1
|
Zainaee S, Archer B, Scherer R, Bingman V, Ghasemi M. Revealing Goal-Directed Neural Control of the Pharyngeal Phase of Swallowing. Dysphagia 2024:10.1007/s00455-024-10758-3. [PMID: 39387924 DOI: 10.1007/s00455-024-10758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Swallowing is considered a three-phase mechanism involving the oral, pharyngeal, and esophageal phases. The pharyngeal phase relies on highly coordinated movements in the pharynx and larynx to move food through the aerodigestive crossing. While the brainstem has been identified as the primary control center for the pharyngeal phase of swallowing, existing evidence suggests that the higher brain regions can contribute to controlling the pharyngeal phase of swallowing to match the motor response to the current context and task at hand. This suggests that the pharyngeal phase of swallowing cannot be exclusively reflexive or voluntary but can be regulated by the two neural controlling systems, goal-directed and non-goal-directed. This capability allows the pharyngeal phase of swallowing to adjust appropriately based on cognitive input, learned knowledge, and predictions. This paper reviews existing evidence and accordingly develops a novel perspective to explain these capabilities of the pharyngeal phase of swallowing. This paper aims (1) to integrate and comprehend the neurophysiological mechanisms involved in the pharyngeal phase of swallowing, (2) to explore the reflexive (non-goal-directed) and voluntary (goal-directed) neural systems of controlling the pharyngeal phase of swallowing, (3) to provide a clinical translation regarding the pathologies of these two systems, and (4) to highlight the existing gaps in this area that require attention in future research. This paper, in particular, aims to explore the complex neurophysiology of the pharyngeal phase of swallowing, as its breakdown can lead to serious consequences such as aspiration pneumonia or death.
Collapse
Affiliation(s)
- Shahryar Zainaee
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA.
| | - Brent Archer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Ronald Scherer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Verner Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Mehran Ghasemi
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
2
|
Frattini D, Rosén N, Wibble T. A Proposed Mechanism for Visual Vertigo: Post-Concussion Patients Have Higher Gain From Visual Input Into Subcortical Gaze Stabilization. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 38607620 PMCID: PMC11018265 DOI: 10.1167/iovs.65.4.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Purpose Post-concussion syndrome (PCS) is commonly associated with dizziness and visual motion sensitivity. This case-control study set out to explore altered motion processing in PCS by measuring gaze stabilization as a reflection of the capacity of the brain to integrate motion, and it aimed to uncover mechanisms of injury where invasive subcortical recordings are not feasible. Methods A total of 554 eye movements were analyzed in 10 PCS patients and nine healthy controls across 171 trials. Optokinetic and vestibulo-ocular reflexes were recorded using a head-mounted eye tracker while participants were exposed to visual, vestibular, and visuo-vestibular motion stimulations in the roll plane. Torsional and vergence eye movements were analyzed in terms of slow-phase velocities, gain, nystagmus frequency, and sensory-specific contributions toward gaze stabilization. Results Participants expressed eye-movement responses consistent with expected gaze stabilization; slow phases were fastest for visuo-vestibular trials and slowest for visual stimulations (P < 0.001) and increased with stimulus acceleration (P < 0.001). Concussed patients demonstrated increased gain from visual input to gaze stabilization (P = 0.005), faster slow phases (P = 0.013), earlier nystagmus beats (P = 0.003), and higher relative visual influence over the gaze-stabilizing response (P = 0.001), presenting robust effect sizes despite the limited population size. Conclusions The enhanced neural responsiveness to visual motion in PCS, combined with semi-intact visuo-vestibular integration, presented a subcortical hierarchy for altered gaze stabilization. Drawing on comparable animal trials, findings suggest that concussed patients may suffer from diffuse injuries to inhibiting pathways for optokinetic information, likely early in the visuo-vestibular hierarchy of sensorimotor integration. These findings offer context for common but elusive symptoms, presenting a neurological explanation for motion sensitivity and visual vertigo in PCS.
Collapse
Affiliation(s)
- Davide Frattini
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Rosén
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Wibble
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Regnath F, Biersack K, Jäger N, Glasauer S, Lehnen N. Not a general, symptom-unspecific, transdiagnostic marker for functional symptoms: sensorimotor processing of head control is intact in chronic pain. Front Neurol 2023; 14:1294702. [PMID: 38174100 PMCID: PMC10762802 DOI: 10.3389/fneur.2023.1294702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Functional disorders are prevalent in all medical fields and pose a tremendous public health problem, with pain being one of the most common functional symptoms. Understanding the underlying, potentially unifying mechanism in functional (pain) disorders is instrumental in facilitating timely diagnosis, stigma reduction, and adequate treatment options. Neuroscientific models of perception suggest that functional symptoms arise due to dysregulated sensorimotor processing in the central nervous system, with brain-based predictions dominating the eventual percept. Experimental evidence for this transdiagnostic mechanism has been established in various functional symptoms. The goal of the current study was to investigate whether erroneous sensorimotor processing is an underlying transdiagnostic mechanism in chronic (functional) pain. Method A total of 13 patients with chronic (functional) pain [three patients with chronic (functional) pain disorder, F45.40, ICD-10; 10 patients with chronic pain disorder with somatic and psychological factors, F45.41, ICD-10]; and 15 healthy controls performed large combined eye-head gaze shifts toward visual targets, naturally and with increased head moment of inertia. We simultaneously measured participants' eye and head movements to assess head oscillations at the end of the gaze shift, which are an established indicator of (transdiagnostic) sensorimotor processing deficits of head control. Results Using a Bayesian analysis protocol, we found that patients with chronic (functional) pain and control participants stabilized their heads equally well (Bayes Factor 01 = 3.7, Bayes Factor exclusion = 5.23; corresponding to substantial evidence) during all sessions of the experiment. Conclusion Our results suggest that patients with chronic (functional) pain do not show measurable symptom-unspecific sensorimotor processing deficits. We discuss outcome parameter choice, organ system specificity, and selection of patient diagnoses as possible reasons for this result and recommend future avenues for research.
Collapse
Affiliation(s)
- Franziska Regnath
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Graduate School, Graduate Center of Medicine and Health (GC MH), Technical University of Munich, Munich, Germany
| | - Katharina Biersack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Graduate School, Graduate Center of Medicine and Health (GC MH), Technical University of Munich, Munich, Germany
| | - Nina Jäger
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM Graduate School, Graduate Center of Medicine and Health (GC MH), Technical University of Munich, Munich, Germany
| | - Stefan Glasauer
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Nadine Lehnen
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| |
Collapse
|
4
|
Schröder L, Regnath F, Glasauer S, Hackenberg A, Hente J, Weilenmann S, Pohl D, von Känel R, Lehnen N. Altered sensorimotor processing in irritable bowel syndrome: Evidence for a transdiagnostic pathomechanism in functional somatic disorders. Front Neurosci 2022; 16:1029126. [PMID: 36440279 PMCID: PMC9682240 DOI: 10.3389/fnins.2022.1029126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2024] Open
Abstract
Objective A recent hypothesis suggests that functional somatic symptoms are due to altered information processing in the brain, with rigid expectations biasing sensorimotor signal processing. First experimental results confirmed such altered processing within the affected symptom modality, e.g., deficient eye-head coordination in patients with functional dizziness. Studies in patients with functional somatic symptoms looking at general, trans-symptomatic processing deficits are sparse. Here, we investigate sensorimotor processing during eye-head gaze shifts in irritable bowel syndrome (IBS) to test whether processing deficits exist across symptom modalities. Methods Study participants were seven patients suffering from IBS and seven age- and gender-matched healthy controls who performed large gaze shifts toward visual targets. Participants performed combined eye-head gaze shifts in the natural condition and with experimentally increased head moment of inertia. Head oscillations as a marker for sensorimotor processing deficits were assessed. Bayes statistics was used to assess evidence for the presence or absence of processing differences between IBS patients and healthy controls. Results With the head moment of inertia increased, IBS patients displayed more pronounced head oscillations than healthy controls (Bayes Factor 10 = 56.4, corresponding to strong evidence). Conclusion Patients with IBS show sensorimotor processing deficits, reflected by increased head oscillations during large gaze shifts to visual targets. In particular, patients with IBS have difficulties to adapt to the context of altered head moment of inertia. Our results suggest general transdiagnostic processing deficits in functional somatic disorders.
Collapse
Affiliation(s)
- Lena Schröder
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Franziska Regnath
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
- Department of Sport and Health Sciences, TUM Graduate School, Technical University of Munich, Munich, Germany
| | - Stefan Glasauer
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anna Hackenberg
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
| | - Juliane Hente
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sonja Weilenmann
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Pohl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nadine Lehnen
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar of the Technical University of Munich, Munich, Germany
- Insititute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
5
|
Qiu T, Dai X, Xu X, Zhang G, Huang L, Gong Q. A prospective study on the application of HINTS in distinguishing the localization of acute vestibular syndrome. BMC Neurol 2022; 22:378. [PMID: 36199036 PMCID: PMC9533484 DOI: 10.1186/s12883-022-02904-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute vestibular syndrome (AVS) is a common clinical syndrome in neurology clinics and emergency department. Canonical standard for AVS diagnosis requires the presence of persistent vertigo for more than 24 h. HINTS (head impulse-nystagmus-test of skew) is an emerging scheme in the diagnosis of AVS. In this prospective study, we evaluated the specificity and sensitivity of HINTS in distinguishing between central and peripheral AVS. METHODS A cohort of 239 cases with complete clinical record was recruited in the study. All patients completed emergency brain CT examination to exclude hemorrhagic stroke. HINTS examination was conducted to distinguish between central AVS and peripheral AVS, and all patients completed head MRI, BAEP and vestibular function examinations within one week. Patients diagnosed as central AVS were subject to angiography (CTA/MRA/DSA), and patients with peripheral AVS were considered for a 3-month follow-up to correct the initial diagnosis. RESULTS Patients with central AVS were associated with an elder age, higher incidences of hypertension, atrial fibrillation, family history of stroke and previous history of stroke. Posterior circulation cerebral infarction, vestibular migraine and cerebellitis were the dominant diseases associated with central AVS. The sensitivities of HIT, GE, and TS in the diagnosis of central AVS were 73.5%, 61.2%, and 26.5%, and the specificities were 97.9%, 92.6%, and 93.2% respectively. CONCLUSIONS The sensitivity of HINTS for central AVS diagnosis is 89.8% and the specificity is 84.2%. HINTS is an easy-to-operate, low-cost, high-sensitivity and specific examination technique, which is practical in neurology outpatient clinics and emergency departments.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Neurology, Zigong First People's Hospital, No. 42, shangyihao 1st branch road, Ziliujing, Zigong, 643000, Sichuan, China
| | - Xiaoyan Dai
- Outpatient department, Zigong First People's Hospital, No. 42, Shangyihao 1st Branch Road, Ziliujing District, Zigong, 643000, Sichuan, China
| | - Xiaoya Xu
- Department of Neurology, Zigong First People's Hospital, No. 42, shangyihao 1st branch road, Ziliujing, Zigong, 643000, Sichuan, China
| | - Guiqin Zhang
- Department of Neurology, Zigong First People's Hospital, No. 42, shangyihao 1st branch road, Ziliujing, Zigong, 643000, Sichuan, China
| | - Linming Huang
- Department of Neurology, Zigong First People's Hospital, No. 42, shangyihao 1st branch road, Ziliujing, Zigong, 643000, Sichuan, China
| | - Qingping Gong
- Department of Neurology, Zigong First People's Hospital, No. 42, shangyihao 1st branch road, Ziliujing, Zigong, 643000, Sichuan, China.
| |
Collapse
|
6
|
Laurens J. The otolith vermis: A systems neuroscience theory of the Nodulus and Uvula. Front Syst Neurosci 2022; 16:886284. [PMID: 36185824 PMCID: PMC9520001 DOI: 10.3389/fnsys.2022.886284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The Nodulus and Uvula (NU) (lobules X and IX of the cerebellar vermis) form a prominent center of vestibular information processing. Over decades, fundamental and clinical research on the NU has uncovered many aspects of its function. Those include the resolution of a sensory ambiguity inherent to inertial sensors in the inner ear, the otolith organs; the use of gravity signals to sense head rotations; and the differential processing of self-generated and externally imposed head motion. Here, I review these works in the context of a theoretical framework of information processing called the internal model hypothesis. I propose that the NU implements a forward internal model to predict the activation of the otoliths, and outputs sensory predictions errors to correct internal estimates of self-motion or to drive learning. I show that a Kalman filter based on this framework accounts for various functions of the NU, neurophysiological findings, as well as the clinical consequences of NU lesions. This highlights the role of the NU in processing information from the otoliths and supports its denomination as the "otolith" vermis.
Collapse
Affiliation(s)
- Jean Laurens
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| |
Collapse
|
7
|
Stavropoulos A, Lakshminarasimhan KJ, Laurens J, Pitkow X, Angelaki D. Influence of sensory modality and control dynamics on human path integration. eLife 2022; 11:63405. [PMID: 35179488 PMCID: PMC8856658 DOI: 10.7554/elife.63405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/11/2021] [Indexed: 12/02/2022] Open
Abstract
Path integration is a sensorimotor computation that can be used to infer latent dynamical states by integrating self-motion cues. We studied the influence of sensory observation (visual/vestibular) and latent control dynamics (velocity/acceleration) on human path integration using a novel motion-cueing algorithm. Sensory modality and control dynamics were both varied randomly across trials, as participants controlled a joystick to steer to a memorized target location in virtual reality. Visual and vestibular steering cues allowed comparable accuracies only when participants controlled their acceleration, suggesting that vestibular signals, on their own, fail to support accurate path integration in the absence of sustained acceleration. Nevertheless, performance in all conditions reflected a failure to fully adapt to changes in the underlying control dynamics, a result that was well explained by a bias in the dynamics estimation. This work demonstrates how an incorrect internal model of control dynamics affects navigation in volatile environments in spite of continuous sensory feedback.
Collapse
Affiliation(s)
- Akis Stavropoulos
- Center for Neural Science, New York University, New York, United States
| | | | - Jean Laurens
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Xaq Pitkow
- Department of Electrical and Computer Engineering, Rice University, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, United States
| | - Dora Angelaki
- Center for Neural Science, New York University, New York, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Tandon School of Engineering, New York University, New York, United States
| |
Collapse
|
8
|
Zobeiri OA, Ostrander B, Roat J, Agrawal Y, Cullen KE. Loss of peripheral vestibular input alters the statistics of head movement experienced during natural self-motion. J Physiol 2021; 599:2239-2254. [PMID: 33599981 DOI: 10.1113/jp281183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing neural coding. Head motion during natural activities is first sensed and then processed by central vestibulo-motor pathways to influence subsequent behaviour, thereby establishing a feedback loop. To investigate the role of this vestibular feedback on the statistical structure of the head movements, we compared head movements in patients with unilateral vestibular loss and healthy controls. We show that the loss of vestibular feedback substantially alters the statistical structure of head motion for activities that require rapid online feedback control and predict this change by modelling the effects of increased movement variability. Our findings suggest that, following peripheral vestibular loss, changes in the reliability of the sensory input to central pathways impact the statistical structure of head motion during voluntary behaviours. ABSTRACT It is widely believed that sensory systems are adapted to optimize neural coding of their natural stimuli. Recent evidence suggests that this is the case for the vestibular system, which senses head movement and contributes to essential functions ranging from the most automatic reflexes to voluntary motor control. During everyday behaviours, head motion is sensed by the vestibular system. In turn, this sensory feedback influences subsequent behaviour, raising the questions of whether and how real-time feedback provided by the vestibular system alters the statistical structure of head movements. We predicted that a reduction in vestibular feedback would alter head movement statistics, particularly for tasks reliant on rapid vestibular feedback. To test this proposal, we recorded six-dimensional head motion in patients with variable degrees of unilateral vestibular loss during standard balance and gait tasks, as well as dynamic self-paced activities. While distributions of linear accelerations and rotational velocities were comparable for patients and age-matched healthy controls, comparison of power spectra revealed significant differences during more dynamic and challenging activities. Specifically, consistent with our prediction, head movement power spectra were significantly altered in patients during two tasks that required rapid online vestibular feedback: active repetitive jumping and walking on foam. Using computational methods, we analysed concurrently measured torso motion and identified increases in head-torso movement variability. Taken together, our results demonstrate that vestibular loss significantly alters head movement statistics and further suggest that increased variability and impaired feedback to internal models required for accurate motor control contribute to the observed changes.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Benjamin Ostrander
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jessica Roat
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen E Cullen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
9
|
Zobeiri OA, Mischler GM, King SA, Lewis RF, Cullen KE. Effects of vestibular neurectomy and neural compensation on head movements in patients undergoing vestibular schwannoma resection. Sci Rep 2021; 11:517. [PMID: 33436776 PMCID: PMC7804855 DOI: 10.1038/s41598-020-79756-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
The vestibular system is vital for maintaining balance and stabilizing gaze and vestibular damage causes impaired postural and gaze control. Here we examined the effects of vestibular loss and subsequent compensation on head motion kinematics during voluntary behavior. Head movements were measured in vestibular schwannoma patients before, and then 6 weeks and 6 months after surgical tumor removal, requiring sectioning of the involved vestibular nerve (vestibular neurectomy). Head movements were recorded in six dimensions using a small head-mounted sensor while patients performed the Functional Gait Assessment (FGA). Kinematic measures differed between patients (at all three time points) and normal subjects on several challenging FGA tasks, indicating that vestibular damage (caused by the tumor or neurectomy) alters head movements in a manner that is not normalized by central compensation. Kinematics measured at different time points relative to vestibular neurectomy differed substantially between pre-operative and 6-week post-operative states but changed little between 6-week and > 6-month post-operative states, demonstrating that compensation affecting head kinematics is relatively rapid. Our results indicate that quantifying head kinematics during self-generated gait tasks provides valuable information about vestibular damage and compensation, suggesting that early changes in patient head motion strategy may be maladaptive for long-term vestibular compensation.
Collapse
Affiliation(s)
- Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gavin M Mischler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Susan A King
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Departments of Otolaryngology and Neurology, Harvard Medical School, Boston, MA, USA
| | - Richard F Lewis
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Departments of Otolaryngology and Neurology, Harvard Medical School, Boston, MA, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
10
|
Complementing Conceptual Models of Persistent Somatic Symptoms With Mathematical Formalization. Psychosom Med 2020; 82:527-528. [PMID: 32176192 DOI: 10.1097/psy.0000000000000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Holland PJ, Sibindi TM, Ginzburg M, Das S, Arkesteijn K, Frens MA, Donchin O. A Neuroanatomically Grounded Optimal Control Model of the Compensatory Eye Movement System in Mice. Front Syst Neurosci 2020; 14:13. [PMID: 32269516 PMCID: PMC7109542 DOI: 10.3389/fnsys.2020.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
We present a working model of the compensatory eye movement system in mice. We challenge the model with a data set of eye movements in mice (n =34) recorded in 4 different sinusoidal stimulus conditions with 36 different combinations of frequency (0.1-3.2 Hz) and amplitude (0.5-8°) in each condition. The conditions included vestibular stimulation in the dark (vestibular-ocular reflex, VOR), optokinetic stimulation (optokinetic reflex, OKR), and two combined visual/vestibular conditions (the visual-vestibular ocular reflex, vVOR, and visual suppression of the VOR, sVOR). The model successfully reproduced the eye movements in all conditions, except for minor failures to predict phase when gain was very low. Most importantly, it could explain the interaction of VOR and OKR when the two reflexes are activated simultaneously during vVOR stimulation. In addition to our own data, we also reproduced the behavior of the compensatory eye movement system found in the existing literature. These include its response to sum-of-sines stimuli, its response after lesions of the nucleus prepositus hypoglossi or the flocculus, characteristics of VOR adaptation, and characteristics of drift in the dark. Our model is based on ideas of state prediction and forward modeling that have been widely used in the study of motor control. However, it represents one of the first quantitative efforts to simulate the full range of behaviors of a specific system. The model has two separate processing loops, one for vestibular stimulation and one for visual stimulation. Importantly, state prediction in the visual processing loop depends on a forward model of residual retinal slip after vestibular processing. In addition, we hypothesize that adaptation in the system is primarily adaptation of this model. In other words, VOR adaptation happens primarily in the OKR loop.
Collapse
Affiliation(s)
- Peter J. Holland
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Tafadzwa M. Sibindi
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
- Singapore Institute for Neurotechnology, Singapore, Singapore
| | - Marik Ginzburg
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
| | - Suman Das
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
| | - Kiki Arkesteijn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Opher Donchin
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Biomedical Engineering, Zlotowski Centre for Neuroscience, Ben Gurion University, Beer-Sheva, Israel
- ABC Centre for Robotics, Ben Gurion University, Beer-Sheva, Israel
| |
Collapse
|
12
|
Laurens J, Angelaki DE. Simple spike dynamics of Purkinje cells in the macaque vestibulo-cerebellum during passive whole-body self-motion. Proc Natl Acad Sci U S A 2020; 117:3232-3238. [PMID: 31988119 PMCID: PMC7022220 DOI: 10.1073/pnas.1915873117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Theories of cerebellar functions posit that the cerebellum implements internal models for online correction of motor actions and sensory estimation. As an example of such computations, an internal model resolves a sensory ambiguity where the peripheral otolith organs in the inner ear sense both head tilts and translations. Here we exploit the response dynamics of two functionally coupled Purkinje cell types in the vestibular part of the caudal vermis (lobules IX and X) to understand their role in this computation. We find that one population encodes tilt velocity, whereas the other, translation-selective, population encodes linear acceleration. We predict that an intermediate neuronal type should temporally integrate the output of tilt-selective cells into a tilt position signal.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77056
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77056;
- Center for Neural Science, New York University, New York, NY 10003
- Tandon School of Engineering, New York University, New York, NY 10003
| |
Collapse
|
13
|
Dietrich H, Heidger F, Schniepp R, MacNeilage PR, Glasauer S, Wuehr M. Head motion predictability explains activity-dependent suppression of vestibular balance control. Sci Rep 2020; 10:668. [PMID: 31959778 PMCID: PMC6971007 DOI: 10.1038/s41598-019-57400-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/21/2019] [Indexed: 11/25/2022] Open
Abstract
Vestibular balance control is dynamically weighted during locomotion. This might result from a selective suppression of vestibular inputs in favor of a feed-forward balance regulation based on locomotor efference copies. The feasibility of such a feed-forward mechanism should however critically depend on the predictability of head movements (HMP) during locomotion. To test this, we studied in 10 healthy subjects the differential impact of a stochastic vestibular stimulation (SVS) on body sway (center-of-pressure, COP) during standing and walking at different speeds and compared it to activity-dependent changes in HMP. SVS-COP coupling was determined by correlation analysis in frequency and time domains. HMP was quantified as the proportion of head motion variance that can be explained by the average head trajectory across the locomotor cycle. SVS-COP coupling decreased from standing to walking and further dropped with faster locomotion. Correspondingly, HMP increased with faster locomotion. Furthermore, SVS-COP coupling depended on the gait-cycle-phase with peaks corresponding to periods of least HMP. These findings support the assumption that during stereotyped human self-motion, locomotor efference copies selectively replace vestibular cues, similar to what was previously observed in animal models.
Collapse
Affiliation(s)
- H Dietrich
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany
| | - F Heidger
- Department of Neurology, University Hospital, LMU, Munich, Germany
| | - R Schniepp
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany
- Department of Neurology, University Hospital, LMU, Munich, Germany
| | - P R MacNeilage
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany
- Department of Psychology, Cognitive and Brain Sciences, University of Nevada, Nevada, USA
| | - S Glasauer
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany
- Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - M Wuehr
- German Center for Vertigo and Balance Disorders, University Hospital, LMU, Munich, Germany.
| |
Collapse
|
14
|
Ono K, Keller J, López Ramírez O, González Garrido A, Zobeiri OA, Chang HHV, Vijayakumar S, Ayiotis A, Duester G, Della Santina CC, Jones SM, Cullen KE, Eatock RA, Wu DK. Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations. Nat Commun 2020; 11:63. [PMID: 31896743 PMCID: PMC6940366 DOI: 10.1038/s41467-019-13710-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023] Open
Abstract
Each vestibular sensory epithelium in the inner ear is divided morphologically and physiologically into two zones, called the striola and extrastriola in otolith organ maculae, and the central and peripheral zones in semicircular canal cristae. We found that formation of striolar/central zones during embryogenesis requires Cytochrome P450 26b1 (Cyp26b1)-mediated degradation of retinoic acid (RA). In Cyp26b1 conditional knockout mice, formation of striolar/central zones is compromised, such that they resemble extrastriolar/peripheral zones in multiple features. Mutants have deficient vestibular evoked potential (VsEP) responses to jerk stimuli, head tremor and deficits in balance beam tests that are consistent with abnormal vestibular input, but normal vestibulo-ocular reflexes and apparently normal motor performance during swimming. Thus, degradation of RA during embryogenesis is required for formation of highly specialized regions of the vestibular sensory epithelia with specific functions in detecting head motions.
Collapse
Affiliation(s)
- Kazuya Ono
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Keller
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Qiagen Sciences Inc., Germantown, MD, 20874, USA
| | - Omar López Ramírez
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | | | - Omid A Zobeiri
- Department of Physiology McGill University, Montreal, QC, Canada, H3G 1Y6
| | | | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0738, USA
| | - Andrianna Ayiotis
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gregg Duester
- Neuroscience and Aging Research Center, Stanford Burnham Prebys Medical Discovery Institutes, Stanford, CA, 92037, USA
| | - Charles C Della Santina
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0738, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Doris K Wu
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Anastasopoulos D, Ziavra N, Bronstein AM. Large gaze shift generation while standing: the role of the vestibular system. J Neurophysiol 2019; 122:1928-1936. [PMID: 31483710 PMCID: PMC6879955 DOI: 10.1152/jn.00343.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional significance of vestibular information for the generation of gaze shifts is controversial and less well established than the vestibular contribution to gaze stability. In this study, we asked seven bilaterally avestibular patients to execute voluntary, whole body pivot turns to visual targets up to 180° while standing. In these conditions, not only are the demands imposed on gaze transfer mechanisms more challenging, but also neck proprioceptive input represents an inadequate source of head-in-space motion information. Patients' body segment was slower and jerky. In the absence of visual feedback, gaze advanced in small steps, closely resembling normal multiple-step gaze-shift patterns, but as a consequence of the slow head motion, target acquisition was delayed. In ~25% of trials, however, patients moved faster but the velocity of prematurely emerging slow-phase compensatory eye movements remained lower than head-in-space velocity due to vestibuloocular failure. During these trials, therefore, gaze advanced toward the target without interruption but, again, taking longer than when normal controls use single-step gaze transfers. That is, even when patients attempted faster gaze shifts, exposing themselves to gaze instability, they acquired distant targets significantly later than controls. Thus, while patients are upright, loss of vestibular information disrupts not only gaze stability but also gaze transfers. The slow and ataxic head and trunk movements introduce significant foveation delays. These deficits explain patients' symptoms during upright activities and show, for the first time, the clinical significance of losing the so-called "anticompensatory" (gaze shifting) function of the vestibuloocular reflex.NEW & NOTEWORTHY Previous studies in sitting avestibular patients concluded that gaze transfers are not substantially compromised. Still, clinicians know that patients are impeded (e.g., looking side to side before crossing a road). We show that during large gaze transfers while standing, vestibularly derived head velocity signals are critical for the mechanisms governing reorientation to distant targets and multisegmental coordination. Our findings go beyond the traditional role of the vestibular system in gaze stability, extending it to gaze transfers, as well.
Collapse
Affiliation(s)
- Dimitri Anastasopoulos
- Department of Neurology, University of Ioannina, Ioannina, Greece.,Akutnahe Rehabilitation, Kantonsspital Baden, Baden, Switzerland
| | - Nausika Ziavra
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Adolfo M Bronstein
- Department of Brain Sciences (Neuro-otology Unit), Imperial College London, Charing Cross Hospital, London, United Kingdom
| |
Collapse
|
16
|
Schubert MC, Migliaccio AA. New advances regarding adaptation of the vestibulo-ocular reflex. J Neurophysiol 2019; 122:644-658. [PMID: 31215309 DOI: 10.1152/jn.00729.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This is a review summarizing the development of vestibulo-ocular reflex (VOR) adaptation behavior with relevance to rehabilitation over the last 10 years and examines VOR adaptation using head-on-body rotations, specifically the influence of training target contrast, position and velocity error signal, active vs. passive head rotations, and sinusoidal vs. head impulse rotations. This review discusses optimization of the single VOR adaptation training session, consolidation between repeated training sessions, and dynamic incremental VOR adaptation. Also considered are the effects of aging and the roles of the efferent vestibular system, cerebellum, and otoliths on angular VOR adaptation. Finally, this review examines VOR adaptation findings in studies using whole body rotations.
Collapse
Affiliation(s)
- Michael C Schubert
- Laboratory of Vestibular NeuroAdaptation, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland.,School of Biomedical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
17
|
Krishnan K, Bassilious K, Eriksen E, Bath PM, Sprigg N, Brækken SK, Ihle-Hansen H, Horn MA, Sandset EC. Posterior circulation stroke diagnosis using HINTS in patients presenting with acute vestibular syndrome: A systematic review. Eur Stroke J 2019; 4:233-239. [PMID: 31984230 DOI: 10.1177/2396987319843701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Purpose Acute vestibular syndrome - vertigo, nausea/vomiting, nystagmus and gait unsteadiness - is common, and differentiating posterior circulation stroke from a peripheral cause can be challenging. The National Institute of Health Stroke Scale (NIHSS) does not include acute vestibular syndrome, and early computed tomography scanning cannot rule out acute ischaemia. A positive Head Impulse-Nystagmus-Test of Skew (HINTS) test suggests posterior circulation stroke in acute vestibular syndrome when any of three signs are present: normal horizontal head impulse, gaze-direction nystagmus or eye skew deviation. This systematic review examined the accuracy of positive HINTS in identifying posterior circulation stroke in acute vestibular syndrome patients. Methods We searched MEDLINE (1966 to 21 December 2017), EMBASE (1980 to December 2017), Web of Science and scanned bibliographies. Two authors independently screened relevant articles and extracted data. We included studies where HINTS was used to identify posterior circulation stroke with diagnosis confirmed using magnetic resonance imaging. Findings Six studies (n = 644 patients) were identified. Acute stroke was confirmed in 200 (31.1%) patients. There was a 15-fold increased risk of posterior circulation stroke in patients with positive HINTS test compared to those with no abnormality (RR: 15.84, 95% CI: 5.25-47.79). For any stroke, the pooled sensitivity was 95.5% (95% CI: 92.6-98.4%) and specificity was 71.2% (95% CI: 67.0-75.4%). Discussion and Conclusion The data suggest that the HINTS test as one element of clinical evaluation is useful to differentiate posterior circulation stroke from peripheral causes in acute vestibular syndrome. Further studies are needed to validate HINTS as a clinical prediction tool in emergency department settings and selection of patients for reperfusion treatment.
Collapse
Affiliation(s)
- Kailash Krishnan
- Stroke, Acute Medicine, Nottingham University Hospitals, Nottingham, UK
| | | | - Erik Eriksen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Philip M Bath
- Stroke, Acute Medicine, Nottingham University Hospitals, Nottingham, UK.,Stroke, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Nikola Sprigg
- Stroke, Acute Medicine, Nottingham University Hospitals, Nottingham, UK.,Stroke, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | | | | | | | - Else Charlotte Sandset
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Research and Development, The Norwegian Air Ambulance Foundation, Oslo, Norway
| |
Collapse
|
18
|
Lehnen N, Schröder L, Henningsen P, Glasauer S, Ramaioli C. Deficient head motor control in functional dizziness: Experimental evidence of central sensory-motor dysfunction in persistent physical symptoms. PROGRESS IN BRAIN RESEARCH 2019; 249:385-400. [PMID: 31325997 DOI: 10.1016/bs.pbr.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the mechanisms of symptoms that are insufficiently explained by organic dysfunction remains challenging. Recently, it has been proposed that such "functional symptoms" are based on erroneous sensory processing in the central nervous system (CNS), with internal expectations dominating sensory inputs. In a pilot study, we used a head motor control set-up to assess the interplay between sensory input and expectation on the example of patients with functional dizziness. Eight patients and 11 age-matched healthy controls performed large active eye-head gaze shifts towards visual targets in the natural situation and with the head moment of inertia 3.3-fold increased. The latter induces head oscillations and the expected sensory outcome of the movement, estimated in the CNS, does not match the actual sensory input. Head oscillations were assessed in patients and in healthy subjects and compared to prior results from patients with organic disease (vestibular loss and cerebellar ataxia). Head oscillations in patients with functional dizziness were different from those of healthy subjects (F(1,17)=27.26, P<0.001, partial η2=0.62), and similar to those of patients with cerebellar ataxia, and with vestibular loss (F(2,19)=0.56, P=0.58). Even in the natural, unweighted, condition, head oscillations were higher in functional dizziness patients than in healthy subjects (P=0.001). Since an extensive work-up failed to demonstrate any explanatory peripheral vestibular, motor, or cerebellar organic dysfunction, these motor control deficits are a first indication of erroneous interplay between expectations and sensory input in the CNS that could account for persistent physical symptoms.
Collapse
Affiliation(s)
- Nadine Lehnen
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany; Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany.
| | - Lena Schröder
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Peter Henningsen
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Glasauer
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany; Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Cecilia Ramaioli
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Center for Vertigo and Balance Disorders, University Hospital Munich, Munich, Germany; Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
19
|
Lehnen N, Henningsen P, Ramaioli C, Glasauer S. An experimental litmus test of the emerging hypothesis that persistent physical symptoms can be explained as perceptual dysregulation. J Psychosom Res 2018; 114:15-17. [PMID: 30314573 DOI: 10.1016/j.jpsychores.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- N Lehnen
- Technical University of Munich, University Hospital rechts der Isar, Department of Psychosomatic Medicine and Psychotherapy & Brandenburg Technical University, Institute of Medical Technology, Germany.
| | - P Henningsen
- Technical University of Munich, University Hospital rechts der Isar, Department of Psychosomatic Medicine and Psychotherapy, Germany
| | - C Ramaioli
- Brandenburg Technical University, Institute of Medical Technology & Technical University of Munich, University Hospital rechts der Isar, Department of Psychosomatic Medicine and Psychotherapy, Germany
| | - S Glasauer
- Brandenburg Technical University, Institute of Medical Technology, Germany
| |
Collapse
|
20
|
Lehnen N, Kellerer S, Knorr AG, Schlick C, Jahn K, Schneider E, Heuberger M, Ramaioli C. Head-Movement-Emphasized Rehabilitation in Bilateral Vestibulopathy. Front Neurol 2018; 9:562. [PMID: 30065695 PMCID: PMC6057116 DOI: 10.3389/fneur.2018.00562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: Although there is evidence that vestibular rehabilitation is useful for treating chronic bilateral vestibular hypofunction (BVH), the mechanisms for improvement, and the reasons why only some patients improve are still unclear. Clinical rehabilitation results and evidence fromeye-head control in vestibular deficiency suggest that headmovement is a crucial element of vestibular rehabilitation. In this study, we assess the effects of a specifically designed head-movement-based rehabilitation program on dynamic vision, and explore underlying mechanisms. Methods: Two adult patients (patients 1 and 2) with chronic BVH underwent two 4-week interventions: (1) head-movement-emphasized rehabilitation (HME) with exercises based on active head movements, and (2) eye-movement-only rehabilitation (EMO), a control intervention with sham exercises without head movement. In a double-blind crossover design, the patients were randomized to first undergo EMO (patient 1) and–after a 4-week washout–HME, and vice-versa (patient 2). Before each intervention and after a 4-week follow-up patients’ dynamic vision, vestibulo-ocular reflex (VOR) gain, as well as re-fixation saccade behavior during passive headmotion were assessed with the head impulse testing device–functional test (HITD-FT). Results: HME, not EMO, markedly improved perception with dynamic vision during passive head motion (HITD-FT score) increasing from 0 to 60% (patient 1) and 75% (patient 2). There was a combination of enhanced VOR, as well as improved saccadic compensation. Conclusion: Head movement seems to be an important element of rehabilitation for BVH. It improves dynamic vision with a combined VOR and compensatory saccade enhancement.
Collapse
Affiliation(s)
- Nadine Lehnen
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar,Technical University of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany.,Institute of Medical Technology, Brandenburgische Technische Universität, Cottbus, Germany
| | - Silvy Kellerer
- German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Alexander G Knorr
- Center for Sensorimotor Research, Ludwig Maximilians University, Munich, Germany.,Department of Electrical and Computer Engineering, Institute for Cognitive Systems, Technical University of Munich, Munich, Germany
| | - Cornelia Schlick
- German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Klaus Jahn
- German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany.,Department of Neurology,Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Erich Schneider
- Institute of Medical Technology, Brandenburgische Technische Universität, Cottbus, Germany
| | - Maria Heuberger
- German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany.,Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Cecilia Ramaioli
- German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany.,Institute of Medical Technology, Brandenburgische Technische Universität, Cottbus, Germany
| |
Collapse
|
21
|
An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models. Sci Rep 2018; 8:5583. [PMID: 29615692 PMCID: PMC5883007 DOI: 10.1038/s41598-018-23792-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/20/2018] [Indexed: 01/15/2023] Open
Abstract
Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.
Collapse
|
22
|
Laurens J, Angelaki DE. A unified internal model theory to resolve the paradox of active versus passive self-motion sensation. eLife 2017; 6:28074. [PMID: 29043978 PMCID: PMC5839740 DOI: 10.7554/elife.28074] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
Brainstem and cerebellar neurons implement an internal model to accurately estimate self-motion during externally generated (‘passive’) movements. However, these neurons show reduced responses during self-generated (‘active’) movements, indicating that predicted sensory consequences of motor commands cancel sensory signals. Remarkably, the computational processes underlying sensory prediction during active motion and their relationship to internal model computations during passive movements remain unknown. We construct a Kalman filter that incorporates motor commands into a previously established model of optimal passive self-motion estimation. The simulated sensory error and feedback signals match experimentally measured neuronal responses during active and passive head and trunk rotations and translations. We conclude that a single sensory internal model can combine motor commands with vestibular and proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or feedback signals show attenuated modulation, the sensory cues and internal model are both engaged and critically important for accurate self-motion estimation during active head movements. When seated in a car, we can detect when the vehicle begins to move even with our eyes closed. Structures in the inner ear called the vestibular, or balance, organs enable us to sense our own movement. They do this by detecting head rotations, accelerations and gravity. They then pass this information on to specialized vestibular regions of the brain. Experiments using rotating chairs and moving platforms have shown that passive movements – such as car journeys and rollercoaster rides – activate the brain’s vestibular regions. But recent work has revealed that voluntary movements – in which individuals start the movement themselves – activate these regions far less than passive movements. Does this mean that the brain ignores signals from the inner ear during voluntary movements? Another possibility is that the brain predicts in advance how each movement will affect the vestibular organs in the inner ear. It then compares these predictions with the signals it receives during the movement. Only mismatches between the two activate the brain’s vestibular regions. To test this theory, Laurens and Angelaki created a mathematical model that compares predicted signals with actual signals in the way the theory proposes. The model accurately predicts the patterns of brain activity seen during both active and passive movement. This reconciles the results of previous experiments on active and passive motion. It also suggests that the brain uses similar processes to analyze vestibular signals during both types of movement. These findings can help drive further research into how the brain uses sensory signals to refine our everyday movements. They can also help us understand how people recover from damage to the vestibular system. Most patients with vestibular injuries learn to walk again, but have difficulty walking on uneven ground. They also become disoriented by passive movement. Using the model to study how the brain adapts to loss of vestibular input could lead to new strategies to aid recovery.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
23
|
MacNeilage PR, Glasauer S. Quantification of Head Movement Predictability and Implications for Suppression of Vestibular Input during Locomotion. Front Comput Neurosci 2017. [PMID: 28638335 PMCID: PMC5461342 DOI: 10.3389/fncom.2017.00047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Achieved motor movement can be estimated using both sensory and motor signals. The value of motor signals for estimating movement should depend critically on the stereotypy or predictability of the resulting actions. As predictability increases, motor signals become more reliable indicators of achieved movement, so weight attributed to sensory signals should decrease accordingly. Here we describe a method to quantify this predictability for head movement during human locomotion by measuring head motion with an inertial measurement unit (IMU), and calculating the variance explained by the mean movement over one stride, i.e., a metric similar to the coefficient of determination. Predictability exhibits differences across activities, being most predictable during running, and changes over the course of a stride, being least predictable around the time of heel-strike and toe-off. In addition to quantifying predictability, we relate this metric to sensory-motor weighting via a statistically optimal model based on two key assumptions: (1) average head movement provides a conservative estimate of the efference copy prediction, and (2) noise on sensory signals scales with signal magnitude. The model suggests that differences in predictability should lead to changes in the weight attributed to vestibular sensory signals for estimating head movement. In agreement with the model, prior research reports that vestibular perturbations have greatest impact at the time points and during activities where high vestibular weight is predicted. Thus, we propose a unified explanation for time-and activity-dependent modulation of vestibular effects that was lacking previously. Furthermore, the proposed predictability metric constitutes a convenient general method for quantifying any kind of kinematic variability. The probabilistic model is also general; it applies to any situation in which achieved movement is estimated from both motor signals and zero-mean sensory signals with signal-dependent noise.
Collapse
Affiliation(s)
- Paul R MacNeilage
- German Center for Vertigo and Balance Disorders, University Hospital of MunichMunich, Germany
| | - Stefan Glasauer
- German Center for Vertigo and Balance Disorders, University Hospital of MunichMunich, Germany.,Center for Sensorimotor Research and Department of Neurology, Ludwig-Maximilian-University MunichMunich, Germany
| |
Collapse
|
24
|
Glasauer S, Straka H. Postural Control: Learning to Balance Is a Question of Timing. Curr Biol 2017; 27:R105-R107. [DOI: 10.1016/j.cub.2016.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Jinks RN, Puffenberger EG, Baple E, Harding B, Crino P, Fogo AB, Wenger O, Xin B, Koehler AE, McGlincy MH, Provencher MM, Smith JD, Tran L, Al Turki S, Chioza BA, Cross H, Harlalka GV, Hurles ME, Maroofian R, Heaps AD, Morton MC, Stempak L, Hildebrandt F, Sadowski CE, Zaritsky J, Campellone K, Morton DH, Wang H, Crosby A, Strauss KA. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Brain 2015; 138:2173-90. [PMID: 26070982 PMCID: PMC4511861 DOI: 10.1093/brain/awv153] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/14/2015] [Indexed: 12/20/2022] Open
Abstract
Galloway-Mowat syndrome (GMS) is a neurodevelopmental disorder characterized by microcephaly, cerebellar hypoplasia, nephrosis, and profound intellectual disability. Jinks et al. extend the GMS spectrum by identifying a novel nephrocerebellar syndrome with selective striatal cholinergic interneuron loss and complete lateral geniculate nucleus delamination, caused by a frameshift mutation in WDR73. We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology.
Collapse
Affiliation(s)
- Robert N Jinks
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Erik G Puffenberger
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA 2 Clinic for Special Children, Strasburg, PA 17579, USA
| | - Emma Baple
- 3 RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK 4 Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, UK 5 Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Brian Harding
- 6 Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Crino
- 7 Shriners Hospital Paediatric Research Centre, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Agnes B Fogo
- 8 Division of Renal Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Olivia Wenger
- 9 New Leaf Clinic for Special Children, Mount Eaton, OH 44659, USA 10 Department of Paediatrics, Akron Children's Hospital, Akron, OH 44302, USA
| | - Baozhong Xin
- 11 DDC Clinic for Special Needs Children, Middlefield, OH 44062, USA
| | - Alanna E Koehler
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Madeleine H McGlincy
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Margaret M Provencher
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Jeffrey D Smith
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Linh Tran
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Saeed Al Turki
- 12 Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Barry A Chioza
- 13 Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Harold Cross
- 14 Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ 85711, USA
| | - Gaurav V Harlalka
- 13 Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Matthew E Hurles
- 12 Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Reza Maroofian
- 13 Medical Research, RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Adam D Heaps
- 2 Clinic for Special Children, Strasburg, PA 17579, USA
| | - Mary C Morton
- 2 Clinic for Special Children, Strasburg, PA 17579, USA
| | - Lisa Stempak
- 15 Department of Pathology, University Hospitals Case Medical Centre, Cleveland, OH 44106, USA 16 Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Friedhelm Hildebrandt
- 17 Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA 18 Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carolin E Sadowski
- 18 Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Zaritsky
- 19 Department of Paediatrics, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kenneth Campellone
- 20 Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - D Holmes Morton
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA 2 Clinic for Special Children, Strasburg, PA 17579, USA 21 Lancaster General Hospital, Lancaster, PA 17602, USA
| | - Heng Wang
- 11 DDC Clinic for Special Needs Children, Middlefield, OH 44062, USA 22 Department of Paediatrics, Rainbow Babies and Children's Hospital and Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew Crosby
- 3 RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Kevin A Strauss
- 1 Department of Biology and Biological Foundations of Behaviour Program, Franklin and Marshall College, Lancaster, PA 17604, USA 2 Clinic for Special Children, Strasburg, PA 17579, USA 21 Lancaster General Hospital, Lancaster, PA 17602, USA
| |
Collapse
|
26
|
Cullen KE, Brooks JX. Consulting the vestibular system is simply a must if you want to optimize gaze shifts. ACTA ACUST UNITED AC 2014; 137:978-80. [PMID: 24648056 DOI: 10.1093/brain/awu052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, PQ, Canada, H3G 1Y6
| | | |
Collapse
|