscle NMJs four weeks after facial nerve injury. Together, these experimental strategies in the LAL muscle constitute effective methods to combine protein expression with accurate analyses at the levels of structure, function, and regeneration of the NMJ.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile.,Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain.,Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Francisca Bermedo-García
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Viviana Pérez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Jessica Mella
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Patricia Hanna
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| | - Daniel Herzberg
- Veterinary Sciences Clinic, Universidad de Concepción, Concepción, Chile
| | - Rocío Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain
| | - Mario López-Manzaneda
- Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, Universidad de Sevilla, Sevilla, Spain
| | - Juan Pablo Henríquez
- Neuromuscular Studies Laboratory (NeSt Lab), Department of Cell Biology, Faculty of Biological Sciences, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
7
|
He D, Zhang H, Xiao J, Zhang X, Xie M, Pan D, Wang M, Luo X, Bu B, Zhang M, Wang W. Molecular and clinical relationship between live-attenuated Japanese encephalitis vaccination and childhood onset myasthenia gravis. Ann Neurol 2019; 84:386-400. [PMID: 30246904 PMCID: PMC6175482 DOI: 10.1002/ana.25267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/12/2022]
Abstract
Objective The incidence of childhood onset myasthenia gravis (CMG) in China is higher than that in other countries; however, the reasons for this are unclear. Methods We investigated the clinical and immunological profiles of CMG, and assessed the potential precipitating factors. For the mouse studies, the possible implication of vaccination in the pathogenesis was explored. Results In our retrospective study, 51.22% of the 4,219 cases of myasthenia gravis (MG) were of the childhood onset type. The cohort study uncovered that the pathophysiology of CMG was mediated by immune deviation, rather than through gene mutations or virus infections. The administration of the live‐attenuated Japanese encephalitis vaccine (LA‐JEV), but not the inactivated vaccine or other vaccines, in mice induced serum acetylcholine receptor (AChR) antibody production, reduced the AChR density at the endplates, and decreased both muscle strength and response to repetitive nerve stimulation. We found a peptide (containing 7 amino acids) of LA‐JEV similar to the AChR‐α subunit, and immunization with a synthesized protein containing this peptide reproduced the MG‐like phenotype in mice. Interpretation Our results describe the immunological profile of CMG. Immunization with LA‐JEV induced an autoimmune reaction against the AChR through molecular mimicry. These findings might explain the higher occurrence rate of CMG in China, where children are routinely vaccinated with LA‐JEV, compared with that in countries, where this vaccination is not as common. Efforts should be made to optimize immunization strategies and reduce the risk for developing autoimmune disorders among children. Ann Neurol 2018;84:386–400
Collapse
Affiliation(s)
- Dan He
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Han Zhang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jun Xiao
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiaofan Zhang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Minjie Xie
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Disease of Education Committee of ChinaWuhanHubeiChina
| | - Dengji Pan
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Minghuan Wang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiang Luo
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Bitao Bu
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Min Zhang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Wei Wang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Disease of Education Committee of ChinaWuhanHubeiChina
| |
Collapse
|
8
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|
9
|
Gomez AM, Stevens JAA, Mané-Damas M, Molenaar P, Duimel H, Verheyen F, Cossins J, Beeson D, De Baets MH, Losen M, Martinez-Martinez P. Silencing of Dok-7 in Adult Rat Muscle Increases Susceptibility to Passive Transfer Myasthenia Gravis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:2559-68. [PMID: 27658713 DOI: 10.1016/j.ajpath.2016.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/30/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies that target proteins at the neuromuscular junction, primarily the acetylcholine receptor (AChR) and the muscle-specific kinase. Because downstream of kinase 7 (Dok-7) is essential for the full activation of muscle-specific kinase and consequently for dense clustering of AChRs, we hypothesized that reduced levels of Dok-7 increase the susceptibility to passive transfer MG. To test this hypothesis, Dok-7 expression was reduced by transfecting shRNA-coding plasmids into the tibialis anterior muscle of adult rats by in vivo electroporation. Subclinical MG was subsequently induced with a low dose of anti-AChR monoclonal antibody 35. Neuromuscular transmission was significantly impaired in Dok-7-siRNA-electroporated legs compared with the contralateral control legs, which correlated with a reduction of AChR protein levels at the neuromuscular junction (approximately 25%) in Dok-7-siRNA-electroporated muscles, compared with contralateral control muscles. These results suggest that a reduced expression of Dok-7 may play a role in the susceptibility to passive transfer MG, by rendering AChR clusters less resistant to the autoantibody attack.
Collapse
Affiliation(s)
- Alejandro M Gomez
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Jo A A Stevens
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Marina Mané-Damas
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter Molenaar
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Hans Duimel
- Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University, Maastricht, the Netherlands
| | - Fons Verheyen
- Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University, Maastricht, the Netherlands
| | - Judith Cossins
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Marc H De Baets
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Mario Losen
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Pilar Martinez-Martinez
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Herranz-Martin S, Chandran J, Lewis K, Mulcahy P, Higginbottom A, Walker C, Valenzuela IMPY, Jones RA, Coldicott I, Iannitti T, Akaaboune M, El-Khamisy SF, Gillingwater TH, Shaw PJ, Azzouz M. Viral delivery of C9orf72 hexanucleotide repeat expansions in mice leads to repeat-length-dependent neuropathology and behavioural deficits. Dis Model Mech 2017; 10:859-868. [PMID: 28550099 PMCID: PMC5536911 DOI: 10.1242/dmm.029892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/23/2017] [Indexed: 01/14/2023] Open
Abstract
Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ) abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43) pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches. Summary:C9orf72-linked motor neuron disease models with viral-mediated expression of GGGGCC repeat expansion in mice show neuropathology and behavioural deficits.
Collapse
Affiliation(s)
- Saul Herranz-Martin
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Jayanth Chandran
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Katherine Lewis
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Padraig Mulcahy
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Adrian Higginbottom
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Callum Walker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK.,Department of Molecular Biology and Biotechnology, Krebs and Sheffield Institute for Nucleic Acids, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Ross A Jones
- Centre for Integrative Physiology & Euan MacDonald Centre for Motor Neurone Disease Research, Hugh Robson Building, The University of Edinburgh, 15 George Square, Edinburgh EH8 9XD, UK
| | - Ian Coldicott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Tommaso Iannitti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Mohammed Akaaboune
- Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, Krebs and Sheffield Institute for Nucleic Acids, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | - Thomas H Gillingwater
- Centre for Integrative Physiology & Euan MacDonald Centre for Motor Neurone Disease Research, Hugh Robson Building, The University of Edinburgh, 15 George Square, Edinburgh EH8 9XD, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
11
|
Axonal degeneration, distal collateral branching and neuromuscular junction architecture alterations occur prior to symptom onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Chem Neuroanat 2016; 76:35-47. [DOI: 10.1016/j.jchemneu.2016.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|
12
|
Hoffmann C, Zong S, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P. Autoantibodies in Neuropsychiatric Disorders. Antibodies (Basel) 2016; 5:9. [PMID: 31557990 PMCID: PMC6698850 DOI: 10.3390/antib5020009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022] Open
Abstract
Little is known about the etiology of neuropsychiatric disorders. The identification of autoantibodies targeting the N-methyl-d-aspartate receptor (NMDA-R), which causes neurological and psychiatric symptoms, has reinvigorated the hypothesis that other patient subgroups may also suffer from an underlying autoimmune condition. In recent years, a wide range of neuropsychiatric diseases and autoantibodies targeting ion-channels or neuronal receptors including NMDA-R, voltage gated potassium channel complex (VGKC complex), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R), γ-aminobutyric acid receptor (GABA-R) and dopamine receptor (DR) were studied and conflicting reports have been published regarding the seroprevalence of these autoantibodies. A clear causative role of autoantibodies on psychiatric symptoms has as yet only been shown for the NMDA-R. Several other autoantibodies have been related to the presence of certain symptoms and antibody effector mechanisms have been proposed. However, extensive clinical studies with large multicenter efforts to standardize diagnostic procedures for autoimmune etiology and animal studies are needed to confirm the pathogenicity of these autoantibodies. In this review, we discuss the current knowledge of neuronal autoantibodies in the major neuropsychiatric disorders: psychotic, major depression, autism spectrum, obsessive-compulsive and attention-deficit/hyperactivity disorders.
Collapse
Affiliation(s)
- Carolin Hoffmann
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Shenghua Zong
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Marina Mané-Damas
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Peter Molenaar
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Mario Losen
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Pilar Martinez-Martinez
- Division Neurosciences, School for Mental Health and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
13
|
De Vry J, Martínez-Martínez P, Losen M, Bode GH, Temel Y, Steckler T, Steinbusch HWM, De Baets M, Prickaerts J. Low Current-driven Micro-electroporation Allows Efficient In Vivo Delivery of Nonviral DNA into the Adult Mouse Brain. Mol Ther 2016; 18:1183-91. [PMID: 20389292 DOI: 10.1038/mt.2010.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Viral gene transfer or transgenic animals are commonly used technologies to alter gene expression in the adult brain, although these approaches lack spatial specificity and are time consuming. We delivered plasmid DNA locally into the brain of adult C57BL/6 mice in vivo by voltage- and current-controlled electroporation. The low current-controlled delivery of unipolar square wave pulses of 125 µA with microstimulation electrodes at the injection site gave 16 times higher transfection rates than a voltage-controlled electroporation protocol with plate electrodes resulting in currents of about 400 mA. Transfection was restricted to the target region and no damage due to the electric pulses was found. Our current-controlled electroporation protocol indicated that the use of very low currents resulting in applied voltages within the physiological range of the membrane potential, allows efficient transfection of nonviral plasmid DNA. In conclusion, low current-controlled electroporation is an excellent approach for electroporation in the adult brain, i.e., gene function can be influenced locally at a high level with no mortality and minimal tissue damage.
Collapse
Affiliation(s)
- Jochen De Vry
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands;European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mantegazza R, Cordiglieri C, Consonni A, Baggi F. Animal models of myasthenia gravis: utility and limitations. Int J Gen Med 2016; 9:53-64. [PMID: 27019601 PMCID: PMC4786081 DOI: 10.2147/ijgm.s88552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease caused by the immune attack of the neuromuscular junction. Antibodies directed against the acetylcholine receptor (AChR) induce receptor degradation, complement cascade activation, and postsynaptic membrane destruction, resulting in functional reduction in AChR availability. Besides anti-AChR antibodies, other autoantibodies are known to play pathogenic roles in MG. The experimental autoimmune MG (EAMG) models have been of great help over the years in understanding the pathophysiological role of specific autoantibodies and T helper lymphocytes and in suggesting new therapies for prevention and modulation of the ongoing disease. EAMG can be induced in mice and rats of susceptible strains that show clinical symptoms mimicking the human disease. EAMG models are helpful for studying both the muscle and the immune compartments to evaluate new treatment perspectives. In this review, we concentrate on recent findings on EAMG models, focusing on their utility and limitations.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Chiara Cordiglieri
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Alessandra Consonni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Fulvio Baggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| |
Collapse
|
15
|
Ghazanfari N, Linsao ELTB, Trajanovska S, Morsch M, Gregorevic P, Liang SX, Reddel SW, Phillips WD. Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiol Rep 2015; 3:3/12/e12658. [PMID: 26702075 PMCID: PMC4760443 DOI: 10.14814/phy2.12658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022] Open
Abstract
We investigated the influence of postsynaptic tyrosine kinase signaling in a mouse model of muscle‐specific kinase (MuSK) myasthenia gravis (MG). Mice administered repeated daily injections of IgG from MuSK MG patients developed impaired neuromuscular transmission due to progressive loss of acetylcholine receptor (AChR) from the postsynaptic membrane of the neuromuscular junction. In this model, anti‐MuSK‐positive IgG caused a reduction in motor endplate immunolabeling for phosphorylated Src‐Y418 and AChR β‐subunit‐Y390 before any detectable loss of MuSK or AChR from the endplate. Adeno‐associated viral vector (rAAV) encoding MuSK fused to enhanced green fluorescent protein (MuSK‐EGFP) was injected into the tibialis anterior muscle to increase MuSK synthesis. When mice were subsequently challenged with 11 daily injections of IgG from MuSK MG patients, endplates expressing MuSK‐EGFP retained more MuSK and AChR than endplates of contralateral muscles administered empty vector. Recordings of compound muscle action potentials from myasthenic mice revealed less impairment of neuromuscular transmission in muscles that had been injected with rAAV‐MuSK‐EGFP than contralateral muscles (empty rAAV controls). In contrast to the effects of MuSK‐EGFP, forced expression of rapsyn‐EGFP provided no such protection to endplate AChR when mice were subsequently challenged with MuSK MG IgG. In summary, the immediate in vivo effect of MuSK autoantibodies was to suppress MuSK‐dependent tyrosine phosphorylation of proteins in the postsynaptic membrane, while increased MuSK synthesis protected endplates against AChR loss. These results support the hypothesis that reduced MuSK kinase signaling initiates the progressive disassembly of the postsynaptic membrane scaffold in this mouse model of MuSK MG.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Erna L T B Linsao
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sofie Trajanovska
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Marco Morsch
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Simon X Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Liaoning Medical University, Liaoning, China
| | - Stephen W Reddel
- Department of Molecular Medicine, Concord Hospital, Sydney, New South Wales, Australia
| | - William D Phillips
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Yeo HL, Lim JYN, Fukami Y, Yuki N, Lee CW. Using Xenopus tissue cultures for the study of myasthenia gravis pathogenesis. Dev Biol 2015; 408:244-51. [DOI: 10.1016/j.ydbio.2015.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/10/2015] [Accepted: 02/20/2015] [Indexed: 11/28/2022]
|
17
|
Clinical application of clustered-AChR for the detection of SNMG. Sci Rep 2015; 5:10193. [PMID: 26068604 PMCID: PMC4464178 DOI: 10.1038/srep10193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/02/2015] [Indexed: 11/08/2022] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction (NMJ). However, accumulating evidence has indicated that MG patients whose serum anti-acetylcholine receptor (AChR) antibodies are not detectable (serumnegative MG; SNMG) in routine assays share similar clinical features with anti-AChR antibody-positive MG patients. We hypothesized that SNMG patients would have low-affinity antibodies to AChRs that would not be detectable using traditional methods but that might be detected by binding to AChR on the cell membrane, particularly if they were clustered at the high density observed at the NMJ. We expressed AChR subunits with the clustering protein rapsyn (an AChR-associated protein at the synapse) in human embryonic kidney (HEK) cells, and we tested the binding of the antibodies using immunofluorescence. With this approach, AChR antibodies to rapsyn-clustered AChR could be detected in the sera from 45.83% (11/24) of SNMG patients, as confirmed with fluorescence-activated cell sorting (FACS). This was the first application in China of cell-based AChR antibody detection. More importantly, this sensitive (and specific) approach could significantly increase the diagnosis rate of SNMG.
Collapse
|
18
|
Losen M, Martinez-Martinez P, Molenaar PC, Lazaridis K, Tzartos S, Brenner T, Duan RS, Luo J, Lindstrom J, Kusner L. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors--Recommendations for methods and experimental designs. Exp Neurol 2015; 270:18-28. [PMID: 25796590 PMCID: PMC4466156 DOI: 10.1016/j.expneurol.2015.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 12/21/2022]
Abstract
Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic, fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells which provide the environment for the development of autoreactive B cells. The symptoms are caused by destruction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mechanisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recommendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to facilitate more rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimately, clinical practice.
Collapse
Affiliation(s)
- Mario Losen
- Division Neuroscience, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Pilar Martinez-Martinez
- Division Neuroscience, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Peter C Molenaar
- Division Neuroscience, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Talma Brenner
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, PR China
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Linda Kusner
- Department of Pharmacology & Physiology, The George Washington University, Washington, DC, USA
| |
Collapse
|
19
|
Guidelines for pre-clinical assessment of the acetylcholine receptor--specific passive transfer myasthenia gravis model-Recommendations for methods and experimental designs. Exp Neurol 2015; 270:3-10. [PMID: 25743217 DOI: 10.1016/j.expneurol.2015.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/21/2022]
Abstract
Antibodies against the muscle acetylcholine receptor (AChR) are the most common cause of myasthenia gravis (MG). Passive transfer of AChR antibodies from MG patients into animals reproduces key features of human disease, including antigenic modulation of the AChR, complement-mediated damage of the neuromuscular junction, and muscle weakness. Similarly, AChR antibodies generated by active immunization in experimental autoimmune MG models can subsequently be passively transferred to other animals and induce weakness. The passive transfer model is useful to test therapeutic strategies aimed at the effector mechanism of the autoantibodies. Here we summarize published and unpublished experience using the AChR passive transfer MG model in mice, rats and rhesus monkeys, and give recommendations for the design of preclinical studies in order to facilitate translation of positive and negative results to improve MG therapies.
Collapse
|
20
|
Phillips WD, Christadoss P, Losen M, Punga AR, Shigemoto K, Verschuuren J, Vincent A. Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis. Exp Neurol 2014; 270:29-40. [PMID: 25542979 DOI: 10.1016/j.expneurol.2014.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/17/2022]
Abstract
Muscle-specific tyrosine kinase (MuSK) autoantibodies are the hallmark of a form of myasthenia gravis (MG) that can challenge the neurologist and the experimentalist. The clinical disease can be difficult to treat effectively. MuSK autoantibodies affect the neuromuscular junction in several ways. When added to muscle cells in culture, MuSK antibodies disperse acetylcholine receptor clusters. Experimental animals actively immunized with MuSK develop MuSK autoantibodies and muscle weakness. Weakness is associated with reduced postsynaptic acetylcholine receptor numbers, reduced amplitudes of miniature endplate potentials and endplate potentials, and failure of neuromuscular transmission. Similar impairments have been found in mice injected with IgG from MG patients positive for MuSK autoantibody (MuSK-MG). The active and passive models have begun to reveal the mechanisms by which MuSK antibodies disrupt synaptic function at the neuromuscular junction, and should be valuable in developing therapies for MuSK-MG. However, translation into new and improved treatments for patients requires procedures that are not too cumbersome but suitable for examining different aspects of MuSK function and the effects of potential therapies. Study design, conduct and analysis should be carefully considered and transparently reported. Here we review what has been learnt from animal and culture models of MuSK-MG, and offer guidelines for experimental design and conduct of studies, including sample size determination, randomization, outcome parameters and precautions for objective data analysis. These principles may also be relevant to the increasing number of other antibody-mediated diseases that are now recognized.
Collapse
Affiliation(s)
- W D Phillips
- School of Medical Sciences (Physiology) and Bosch Institute, Anderson Stuart Bldg (F13), University of Sydney, NSW 2006, Australia.
| | - P Christadoss
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - M Losen
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - A R Punga
- Institute of Neuroscience, Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| | - K Shigemoto
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | - J Verschuuren
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - A Vincent
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
21
|
Kusner LL, Satija N, Cheng G, Kaminski HJ. Targeting therapy to the neuromuscular junction: proof of concept. Muscle Nerve 2014; 49:749-56. [PMID: 24037951 PMCID: PMC4296224 DOI: 10.1002/mus.24057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The site of pathology in myasthenia gravis (MG) is the neuromuscular junction (NMJ). Our goal was to determine the ability to direct complement inhibition to the NMJ. METHODS A single-chain antibody directed against the alpha subunit of the acetylcholine receptor was synthesized (scFv-35) and coupled to decay-accelerating factor (DAF, scFv-35-DAF). scFv-35-DAF was tested in a passive model of experimentally acquired MG. RESULTS Administration of scFv-35-DAF to mice deficient in intrinsic complement inhibitors produced no weakness despite confirmation of its localization to the NMJ and no evidence of tissue destruction related to complement activation. Rats with experimentally acquired MG treated with scFV-35-DAF showed less weakness and a reduction of complement deposition. CONCLUSIONS We demonstrate a method to effectively target a therapeutic agent to the NMJ.
Collapse
Affiliation(s)
- Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | | | | | | |
Collapse
|
22
|
Ghazanfari N, Morsch M, Reddel SW, Liang SX, Phillips WD. Muscle-specific kinase (MuSK) autoantibodies suppress the MuSK pathway and ACh receptor retention at the mouse neuromuscular junction. J Physiol 2014; 592:2881-97. [PMID: 24860174 DOI: 10.1113/jphysiol.2013.270207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Muscle-specific kinase (MuSK) autoantibodies from myasthenia gravis patients can block the activation of MuSK in vitro and/or reduce the postsynaptic localization of MuSK. Here we use a mouse model to examine the effects of MuSK autoantibodies upon some key components of the postsynaptic MuSK pathway and upon the regulation of junctional ACh receptor (AChR) numbers. Mice became weak after 14 daily injections of anti-MuSK-positive patient IgG. The intensity and area of AChR staining at the motor endplate was markedly reduced. Pulse-labelling of AChRs revealed an accelerated loss of pre-existing AChRs from postsynaptic AChR clusters without a compensatory increase in incorporation of (newly synthesized) replacement AChRs. Large, postsynaptic AChR clusters were replaced by a constellation of tiny AChR microaggregates. Puncta of AChR staining also appeared in the cytoplasm beneath the endplate. Endplate staining for MuSK, activated Src, rapsyn and AChR were all reduced in intensity. In the tibialis anterior muscle there was also evidence that phosphorylation of the AChR β-subunit-Y390 was reduced at endplates. In contrast, endplate staining for β-dystroglycan (through which rapsyn couples AChR to the synaptic basement membrane) remained intense. The results suggest that anti-MuSK IgG suppresses the endplate density of MuSK, thereby down-regulating MuSK signalling activity and the retention of junctional AChRs locally within the postsynaptic membrane scaffold.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Marco Morsch
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Stephen W Reddel
- Department of Molecular Medicine, Concord Hospital, Concord, New South Wales, 2139, Australia
| | - Simon X Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Liaoning Medical University, China
| | - William D Phillips
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
23
|
Vrolix K, Fraussen J, Losen M, Stevens J, Lazaridis K, Molenaar PC, Somers V, Bracho MA, Le Panse R, Stinissen P, Berrih-Aknin S, Maessen JG, Van Garsse L, Buurman WA, Tzartos SJ, De Baets MH, Martinez-Martinez P. Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. J Autoimmun 2014; 52:101-12. [PMID: 24439114 DOI: 10.1016/j.jaut.2013.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR-MG) is considered as a prototypic autoimmune disease. The thymus is important in the pathophysiology of the disease since thymus hyperplasia is a characteristic of early-onset AChR-MG and patients often improve after thymectomy. We hypothesized that thymic B cell and antibody repertoires of AChR-MG patients differ intrinsically from those of control individuals. Using immortalization with Epstein-Barr Virus and Toll-like receptor 9 activation, we isolated and characterized monoclonal B cell lines from 5 MG patients and 8 controls. Only 2 of 570 immortalized B cell clones from MG patients produced antibodies against the AChR (both clones were from the same patient), suggesting that AChR-specific B cells are not enriched in the thymus. Surprisingly, many B cell lines from both AChR-MG and control thymus samples displayed reactivity against striated muscle proteins. Striational antibodies were produced by 15% of B cell clones from AChR-MG versus 6% in control thymus. The IgVH gene sequence analysis showed remarkable similarities, concerning VH family gene distribution, mutation frequency and CDR3 composition, between B cells of AChR-MG patients and controls. MG patients showed clear evidence of clonal B cell expansion in contrast to controls. In this latter aspect, MG resembles multiple sclerosis and clinically isolated syndrome, but differs from systemic lupus erythematosus. Our results support an antigen driven immune response in the MG thymus, but the paucity of AChR-specific B cells, in combination with the observed polyclonal expansions suggest a more diverse immune response than expected.
Collapse
Affiliation(s)
- Kathleen Vrolix
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Judith Fraussen
- Neuroimmunology group, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Mario Losen
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jo Stevens
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | - Peter C Molenaar
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Veerle Somers
- Neuroimmunology group, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Maria Alma Bracho
- Centre Superior d'Investigació en Salut Pública (CSISP), Àrea de Genòmica i Salut, Conselleria de Sanitat, Generalitat Valenciana, València, Spain; Institut "Cavanilles" de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, València, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia e Innovación, Spain
| | - Rozen Le Panse
- UPMC UM 76/INSERM U974/CNRS UMR7215/Institute of Myology, 105 Bd de l'hôpital, Paris, France
| | - Piet Stinissen
- Neuroimmunology group, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sonia Berrih-Aknin
- UPMC UM 76/INSERM U974/CNRS UMR7215/Institute of Myology, 105 Bd de l'hôpital, Paris, France
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, University Hospital, Maastricht, The Netherlands
| | - Leen Van Garsse
- Department of Cardiothoracic Surgery, University Hospital, Maastricht, The Netherlands
| | - Wim A Buurman
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Socrates J Tzartos
- Department of Biochemistry, Hellenic Pasteur Institute, GR 11521 Athens, Greece
| | - Marc H De Baets
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Neuroimmunology group, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
24
|
Verschuuren JJ, Huijbers MG, Plomp JJ, Niks EH, Molenaar PC, Martinez-Martinez P, Gomez AM, De Baets MH, Losen M. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmun Rev 2013; 12:918-23. [DOI: 10.1016/j.autrev.2013.03.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 01/13/2023]
|
25
|
|
26
|
Cufi P, Dragin N, Weiss JM, Martinez-Martinez P, De Baets MH, Roussin R, Fadel E, Berrih-Aknin S, Le Panse R. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 2012; 73:281-93. [PMID: 23280437 DOI: 10.1002/ana.23791] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 09/28/2012] [Accepted: 10/13/2012] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Myasthenia gravis (MG) is an autoimmune disease mediated mainly by anti-acetylcholine receptor (AChR) antibodies. The thymus plays a primary role in MG pathogenesis. As we recently showed an inflammatory and antiviral signature in MG thymuses, we investigated whether pathogen-sensing molecules could contribute to an anti-AChR response. METHODS We studied the effects of toll-like receptor agonists on the expression of α-AChR and various tissue-specific antigens (TSAs) in human thymic epithelial cell (TEC) cultures. As polyinosinic-polycytidylic acid (poly[I:C]), which mimics double-stranded RNA (dsRNA), stimulated specifically α-AChR expression, the signaling pathways involved were investigated. In parallel, we analyzed the expression of dsRNA-signaling components in the thymus of MG patients, and the relevance of our data was investigated in vivo in poly(I:C)-injected mice. RESULTS We demonstrate that dsRNA signaling induced by poly(I:C) specifically triggers the overexpression of α-AChR in TECs and not of other TSAs. A poly(I:C) effect was also observed on MG TECs. This induction is mediated through toll-like receptor 3 (TLR3) and protein kinase R (PKR), and by the release of interferon (IFN)-β. In parallel, human MG thymuses also display an overexpression of TLR3, PKR, and IFN-β. In addition, poly(I:C) injections specifically increase thymic expression of α-AChR in wild-type mice, but not in IFN-I receptor knockout mice. These injections also lead to an anti-AChR autoimmune response characterized by a significant production of serum anti-AChR antibodies and a specific proliferation of B cells. INTERPRETATION Because anti-AChR antibodies are highly specific for MG and are pathogenic, dsRNA-signaling activation could contribute to the etiology of MG.
Collapse
Affiliation(s)
- Perrine Cufi
- Research unit CNRS UMR7215/INSERM U974/UPMC UM76/AIM - Institute of Myology - Therapies of the disorders of striated muscle Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dentistry and the myasthenia gravis patient: a review of the current state of the art. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:e1-8. [PMID: 22732850 DOI: 10.1016/j.tripleo.2011.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/21/2022]
Abstract
Myasthenia gravis (MG) is a chronic neuromuscular disease characterized by muscular weakness and fatigability. Dental management of patients diagnosed with MG presents a challenge to the oral health care provider. The purpose of this article was to review the etiology, pathogenesis, diagnosis, and clinical signs and symptoms associated with MG, highlighting the role of the oral health care provider in the process of diagnosis and management of the oral and dental complications that might be associated with the disease, while avoiding myasthenic crisis. A discussion of the recent approaches to treatment of the disease and current research on MG is presented.
Collapse
|
28
|
Baggi F, Antozzi C, Toscani C, Cordiglieri C. Acetylcholine Receptor-Induced Experimental Myasthenia Gravis: What Have We Learned from Animal Models After Three Decades? Arch Immunol Ther Exp (Warsz) 2011; 60:19-30. [DOI: 10.1007/s00005-011-0158-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/28/2011] [Indexed: 01/23/2023]
|
29
|
Punga AR, Lin S, Oliveri F, Meinen S, Rüegg MA. Muscle-selective synaptic disassembly and reorganization in MuSK antibody positive MG mice. Exp Neurol 2011; 230:207-17. [DOI: 10.1016/j.expneurol.2011.04.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/15/2011] [Accepted: 04/21/2011] [Indexed: 11/25/2022]
|
30
|
Adjobimey T, Hoerauf A. Induction of immunoglobulin G4 in human filariasis: an indicator of immunoregulation. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2011; 104:455-64. [PMID: 20863434 PMCID: PMC3065634 DOI: 10.1179/136485910x12786389891407] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Filarial parasites are known to induce a large range of immunoregulatory mechanisms, including the induction of alternatively activated macrophages and regulatory T cells. These mechanisms are used to evade and down-modulate the host's immune system, to support parasite survival. Several reports have focused on some of these mechanisms, in humans and murine models, but the complex immunoregulatory networks associated with filarial infections remain unclear. Recent publications have conferred a role for regulatory T cells in the ability of helminth parasites to modulate human immune responses, such cells promoting the induction of the non-complement-fixing immunoglobulin G4 (IgG4). High plasma concentrations of IgG4 have been reported in hypo-responsive and asymptomatic cases of helminth infection. In both human lymphatic filariasis and onchocerciasis, the asymptomatic infections are characterised by high plasma concentrations of IgG4 (compared with those of IgE) and of the complement-fixing antibodies IgG1, IgG2 and IgG3. In asymptomatic filarial infection, elevations in IgG4 are also often associated with high worm loads and with high plasma levels of the immunomodulatory interleukin-10. Here, various aspects of the induction of IgG4 in humans and it roles in the immunomodulation of the human responses to filarial parasites are reviewed.
Collapse
Affiliation(s)
- T Adjobimey
- Institute for Medical Microbiology, Immunology and Parasitology, University Clinic Bonn, Germany
| | | |
Collapse
|
31
|
Gomez AM, Vrolix K, Martínez-Martínez P, Molenaar PC, Phernambucq M, van der Esch E, Duimel H, Verheyen F, Voll RE, Manz RA, De Baets MH, Losen M. Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. THE JOURNAL OF IMMUNOLOGY 2011; 186:2503-13. [PMID: 21239719 DOI: 10.4049/jimmunol.1002539] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bortezomib, an inhibitor of proteasomes, has been reported to reduce autoantibody titers and to improve clinical condition in mice suffering from lupus-like disease. Bortezomib depletes both short- and long-lived plasma cells; the latter normally survive the standard immunosuppressant treatments targeting T and B cells. These findings encouraged us to test whether bortezomib is effective for alleviating the symptoms in the experimental autoimmune myasthenia gravis (EAMG) model for myasthenia gravis, a disease that is characterized by autoantibodies against the acetylcholine receptor (AChR) of skeletal muscle. Lewis rats were immunized with saline (control, n = 36) or Torpedo AChR (EAMG, n = 54) in CFA in the first week of an experimental period of 8 wk. After immunization, rats received twice a week s.c. injections of bortezomib (0.2 mg/kg in saline) or saline injections. Bortezomib induced apoptosis in bone marrow cells and reduced the amount of plasma cells in the bone marrow by up to 81%. In the EAMG animals, bortezomib efficiently reduced the rise of anti-AChR autoantibody titers, prevented ultrastructural damage of the postsynaptic membrane, improved neuromuscular transmission, and decreased myasthenic symptoms. This study thus underscores the potential of the therapeutic use of proteasome inhibitors to target plasma cells in Ab-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Alejandro M Gomez
- Neuroimmunology Group, Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gomez AM, Van Den Broeck J, Vrolix K, Janssen SP, Lemmens MAM, Van Der Esch E, Duimel H, Frederik P, Molenaar PC, Martínez-Martínez P, De Baets MH, Losen M. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 2010; 43:353-70. [PMID: 20380584 DOI: 10.3109/08916930903555943] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder caused by autoantibodies that are either directed to the muscle nicotinic acetylcholine receptor (AChR) or to the muscle-specific tyrosine kinase (MuSK). These autoantibodies define two distinct subforms of the disease-AChR-MG and MuSK-MG. Both AChR and MuSK are expressed on the postsynaptic membrane of the neuromuscular junction (NMJ), which is a highly specialized region of the muscle dedicated to receive and process signals from the motor nerve. Autoantibody binding to proteins of the postsynaptic membrane leads to impaired neuromuscular transmission and muscle weakness. Pro-inflammatory antibodies of the human IgG1 and IgG3 subclass modulate the AChR, cause complement activation, and attract lymphocytes; together acting to decrease levels of the AChR and AChR-associated proteins and to reduce postsynaptic folding. In patients with anti-MuSK antibodies, there is no evidence of loss of junctional folds and no apparent loss of AChR density. Anti-MuSK antibodies are predominantly of the IgG4 isotype, which functionally differs from other IgG subclasses in its anti-inflammatory activity. Moreover, IgG4 undergoes a posttranslational modification termed Fab arm exchange that prevents cross-linking of antigens. These findings suggest that MuSK-MG may be different in etiological and pathological mechanisms from AChR-MG. The effector functions of IgG subclasses on synapse structure and function are discussed in this review.
Collapse
Affiliation(s)
- Alejandro M Gomez
- Neuroimmunology Group, Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vrolix K, Fraussen J, Molenaar PC, Losen M, Somers V, Stinissen P, De Baets MH, Martínez-Martínez P. The auto-antigen repertoire in myasthenia gravis. Autoimmunity 2010; 43:380-400. [PMID: 20380581 DOI: 10.3109/08916930903518073] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myasthenia Gravis (MG) is an antibody-mediated autoimmune disorder affecting the postsynaptic membrane of the neuromuscular junction (NMJ). MG is characterized by an impaired signal transmission between the motor neuron and the skeletal muscle cell, caused by auto-antibodies directed against NMJ proteins. The auto-antibodies target the nicotinic acetylcholine receptor (nAChR) in about 90% of MG patients. In approximately 5% of MG patients, the muscle specific kinase (MuSK) is the auto-antigen. In the remaining 5% of MG patients, however, antibodies against the nAChR or MuSK are not detectable (idiopathic MG, iMG). Although only the anti-nAChR and anti-MuSK auto-antibodies have been demonstrated to be pathogenic, several other antibodies recognizing self-antigens can also be found in MG patients. Various auto-antibodies associated with thymic abnormalities have been reported, as well as many non-MG-specific auto-antibodies. However, their contribution to the cause, pathology and severity of the disease is still poorly understood. Here, we comprehensively review the reported auto-antibodies in MG patients and discuss their role in the pathology of this autoimmune disease.
Collapse
Affiliation(s)
- Kathleen Vrolix
- Division of Neuroscience, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yu J, Zheng C, Ren X, Li J, Liu M, Zhang L, Liang L, Du W, Han ZC. Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol 2010; 72:242-9. [PMID: 20696022 DOI: 10.1111/j.1365-3083.2010.02445.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSC) are potent in immunomodulation. It has been proven that MSC functioned to correct immune disorder in several immune diseases. Here, we tested the hypothesis that MSC from human bone marrow (hMSC) can provide a potential therapy for experimental autoimmune myasthenia gravis (EAMG). EAMG mice model was established by subcutaneous injection of synthetic analogue of acetylcholine receptor (AchR), then, hMSC were intravenously delivered into these mice repeatedly. The results showed that hMSC could specifically home to spleen tissue and hMSC treatment significantly improved the functional deficits of EAMG mice. In addition, AchR antibody level was dramatically decreased in cell-treated group when compared with untreated control on 10 days after the second cell injection. Moreover, both in vivo and in vitro mixed lymphocyte proliferation assays revealed that hMSC could definitely inhibit the proliferation of AchR-specific lymphocyte. In conclusion, our study demonstrated that hMSC treatment was therapeutically useful in autoimmune myasthenia gravis mice, and the underlying mechanism may relate with their immunomodulatory potential.
Collapse
Affiliation(s)
- J Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union, Medical College (CAMS&PUMC), Tianjin, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
De Vry J, Martínez-Martínez P, Losen M, Temel Y, Steckler T, Steinbusch HWM, De Baets MH, Prickaerts J. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 2010; 92:227-44. [PMID: 20937354 DOI: 10.1016/j.pneurobio.2010.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/24/2010] [Accepted: 10/01/2010] [Indexed: 01/11/2023]
Abstract
Electroporation is a widely used technique for enhancing the efficiency of DNA delivery into cells. Application of electric pulses after local injection of DNA temporarily opens cell membranes and facilitates DNA uptake. Delivery of plasmid DNA by electroporation to alter gene expression in tissue has also been explored in vivo. This approach may constitute an alternative to viral gene transfer, or to transgenic or knock-out animals. Among the most frequently electroporated target tissues are skin, muscle, eye, and tumors. Moreover, different regions in the central nervous system (CNS), including the developing neural tube and the spinal cord, as well as prenatal and postnatal brain have been successfully electroporated. Here, we present a comprehensive review of the literature describing electroporation of the CNS with a focus on the adult brain. In addition, the mechanism of electroporation, different ways of delivering the electric pulses, and the risk of damaging the target tissue are highlighted. Electroporation has been successfully used in humans to enhance gene transfer in vaccination or cancer therapy with several clinical trials currently ongoing. Improving the knowledge about in vivo electroporation will pave the way for electroporation-enhanced gene therapy to treat brain carcinomas, as well as CNS disorders such as Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Jochen De Vry
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Souroujon MC, Brenner T, Fuchs S. Development of novel therapies for MG: Studies in animal models. Autoimmunity 2010; 43:446-60. [DOI: 10.3109/08916930903518081] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Lee Y, Rudell J, Ferns M. Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience 2009; 163:222-32. [PMID: 19482062 PMCID: PMC2728176 DOI: 10.1016/j.neuroscience.2009.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/01/2009] [Accepted: 05/25/2009] [Indexed: 12/12/2022]
Abstract
At the developing vertebrate neuromuscular junction, the acetylcholine receptor becomes aggregated at high density in the postsynaptic muscle membrane. Receptor localization is regulated by the motoneuron-derived factor, agrin, and requires an intracellular, scaffolding protein called rapsyn. However, it remains unclear where rapsyn binds on the acetylcholine receptor and how their interaction is regulated. In this study, we identified rapsyn's binding site on the acetylcholine receptor using chimeric constructs where the intracellular domain of CD4 was substituted for the major intracellular loop of each mouse acetylcholine receptor subunit. When expressed in heterologous cells, we found that rapsyn clustered and cytoskeletally anchored CD4-alpha, beta and epsilon subunit loops but not CD4-delta loop. Rapsyn-mediated clustering and anchoring was highest for beta loop, followed by epsilon and alpha, suggesting that rapsyn interacts with the loops with different affinities. Moreover, by making deletions within the beta subunit intracellular loop, we show that rapsyn interacts with the alpha-helical region, a secondary structural motif present in the carboxyl terminal portion of the subunit loops. When expressed in muscle cells, rapsyn co-immunoprecipitated together with a CD4-alpha helical region chimera, independent of agrin signaling. Together, these findings demonstrate that rapsyn interacts with the acetylcholine receptor via an alpha-helical structural motif conserved between the alpha, beta and epsilon subunits. Binding at this site likely mediates the critical rapsyn interaction involved in localizing the acetylcholine receptor at the neuromuscular junction.
Collapse
Affiliation(s)
- Y Lee
- Department of Anesthesiology and Physiology and Membrane Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
38
|
ter Beek WP, Martínez-Martínez P, Losen M, de Baets MH, Wintzen AR, Verschuuren JJGM, Niks EH, van Duinen SG, Vincent A, Molenaar PC. The effect of plasma from muscle-specific tyrosine kinase myasthenia patients on regenerating endplates. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1536-44. [PMID: 19745065 DOI: 10.2353/ajpath.2009.090040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle-specific tyrosine kinase (MuSK) is essential for clustering of acetylcholine receptors (AChRs) at embryogenesis and likely also important for maintaining synaptic structure in adult muscle. In 5 to 7% of myasthenia gravis (MG) cases, the patients' blood contains antibodies to MuSK. To investigate the effect of MuSK-MG antibody on synapse regeneration, notexin was used to induce damage to the flexor digitorum brevis muscle. We administered aliquots of MuSK-MG patients' plasma to the flexor digitorum brevis twice daily for a period up to 21 days, and muscles were investigated ex vivo in contraction experiments. AChR levels were measured with (125)I-alpha-bungarotoxin, and endplates were studied with quantitative immunohistochemistry. In normal muscles and in 14-day regenerated muscles, MuSK plasma caused impairment of nerve stimulus-induced contraction in the presence of 0.35 and 0.5 mmol/L Ca(2+) with or without 100 to 400 nmol/L tubocurarine. Endplate size was decreased in regenerated muscles relative to controls; however, we did not observe such differences in muscle not treated with notexin. MuSK plasma had no effect on the amount and turnover rate of AChRs. Our results suggest that anti-MuSK antibodies influence the activity of MuSK molecules without reducing their number, thereby diminishing the size of the endplate and affecting the functioning of AChRs.
Collapse
Affiliation(s)
- W Pascale ter Beek
- Neurophysiology Section, Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Martínez-Martínez P, Phernambucq M, Steinbusch L, Schaeffer L, Berrih-Aknin S, Duimel H, Frederik P, Molenaar P, De Baets MH, Losen M. Silencing rapsyn in vivo decreases acetylcholine receptors and augments sodium channels and secondary postsynaptic membrane folding. Neurobiol Dis 2009; 35:14-23. [PMID: 19344765 DOI: 10.1016/j.nbd.2009.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/23/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022] Open
Abstract
The receptor-associated protein of the synapse (rapsyn) is required for anchoring and stabilizing the nicotinic acetylcholine receptor (AChR) in the postsynaptic membrane of the neuromuscular junction (NMJ) during development. Here we studied the role of rapsyn in the maintenance of the adult NMJ by reducing rapsyn expression levels with short hairpin RNA (shRNA). Silencing rapsyn led to the average reduction of the protein levels of rapsyn (31% loss) and AChR (36% loss) at the NMJ within 2 weeks, corresponding to previously reported half life of these proteins. On the other hand, the sodium channel protein expression was augmented (66%) in rapsyn-silenced muscles. Unexpectedly, at the ultrastructural level a significant increase in the amount of secondary folds of the postsynaptic membrane in silenced muscles was observed. The neuromuscular transmission in rapsyn-silenced muscles was mildly impaired. The results suggest that the adult NMJ can rapidly produce postsynaptic folds to compensate for AChR and rapsyn loss.
Collapse
Affiliation(s)
- Pilar Martínez-Martínez
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Janssen SP, Phernambucq M, Martinez-Martinez P, De Baets MH, Losen M. Immunosuppression of experimental autoimmune myasthenia gravis by mycophenolate mofetil. J Neuroimmunol 2008; 201-202:111-20. [DOI: 10.1016/j.jneuroim.2008.05.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/13/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
41
|
Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, Beeson D, Willcox N, Vincent A. IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis. Brain 2008; 131:1940-52. [PMID: 18515870 PMCID: PMC2442426 DOI: 10.1093/brain/awn092] [Citation(s) in RCA: 338] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/04/2008] [Accepted: 04/21/2008] [Indexed: 11/14/2022] Open
Abstract
Only around 80% of patients with generalized myasthenia gravis (MG) have serum antibodies to acetylcholine receptor [AChR; acetylcholine receptor antibody positive myasthenia gravis (AChR-MG)] by the radioimmunoprecipitation assay used worldwide. Antibodies to muscle specific kinase [MuSK; MuSK antibody positive myasthenia gravis (MuSK-MG)] make up a variable proportion of the remaining 20%. The patients with neither AChR nor MuSK antibodies are often called seronegative (seronegative MG, SNMG). There is accumulating evidence that SNMG patients are similar to AChR-MG in clinical features and thymic pathology. We hypothesized that SNMG patients have low-affinity antibodies to AChR that cannot be detected in solution phase assays, but would be detected by binding to the AChRs on the cell membrane, particularly if they were clustered at the high density that is found at the neuromuscular junction. We expressed recombinant AChR subunits with the clustering protein, rapsyn, in human embryonic kidney cells and tested for binding of antibodies by immunofluorescence. To identify AChRs, we tagged either AChR or rapsyn with enhanced green fluorescence protein, and visualized human antibodies with Alexa Fluor-labelled secondary or tertiary antibodies, or by fluorescence-activated cell sorter (FACS). We correlated the results with the thymic pathology where available. We detected AChR antibodies to rapsyn-clustered AChR in 66% (25/38) of sera previously negative for binding to AChR in solution and confirmed the results with FACS. The antibodies were mainly IgG1 subclass and showed ability to activate complement. In addition, there was a correlation between serum binding to clustered AChR and complement deposition on myoid cells in patients' thymus tissue. A similar approach was used to demonstrate that MuSK antibodies, although mainly IgG4, were partially IgG1 subclass and capable of activating complement when bound to MuSK on the cell surface. These observations throw new light on different forms of MG paving the way for improved diagnosis and management, and the approaches used have applicability to other antibody-mediated conditions.
Collapse
Affiliation(s)
- Maria Isabel Leite
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Saiju Jacob
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Stuart Viegas
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Judy Cossins
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Linda Clover
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - B. Paul Morgan
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Nick Willcox
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Angela Vincent
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
42
|
Generation of polyclonal antibodies directed against G protein-coupled receptors using electroporation-aided DNA immunization. J Pharmacol Toxicol Methods 2008; 58:27-31. [DOI: 10.1016/j.vascn.2007.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/26/2007] [Indexed: 11/23/2022]
|
43
|
Draghia-Akli R, Khan AS. Muscle and fat mass modulation in different clinical models. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 423:449-60. [PMID: 18370221 DOI: 10.1007/978-1-59745-194-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Studies described in the recent literature support the idea that gene therapy can lead to genuine clinical benefits when mediated by plasmid delivery in conjunction with electroporation. Plasmid-mediated muscle-targeted gene transfer offers the potential of a cost-effective pharmaceutical-grade therapy delivered by simple intramuscular injection. This approach is particularly appropriate for modulating muscle and fat mass and their intrinsic properties, from treatment of conditions such as cachexia associated with chronic diseases, autoimmune diseases, e.g., myasthenia gravis, to stimulation or suppression of appetite, and further to in vivo manipulation of glucose metabolism and fat deposition in patients with diabetes, or to basic studies of muscle-specific transcription factors and their impact in development. Recent innovations, including in situ electroporation, enabling sustained systemic protein delivery within the therapeutic range, are reviewed. Translation of these advances to human clinical trials will enable muscle- and fat-targeted gene therapy to become a viable therapeutic alternative.
Collapse
|
44
|
Losen M, Martínez-Martínez P, Phernambucq M, Schuurman J, Parren PW, De Baets MH. Treatment of Myasthenia Gravis by Preventing Acetylcholine Receptor Modulation. Ann N Y Acad Sci 2008; 1132:174-9. [DOI: 10.1196/annals.1405.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Sommer N, Tackenberg B, Hohlfeld R. The immunopathogenesis of myasthenia gravis. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:169-212. [PMID: 18631843 DOI: 10.1016/s0072-9752(07)01505-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Norbert Sommer
- Clinical Neuroimmunology Group, Philipps-University, Marburg, Germany
| | | | | |
Collapse
|
46
|
van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martínez-Martínez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van de Winkel JGJ, Aalberse RC, Parren PWHI. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 2007; 317:1554-7. [PMID: 17872445 DOI: 10.1126/science.1144603] [Citation(s) in RCA: 707] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies. Mutagenesis studies revealed that the third constant domain is critical for this activity. The impact of IgG4 Fab arm exchange was confirmed in vivo in a rhesus monkey model with experimental autoimmune myasthenia gravis. IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.
Collapse
MESH Headings
- Allergens/immunology
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Monoclonal/immunology
- Antigens, CD20/immunology
- Antigens, Plant
- Autoantibodies/immunology
- ErbB Receptors/immunology
- Glycoproteins/immunology
- Humans
- Immunoglobulin Constant Regions/chemistry
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoglobulin Heavy Chains
- Macaca mulatta
- Mice
- Mutation
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/prevention & control
- Protein Processing, Post-Translational
- Receptors, Cholinergic/immunology
Collapse
Affiliation(s)
- Marijn van der Neut Kolfschoten
- Sanquin Research-AMC Landsteiner Laboratory, Department of Immunopathology, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Martínez-Martínez P, Losen M, Duimel H, Frederik P, Spaans F, Molenaar P, Vincent A, De Baets MH. Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:644-57. [PMID: 17255332 PMCID: PMC1851878 DOI: 10.2353/ajpath.2007.060676] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The primary autoantigen in myasthenia gravis, the acetylcholine receptor (AChR), is clustered and anchored in the postsynaptic membrane of the neuromuscular junction by rapsyn. Previously, we found that overexpression of rapsyn by cDNA transfection protects AChRs in rat muscles from antibody-mediated loss in passive transfer experimental autoimmune myasthenia gravis (EAMG). Here, we determined whether rapsyn overexpression can reduce or even reverse AChR loss in muscles that are already damaged by chronic EAMG, which mimics the human disease. Active immunization against purified AChR was performed in female Lewis rats. Rapsyn overexpression resulted in an increase in total muscle membrane AChR levels, with some AChR at neuromuscular junctions but much of it in extrasynaptic membrane regions. At the ultrastructural level, most endplates in rapsyn-treated chronic EAMG muscles showed increased damage to the postsynaptic membrane. Although rapsyn overexpression stabilized AChRs in intact or mildly damaged endplates, the rapsyn-induced increase of membrane AChR enhanced autoantibody binding and membrane damage in severe ongoing disease. Thus, these results show the complexity of synaptic stabilization of AChR during the autoantibody attack. They also indicate that the expression of receptor-associated proteins may determine the severity of autoimmune diseases caused by anti-receptor antibodies.
Collapse
MESH Headings
- Animals
- Autoantibodies/immunology
- Autoantibodies/metabolism
- Chronic Disease
- Female
- Gene Expression
- Humans
- Motor Endplate/genetics
- Motor Endplate/immunology
- Motor Endplate/metabolism
- Motor Endplate/ultrastructure
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle Proteins/immunology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/immunology
- Receptors, Cholinergic/metabolism
- Synaptic Membranes/immunology
- Synaptic Membranes/metabolism
Collapse
Affiliation(s)
- Pilar Martínez-Martínez
- Department of Neurology, Research Institute Brain and Behaviour, University of Maastricht, Maastricht University Hospital, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gervásio OL, Armson PF, Phillips WD. Developmental increase in the amount of rapsyn per acetylcholine receptor promotes postsynaptic receptor packing and stability. Dev Biol 2007; 305:262-75. [PMID: 17362913 DOI: 10.1016/j.ydbio.2007.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 02/07/2023]
Abstract
Neuromuscular synaptic transmission depends upon tight packing of acetylcholine receptors (AChRs) into postsynaptic AChR aggregates, but not all postsynaptic AChRs are aggregated. Here we describe a new confocal Fluorescence Resonance Energy Transfer (FRET) assay for semi-quantitative comparison of the degree to which AChRs are aggregated at synapses. During the first month of postnatal life the mouse tibialis anterior muscle showed increases both in the number of postsynaptic AChRs and the efficiency with which AChR was aggregated (by FRET). There was a concurrent two-fold increase in immunofluorescent labeling for the AChR-associated cytoplasmic protein, rapsyn. When 1-month old muscle was denervated, postsynaptic rapsyn immunostaining was reduced, as was the efficiency of AChR aggregation. In vivo electroporation of rapsyn-EGFP into muscle fibers increased postsynaptic rapsyn levels. Those synapses with higher ratios of rapsyn-EGFP to AChR displayed a slower metabolic turnover of AChR. Conversely, the reduction of postsynaptic rapsyn after denervation was accompanied by an acceleration of AChR turnover. Thus, a developmental increase in the amount of rapsyn targeted to the postsynaptic membrane may drive enhanced postsynaptic AChRs aggregation and AChR stability within the postsynaptic membrane.
Collapse
Affiliation(s)
- Othon L Gervásio
- School of Medical Sciences (Physiology), Bosch Institute, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
49
|
Abstract
BACKGROUND Although myasthenia gravis (MG) is often considered the best-understood autoimmune disorder and effective treatments have controlled life-threatening complications, the pathogenesis of ocular myasthenia (OM) remains enigmatic, and its clinical consequences offer therapeutic challenges. REVIEW SUMMARY About half of patients with MG present with visual complaints of droopy eyelids or double vision, and many will remain with purely ocular muscle weakness without generalized weakness, defined as OM. OM may be confused with disorders of the brainstem, ocular motor nerves, and eye muscles. Frustrating for the clinician, confirmatory tests such as the edrophonium test, serum acetylcholine receptor antibodies, and standard electrodiagnostic evaluations may fail to positively identify the clinical suspicion of OM. Patients may derive relief from nonpharmacologic interventions and cholinesterase inhibitors, but most will desire better symptom control with corticosteroids or need other immunosuppression. Early corticosteroid therapy may reduce the probability of generalization of the disease. The reasons for ocular muscle involvement by OM include physiologic and cellular properties of the ocular motor system and the unique immunology of OM, which, when better understood, will lead to novel treatments. CONCLUSIONS OM is a challenging disorder for the clinician and scientist, with both learning from the other for the betterment of the patient. The future requires answers to why the ocular muscles are so frequently involved by MG, whether the generalization of the disease may be limited by early corticosteroid treatment, and what treatment options may be developed which will improve symptoms without long-term complications.
Collapse
Affiliation(s)
- Linda L Kusner
- Department of Neurology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | | | | |
Collapse
|
50
|
Myasthenia Gravis and Myasthenic Syndromes. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|