1
|
Leu C, Avbersek A, Stevelink R, Custodio HM, Chen S, Speed D, Bennett CA, Jonsson L, Unnsteinsdóttir U, Jorgensen AL, Cavalleri GL, Delanty N, Craig JJ, Depondt C, Johnson MR, Koeleman BPC, Hassanin E, Omidvar ME, Krause R, Lerche H, Marson AG, O'Brien TJ, Sander JW, Sills GJ, Striano P, Zara F, Stefansson H, Stefansson K, May P, Neale BM, Lal D, Berkovic SF, Sisodiya SM. Genome-wide association meta-analyses of drug-resistant epilepsy. EBioMedicine 2025:105675. [PMID: 40240269 DOI: 10.1016/j.ebiom.2025.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Epilepsy is one of the most common neurological disorders, affecting over 50 million people worldwide. One-third of people with epilepsy do not respond to currently available anti-seizure medications, constituting one of the most important problems in epilepsy. Little is known about the molecular pathology of drug resistance in epilepsy, in particular, possible underlying genetic factors are largely unknown. METHODS We performed a genome-wide association study (GWAS) in two epilepsy cohorts of European ancestry, comparing drug-resistant (N = 4208) to drug-responsive individuals (N = 2618) followed by meta-analyses across the studies. Next, we performed subanalyses split into two broad subtypes: acquired or non-acquired focal and genetic generalized epilepsy. FINDINGS Our drug-resistant versus drug-responsive epilepsy GWAS meta-analysis showed no significant loci when combining all epilepsy types. Sub-analyses on individuals with focal epilepsy (FE) identified a significant locus on chromosome 1q42.11-q42.12 (lead SNP: rs35915186, P = 1·51 × 10-8, OR[C] = 0·74). This locus was not associated with any epilepsy subtype in the latest epilepsy GWAS (lowest uncorrected P = 0·009 for FE vs. healthy controls), and drug resistance in FE was not genetically correlated with susceptibility to FE itself. Seven genome-wide significant SNPs within this locus, encompassing the genes CNIH4, WDR26, and CNIH3, were identified to protect against drug-resistant FE. Further transcriptome-wide association studies (TWAS) imply significantly higher expression levels of CNIH3 and WDR26 in drug-resistant FE than in drug-responsive FE. CNIH3 is implicated in AMPA receptor assembly and function, while WDR26 haploinsufficiency is linked to intellectual disability and seizures. These findings suggest that CNIH3 and WDR26 may play a role in mediating drug response in focal epilepsy. INTERPRETATION We identified a contribution of common genetic variation to drug-resistant focal epilepsy. These findings provide insights into possible mechanisms underlying drug response variability in epilepsy, offering potential targets for personalised treatment approaches. FUNDING This work is part of the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 279062 (EpiPGX) and the Centers for Common Disease Genomics (CCDG) program, funded by the National Human Genome Research Institute (NHGRI) and the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Costin Leu
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, USA; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Andreja Avbersek
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK
| | - Remi Stevelink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Child Neurology, UMC Utrecht Brain Centers, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Helena Martins Custodio
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK
| | - Siwei Chen
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Doug Speed
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Caitlin A Bennett
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Andrea L Jorgensen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; FutureNeuro Research Centre, Science Foundation Ireland, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Research Centre, Science Foundation Ireland, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - John J Craig
- Department of Neurology, Belfast Health and Social Care Trust, Belfast, UK
| | - Chantal Depondt
- Department of Neurology, CUB Erasmus Hospital, Free University of Brussels, University Hospital Brussels, Brussels, Belgium
| | - Michael R Johnson
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Bobby P C Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emadeldin Hassanin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Maryam Erfanian Omidvar
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK; Liverpool Health Partners, Liverpool, UK
| | - Terence J O'Brien
- Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Departments of Neuroscience and Neurology, The School of Translational Medicine, Monash University and the Alfred Hospital, Melbourne, Australia
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands; Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Laboratory of Neurogenetics and Neuroscience, IRCCS "G. Gaslini" Institute, Genova, Italy
| | | | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Dennis Lal
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Center of Neurogenetics, UTHealth Houston, TX, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Heidelberg, Australia
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK.
| |
Collapse
|
2
|
Ge Q, Yang J, Huang F, Dai X, Chen C, Guo J, Wang M, Zhu M, Shao Y, Xia Y, Zhou Y, Peng J, Deng S, Shi J, Hu Y, Zhang H, Wang Y, Wang X, Li XM, Chen Z, Shu Y, Zhu JM, Zhang J, Shen Y, Duan S, Xu S, Shen L, Chen J. Multimodal single-cell analyses reveal molecular markers of neuronal senescence in human drug-resistant epilepsy. J Clin Invest 2025; 135:e188942. [PMID: 40026248 DOI: 10.1172/jci188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 03/05/2025] Open
Abstract
The histopathological neurons in the brain tissue of drug-resistant epilepsy exhibit aberrant cytoarchitecture and imbalanced synaptic circuit function. However, the gene expression changes of these neurons remain unknown, making it difficult to determine the diagnosis or to dissect the mechanism of drug-resistant epilepsy. By integrating whole-cell patch clamp recording and single-cell RNA-seq approaches, we identified a transcriptionally distinct subset of cortical pyramidal neurons. These neurons highly expressed genes CDKN1A (P21), CCL2, and NFKBIA, which associate with mTOR pathway, inflammatory response, and cellular senescence. We confirmed the expression of senescent marker genes in a subpopulation of cortical pyramidal neurons with enlarged soma size in the brain tissue of drug-resistant epilepsy. We further revealed the expression of senescent cell markers P21, P53, COX2, γ-H2AX, and β-Gal, and reduction of nuclear integrity marker Lamin B1 in histopathological neurons in the brain tissue of patients with drug-resistant epilepsy with different pathologies, but not in control brain tissue with no history of epilepsy. Additionally, chronic, but not acute, epileptic seizures induced senescent marker expression in cortical neurons in mouse models of drug-resistant epilepsy. These results provide important molecular markers for histopathological neurons and what we believe to be new insights into the pathophysiological mechanisms of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Qianqian Ge
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jiachao Yang
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Fei Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinyue Dai
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Chao Chen
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingxin Guo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mi Wang
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Mengyue Zhu
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yijie Shao
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxian Xia
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhou
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiao Peng
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Suixin Deng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiachen Shi
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yiqi Hu
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Huiying Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoqun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiao-Ming Li
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Center for Brain Science and Brain-inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jun-Ming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Shen
- Brain Health Center, the Fourth Affiliated Hospital, Zhejiang University, Yiwu, China
| | - Shumin Duan
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shengjin Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Shen
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
| | - Jiadong Chen
- Department of Neurobiology, Departments of Neurosurgery, Neurology and Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Alonso C, García-Culebras A, Satta V, Hernández-Fisac I, Sierra Á, Guimaré JA, Lizasoain I, Fernández-Ruiz J, Sagredo O. Investigation in blood-brain barrier integrity and susceptibility to immune cell penetration in a mouse model of Dravet syndrome. Brain Behav Immun Health 2025; 44:100955. [PMID: 40028233 PMCID: PMC11869101 DOI: 10.1016/j.bbih.2025.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Dravet Syndrome (DS) is a pediatric encephalopathy caused by mutations in Scn1a gene encoding the α1 subunit of the NaV1.1 voltage-gated sodium channel, which lead to early febrile seizures that progress to severe tonic-clonic seizures and several long-term behavioural comorbidities. In the present study, we have investigated whether a possible early deterioration in the blood-brain barrier (BBB) may facilitate the infiltration of immune cells to the brain parenchyma, which may contribute to these pathogenic events. In this study, conditional knock-in Scn1a-A1783V mice and their controls were used at the postnatal day (PND25): (i) to compare their levels of several immune cell populations in the bone marrow and blood; and (ii) to analyze several BBB proteins, as well as the occurrence of immune cell infiltration and endogenous immunoglobulin G (IgG) extravasation into the brain parenchyma. Our data revealed an elevation in the number of neutrophils in the blood of DS mice, but not of B- and T-cells, despite the levels of these immune cells were significantly reduced in the bone marrow. The elevated number of blood neutrophils did not apparently originate their infiltration into the hippocampus of DS mice as an immunofluorescence analysis indicated, and the same happened in B- and T-cells. However, the levels of endogenous IgG in this brain structure were significantly elevated in DS mice compared to controls, directly indicating the occurrence of extravasation into the brain parenchyma and indirectly that the BBB in DS mice may be relatively affected, a fact confirmed by the reduction in the levels of BBB-related proteins such as ZO-1 in these mice. In conclusion, our results support the occurrence of certain degree of deterioration in the BBB in DS, which may facilitate the infiltration of immune cells to the brain, then contributing to the pathogenesis in this disease.
Collapse
Affiliation(s)
- Cristina Alonso
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alicia García-Culebras
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Unidad de Investigación Neurovascular and Instituto Universitario de Investigación en Neuroquímica, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Álvaro Sierra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - José A. Guimaré
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular and Instituto Universitario de Investigación en Neuroquímica, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
4
|
Liu Y, Yu Y, Chen C, Wu X, Zheng Q, Zhang X, Ye L, Zhang C, Feng Z. Dapagliflozin alleviated seizures and cognition impairment in pilocarpine induced status epilepticus via suppressing microglia-mediated neuroinflammation and oxidative stress. Int Immunopharmacol 2025; 148:114117. [PMID: 39889414 DOI: 10.1016/j.intimp.2025.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Status epilepticus (SE) is a neurological emergency with prolonged seizures leading to chronic epilepsy, cognitive impairment, and neuronal damage. Microglial activation, subsequent neuroinflammation and oxidative stress contribute to SE-induced neuronal injury. Single-cell sequencing has delineated the pro-inflammatory microenvironment in epileptic lesions, characterized by widespread microglial activation. Dapagliflozin, an inhibitor of sodium-glucose cotransporter 2 (SGLT2), has shown potential in modulating neuroinflammatory responses. This study aimed to investigate the effects of Dapagliflozin on seizure and cognitive impairment by alleviating microglia-mediated neuroinflammation, oxidative stress. METHODS Single-Cell Transcriptomic Analysis were used to reveal SLC5A2 cellular heterogeneity and subtype-specific signatures of Temporal lobe Epilepsy. Male C57BL/6 mice were administered pilocarpine. Dapagliflozin were injected immediately after the termination of SE and at 24-hour intervals after SE until sacrifice. The latency and seizure score were recorded. Morris water maze were used to evaluate cognitive function of mouse. The neuroinflammation cell model was induced by lipopolysaccharide(LPS) in BV2 cell. Immunofluorescent staining, immunohistochemistry, flow cytometry, western blot, RT-qPCR, ELISA etc were used to examine the activation of microglia, evaluate neuroinflammation and oxidative stress. RESULTS The expression of SLC5A2 is up-regulated in microglia of epileptic patients. Administration of Dapagliflozin significantly reduced seizure activity and improved cognitive performance in SE mouse. Dapagliflozin reduced microglial activation, as indicated by downregulation of CD86, iNOS expression and increased CD206, Arg-1 level. Dapagliflozin decreased oxidative stress, as evidenced by reduced levels of malondialdehyde (MDA), reactive oxygen species (ROS), increased superoxide dismutase (SOD) and Glutathione (GSH) activity. In addition, Dapagliflozin treatment can rescured the neuronal damage and suppressed the release of inflammatory cytokines such as IL-6, IL-18 and IL-1β. CONCLUSION Our findings suggest that Dapagliflozin exerts neuroprotective effects by modulating microglia-mediated neuroinflammation and oxidative stress. The inhibition of SGLT2 may represent a novel therapeutic strategy for the treatment of SE and associated cognitive impairments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001 China
| | - Yuhang Yu
- Department of Clinical Medicine, School of Clinical Medicine, Guizhou Medical University, Guiyang 550009 China
| | - Changling Chen
- Department of Pharmacology, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025 China
| | - Xuling Wu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001 China
| | - Qian Zheng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001 China
| | - Xiangming Zhang
- Department of Biology, College of Basic Medical Science, Guizhou Medical University, Guiyang 561113 China
| | - Lan Ye
- Department of Pharmacology, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025 China.
| | - Chunlin Zhang
- Department of Biology, Engineering Research Center for Molecular Medicine, College of Basic Medical Science, Guizhou Medical University, Guiyang 550025 China.
| | - Zhanhui Feng
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001 China; Department of Clinical Medicine, School of Clinical Medicine, Guizhou Medical University, Guiyang 550009 China.
| |
Collapse
|
5
|
Diaz-Peregrino R, San-Juan D, Patiño-Ramirez C, Sandoval-Luna LV, Arritola-Uriarte A. Nanocarriers-based therapeutic strategy for drug-resistant epilepsy: A systematic review. Int J Pharm 2025; 668:124986. [PMID: 39580104 DOI: 10.1016/j.ijpharm.2024.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Nanocarriers have been proposed as a solution for drug-resistant epilepsy. METHODS A systematic review of animal and in vitro studies was conducted to evaluate the efficacy, toxicity, and biological properties of nanocarriers. Searches were performed in PubMed/Medline and Scopus from March 2023 to March 2024. RESULTS Eighteen studies were identified: 2 in vitro, 9 in vivo, and 7 combined. While epilepsy models and seizure control assessments were consistent, there was variability in evaluating the potential toxicity of nanocarriers. Only one study did not show a reduction in brain inflammation, seizures, and cell loss. Nanocarrier toxicity was evaluated just in six studies, all of which indicated low toxicity both in vitro and in vivo. CONCLUSIONS Nanocarriers with antiseizure drugs manage seizures, inflammation, oxidative stress, and behavior impairment in drug-resistant epilepsy. Furthermore, nanocarriers are a safe option for delivering antiseizure drugs, though more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Roberto Diaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Carlos Patiño-Ramirez
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Lenin V Sandoval-Luna
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | |
Collapse
|
6
|
Walia A, Kaur A, Singh R, Rani N, Swami R. Unveiling the Mysteries of the Blood-brain Barrier: The Problem of the Brain/spinal Pharmacotherapy. Cent Nerv Syst Agents Med Chem 2025; 25:91-108. [PMID: 39206486 DOI: 10.2174/0118715249297247240813104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
The most critical issue impeding the development of innovative cerebrospinal medications is the blood-brain barrier (BBB). The BBB limits the ability of most medications to penetrate the brain to the CNS. The BBB structure and functions are summarized, with the physical barrier generated by endothelial tight junctions and the transport barrier formed by transporters within the membrane and vesicular processes. The functions of connected cells, particularly the end feet of astrocytic glial cells, microglia, and pericytes, are described. The drugs that cross the blood brain barrier are explained below along with their mechanisms. Some of the associated conditions and problems are given.
Collapse
Affiliation(s)
- Aditya Walia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Randhir Singh
- Central University of Punjab, Bathinda, Punjab, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
7
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
8
|
Guo Y, Wei C, Ding H, Li P, Gao Y, Zhong K, Bao Z, Qu Z, Wang B, Hu J. Effects of cold stress on the blood-brain barrier in Plectropomus leopardus. BMC Genomics 2024; 25:1031. [PMID: 39497085 PMCID: PMC11536950 DOI: 10.1186/s12864-024-10943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The leopard coral grouper (Plectropomus leopardus) is a commercially valuable tropical marine fish species known to be sensitive to low temperatures. A comprehensive understanding of the molecular mechanisms governing its response to acute cold stress is of great importance. However, there is a relative scarcity of fundamental research on low-temperature tolerance in the leopard coral grouper. METHODS In this study, a cooling and rewarming experiment was conducted on 6-month-old leopard coral groupers. Within 24 h, we decreased the ambient temperature from 25 °C to 13 °C and subsequently allowed it to naturally return to 25 °C. During this process, a comprehensive investigation of serum hormone levels, enzyme activity, and brain transcriptome analysis was performed. RESULTS P. leopardus displayed a noticeable adaptive response to the initial temperature decrease by temporarily reducing its life activities. Our transcriptome analysis revealed that the differentially expressed genes (DEGs) were primarily concentrated in crucial pathways including the blood-brain barrier (BBB), inflammatory response, and coagulation cascade. In situ hybridization of claudin 15a (cldn15a), a key gene for BBB maintaining, further confirmed that exposure to low temperatures led to the disruption of the blood-brain barrier and stimulated a pronounced inflammatory reaction within the brain. Upon rewarming, there was a recovery of BBB integrity accompanied by the persistence of inflammation within the brain tissue. CONCLUSIONS Our study reveals the complex interactions between blood-brain barrier function, inflammation, and recovery in P. leopardus during short-term temperature drops and rewarming. These findings provide valuable insights into the physiological responses of this species under cold stress conditions.
Collapse
Affiliation(s)
- Yilan Guo
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Cun Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Peiyu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Yurui Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Kangning Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zhe Qu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
9
|
Edmond MA, Hinojo-Perez A, Efrem M, Yi-Chun L, Shams I, Hayoz S, de la Cruz A, Perez Rodriguez ME, Diaz-Solares M, Dykxhoorn DM, Luo YL, Barro-Soria R. Lipophilic compounds restore function to neurodevelopmental-associated KCNQ3 mutations. Commun Biol 2024; 7:1181. [PMID: 39300259 DOI: 10.1038/s42003-024-06873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
A major driver of neuronal hyperexcitability is dysfunction of K+ channels, including voltage-gated KCNQ2/3 channels. Their hyperpolarized midpoint of activation and slow activation and deactivation kinetics produce a current that regulates membrane potential and impedes repetitive firing. Inherited mutations in KCNQ2 and KCNQ3 are linked to a wide spectrum of neurodevelopmental disorders (NDDs), ranging from benign familial neonatal seizures to severe epileptic encephalopathies and autism spectrum disorders. However, the impact of these variants on the molecular mechanisms underlying KCNQ3 channel function remains poorly understood and existing treatments have significant side effects. Here, we use voltage clamp fluorometry, molecular dynamic simulations, and electrophysiology to investigate NDD-associated variants in KCNQ3 channels. We identified two distinctive mechanisms by which loss- and gain-of function NDD-associated mutations in KCNQ3 affect channel gating: one directly affects S4 movement while the other changes S4-to-pore coupling. MD simulations and electrophysiology revealed that polyunsaturated fatty acids (PUFAs) primarily target the voltage-sensing domain in its activated conformation and form a weaker interaction with the channel's pore. Consistently, two such compounds yielded partial and complete functional restoration in R227Q- and R236C-containing channels, respectively. Our results reveal the potential of PUFAs to be developed into therapies for diverse KCNQ3-based channelopathies.
Collapse
Affiliation(s)
- Michaela A Edmond
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Texas A&M University Health Science Center, Department of Neuroscience & Experimental Therapeutics, Bryan, USA
| | - Andy Hinojo-Perez
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mekedlawit Efrem
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Lin Yi-Chun
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Iqra Shams
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sebastien Hayoz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Physiology, University of Arizona, Tucson, USA
| | - Alicia de la Cruz
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
- Linkoping University, Department of Biomedical and Clinical Sciences (BKV), Linkoping, Sweden
| | | | - Maykelis Diaz-Solares
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yun Lyna Luo
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, USA
| | - Rene Barro-Soria
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
10
|
Abdullahi A, Etoom M, Badaru UM, Elibol N, Abuelsamen AA, Alawneh A, Zakari UU, Saeys W, Truijen S. Vagus nerve stimulation for the treatment of epilepsy: things to note on the protocols, the effects and the mechanisms of action. Int J Neurosci 2024; 134:560-569. [PMID: 36120993 DOI: 10.1080/00207454.2022.2126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Epilepsy is a chronic brain disorder that is characterized by repetitive un-triggered seizures that occur severally within 24 h or more. Non-pharmacological methods for the management of epilepsy were discussed. The non-pharmacological methods include the vagus nerve stimulation (VNS) which is subdivided into invasive and non-invasive techniques. For the non-invasive techniques, the auricular VNS, stimulation of the cervical branch of vagus nerve in the neck, manual massage of the neck, and respiratory vagal nerve stimulation were discussed. Similarly, the stimulation parameters used and the mechanisms of actions through which VNS improves seizures were also discussed. Use of VNS to reduce seizure frequency has come a long way. However, considering the cost and side effects of the invasive method, non-invasive techniques should be given a renewed attention. In particular, respiratory vagal nerve stimulation should be considered. In doing this, the patients should for instance carry out slow-deep breathing exercise 6 to 8 times every 3 h during the waking hours. Slow-deep breathing can be carried out by the patients on their own; therefore this can serve as a form of self-management.HIGHLIGHTSEpilepsy can interfere with the patients' ability to carry out their daily activities and ultimately affect their quality of life.Medications are used to manage epilepsy; but they often have their serious side effects.Vagus nerve stimulation (VNS) is gaining ground especially in the management of refractory epilepsy.The VNS is administered through either the invasive or the non-invasive methodsThe invasive method of VNS like the medication has potential side effects, and can be costly.The non-invasive method includes auricular VNS, stimulation of the neck muscles and skin and respiratory vagal nerve stimulation via slow-deep breathing exercises.The respiratory vagal nerve stimulation via slow-deep breathing exercises seems easy to administer even by the patients themselves.Consequently, it is our opinion that patients with epilepsy be made to carry out slow-deep breathing exercise 6-8 times every 3 h during the waking hours.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Physiotherapy, Bayero University Kano, Nigeria
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Mohammad Etoom
- Department of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan
| | | | - Nuray Elibol
- Department of Physiotherapy and Rehabilitation Sciences, Ege University, Izmir, Turkey
| | | | - Anoud Alawneh
- Department of Physiotherapy, Aqaba University of Technology, Aqaba, Jordan
| | - Usman Usman Zakari
- Department of Physiotherapy, Federal Medical Center, Birnin Kudu, Jigawa State, Nigeria
| | - Wim Saeys
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Steven Truijen
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Tang HX, Ho MD, Vu NP, Cao HV, Ngo VA, Nguyen VT, Nguyen TD, Nguyen TD. Association between Genetic Polymorphism of SCN1A, GABRA1 and ABCB1 and Drug Responsiveness in Vietnamese Epileptic Children. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:637. [PMID: 38674283 PMCID: PMC11052159 DOI: 10.3390/medicina60040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: Drug resistant epilepsy (DRE) is a major hurdle in epilepsy, which hinders clinical care, patients' management and treatment outcomes. DRE may partially result from genetic variants that alter proteins responsible for drug targets and drug transporters in the brain. We aimed to examine the relationship between SCN1A, GABRA1 and ABCB1 polymorphism and drug response in epilepsy children in Vietnam. Materials and Methods: In total, 213 children diagnosed with epilepsy were recruited in this study (101 were drug responsive and 112 were drug resistant). Sanger sequencing had been performed in order to detect six single nucleotide polymorphisms (SNPs) belonging to SCN1A (rs2298771, rs3812718, rs10188577), GABRA1 (rs2279020) and ABCB1 (rs1128503, rs1045642) in study group. The link between SNPs and drug response status was examined by the Chi-squared test or the Fisher's exact test. Results: Among six investigated SNPs, two SNPs showed significant difference between the responsive and the resistant group. Among those, heterozygous genotype of SCN1A rs2298771 (AG) were at higher frequency in the resistant patients compared with responsive patients, playing as risk factor of refractory epilepsy. Conversely, the heterozygous genotype of SCN1A rs3812718 (CT) was significantly lower in the resistant compared with the responsive group. No significant association was found between the remaining four SNPs and drug response. Conclusions: Our study demonstrated a significant association between the SCN1A genetic polymorphism which increased risk of drug-resistant epilepsy in Vietnamese epileptic children. This important finding further supports the underlying molecular mechanisms of SCN1A genetic variants in the pathogenesis of drug-resistant epilepsy in children.
Collapse
Affiliation(s)
- Hai Xuan Tang
- Nghe An Obstetrics and Pediatrics Hospital, 19 Ton That Tung, Vinh 460000, Nghe An, Vietnam; (H.X.T.); (M.D.H.)
| | - Muoi Dang Ho
- Nghe An Obstetrics and Pediatrics Hospital, 19 Ton That Tung, Vinh 460000, Nghe An, Vietnam; (H.X.T.); (M.D.H.)
| | - Nhung Phuong Vu
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay 100000, Hanoi, Vietnam;
| | - Hung Vu Cao
- Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da 100000, Hanoi, Vietnam; (H.V.C.); (V.A.N.); (V.T.N.)
| | - Vinh Anh Ngo
- Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da 100000, Hanoi, Vietnam; (H.V.C.); (V.A.N.); (V.T.N.)
| | - Van Thi Nguyen
- Vietnam National Children’s Hospital, 18/879 La Thanh, Dong Da 100000, Hanoi, Vietnam; (H.V.C.); (V.A.N.); (V.T.N.)
| | - Thuan Duc Nguyen
- Department of Neurology, Military Hospital 103, Vietnam Military Medical University, 261 Phung Hung, Ha Dong 100000, Hanoi, Vietnam;
| | - Ton Dang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay 100000, Hanoi, Vietnam;
| |
Collapse
|
12
|
Hua Z, Liu N, Yan X. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins. Beilstein J Org Chem 2024; 20:741-752. [PMID: 38633914 PMCID: PMC11022409 DOI: 10.3762/bjoc.20.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.
Collapse
Affiliation(s)
- Zhongwei Hua
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
13
|
D'Onofrio G, Roberti R, Riva A, Russo E, Verrotti A, Striano P, Belcastro V. Pharmacodynamic rationale for the choice of antiseizure medications in the paediatric population. Neurotherapeutics 2024; 21:e00344. [PMID: 38521667 PMCID: PMC11070715 DOI: 10.1016/j.neurot.2024.e00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/25/2024] Open
Abstract
In the landscape of paediatric epilepsy treatment, over 20 anti-seizure medications (ASMs) have gained approval from Drug Regulatory Agencies, each delineating clear indications. However, the complexity of managing drug-resistant epilepsy often necessitates the concurrent use of multiple medications. This therapeutic challenge highlights a notable gap: the absence of standardized guidelines, compelling clinicians to rely on empirical clinical experience when selecting combination therapies. This comprehensive review aims to explore current evidence elucidating the preferential utilization of specific ASMs or their combinations, with a primary emphasis on pharmacodynamic considerations. The fundamental objective underlying rational polytherapy is the strategic combination of medications, harnessing diverse mechanisms of action to optimize efficacy while mitigating shared side effects. Moreover, the intricate interplay between epilepsy and comorbidities partly may influence the treatment selection process. Despite advancements, unresolved queries persist, notably concerning the mechanisms underpinning drug resistance and the paradoxical exacerbation of seizures. By synthesizing existing evidence and addressing pertinent unresolved issues, this review aims to contribute to the evolving landscape of paediatric epilepsy treatment strategies, paving the way for more informed and efficacious therapeutic interventions.
Collapse
Affiliation(s)
- Gianluca D'Onofrio
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Roberta Roberti
- Science of Health Department, Magna Græcia University, Catanzaro, Italy
| | - Antonella Riva
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Emilio Russo
- Science of Health Department, Magna Græcia University, Catanzaro, Italy
| | | | - Pasquale Striano
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147 Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | | |
Collapse
|
14
|
Wu C, Wu H, Zhou Y, Liu X, Huang S, Zhu S. Effectiveness analysis of three-drug combination therapies for refractory focal epilepsy. Neurotherapeutics 2024; 21:e00345. [PMID: 38490875 PMCID: PMC11070276 DOI: 10.1016/j.neurot.2024.e00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Selecting appropriate antiseizure medications (ASMs) for combination therapy in patients with drug-resistant epilepsy (DRE) is a complex task that requires an empirical approach, especially in patients receiving polytherapy. We aimed to analyze the effectiveness of various three-drug combinations in a group of patients with DRE under real-world conditions. This single-center, longitudinal observational study investigated patients with drug-resistant focal epilepsy who received three-drug regimens in the outpatient clinic of Tongji Hospital from September 2019 to December 2022. The effectiveness of each triple regimen was evaluated by the seizure-free rate and within-patient ratio of the seizure frequency (a seizure frequency ratio [SFR]<1 indicated superior efficacy). The independent t-test or Mann-Whitney U test was used for effectiveness analysis, and P values were adjusted by the Benjamini-Hochberg method for multiple comparisons. A total of 511 triple trials comprising 76 different regimens were conducted among 323 enrolled patients. Among these triple regimens, lamotrigine (LTG)/valproic acid (VPA)/topiramate (TPM) was the most frequently prescribed (29.4%, n = 95). At the last clinical visit, 14.9% (n = 48) of patients achieved seizure freedom after receiving triple therapy. LTG/VPA/TPM and LTG/VPA/levetiracetam (LEV) exhibited the highest seizure-free rates at 17.9% and 12.8%, respectively. These two regimens also had significantly lower median SFRs of 0.48 (interquartile range [IQR], 0.17-0.85; adjusted P < 0.001) and 0.63 (IQR, 0.21-1.04; adjusted P < 0.01), respectively. LTG/VPA/perampanel (PER) was another promising regimen that showed marginal effectiveness (median SFR = 0.67; adjusted P = 0.053). LTG/VPA/phenobarbital had the highest incidence of regimen-specific side effects (40.0%, 4/10), while the incidence of side effects from LTG/VPA/LEV was minimal (5.1%, 2/39). In conclusion, LTG/VPA/TPM and LTG/VPA/LEV exhibited superior efficacy and good tolerability in treating patients with DRE. Our results provide preliminary insights into the selection of ASMs for three-drug combination therapies in this clinically challenging population.
Collapse
Affiliation(s)
- Chunmei Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Huiting Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yingying Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiaoyan Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shanshan Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
15
|
Jain A, Ralta A, Batra G, Joshi R, Garg N, Bhatia A, Medhi B, Chakrabarti A, Prakash A. SEW2871 reduces seizures via the sphingosine 1-phosphate receptor-1 pathway in the pentylenetetrazol and phenobarbitone kindling model of drug-refractory epilepsy. Clin Exp Pharmacol Physiol 2024; 51:e13839. [PMID: 38302080 DOI: 10.1111/1440-1681.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Epilepsy is a prevalent neurological disorder characterized by neuronal hypersynchronous discharge in the brain, leading to central nervous system (CNS) dysfunction. Despite the availability of anti-epileptic drugs (AEDs), resistance to AEDs is the greatest challenge in treating epilepsy. The role of sphingosine-1-phosphate-receptor 1 (S1PR1) in drug-resistant epilepsy is unexplored. This study investigated the effects of SEW2871, a potent S1PR1 agonist, on a phenobarbitone (PHB)-resistant pentylenetetrazol (PTZ)-kindled Wistar rat model. We measured the messenger ribonucleic acid (mRNA) expression of multi-drug resistance 1 (MDR1) and multi-drug resistance protein 5 (MRP5) as indicators for drug resistance. Rats received PHB + PTZ for 62 days to develop a drug-resistant epilepsy model. From day 48, SEW2871 (0.25, 0.5, 0.75 mg/kg, intraperitoneally [i.p.]) was administered for 14 days. Seizure scoring, behaviour, oxidative markers like reduced glutathione, catalase, superoxide dismutase, inflammatory markers like interleukin 1 beta tumour necrosis factor alpha, interferon gamma and mRNA expression (MDR1 and MRP5) were assessed, and histopathological assessments were conducted. SEW2871 demonstrated dose-dependent improvements in seizure scoring and neurobehavioral parameters with a reduction in oxidative and inflammation-induced neuronal damage. The S1PR1 agonist also downregulated MDR1 and MRP5 gene expression and significantly decreased the number of dark-stained pyknotic nuclei and increased cell density with neuronal rearrangement in the rat brain hippocampus. These findings suggest that SEW2871 might ameliorate epileptic symptoms by modulating drug resistance through downregulation of MDR1 and MRP5 gene expression.
Collapse
Affiliation(s)
- Ashish Jain
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Arti Ralta
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Gitika Batra
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
- Department of Neurology, PGIMER, Chandigarh, India
| | - Rupa Joshi
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
- Department of Pharmacology, Maharishi Markandeshwar Institute of Medical Science and Research, Ambala, India
| | - Nitika Garg
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Amitava Chakrabarti
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Ajay Prakash
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
16
|
Rashid HU, Ullah S, Carr DF, Khattak MIK, Asad MI, Rehman MU, Tipu MK. The association of ABCB1 gene polymorphism with clinical response to carbamazepine monotherapy in patients with epilepsy. Mol Biol Rep 2024; 51:191. [PMID: 38270743 DOI: 10.1007/s11033-023-09061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/24/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disease but around 30% of patients fail to respond to antiepileptic drug (AED) treatment. Genetic variation of the ATP-binding cassette subfamily B, member 1 (ABCB1) gene, a drug efflux transporter may infer treatment resistance by decreasing gastrointestinal absorption and preventing AED entry into the brain. This study examined the impact of ABCB1 genetic variants on carbamazepine responsiveness. MATERIALS AND METHODS Genomic DNA was extracted from whole blood of 104 epileptic patients. Genotyping of 3 ABCB1 variants (c.C3435T, c.G2677T/A and c.C1236T) was undertaken using validated TaqMan allelic discrimination assays. Plasma carbamazepine levels were measured at 3 and 6 months following the initial dose using high-performance liquid chromatography (HPLC) alongside clinical outcomes evaluation. RESULTS Nonresponse to carbamazepine (CBZ) was associated significantly with the ABCB1 variants c.C3435T, c.G2677T/A, c.C1236T and TTT, TTC haplotypes (P < 0.05). There was no significant association between variants and plasma CBZ level (P > 0.05). CONCLUSIONS Our results showed that variant alleles of the ABCB1 gene and TTT, TTC haplotypes were significantly associated with CBZ resistance without affecting the plasma level of carbamazepine. The findings of this study may help to predict patient's response to treatment ultimately it will improve the personalized and evidence based treatment choice of patients with epilepsy.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shakir Ullah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Daniel F Carr
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | | | - Muhammad Imran Asad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mujeeb Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
17
|
Khan J, Yadav S. Nanotechnology-based Nose-to-brain Delivery in Epilepsy: A NovelApproach to Diagnosis and Treatment. Pharm Nanotechnol 2024; 12:314-328. [PMID: 37818558 DOI: 10.2174/0122117385265554230919070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 10/12/2023]
Abstract
Epilepsy is a serious neurological disease, and scientists have a significant challenge in developing a noninvasive treatment for the treatment of epilepsy. The goal is to provide novel ideas for improving existing and future anti-epileptic medications. The injection of nano treatment via the nose to the brain is being considered as a possible seizure control method. Various nasal medicine nanoformulations have the potential to cure epilepsy. Investigations with a variety of nose-to-brain dosing methods for epilepsy treatment have yielded promising results. After examining global literature on nanotechnology and studies, the authors propose nasal administration with nanoformulations as a means to successfully treat epilepsy. The goal of this review is to look at the innovative application of nanomedicine for epilepsy treatment via nose-to-brain transfer, with a focus on the use of nanoparticles for load medicines. When nanotechnology is combined with the nose to brain approach, treatment efficacy can be improved through site specific delivery. Furthermore, this technique of administration decreases adverse effects and patient noncompliance encountered with more traditional procedures.
Collapse
Affiliation(s)
- Javed Khan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
18
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
19
|
Tchekalarova J, Todorov P, Rangelov M, Stoyanova T, Todorova N. Additive Anticonvulsant Profile and Molecular Docking Analysis of 5,5'-Diphenylhydantoin Schiff Bases and Phenytoin. Biomedicines 2023; 11:2912. [PMID: 38001914 PMCID: PMC10669120 DOI: 10.3390/biomedicines11112912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Four 5,5'-diphenylhydantoin Schiff bases possessing different aromatic species (SB1-SB4) were recently synthesized and characterized using spectroscopic and electrochemical tools. The present study aimed to ascertain the anticonvulsant activity of the novel phenytoin derivatives SB1-Ph, SB2-Ph, SB3-Ph, and SB4-Ph, containing different electron-donor and electron-acceptor groups, and their possible mechanism of action. The SB2-Ph exhibited the highest potency to suppress the seizure spread with ED50 = 8.29 mg/kg, comparable to phenytoin (ED50 = 5.96 mg/kg). While SB2-Ph did not produce neurotoxicity and sedation, it decreased locomotion and stereotypy compared to control. When administered in combination, the four Schiff bases decreased the phenytoin ED50 by more than 2× and raised the protective index by more than 7× (phenytoin+SB2-Ph). The strongest correlation between in-vivo and docking study results was found for ligands' interaction energies with kappa and delta receptors. These data, combined with the worst interaction energies of our ligands with the mu receptor, suggest that the primary mechanism of their action involves the kappa and delta receptors, where the selectivity to the kappa receptor leads to higher biological effects. Our findings suggest that the four Schiff bases might be promising candidates with potential applications as a safe and effective adjuvant in epilepsy.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Tsveta Stoyanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
20
|
Mesraoua B, Brigo F, Lattanzi S, Abou-Khalil B, Al Hail H, Asadi-Pooya AA. Drug-resistant epilepsy: Definition, pathophysiology, and management. J Neurol Sci 2023; 452:120766. [PMID: 37597343 DOI: 10.1016/j.jns.2023.120766] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
There are currently >51 million people with epilepsy (PWE) in the world and every year >4.9 million people develop new-onset epilepsy. The cornerstone of treatment in PWE is drug therapy with antiseizure medications (ASMs). However, about one-third of PWE do not achieve seizure control and do not respond well to drug therapy despite the use of appropriate ASMs [drug-resistant epilepsy (DRE)]. The aims of the current narrative review are to discuss the definition of DRE, explain the biological underpinnings and clinical biomarkers of this condition, and finally to suggest practical management strategies to tackle this issue appropriately, in a concise manner.
Collapse
Affiliation(s)
- Boulenouar Mesraoua
- Neurosciences Department, Hamad Medical Corporation and Weill Cornell Medical College, Doha, Qatar.
| | - Francesco Brigo
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Merano-Meran, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | | | - Hassan Al Hail
- Neurosciences Department, Hamad Medical Corporation and Weill Cornell Medical College, Doha, Qatar.
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Yang CS, Wu MC, Lai MC, Wu SN, Huang CW. Identification of New Antiseizure Medication Candidates in Preclinical Animal Studies. Int J Mol Sci 2023; 24:13143. [PMID: 37685950 PMCID: PMC10487685 DOI: 10.3390/ijms241713143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Epilepsy is a multifactorial neurologic disease that often leads to many devastating disabilities and an enormous burden on the healthcare system. Until now, drug-resistant epilepsy has presented a major challenge for approximately 30% of the epileptic population. The present article summarizes the validated rodent models of seizures employed in pharmacological researches and comprehensively reviews updated advances of novel antiseizure candidates in the preclinical phase. Newly discovered compounds that demonstrate antiseizure efficacy in preclinical trials will be discussed in the review. It is inspiring that several candidates exert promising antiseizure activities in drug-resistant seizure models. The representative compounds consist of derivatives of hybrid compounds that integrate multiple approved antiseizure medications, novel positive allosteric modulators targeting subtype-selective γ-Aminobutyric acid type A receptors, and a derivative of cinnamamide. Although the precise molecular mechanism, pharmacokinetic properties, and safety are not yet fully clear in every novel antiseizure candidate, the adapted approaches to design novel antiseizure medications provide new insights to overcome drug-resistant epilepsy.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Man-Chun Wu
- Department of Family Medicine and Preventive Medicine Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
22
|
Cho I, Kim J, Jung S, Kim SY, Kim EJ, Choo S, Kam EH, Koo BN. The Impact of Persistent Noise Exposure under Inflammatory Conditions. Healthcare (Basel) 2023; 11:2067. [PMID: 37510508 PMCID: PMC10379677 DOI: 10.3390/healthcare11142067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to investigate the impact of noise exposure in an intensive care unit (ICU) environment on the development of postoperative delirium in a mouse model that mimics the ICU environment. Additionally, we aimed to identify the underlying mechanisms contributing to delirium and provide evidence for reducing the risk of delirium. In this study, to mimic an ICU environment, lipopolysaccharide (LPS)-injected sepsis mouse models were exposed to a 75 dB noise condition. Furthermore, we assessed neurobehavioral function and observed the level of neuroinflammatory response and blood-brain barrier (BBB) integrity in the hippocampal region. The LPS-injected sepsis mouse model exposed to noise exhibited increased anxiety-like behavior and cognitive impairment. Moreover, severe neuroinflammation and BBB disruption were detected in the hippocampal region. This study provides insights suggesting that persistent noise exposure under systemic inflammatory conditions may cause cognitive dysfunction and anxiety- like behavior via the mediation of BBB disruption and neuroinflammation. As a result, we suggest that the detailed regulation of noise exposure may be required to prevent the development of postoperative delirium.
Collapse
Affiliation(s)
- Inja Cho
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seungho Jung
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sungji Choo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Potschka H, Fischer A, Löscher W, Volk HA. Pathophysiology of drug-resistant canine epilepsy. Vet J 2023; 296-297:105990. [PMID: 37150317 DOI: 10.1016/j.tvjl.2023.105990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Drug resistance continues to be a major clinical problem in the therapeutic management of canine epilepsies with substantial implications for quality of life and survival times. Experimental and clinical data from human medicine provided evidence for relevant contributions of intrinsic severity of the disease as well as alterations in pharmacokinetics and -dynamics to failure to respond to antiseizure medications. In addition, several modulatory factors have been identified that can be associated with the level of therapeutic responses. Among others, the list of potential modulatory factors comprises genetic and epigenetic factors, inflammatory mediators, and metabolites. Regarding data from dogs, there are obvious gaps in knowledge when it comes to our understanding of the clinical patterns and the mechanisms of drug-resistant canine epilepsy. So far, seizure density and the occurrence of cluster seizures have been linked with a poor response to antiseizure medications. Moreover, evidence exists that the genetic background and alterations in epigenetic mechanisms might influence the efficacy of antiseizure medications in dogs with epilepsy. Further molecular, cellular, and network alterations that may affect intrinsic severity, pharmacokinetics, and -dynamics have been reported. However, the association with drug responsiveness has not yet been studied in detail. In summary, there is an urgent need to strengthen clinical and experimental research efforts exploring the mechanisms of resistance as well as their association with different etiologies, epilepsy types, and clinical courses.
Collapse
Affiliation(s)
- Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| | - Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
24
|
Löscher W, White HS. Animal Models of Drug-Resistant Epilepsy as Tools for Deciphering the Cellular and Molecular Mechanisms of Pharmacoresistance and Discovering More Effective Treatments. Cells 2023; 12:cells12091233. [PMID: 37174633 PMCID: PMC10177106 DOI: 10.3390/cells12091233] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In the last 30 years, over 20 new anti-seizure medicines (ASMs) have been introduced into the market for the treatment of epilepsy using well-established preclinical seizure and epilepsy models. Despite this success, approximately 20-30% of patients with epilepsy have drug-resistant epilepsy (DRE). The current approach to ASM discovery for DRE relies largely on drug testing in various preclinical model systems that display varying degrees of ASM drug resistance. In recent years, attempts have been made to include more etiologically relevant models in the preclinical evaluation of a new investigational drug. Such models have played an important role in advancing a greater understanding of DRE at a mechanistic level and for hypothesis testing as new experimental evidence becomes available. This review provides a critical discussion of the pharmacology of models of adult focal epilepsy that allow for the selection of ASM responders and nonresponders and those models that display a pharmacoresistance per se to two or more ASMs. In addition, the pharmacology of animal models of major genetic epilepsies is discussed. Importantly, in addition to testing chemical compounds, several of the models discussed here can be used to evaluate other potential therapies for epilepsy such as neurostimulation, dietary treatments, gene therapy, or cell transplantation. This review also discusses the challenges associated with identifying novel therapies in the absence of a greater understanding of the mechanisms that contribute to DRE. Finally, this review discusses the lessons learned from the profile of the recently approved highly efficacious and broad-spectrum ASM cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Zierath D, Mizuno S, Barker-Haliski M. Frontline Sodium Channel-Blocking Antiseizure Medicine Use Promotes Future Onset of Drug-Resistant Chronic Seizures. Int J Mol Sci 2023; 24:4848. [PMID: 36902275 PMCID: PMC10003379 DOI: 10.3390/ijms24054848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The mechanisms of treatment-resistant epilepsy remain unclear. We have previously shown that frontline administration of therapeutic doses of lamotrigine (LTG), which preferentially inhibits the fast-inactivation state of sodium channels, during corneal kindling of mice promotes cross-resistance to several other antiseizure medicines (ASMs). However, whether this phenomenon extends to monotherapy with ASMs that stabilize the slow inactivation state of sodium channels is unknown. Therefore, this study assessed whether lacosamide (LCM) monotherapy during corneal kindling would promote future development of drug-resistant focal seizures in mice. Male CF-1 mice (n = 40/group; 18-25 g) were administered an anticonvulsant dose of LCM (4.5 mg/kg, i.p.), LTG (8.5 mg/kg, i.p.), or vehicle (0.5% methylcellulose) twice daily for two weeks during kindling. A subset of mice (n = 10/group) were euthanized one day after kindling for immunohistochemical assessment of astrogliosis, neurogenesis, and neuropathology. The dose-related antiseizure efficacy of distinct ASMs, including LTG, LCM, carbamazepine, levetiracetam, gabapentin, perampanel, valproic acid, phenobarbital, and topiramate, was then assessed in the remaining kindled mice. Neither LCM nor LTG administration prevented kindling: 29/39 vehicle-exposed mice were kindled; 33/40 LTG-exposed mice were kindled; and 31/40 LCM-exposed mice were kindled. Mice administered LCM or LTG during kindling became resistant to escalating doses of LCM, LTG, and carbamazepine. Perampanel, valproic acid, and phenobarbital were less potent in LTG- and LCM-kindled mice, whereas levetiracetam and gabapentin retained equivalent potency across groups. Notable differences in reactive gliosis and neurogenesis were also appreciated. This study indicates that early, repeated administration of sodium channel-blocking ASMs, regardless of inactivation state preference, promotes pharmacoresistant chronic seizures. Inappropriate ASM monotherapy in newly diagnosed epilepsy may thus be one driver of future drug resistance, with resistance being highly ASM class specific.
Collapse
Affiliation(s)
| | | | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Kukal S, Bora S, Kanojia N, Singh P, Paul PR, Rawat C, Sagar S, Bhatraju NK, Grewal GK, Singh A, Kukreti S, Satyamoorthy K, Kukreti R. Valproic Acid-Induced Upregulation of Multidrug Efflux Transporter ABCG2/BCRP via PPAR α-Dependent Mechanism in Human Brain Endothelial Cells. Mol Pharmacol 2023; 103:145-157. [PMID: 36414374 DOI: 10.1124/molpharm.122.000568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the progress made in the development of new antiepileptic drugs (AEDs), poor response to them is a rising concern in epilepsy treatment. Of several hypotheses explaining AED treatment failure, the most promising theory is the overexpression of multidrug transporters belonging to ATP-binding cassette (ABC) transporter family at blood-brain barrier. Previous data show that AEDs themselves can induce these transporters, in turn affecting their own brain bioavailability. Presently, this induction and the underlying regulatory mechanism involved at human blood-brain barrier is not well elucidated. Herein, we sought to explore the effect of most prescribed first- and second-line AEDs on multidrug transporters in human cerebral microvascular endothelial cells, hCMEC/D3. Our work demonstrated that exposure of these cells to valproic acid (VPA) induced mRNA, protein, and functional activity of breast cancer resistance protein (BCRP/ABCG2). On examining the substrate interaction status of AEDs with BCRP, VPA, phenytoin, and lamotrigine were found to be potential BCRP substrates. Furthermore, we observed that siRNA-mediated knockdown of peroxisome proliferator-activated receptor alpha (PPARα) or use of PPARα antagonist, resulted in attenuation of VPA-induced BCRP expression and transporter activity. VPA was found to increase PPARα expression and trigger its translocation from cytoplasm to nucleus. Findings from chromatin immunoprecipitation and luciferase assays showed that VPA enhances the binding of PPARα to its response element in the ABCG2 promoter, resulting in elevated ABCG2 transcriptional activity. Taken together, these in vitro findings highlight PPARα as the potential molecular target to prevent VPA-mediated BCRP induction, which may have important implications in VPA pharmacoresistance. SIGNIFICANCE STATEMENT: Induction of multidrug transporters at blood-brain barrier can largely affect the bioavailability of the substrate antiepileptic drugs in the brains of patients with epilepsy, thus affecting their therapeutic efficacy. The present study reports a mechanistic pathway of breast cancer resistance protein (BCRP/ABCG2) upregulation by valproic acid in human brain endothelial cells via peroxisome proliferator-activated receptor alpha involvement, thereby providing a potential strategy to prevent valproic acid pharmacoresistance in epilepsy.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Shakti Sagar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Naveen Kumar Bhatraju
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Gurpreet Kaur Grewal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Anju Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Shrikant Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Kapaettu Satyamoorthy
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| |
Collapse
|
27
|
Huang Y, Zhang Z, Chen L. Diagnosis and prognosis of serum Fut8 for epilepsy and refractory epilepsy in children. PLoS One 2023; 18:e0284239. [PMID: 37053181 PMCID: PMC10101470 DOI: 10.1371/journal.pone.0284239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
With adequate serum concentration of antiepileptic drugs, the epilepsy symptoms in many patients still cannot be controlled well. The alteration of glycosyltransferase has obvious influence on the pathogenesis of epilepsy. In this study, we focus on the diagnostic and prognostic value of fucosyltransferase 8 (Fut8) on epilepsy and refractory epilepsy. Serum samples of 199 patients with epilepsy, 59 patients with refractory epilepsy and 22 healthy controls who were diagnosed in Shenzhen Children's hospital from August 2018 to August 2019 were collected. The level of lectins was further analyzed by lectin chip and enzyme linked immunosorbent assay (ELISA). The diagnostic value of serum Fut8 for epilepsy and refractory epilepsy was evaluated by receiver operating characteristic curve. Finally, the difference in the recurrence rate of convulsion in patients with epilepsy or refractory epilepsy within 2 years were observed in different Fut8 expression patients. The concentration of valproic acid (VPA) were significant different between epilepsy and refractory epilepsy group. The expression of α1, 6-fucosylation and Fut8 was significantly increased in the refractory epilepsy group compared with healthy controls. The area under the curve of Fut8 as a biomarker for predicting epilepsy or refractory epilepsy was 0.620 and 0.856, respectively. There was a significant difference in the recurrence rate of convulsion within 2 years in the children with refractory epilepsy (p = 0.0493) not epilepsy (p = 0.1865) between the high and low Fut8 expression groups. Fut8 was one of the effective indicators for the diagnosis and prognosis of refractory epilepsy.
Collapse
Affiliation(s)
- Yunxiu Huang
- Department of Laboratory Medicine, Zhongshan People's Hospital, Zhongshan, Guangdong Province, China
| | - Zhou Zhang
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, China
| | - Linmu Chen
- Department of Pharmacy, Zhongshan People's Hospital, Zhongshan, Guangdong Province, China
| |
Collapse
|
28
|
Buchin A, de Frates R, Nandi A, Mann R, Chong P, Ng L, Miller J, Hodge R, Kalmbach B, Bose S, Rutishauser U, McConoughey S, Lein E, Berg J, Sorensen S, Gwinn R, Koch C, Ting J, Anastassiou CA. Multi-modal characterization and simulation of human epileptic circuitry. Cell Rep 2022; 41:111873. [PMID: 36577383 PMCID: PMC9841067 DOI: 10.1016/j.celrep.2022.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/16/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Temporal lobe epilepsy is the fourth most common neurological disorder, with about 40% of patients not responding to pharmacological treatment. Increased cellular loss is linked to disease severity and pathological phenotypes such as heightened seizure propensity. While the hippocampus is the target of therapeutic interventions, the impact of the disease at the cellular level remains unclear. Here, we show that hippocampal granule cells change with disease progression as measured in living, resected hippocampal tissue excised from patients with epilepsy. We show that granule cells increase excitability and shorten response latency while also enlarging in cellular volume and spine density. Single-nucleus RNA sequencing combined with simulations ascribes the changes to three conductances: BK, Cav2.2, and Kir2.1. In a network model, we show that these changes related to disease progression bring the circuit into a more excitable state, while reversing them produces a less excitable, "early-disease-like" state.
Collapse
Affiliation(s)
| | | | | | - Rusty Mann
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Peter Chong
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lindsay Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Brian Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Soumita Bose
- Allen Institute for Brain Science, Seattle, WA, USA; CiperHealth, San Francisco, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Jim Berg
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA, USA; University of Washington, Seattle, WA, USA
| | - Costas A Anastassiou
- Allen Institute for Brain Science, Seattle, WA, USA; Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
29
|
Biswas S, Clawson W, Levin M. Learning in Transcriptional Network Models: Computational Discovery of Pathway-Level Memory and Effective Interventions. Int J Mol Sci 2022; 24:285. [PMID: 36613729 PMCID: PMC9820177 DOI: 10.3390/ijms24010285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Trainability, in any substrate, refers to the ability to change future behavior based on past experiences. An understanding of such capacity within biological cells and tissues would enable a particularly powerful set of methods for prediction and control of their behavior through specific patterns of stimuli. This top-down mode of control (as an alternative to bottom-up modification of hardware) has been extensively exploited by computer science and the behavioral sciences; in biology however, it is usually reserved for organism-level behavior in animals with brains, such as training animals towards a desired response. Exciting work in the field of basal cognition has begun to reveal degrees and forms of unconventional memory in non-neural tissues and even in subcellular biochemical dynamics. Here, we characterize biological gene regulatory circuit models and protein pathways and find them capable of several different kinds of memory. We extend prior results on learning in binary transcriptional networks to continuous models and identify specific interventions (regimes of stimulation, as opposed to network rewiring) that abolish undesirable network behavior such as drug pharmacoresistance and drug sensitization. We also explore the stability of created memories by assessing their long-term behavior and find that most memories do not decay over long time periods. Additionally, we find that the memory properties are quite robust to noise; surprisingly, in many cases noise actually increases memory potential. We examine various network properties associated with these behaviors and find that no one network property is indicative of memory. Random networks do not show similar memory behavior as models of biological processes, indicating that generic network dynamics are not solely responsible for trainability. Rational control of dynamic pathway function using stimuli derived from computational models opens the door to empirical studies of proto-cognitive capacities in unconventional embodiments and suggests numerous possible applications in biomedicine, where behavior shaping of pathway responses stand as a potential alternative to gene therapy.
Collapse
Affiliation(s)
- Surama Biswas
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Department of Computer Science & Engineering and Information Technology, Meghnad Saha Institute of Technology, Kolkata 700150, India
| | - Wesley Clawson
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
30
|
Khairani AF, Sutarni S, Sholikhah EN, Malueka RG, Luthffia A, Vidyanti AN. Association of SCN1A Gene Polymorphism with Phenytoin Response in Patients with Epilepsy: Relevance of Stratification by the History of Febrile Seizure. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM: The SCN1A gene encodes the NaV1.1 sodium channel in the central nervous system that serves as the target for phenytoin. Our study aimed to investigate the association of SCN1A polymorphism (SNP rs3812718) with phenytoin response.
MATERIALS AND METHODS: A total of 120 epileptic patients who had received phenytoin for at least 1 year were enrolled in the study and genotyped using the TaqMan assay. They were classified into phenytoin-responsive (n = 62) and phenytoin unresponsive groups (n = 58). Patients were also stratified according to the history of febrile seizure (24 in the febrile seizure subgroup; 96 patients in the no history of febrile seizure subgroup) and epilepsy etiology (47 in idiopathic; 73 in the symptomatic + cryptogenic subgroup).
RESULTS: The frequency of AA (19% vs. 11.3%) and AG genotypes (43.1% vs. 40.3%) was found to be more frequent in phenytoin unresponsive. GG genotypes dominated in the phenytoin responsive group (37.9% vs. 48.4%) but were not statistically significant (p > 0.05). We identified two variables associated with phenytoin response: the etiology of epilepsy (p = 0.012) and history of febrile seizure (0.014). A significant positive association between the rs3812718 genotype and phenytoin response was found when patients were stratified by a history of febrile seizures. In patients without a history of febrile seizures, the AA genotype had a higher risk of phenytoin unresponsiveness than the GG genotype (p = 0.048; OR 3.73, 95% CI: 1.01–13.78).
CONCLUSION: There was no significant association between the rs3812718 polymorphism and phenytoin responsiveness in patients with epilepsy. In the patients without a history of febrile seizure subgroup, AA increased the risk of phenytoin unresponsiveness compared to the GG genotype.
Collapse
|
31
|
Zhang X, Liang P, Zhang Y, Wu Y, Song Y, Wang X, Chen T, Peng B, Liu W, Yin J, Han S, He X. Blockade of Kv1.3 Potassium Channel Inhibits Microglia-Mediated Neuroinflammation in Epilepsy. Int J Mol Sci 2022; 23:14693. [PMID: 36499018 PMCID: PMC9740890 DOI: 10.3390/ijms232314693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epilepsy is a chronic neurological disorder whose pathophysiology relates to inflammation. The potassium channel Kv1.3 in microglia has been reported as a promising therapeutic target in neurological diseases in which neuroinflammation is involved, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and middle cerebral artery occlusion/reperfusion (MCAO/R). Currently, little is known about the relationship between Kv1.3 and epilepsy. In this study, we found that Kv1.3 was upregulated in microglia in the KA-induced mouse epilepsy model. Importantly, blocking Kv1.3 with its specific small-molecule blocker 5-(4-phenoxybutoxy)psoralen (PAP-1) reduced seizure severity, prolonged seizure latency, and decreased neuronal loss. Mechanistically, we further confirmed that blockade of Kv1.3 suppressed proinflammatory microglial activation and reduced proinflammatory cytokine production by inhibiting the Ca2+/NF-κB signaling pathway. These results shed light on the critical function of microglial Kv1.3 in epilepsy and provided a potential therapeutic target.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Peiyu Liang
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yahui Zhang
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yifan Wu
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yinghao Song
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xueyang Wang
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Taoxiang Chen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Department of Physiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Department of Physiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Wanhong Liu
- Department of Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Jun Yin
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Song Han
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xiaohua He
- Department of Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| |
Collapse
|
32
|
Wang J, Fu J, Sun W, Yin X, Lv K, Zhang J. Functionalized PEG-PLA nanoparticles for brain targeted delivery of ketoconazole contribute to pregnane X receptor overexpressing in drug-resistant epilepsy. Epilepsy Res 2022; 186:107000. [PMID: 36037622 DOI: 10.1016/j.eplepsyres.2022.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a functionalized PEG-PLA nanoparticle system containing ketoconazole (KCZ) to overcome the overactivity of pregnane X receptor (PXR) for the treatment of drug-resistant epilepsy (DRE). SIGNIFICANCE KCZ was developed as a therapy strategy for DRE limited by its lethal hepatotoxicity and minute brain concentration. KCZ-incorporated nanoparticles modified with angiopep-2 (NPs/KCZ) could reduce adverse effects of KCZ and achieve epileptic foci-targeted drug delivery. METHODS NPs/KCZ was prepared by thin-film hydration method and characterized in vitro and in vivo. The efficacy evaluation of NPs/KCZ was evaluated in a kainic acid (KA)-induced mice model of epilepsy with carbamazepine (CBZ) treatment. RESULTS The mean particle size and Zeta potential of NPs/KCZ were 17.84 ± 0.33 nm and - 2.28 ± 0.12 mV, respectively. The drug-loading (DL%) of KCZ in nanoparticles was 8.96 ± 0.12 % and the entrapment efficiency (EE%) was 98.56 ± 0.02 %. The critical value of critical micelle concentration was 10-3.3 mg/ml. No obvious cytotoxicity was found in vitro. The behavioral and electrographic seizure activities were obviously attenuated in NPs/KCZ+CBZ group. The CBZ concentration of brain tissues in mice treated with NPs/KCZ+CBZ was significantly increased than those treated with CBZ alone (P = 0.0028). A significantly decreased expression level of PXR and its downstream proteins was observed in NPs/KCZ+CBZ group compared with that in the control and CBZ group (All P < 0.05). CONCLUSION Our results showed that NPs/KCZ achieved the epileptic foci-targeted delivery of KCZ and ameliorated the efficacy of CBZ on DRE by attenuating the overactivity of PXR.
Collapse
Affiliation(s)
- Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China; National Center for Neurological Disorders, No.12 Wulumuqi Road (Middle), Shanghai 200040, China.
| |
Collapse
|
33
|
Abuhaiba SI, Duarte IC, Castelhano J, Dionísio A, Sales F, Edden R, Castelo-Branco M. The impact of cathodal tDCS on the GABAergic system in the epileptogenic zone: A multimodal imaging study. Front Neurol 2022; 13:935029. [PMID: 35989912 PMCID: PMC9388822 DOI: 10.3389/fneur.2022.935029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives We aimed to investigate the antiepileptic effects of cathodal transcranial direct current stimulation (c-tDCS) and mechanisms of action based on its effects on the neurotransmitters responsible for the abnormal synchrony patterns seen in pharmacoresistant epilepsy. This is the first study to test the impact of neurostimulation on epileptiform interictal discharges (IEDs) and to measure brain metabolites in the epileptogenic zone (EZ) and control regions simultaneously in patients with pharmacoresistant epilepsy. Methods This is a hypothesis-driven pilot prospective single-blinded repeated measure design study in patients diagnosed with pharmacoresistant epilepsy of temporal lobe onset. We included seven patients who underwent two sessions of c-tDCS (sham followed by real). The real tDCS session was 20 min in duration and had a current intensity of 1.5 mA delivered via two surface electrodes that had dimensions of 3 × 4 cm. The cathode electrode was placed at FT7 in the center whereas the anode at Oz in the center. After each session, we performed electroencephalographic recording to count epileptiform IEDs over 30 min. We also performed magnetic resonance spectroscopy (MRS) to measure brain metabolite concentrations in the two areas of interest (EZ and occipital region), namely, gamma-aminobutyric acid (GABA), glutamate (Glx), and glutathione. We focused on a homogenous sample where the EZ and antiepileptic medications are shared among patients. Results Real tDCS decreased the number of epileptiform IEDs per min (from 9.46 ± 2.68 after sham tDCS to 5.37 ± 3.38 after real tDCS), p = 0.018, as compared to sham tDCS. GABA was decreased in the EZ after real c-tDCS stimulation as compared to sham tDCS (from 0.129 ± 0.019 to 0.096 ± 0.018, p = 0.02). The reduction in EZ GABA correlated with the reduction in the frequency of epileptiform IED per min (rho: 0.9, p = 0.003). Conclusion These results provide a window into the antiepileptic mechanisms of action of tDCS, based on local and remote changes in GABA and neural oscillatory patterning responsible for the generation of interictal epileptiform discharges.
Collapse
Affiliation(s)
- Sulaiman I. Abuhaiba
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Epilepsy Unit, Faculty of Medicine, Clinical and Academic Center (CCAC), Coimbra, Portugal
| | - Isabel C. Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
| | - Francisco Sales
- Epilepsy Unit, Faculty of Medicine, Clinical and Academic Center (CCAC), Coimbra, Portugal
| | - Richard Edden
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- FM Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Clinical and Academic Center (CCAC), University of Coimbra, Coimbra, Portugal
- *Correspondence: Miguel Castelo-Branco
| |
Collapse
|
34
|
Servilha-Menezes G, Garcia-Cairasco N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance. Epilepsia Open 2022; 7 Suppl 1:S8-S22. [PMID: 35253410 PMCID: PMC9340300 DOI: 10.1002/epi4.12588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/11/2022] Open
Abstract
Drug-resistant epilepsy remains to this day as a highly prevalent condition affecting around one-third of patients with epilepsy, despite all the research and the development of several new antiseizure medications (ASMs) over the last decades. Epilepsies are multifactorial complex diseases, commonly associated with psychiatric, neurological, and somatic comorbidities. Thus, to solve the puzzling problem of pharmacoresistance, the diagnosis and modeling of epilepsy and comorbidities need to change toward a complex system approach. In this review, we have summarized the sequence of events for the definition of epilepsies and comorbidities, the search for mechanisms, and the major hypotheses of pharmacoresistance, drawing attention to some of the many converging aspects between the proposed mechanisms, their supporting evidence, and comorbidities-related alterations. The use of systems biology applied to epileptology may lead to the discovery of new targets and the development of new ASMs, as may advance our understanding of the epilepsies and their comorbidities, providing much deeper insight on multidrug pharmacoresistance.
Collapse
Affiliation(s)
- Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil.,Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
35
|
Chen TS, Lai MC, Huang HYI, Wu SN, Huang CW. Immunity, Ion Channels and Epilepsy. Int J Mol Sci 2022; 23:6446. [PMID: 35742889 PMCID: PMC9224225 DOI: 10.3390/ijms23126446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/10/2022] Open
Abstract
Epilepsy is a common chronic neurological disorder in modern society. One of the major unmet challenges is that current antiseizure medications are basically not disease-modifying. Among the multifaceted etiologies of epilepsy, the role of the immune system has attracted considerable attention in recent years. It is known that both innate and adaptive immunity can be activated in response to insults to the central nervous system, leading to seizures. Moreover, the interaction between ion channels, which have a well-established role in epileptogenesis and epilepsy, and the immune system is complex and is being actively investigated. Some examples, including the interaction between ion channels and mTOR pathways, will be discussed in this paper. Furthermore, there has been substantial progress in our understanding of the pathophysiology of epilepsy associated with autoimmune encephalitis, and numerous neural-specific autoantibodies have been found and documented. Early recognition of immune-mediated epilepsy is important, especially in cases of pharmacoresistant epilepsy and in the presence of signs of autoimmune encephalitis, as early intervention with immunotherapy shows promise.
Collapse
Affiliation(s)
- Tsang-Shan Chen
- Department of Neurology, Tainan Sin-Lau Hospital, Tainan 701002, Taiwan;
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan 71004, Taiwan;
| | | | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
36
|
Abstract
Drug-resistant epilepsy is associated with poor health outcomes and increased economic burden. In the last three decades, various new antiseizure medications have been developed, but the proportion of people with drug-resistant epilepsy remains relatively unchanged. Developing strategies to address drug-resistant epilepsy is essential. Here, we define drug-resistant epilepsy and emphasize its relationship to the conceptualization of epilepsy as a symptom complex, delineate clinical risk factors, and characterize mechanisms based on current knowledge. We address the importance of ruling out pseudoresistance and consider the impact of nonadherence on determining whether an individual has drug-resistant epilepsy. We then review the principles of epilepsy drug therapy and briefly touch upon newly approved and experimental antiseizure medications.
Collapse
|
37
|
Yang C, Shi Y, Li X, Guan L, Li H, Lin J. Cadherins and the pathogenesis of epilepsy. Cell Biochem Funct 2022; 40:336-348. [PMID: 35393670 DOI: 10.1002/cbf.3699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 12/13/2022]
Abstract
Epilepsy is a nervous system disease caused by abnormal discharge of brain neurons, which is characterized by recurrent seizures. The factors that induce epilepsy include genetic and environmental factors. Genetic factors are important pathogenic factors of epilepsy, such as epilepsy caused by protocadherin-19 (PCDH-19) mutation, which is an X-linked genetic disease. It is more common in female heterozygotes, which are caused by mutations in the PCDH-19 gene. Epilepsy caused by environmental factors is mainly caused by brain injury, which is commonly caused by brain tumors, brain surgery, or trauma to the brain. In addition, the pathogenesis of epilepsy is closely related to abnormalities in some signaling pathways. The Wnt/β-catenin signaling pathway is considered a new target for the treatment of epilepsy. This review summarizes these factors inducing epilepsy and the research hypotheses regarding the pathogenesis of epilepsy. The focus of this review centers on cadherins and the pathogenesis of epilepsy. We analyzed the pathogenesis of epilepsy induced by N-cadherin and PCDH-19 in the cadherin family members. Finally, we expect that in the future, new breakthroughs will be made in the study of the pathogenesis and mechanism of epilepsy at the cellular and molecular levels.
Collapse
Affiliation(s)
- Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| | - Yaping Shi
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaoying Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lihong Guan
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang, China
| |
Collapse
|
38
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
39
|
Malkin SL, Khachatryan VA, Fedorov EV, Zaitsev AV. The Electrophysiological Properties of Cortical Neurons in the Epileptic Foci of Children with Refractory Temporal Lobe Epilepsy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Santana‐Gomez CE, Engel J, Staba R. Drug-resistant epilepsy and the hypothesis of intrinsic severity: What about the high-frequency oscillations? Epilepsia Open 2021; 7 Suppl 1:S59-S67. [PMID: 34861102 PMCID: PMC9340307 DOI: 10.1002/epi4.12565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Drug‐resistant epilepsy (DRE) affects approximately one‐third of the patients with epilepsy. Based on experimental findings from animal models and brain tissue from patients with DRE, different hypotheses have been proposed to explain the cause(s) of drug resistance. One is the intrinsic severity hypothesis that posits that drug resistance is an inherent property of epilepsy related to disease severity. Seizure frequency is one measure of epilepsy severity, but frequency alone is an incomplete measure of severity and does not fully explain basic research and clinical studies on drug resistance; thus, other measures of epilepsy severity are needed. One such measure could be pathological high‐frequency oscillations (HFOs), which are believed to reflect the neuronal disturbances responsible for the development of epilepsy and the generation of spontaneous seizures. In this manuscript, we will briefly review the intrinsic severity hypothesis, describe basic and clinical research on HFOs in the epileptic brain, and based on this evidence discuss whether HFOs could be a clinical measure of epilepsy severity. Understanding the mechanisms of DRE is critical for producing breakthroughs in the development and testing of novel strategies for treatment.
Collapse
Affiliation(s)
| | - Jerome Engel
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Brain Research InstituteDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of NeurobiologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Richard Staba
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
41
|
Maqbool H, Saleem T, Sheikh N, Asmatullah, Mukhtar M, Javed I, Rehman A. Polymorphism in drug transporter gene ABCB1 is associated with drug resistance in Pakistani epilepsy patients. Epilepsy Res 2021; 178:106814. [PMID: 34844091 DOI: 10.1016/j.eplepsyres.2021.106814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Despite the best possible medication and treatment protocols, one-third of epilepsy patients have drug resistance which is associated with an elevated risk of mortality and debilitating psychological consequences. P-glycogen encoded by ABCB1 is major drug transporter for a wide variety of AED. To evaluate the complex haplotypic association, genetic and allelic frequency distribution of rs1128503, rs1045642, and rs2032582 polymorphisms of ABCB1 gene with drug resistance in Pakistani pediatric epilepsy patients, we performed this study. A total of 337 individuals including 100 healthy control, 110 drug-resistant patients, and 127 drug-responsive patients were enrolled and genotyped for three polymorphisms. PCR and direct sequencing of DNA were done for genotyping. All the studied SNPs showed a statistically significant association with drug-resistant epilepsy at p < 0.01. In addition, we identified a novel variant at c 0.2678C > A (SCV001712095) position. The haplotype analysis indicated strong linkage disequilibrium between three SNPs. The in-silico analysis indicated that rs2032582 polymorphism at c 0.2677T > A is benign while c 0.2677T > G and c 0.2678C > A are possibly damaging. Our findings showed that pharmacogenetic variants play a key role in disease. Our findings shed light on the pharmacogenomic association of ABCB1 with epilepsy which might facilitate study on pharmacokinetics concerning ethnology.
Collapse
Affiliation(s)
- Hafsa Maqbool
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Tayyaba Saleem
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Nadeem Sheikh
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan.
| | - Asmatullah
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Maryam Mukhtar
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Iram Javed
- Department of Pediatric Neurology, Children Hospital & Institute of Child Health, Faisalabad, Pakistan
| | - Atia Rehman
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
42
|
Xu C, Gong Y, Wang Y, Chen Z. New advances in pharmacoresistant epilepsy towards precise management-from prognosis to treatments. Pharmacol Ther 2021; 233:108026. [PMID: 34718071 DOI: 10.1016/j.pharmthera.2021.108026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Epilepsy, one of the most severe neurological diseases, is characterized by abrupt recurrent seizures. Despite great progress in the development of antiseizure drugs (ASDs) based on diverse molecular targets, more than one third of epilepsy patients still show resistance to ASDs, a condition termed pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy involves serious challenges. In the past decade, promising advances have been made in the use of interdisciplinary techniques involving biophysics, bioinformatics, biomaterials and biochemistry, which allow more precise prognosis and development of drug target for pharmacoresistant epilepsy. Notably, novel experimental tools such as viral vector gene delivery, optogenetics and chemogenetics have provided a framework for promising approaches to the precise treatment of pharmacoresistant epilepsy. In this review, historical achievements especially recent advances of the past decade in the prognosis and treatment of pharmacoresistant epilepsy from both clinical and laboratory settings are presented and summarized. We propose that the further development of novel experimental tools at cellular or molecular levels with both temporal and spatial precision are necessary to make improve the management and drug development for pharmacoresistant epilepsy in the clinical arena.
Collapse
Affiliation(s)
- Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwei Gong
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
43
|
Fonseca-Barriendos D, Frías-Soria CL, Pérez-Pérez D, Gómez-López R, Borroto Escuela DO, Rocha L. Drug-resistant epilepsy: Drug target hypothesis and beyond the receptors. Epilepsia Open 2021; 7 Suppl 1:S23-S33. [PMID: 34542940 PMCID: PMC9340308 DOI: 10.1002/epi4.12539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that affects more than 50 million people worldwide. Despite a recent introduction of antiseizure drugs for the treatment of epileptic seizures, one-third of these patients suffer from drug-resistant epilepsy (DRE). The therapeutic target hypothesis is a cited theory to explain DRE. According to the target hypothesis, the failure to achieve seizure freedom leads to alteration of the structure and/or function of the antiseizure medication (ASM) target. However, this hypothesis fails to explain why patients with DRE do not respond to antiseizure medications of different targets. This review presents different conditions, such as epigenetic mechanisms and protein-protein interactions that may result in alterations of diverse drug targets using different mechanisms. These novel conditions represent new targets to control DRE.
Collapse
Affiliation(s)
| | | | - Daniel Pérez-Pérez
- Plan of Combined Studies in Medicine (PECEM), Faculty of Medicine, UNAM, México City, Mexico
| | - Rosenda Gómez-López
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, México
| | | | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, México City, México
| |
Collapse
|
44
|
Tóth M, Barsi P, Tóth Z, Borbély K, Lückl J, Emri M, Repa I, Janszky J, Dóczi T, Horváth Z, Halász P, Juhos V, Gyimesi C, Bóné B, Kuperczkó D, Horváth R, Nagy F, Kelemen A, Jordán Z, Újvári Á, Hagiwara K, Isnard J, Pál E, Fekésházy A, Fabó D, Vajda Z. The role of hybrid FDG-PET/MRI on decision-making in presurgical evaluation of drug-resistant epilepsy. BMC Neurol 2021; 21:363. [PMID: 34537017 PMCID: PMC8449490 DOI: 10.1186/s12883-021-02352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background When MRI fails to detect a potentially epileptogenic lesion, the chance of a favorable outcome after epilepsy surgery becomes significantly lower (from 60 to 90% to 20–65%). Hybrid FDG-PET/MRI may provide additional information for identifying the epileptogenic zone. We aimed to investigate the possible effect of the introduction of hybrid FDG-PET/MRI into the algorithm of the decision-making in both lesional and non-lesional drug-resistant epileptic patients. Methods In a prospective study of patients suffering from drug-resistant focal epilepsy, 30 nonlesional and 30 lesional cases with discordant presurgical results were evaluated using hybrid FDG-PET/MRI. Results The hybrid imaging revealed morphological lesion in 18 patients and glucose hypometabolism in 29 patients within the nonlesional group. In the MRI positive group, 4 patients were found to be nonlesional, and in 9 patients at least one more epileptogenic lesion was discovered, while in another 17 cases the original lesion was confirmed by means of hybrid FDG-PET/MRI. As to the therapeutic decision-making, these results helped to indicate resective surgery instead of intracranial EEG (iEEG) monitoring in 2 cases, to avoid any further invasive diagnostic procedures in 7 patients, and to refer 21 patients for iEEG in the nonlesional group. Hybrid FDG-PET/MRI has also significantly changed the original therapeutic plans in the lesional group. Prior to the hybrid imaging, a resective surgery was considered in 3 patients, and iEEG was planned in 27 patients. However, 3 patients became eligible for resective surgery, 6 patients proved to be inoperable instead of iEEG, and 18 cases remained candidates for iEEG due to the hybrid FDG-PET/MRI. Two patients remained candidates for resective surgery and one patient became not eligible for any further invasive intervention. Conclusions The results of hybrid FDG-PET/MRI significantly altered the original plans in 19 of 60 cases. The introduction of hybrid FDG-PET/MRI into the presurgical evaluation process had a potential modifying effect on clinical decision-making. Trial registration Trial registry: Scientific Research Ethics Committee of the Medical Research Council of Hungary. Trial registration number: 008899/2016/OTIG. Date of registration: 08 February 2016.
Collapse
Affiliation(s)
- Márton Tóth
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary.
| | - Péter Barsi
- Department of Medical Imaging, Semmelweis University, Balassa út 6, Budapest, H-1083, Hungary
| | - Zoltán Tóth
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Katalin Borbély
- PET/CT Ambulance, National Institute of Oncology, Ráth György u.7-9, Budapest, H-1122, Hungary
| | - János Lückl
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Miklós Emri
- MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Imre Repa
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary.,MTA-PTE Clinical Neuroscience MRI Research Group, Ifjúság u. 20, Pécs, H-7624, Hungary
| | - Tamás Dóczi
- MTA-PTE Clinical Neuroscience MRI Research Group, Ifjúság u. 20, Pécs, H-7624, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Péter Halász
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Vera Juhos
- Epihope Non-Profit Kft, Szilágyi Erzsébet fasor 17-21, Budapest, 1026, Hungary
| | - Csilla Gyimesi
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Beáta Bóné
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Diána Kuperczkó
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Réka Horváth
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Ferenc Nagy
- Department of Neurology, Somogy County Moritz Kaposi Teaching Hospital, Sándor u. 40, Guba, H-7400, Hungary
| | - Anna Kelemen
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Zsófia Jordán
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Ákos Újvári
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, 3-6-45, Momochihama, Sawara-ku, Fukuoka, 814-0001, Japan
| | - Jean Isnard
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Hospital for Neurology and Neurosurgery Pierre Wertheimer, 59 Boulevard Pinel, 69500, Lyon, France
| | - Endre Pál
- Department of Neurology, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| | - Attila Fekésházy
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neurosciences, Amerikai út 57, Budapest, H-1145, Hungary
| | - Zsolt Vajda
- Dr. József Baka Diagnostic, Radiation oncology, Research and Teaching Center, Somogy County Moritz Kaposi Teaching Hospital, Guba Sándor u. 40, Kaposvár, H-7400, Hungary.,Department of Neurosurgery, Medical School, University of Pécs, Rét u. 2, Pécs, H-7623, Hungary
| |
Collapse
|
45
|
Bruxel EM, do Canto AM, Bruno DCF, Geraldis JC, Lopes-Cendes I. Multi-omic strategies applied to the study of pharmacoresistance in mesial temporal lobe epilepsy. Epilepsia Open 2021; 7 Suppl 1:S94-S120. [PMID: 34486831 PMCID: PMC9340306 DOI: 10.1002/epi4.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults, and hippocampal sclerosis (HS) is a frequent histopathological feature in patients with MTLE. Pharmacoresistance is present in at least one-third of patients with MTLE with HS (MTLE+HS). Several hypotheses have been proposed to explain the mechanisms of pharmacoresistance in epilepsy, including the effect of genetic and molecular factors. In recent years, the increased knowledge generated by high-throughput omic technologies has significantly improved the power of molecular genetic studies to discover new mechanisms leading to disease and response to treatment. In this review, we present and discuss the contribution of different omic modalities to understand the basic mechanisms determining pharmacoresistance in patients with MTLE+HS. We provide an overview and a critical discussion of the findings, limitations, new approaches, and future directions of these studies to improve the understanding of pharmacoresistance in MTLE+HS. However, it is important to point out that, as with other complex traits, pharmacoresistance to anti-seizure medications is likely a multifactorial condition in which gene-gene and gene-environment interactions play an important role. Thus, studies using multidimensional approaches are more likely to unravel these intricate biological processes.
Collapse
Affiliation(s)
- Estela M Bruxel
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda M do Canto
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Danielle C F Bruno
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C Geraldis
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Departments of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
46
|
Zhang K, Sun J, Sun Y, Niu K, Wang P, Wu C, Chen Q, Wang X. Pretreatment Source Location and Functional Connectivity Network Correlated With Therapy Response in Childhood Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2021; 12:692126. [PMID: 34413824 PMCID: PMC8368437 DOI: 10.3389/fneur.2021.692126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: This study aims to investigate the differences between antiepileptic drug (AED) responders and nonresponders among patients with childhood absence epilepsy (CAE) using magnetoencephalography (MEG) and to additionally evaluate whether the neuromagnetic signals of the brain neurons were correlated with the response to therapy. Methods: Twenty-four drug-naïve patients were subjected to MEG under six frequency bandwidths during ictal periods. The source location and functional connectivity were analyzed using accumulated source imaging and correlation analysis, respectively. All patients were treated with appropriate AED, at least 1 year after their MEG recordings, their outcome was assessed, and they were consequently divided into responders and nonresponders. Results: The source location of the nonresponders was mainly in the frontal cortex at a frequency range of 8–12 and 30–80 Hz, especially 8–12 Hz, while the source location of the nonresponders was mostly in the medial frontal cortex, which was chosen as the region of interest. The nonresponders showed strong positive local frontal connections and deficient anterior and posterior connections at 80–250 Hz. Conclusion: The frontal cortex and especially the medial frontal cortex at α band might be relevant to AED-nonresponsive CAE patients. The local frontal positive epileptic network at 80–250 Hz in our study might further reveal underlying cerebral abnormalities even before treatment in CAE patients, which could cause them to be nonresponsive to AED. One single mechanism cannot explain AED resistance; the nonresponders may represent a subgroup of CAE who is refractory to several antiepileptic drugs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Kai Niu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Pengfei Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Pérez-Pérez D, Frías-Soria CL, Rocha L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav 2021; 121:106430. [PMID: 31378558 DOI: 10.1016/j.yebeh.2019.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 07/06/2019] [Indexed: 01/07/2023]
Abstract
Drug-resistant epilepsy affects approximately one-third of the patients with epilepsy. The pharmacoresistant condition in epilepsy is mainly explained by six hypotheses. In addition, several experimental models have been used to understand the mechanisms involved in pharmacoresistant epilepsy and to identify novel therapies to control this condition. However, the global prevalence of this disease persists without changes. Several factors can explain this situation. First of all, the pharmacoresistant epilepsy is explained by different and independent hypotheses. Each hypothesis indicates specific mechanisms to explain the drug-resistant condition in epilepsy. However, there are different findings suggesting common mechanisms between the different hypotheses. Other important situation is that the experimental models designed for the screening of drugs with potential anticonvulsant effect do not consider factors such as age, gender, type of epilepsy, and comorbid disorders. The present review focuses on indicating the limitations for each hypothesis and the relationships among them. The relevance to consider central and peripheral phenomena associated with the drug-resistant condition in different types of epilepsy is also indicated. The necessity to establish a global hypothesis that integrates all the phenomena associated with the pharmacoresistant epilepsy is proposed. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM (MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Luisa Rocha
- Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
48
|
Khatoon S, Agarwal NB, Samim M, Alam O. Neuroprotective Effect of Fisetin Through Suppression of IL-1R/TLR Axis and Apoptosis in Pentylenetetrazole-Induced Kindling in Mice. Front Neurol 2021; 12:689069. [PMID: 34354662 PMCID: PMC8333701 DOI: 10.3389/fneur.2021.689069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Epilepsy is a complex neurological disorder, characterized by frequent electrical activity in brain regions. Inflammation and apoptosis cascade activation are serious neurological sequelae during seizures. Fisetin (3, 3',4',7-tetrahydroxyflavone), a flavonoid molecule, is considered for its effective anti-inflammatory and anti-apoptotic properties. This study investigated the neuroprotective effect of fisetin on experimental epilepsy. For acute studies, increasing current electroshock (ICES) and pentylenetetrazole (PTZ)-induced seizure tests were performed to evaluate the antiseizure activity of fisetin. For the chronic study, the kindling model was established by the administration of PTZ in subconvulsive dose (25 mg/kg, i.p.). Mice were treated with fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable antiseizure mechanism. The kindled mice were evaluated for seizure scores. Their hippocampus and cortex were assessed for neuronal damage, inflammation, and apoptosis. Histological alterations were observed in the hippocampus of the experimental mice. Levels of high mobility group box 1 (HMGB1), Toll-like receptor-4 (TLR-4), interleukin-1 receptor 1 (IL-1R1), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed in the hippocampus and cortex by ELISA. The immunoreactivity and mRNA expressions of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), cytochrome C, and caspase-3 were quantified by immunohistochemical analysis and real-time PCR. Phosphorylation ELISA was performed to evaluate AkT/mTOR (mammalian target of rapamycin) activation in the hippocampus and cortex of the kindled mice. The results showed that fisetin administration increased the seizure threshold current (STC) in the ICES test. In PTZ-induced seizures, fisetin administration increased the latency for myoclonic jerks (MJs) and generalized seizures (GSs). In the PTZ-induced kindling model, fisetin administration dose-dependently suppressed the development of kindling and the associated neuronal damage in the experimental mice. Further, fisetin administration ameliorated kindling-induced neuroinflammation as evident from decreased levels of HMGB1, TLR-4, IL-1R1, IL-1β, IL-6, and TNF-α in the hippocampus and cortex of the kindled mice. Also, the immunoreactivity and mRNA expressions of inflammatory molecules, NF-κB, and COX-2 were decreased with fisetin administration in the kindled animals. Decreased phosphorylation of the AkT/mTOR pathway was reported with fisetin administration in the hippocampus and cortex of the kindled mice. The immunoreactivity and mRNA expressions of apoptotic molecules, cytochrome C, and caspase-3 were attenuated upon fisetin administration. The findings suggest that fisetin shows a neuroprotective effect by suppressing the release of inflammatory and apoptosis molecules and attenuating histological alterations during experimental epilepsy.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Bharal Agarwal
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
49
|
Fattorusso A, Matricardi S, Mencaroni E, Dell'Isola GB, Di Cara G, Striano P, Verrotti A. The Pharmacoresistant Epilepsy: An Overview on Existent and New Emerging Therapies. Front Neurol 2021; 12:674483. [PMID: 34239494 PMCID: PMC8258148 DOI: 10.3389/fneur.2021.674483] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is one of the most common neurological chronic disorders, with an estimated prevalence of 0. 5 - 1%. Currently, treatment options for epilepsy are predominantly based on the administration of symptomatic therapy. Most patients are able to achieve seizure freedom by the first two appropriate drug trials. Thus, patients who cannot reach a satisfactory response after that are defined as pharmacoresistant. However, despite the availability of more than 20 antiseizure medications (ASMs), about one-third of epilepsies remain drug-resistant. The heterogeneity of seizures and epilepsies, the coexistence of comorbidities, and the broad spectrum of efficacy, safety, and tolerability related to the ASMs, make the management of these patients actually challenging. In this review, we analyze the most relevant clinical and pathogenetic issues related to drug-resistant epilepsy, and then we discuss the current evidence about the use of available ASMs and the alternative non-pharmacological approaches.
Collapse
Affiliation(s)
- Antonella Fattorusso
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| | - Sara Matricardi
- Child Neurology and Psychiatry Unit, Children's Hospital “G. Salesi”, Ospedali Riuniti Ancona, Ancona, Italy
| | - Elisabetta Mencaroni
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| | | | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS “G. Gaslini” Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Alberto Verrotti
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| |
Collapse
|
50
|
Hlebokazov F, Dakukina T, Potapnev M, Kosmacheva S, Moroz L, Misiuk N, Golubeva T, Slobina E, Krasko O, Shakhbazau A, Hlavinski I, Goncharova N. Clinical benefits of single vs repeated courses of mesenchymal stem cell therapy in epilepsy patients. Clin Neurol Neurosurg 2021; 207:106736. [PMID: 34119901 DOI: 10.1016/j.clineuro.2021.106736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Epilepsy is defined as "drug-resistant" when existing anti-epileptic drugs (AED) are found to have minimal to no effect on patient's condition. Therefore the search and testing of new treatment strategies is warranted. This study focuses on the effects of autologous mesenchymal stem cells (MSC) in drug-resistant epilepsy patients within a Phase I/II open-label registered clinical trial NCT02497443. MATERIALS/METHODS A total of 67 patients was included (29 males, 38 females, mean age 33 ± 1.3 yo). The patients received either standard treatment with AEDs, or AEDs supplemented with one or two courses of therapy with autologous bone marrow-derived MSCs expanded in vitro. MSC therapy courses were 6 months apart, and each course consisted of two cell injections: an intravenous infusion of MSCs, followed within 1 week by an intrathecal injection. Primary outcome of the study was safety, secondary outcome was efficacy in terms of seizure frequency reduction and response to treatment. RESULTS MSC injections proved safe and did not cause any severe side effects. In MSC group (n = 34), 61.7% patients responded to therapy at 6 months timepoint (p < 0.01 vs control, n = 33), and the number rose to 76.5% by 12 months timepoint. Decrease in anxiety and depression scores and paroxysmal epileptiform activity was observed in MSC group based on HADS and EEG, respectively, and MMSE score has also improved. Another observation was that concomitant administration of levetiracetam, but not other AEDs, correlated significantly with the success of MSC therapy. Second course of MSC therapy facilitated further reduction in seizure count and epileptiform EEG activity (p < 0.05 vs single course). CONCLUSIONS Application of autologous mesenchymal stem cell-based therapy in patients with pharmacoresistant epilepsy demonstrated significant anticonvulsant potential. This effect lasted for at least 1 year, with repeated administration of MSCs conveying additional clinical benefit.
Collapse
Affiliation(s)
- Fedor Hlebokazov
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Tatiana Dakukina
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Michael Potapnev
- Republican Scientific and Practical Center of Transfusion and Medical Biotechnology, Minsk, Belarus.
| | - Svetlana Kosmacheva
- Republican Scientific and Practical Center of Transfusion and Medical Biotechnology, Minsk, Belarus
| | - Lubov Moroz
- Republican Scientific and Practical Center of Transfusion and Medical Biotechnology, Minsk, Belarus
| | - Nikolai Misiuk
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Tatiana Golubeva
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Elena Slobina
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Olga Krasko
- United Institute of Informatics Problems of the National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Ivan Hlavinski
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Natalia Goncharova
- Republican Scientific and Practical Center of Transfusion and Medical Biotechnology, Minsk, Belarus
| |
Collapse
|