1
|
Haussmann IU, Dix TC, McQuarrie DWJ, Dezi V, Hans AI, Arnold R, Soller M. Structure-optimized sgRNA selection with PlatinumCRISPr for efficient Cas9 generation of knockouts. Genome Res 2024; 34:2279-2292. [PMID: 39626969 PMCID: PMC11694751 DOI: 10.1101/gr.279479.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/07/2024] [Indexed: 12/25/2024]
Abstract
A single guide RNA (sgRNA) directs Cas9 nuclease for gene-specific scission of double-stranded DNA. High Cas9 activity is essential for efficient gene editing to generate gene deletions and gene replacements by homologous recombination. However, cleavage efficiency is below 50% for more than half of randomly selected sgRNA sequences in human cell culture screens or model organisms. We used in vitro assays to determine intrinsic molecular parameters for maximal sgRNA activity including correct folding of sgRNAs and Cas9 structural information. From the comparison of over 10 data sets, we find major constraints in sgRNA design originating from defective secondary structure of the sgRNA, sequence context of the seed region, GC context, and detrimental motifs, but we also find considerable variation among different prediction tools when applied to different data sets. To aid selection of efficient sgRNAs, we developed web-based PlatinumCRISPr, an sgRNA design tool to evaluate base-pairing and sequence composition parameters for optimal design of highly efficient sgRNAs for Cas9 genome editing. We applied this tool to select sgRNAs to efficiently generate gene deletions in Drosophila Ythdc1 and Ythdf, that bind to N 6 methylated adenosines (m6A) in mRNA. However, we discovered that generating small deletions with sgRNAs and Cas9 leads to ectopic reinsertion of the deleted DNA fragment elsewhere in the genome. These insertions can be removed by standard genetic recombination and chromosome exchange. These new insights into sgRNA design and the mechanisms of CRISPR-Cas9 genome editing advance the efficient use of this technique for safer applications in humans.
Collapse
Affiliation(s)
- Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- College of Life Science, Birmingham City University, Birmingham B15 3TN, United Kingdom
| | - Thomas C Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - David W J McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Veronica Dezi
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Abdullah I Hans
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roland Arnold
- Department of Cancer and Genomic Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
2
|
Au WH, Miller-Fleming L, Sanchez-Martinez A, Lee JA, Twyning MJ, Prag HA, Raik L, Allen SP, Shaw PJ, Ferraiuolo L, Mortiboys H, Whitworth AJ. Activation of the Keap1/Nrf2 pathway suppresses mitochondrial dysfunction, oxidative stress, and motor phenotypes in C9orf72 ALS/FTD models. Life Sci Alliance 2024; 7:e202402853. [PMID: 38906677 PMCID: PMC11192839 DOI: 10.26508/lsa.202402853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.
Collapse
Affiliation(s)
- Wing Hei Au
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Laura Raik
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
3
|
Khalil B, Linsenmeier M, Smith CL, Shorter J, Rossoll W. Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD. Mol Neurodegener 2024; 19:8. [PMID: 38254150 PMCID: PMC10804745 DOI: 10.1186/s13024-023-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders on a disease spectrum that are characterized by the cytoplasmic mislocalization and aberrant phase transitions of prion-like RNA-binding proteins (RBPs). The common accumulation of TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), and other nuclear RBPs in detergent-insoluble aggregates in the cytoplasm of degenerating neurons in ALS/FTD is connected to nuclear pore dysfunction and other defects in the nucleocytoplasmic transport machinery. Recent advances suggest that beyond their canonical role in the nuclear import of protein cargoes, nuclear-import receptors (NIRs) can prevent and reverse aberrant phase transitions of TDP-43, FUS, and related prion-like RBPs and restore their nuclear localization and function. Here, we showcase the NIR family and how they recognize cargo, drive nuclear import, and chaperone prion-like RBPs linked to ALS/FTD. We also discuss the promise of enhancing NIR levels and developing potentiated NIR variants as therapeutic strategies for ALS/FTD and related neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - Miriam Linsenmeier
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Neuroscience Track, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A..
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A..
| |
Collapse
|
4
|
Lee D, Jeong HC, Kim SY, Chung JY, Cho SH, Kim KA, Cho JH, Ko BS, Cha IJ, Chung CG, Kim ES, Lee SB. A comparison study of pathological features and drug efficacy between Drosophila models of C9orf72 ALS/FTD. Mol Cells 2024; 47:100005. [PMID: 38376483 PMCID: PMC10880080 DOI: 10.1016/j.mocell.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 02/21/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease with a complex genetic basis, presenting both in familial and sporadic forms. The hexanucleotide (G4C2) repeat expansion in the C9orf72 gene, which triggers distinct pathogenic mechanisms, has been identified as a major contributor to familial and sporadic Amyotrophic lateral sclerosis cases. Animal models have proven pivotal in understanding these mechanisms; however, discrepancies between models due to variable transgene sequence, expression levels, and toxicity profiles complicate the translation of findings. Herein, we provide a systematic comparison of 7 publicly available Drosophila transgenes modeling the G4C2 expansion under uniform conditions, evaluating variations in their toxicity profiles. Further, we tested 3 previously characterized disease-modifying drugs in selected lines to uncover discrepancies among the tested strains. Our study not only deepens our understanding of the C9orf72 G4C2 mutations but also presents a framework for comparing constructs with minute structural differences. This work may be used to inform experimental designs to better model disease mechanisms and help guide the development of targeted interventions for neurodegenerative diseases, thus bridging the gap between model-based research and therapeutic application.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hae Chan Jeong
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seung Yeol Kim
- SK Biopharmaceuticals Co., Ltd., Seongnam 13494, Republic of Korea
| | - Jin Yong Chung
- SK Biopharmaceuticals Co., Ltd., Seongnam 13494, Republic of Korea
| | - Seok Hwan Cho
- SK Biopharmaceuticals Co., Ltd., Seongnam 13494, Republic of Korea
| | - Kyoung Ah Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae Ho Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Byung Su Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - In Jun Cha
- Brain Research Policy Center, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Chang Geon Chung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eun Seon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sung Bae Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
5
|
Cristi AC, Rapuri S, Coyne AN. Nuclear pore complex and nucleocytoplasmic transport disruption in neurodegeneration. FEBS Lett 2023; 597:2546-2566. [PMID: 37657945 PMCID: PMC10612469 DOI: 10.1002/1873-3468.14729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Nuclear pore complexes (NPCs) play a critical role in maintaining the equilibrium between the nucleus and cytoplasm, enabling bidirectional transport across the nuclear envelope, and are essential for proper nuclear organization and gene regulation. Perturbations in the regulatory mechanisms governing NPCs and nuclear envelope homeostasis have been implicated in the pathogenesis of several neurodegenerative diseases. The ESCRT-III pathway emerges as a critical player in the surveillance and preservation of well-assembled, functional NPCs, as well as nuclear envelope sealing. Recent studies have provided insights into the involvement of nuclear ESCRT-III in the selective reduction of specific nucleoporins associated with neurodegenerative pathologies. Thus, maintaining quality control of the nuclear envelope and NPCs represents a pivotal element in the pathological cascade leading to neurodegenerative diseases. This review describes the constituents of the nuclear-cytoplasmic transport machinery, encompassing the nuclear envelope, NPC, and ESCRT proteins, and how their structural and functional alterations contribute to the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- América Chandía Cristi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Sampath Rapuri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
6
|
Malnar Črnigoj M, Čerček U, Yin X, Ho MT, Repic Lampret B, Neumann M, Hermann A, Rouleau G, Suter B, Mayr M, Rogelj B. Phenylalanine-tRNA aminoacylation is compromised by ALS/FTD-associated C9orf72 C4G2 repeat RNA. Nat Commun 2023; 14:5764. [PMID: 37717009 PMCID: PMC10505166 DOI: 10.1038/s41467-023-41511-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The expanded hexanucleotide GGGGCC repeat mutation in the C9orf72 gene is the main genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Under one disease mechanism, sense and antisense transcripts of the repeat are predicted to bind various RNA-binding proteins, compromise their function and cause cytotoxicity. Here we identify phenylalanine-tRNA synthetase (FARS) subunit alpha (FARSA) as the main interactor of the CCCCGG antisense repeat RNA in cytosol. The aminoacylation of tRNAPhe by FARS is inhibited by antisense RNA, leading to decreased levels of charged tRNAPhe. Remarkably, this is associated with global reduction of phenylalanine incorporation in the proteome and decrease in expression of phenylalanine-rich proteins in cellular models and patient tissues. In conclusion, this study reveals functional inhibition of FARSA in the presence of antisense RNA repeats. Compromised aminoacylation of tRNA could lead to impairments in protein synthesis and further contribute to C9orf72 mutation-associated pathology.
Collapse
Affiliation(s)
- Mirjana Malnar Črnigoj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Urša Čerček
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Xiaoke Yin
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Manh Tin Ho
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Barbka Repic Lampret
- Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, 1000, Slovenia
| | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, 72076, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, 18147, Rostock, Germany
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 0G4, Canada
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Bern, 3012, Switzerland
| | - Manuel Mayr
- King's BHF Centre, King's College London, London, SE5 9NU, UK
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, 1000, Slovenia.
| |
Collapse
|
7
|
McGoldrick P, Robertson J. Unraveling the impact of disrupted nucleocytoplasmic transport systems in C9orf72-associated ALS. Front Cell Neurosci 2023; 17:1247297. [PMID: 37720544 PMCID: PMC10501458 DOI: 10.3389/fncel.2023.1247297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two adult-onset neurodegenerative diseases that are part of a common disease spectrum due to clinical, genetic, and pathological overlap. A prominent genetic factor contributing to both diseases is a hexanucleotide repeat expansion in a non-coding region of the C9orf72 gene. This mutation in C9orf72 leads to nuclear depletion and cytoplasmic aggregation of Tar DNA-RNA binding protein 43 (TDP-43). TDP-43 pathology is characteristic of the majority of ALS cases, irrespective of disease causation, and is present in ~50% of FTD cases. Defects in nucleocytoplasmic transport involving the nuclear pore complex, the Ran-GTPase cycle, and nuclear transport factors have been linked with the mislocalization of TDP-43. Here, we will explore and discuss the implications of these system abnormalities of nucleocytoplasmic transport in C9orf72-ALS/FTD, as well as in other forms of familial and sporadic ALS.
Collapse
Affiliation(s)
- Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Morón-Oset J, Fischer LKS, Jauré N, Zhang P, Jahn AJ, Supèr T, Pahl A, Isaacs AM, Grönke S, Partridge L. Repeat length of C9orf72-associated glycine-alanine polypeptides affects their toxicity. Acta Neuropathol Commun 2023; 11:140. [PMID: 37644512 PMCID: PMC10463776 DOI: 10.1186/s40478-023-01634-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023] Open
Abstract
G4C2 hexanucleotide repeat expansions in a non-coding region of the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G4C2 insertion length is variable, and patients can carry up to several thousand repeats. Dipeptide repeat proteins (DPRs) translated from G4C2 transcripts are thought to be a main driver of toxicity. Experiments in model organisms with relatively short DPRs have shown that arginine-rich DPRs are most toxic, while polyGlycine-Alanine (GA) DPRs cause only mild toxicity. However, GA is the most abundant DPR in patient brains, and experimental work in animals has generally relied on the use of low numbers of repeats, with DPRs often tagged for in vivo tracking. Whether repeat length or tagging affect the toxicity of GA has not been systematically assessed. Therefore, we generated Drosophila fly lines expressing GA100, GA200 or GA400 specifically in adult neurons. Consistent with previous studies, expression of GA100 and GA200 caused only mild toxicity. In contrast, neuronal expression of GA400 drastically reduced climbing ability and survival of flies, indicating that long GA DPRs can be highly toxic in vivo. This toxicity could be abolished by tagging GA400. Proteomics analysis of fly brains showed a repeat-length-dependent modulation of the brain proteome, with GA400 causing earlier and stronger changes than shorter GA proteins. PolyGA expression up-regulated proteins involved in ER to Golgi trafficking, and down-regulated proteins involved in insulin signalling. Experimental down-regulation of Tango1, a highly conserved regulator of ER-to Golgi transport, partially rescued GA400 toxicity, suggesting that misregulation of this process contributes to polyGA toxicity. Experimentally increasing insulin signaling also rescued GA toxicity. In summary, our data show that long polyGA proteins can be highly toxic in vivo, and that they may therefore contribute to ALS/FTD pathogenesis in patients.
Collapse
Affiliation(s)
- Javier Morón-Oset
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | | | - Nathalie Jauré
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Pingze Zhang
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Annika Julia Jahn
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Tessa Supèr
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - André Pahl
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931, Cologne, Germany.
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
10
|
Oiwa K, Watanabe S, Onodera K, Iguchi Y, Kinoshita Y, Komine O, Sobue A, Okada Y, Katsuno M, Yamanaka K. Monomerization of TDP-43 is a key determinant for inducing TDP-43 pathology in amyotrophic lateral sclerosis. SCIENCE ADVANCES 2023; 9:eadf6895. [PMID: 37540751 PMCID: PMC10403219 DOI: 10.1126/sciadv.adf6895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The cytoplasmic aggregation of TAR DNA binding protein-43 (TDP-43), also known as TDP-43 pathology, is the pathological hallmark of amyotrophic lateral sclerosis (ALS). However, the mechanism underlying TDP-43 cytoplasmic mislocalization and subsequent aggregation remains unclear. Here, we show that TDP-43 dimerization/multimerization is impaired in the postmortem brains and spinal cords of patients with sporadic ALS and that N-terminal dimerization-deficient TDP-43 consists of pathological inclusion bodies in ALS motor neurons. Expression of N-terminal dimerization-deficient mutant TDP-43 in Neuro2a cells and induced pluripotent stem cell-derived motor neurons recapitulates TDP-43 pathology, such as Nxf1-dependent cytoplasmic mislocalization and aggregate formation, which induces seeding effects. Furthermore, TDP-DiLuc, a bimolecular luminescence complementation reporter assay, could detect decreased N-terminal dimerization of TDP-43 before TDP-43 pathological changes caused by the transcription inhibition linked to aberrant RNA metabolism in ALS. These findings identified TDP-43 monomerization as a critical determinant inducing TDP-43 pathology in ALS.
Collapse
Affiliation(s)
- Kotaro Oiwa
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kazunari Onodera
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Yukako Kinoshita
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Yohei Okada
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Liu X, Zhao X, He J, Wang S, Shen X, Liu Q, Wang S. Advances in the Structure of GGGGCC Repeat RNA Sequence and Its Interaction with Small Molecules and Protein Partners. Molecules 2023; 28:5801. [PMID: 37570771 PMCID: PMC10420822 DOI: 10.3390/molecules28155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The aberrant expansion of GGGGCC hexanucleotide repeats within the first intron of the C9orf72 gene represent the predominant genetic etiology underlying amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The transcribed r(GGGGCC)n RNA repeats form RNA foci, which recruit RNA binding proteins and impede their normal cellular functions, ultimately resulting in fatal neurodegenerative disorders. Furthermore, the non-canonical translation of the r(GGGGCC)n sequence can generate dipeptide repeats, which have been postulated as pathological causes. Comprehensive structural analyses of r(GGGGCC)n have unveiled its polymorphic nature, exhibiting the propensity to adopt dimeric, hairpin, or G-quadruplex conformations, all of which possess the capacity to interact with RNA binding proteins. Small molecules capable of binding to r(GGGGCC)n have been discovered and proposed as potential lead compounds for the treatment of ALS and FTD. Some of these molecules function in preventing RNA-protein interactions or impeding the phase transition of r(GGGGCC)n. In this review, we present a comprehensive summary of the recent advancements in the structural characterization of r(GGGGCC)n, its propensity to form RNA foci, and its interactions with small molecules and proteins. Specifically, we emphasize the structural diversity of r(GGGGCC)n and its influence on partner binding. Given the crucial role of r(GGGGCC)n in the pathogenesis of ALS and FTD, the primary objective of this review is to facilitate the development of therapeutic interventions targeting r(GGGGCC)n RNA.
Collapse
Affiliation(s)
- Xiaole Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Xinyue Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Jinhan He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Sishi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Xinfei Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Qingfeng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
- Beijing NMR Center, Peking University, Beijing 100087, China
| |
Collapse
|
12
|
Mori K, Gotoh S, Uozumi R, Miyamoto T, Akamine S, Kawabe Y, Tagami S, Ikeda M. RNA Dysmetabolism and Repeat-Associated Non-AUG Translation in Frontotemporal Lobar Degeneration/Amyotrophic Lateral Sclerosis due to C9orf72 Hexanucleotide Repeat Expansion. JMA J 2023; 6:9-15. [PMID: 36793534 PMCID: PMC9908409 DOI: 10.31662/jmaj.2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2023] Open
Abstract
Neuropathological features of frontotemporal dementia and amyotrophic lateral sclerosis (ALS) due to C9orf72 GGGGCC hexanucleotide repeat expansion include early dipeptide repeats, repeat RNA foci, and subsequent TDP-43 pathologies. Since the discovery of the repeat expansion, extensive studies have elucidated the disease mechanism of how the repeat causes neurodegeneration. In this review, we summarize our current understanding of abnormal repeat RNA metabolism and repeat-associated non-AUG translation in C9orf72 frontotemporal lobar degeneration/ALS. For repeat RNA metabolism, we specifically focus on the role of hnRNPA3, the repeat RNA-binding protein, and the EXOSC10/RNA exosome complex, an intracellular RNA-degrading enzyme. In addition, the mechanism of repeat-associated non-AUG translation inhibition via TMPyP4, a repeat RNA-binding compound, is discussed.
Collapse
Affiliation(s)
- Kohji Mori
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shiho Gotoh
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Uozumi
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tesshin Miyamoto
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan,Seifukai Ibaraki Hospital, Ibaraki, Japan
| | - Shoshin Akamine
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Kawabe
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan,Minoh Neuropsychiatric Hospital, Minoh, Japan
| | - Shinji Tagami
- Minoh Neuropsychiatric Hospital, Minoh, Japan,Health and Counseling Center, Osaka University, Toyonaka, Japan
| | - Manabu Ikeda
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
13
|
Dubey SK, Maulding K, Sung H, Lloyd TE. Nucleoporins are degraded via upregulation of ESCRT-III/Vps4 complex in Drosophila models of C9-ALS/FTD. Cell Rep 2022; 40:111379. [PMID: 36130523 PMCID: PMC10099287 DOI: 10.1016/j.celrep.2022.111379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/22/2022] [Accepted: 08/28/2022] [Indexed: 11/03/2022] Open
Abstract
Disruption of the nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) have been implicated in the pathogenesis of neurodegenerative diseases. A GGGGCC hexanucleotide repeat expansion (HRE) in an intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, but the mechanism by which the HRE disrupts NCT is incompletely understood. We find that expression of GGGGCC repeats in Drosophila neurons induces proteasome-mediated degradation of select nucleoporins of the NPC. This process requires the Vps4 ATPase and the endosomal-sorting complex required for transport complex-III (ESCRT-III), as knockdown of ESCRT-III/Vps4 genes rescues nucleoporin levels, normalizes NCT, and suppresses GGGGCC-mediated neurodegeneration. GGGGCC expression upregulates nuclear ESCRT-III/Vps4 expression, and expansion microscopy demonstrates that the nucleoporins are translocated into the cytoplasm before undergoing proteasome-mediated degradation. These findings demonstrate a mechanism for nucleoporin degradation and NPC dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Sandeep Kumar Dubey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kirstin Maulding
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Sung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Lum JS, Yerbury JJ. Misfolding at the synapse: A role in amyotrophic lateral sclerosis pathogenesis? Front Mol Neurosci 2022; 15:997661. [PMID: 36157072 PMCID: PMC9500160 DOI: 10.3389/fnmol.2022.997661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
A growing wave of evidence has placed the concept of protein homeostasis at the center of the pathogenesis of amyotrophic lateral sclerosis (ALS). This is due primarily to the presence of pathological transactive response DNA-binding protein (TDP-43), fused in sarcoma (FUS) or superoxide dismutase-1 (SOD1) inclusions within motor neurons of ALS postmortem tissue. However, the earliest pathological alterations associated with ALS occur to the structure and function of the synapse, prior to motor neuron loss. Recent evidence demonstrates the pathological accumulation of ALS-associated proteins (TDP-43, FUS, C9orf72-associated di-peptide repeats and SOD1) within the axo-synaptic compartment of motor neurons. In this review, we discuss this recent evidence and how axo-synaptic proteome dyshomeostasis may contribute to synaptic dysfunction in ALS.
Collapse
Affiliation(s)
- Jeremy S. Lum
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Justin J. Yerbury, ; orcid.org/0000-0003-2528-7039
| |
Collapse
|
15
|
Gleixner AM, Verdone BM, Otte CG, Anderson EN, Ramesh N, Shapiro OR, Gale JR, Mauna JC, Mann JR, Copley KE, Daley EL, Ortega JA, Cicardi ME, Kiskinis E, Kofler J, Pandey UB, Trotti D, Donnelly CJ. NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun 2022; 13:3380. [PMID: 35697676 PMCID: PMC9192689 DOI: 10.1038/s41467-022-31098-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/03/2022] [Indexed: 01/12/2023] Open
Abstract
A G4C2 hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of ALS and FTLD (C9-ALS/FTLD) with cytoplasmic TDP-43 inclusions observed in regions of neurodegeneration. The accumulation of repetitive RNAs and dipeptide repeat protein (DPR) are two proposed mechanisms of toxicity in C9-ALS/FTLD and linked to impaired nucleocytoplasmic transport. Nucleocytoplasmic transport is regulated by the phenylalanine-glycine nucleoporins (FG nups) that comprise the nuclear pore complex (NPC) permeability barrier. However, the relationship between FG nups and TDP-43 pathology remains elusive. Our studies show that nuclear depletion and cytoplasmic mislocalization of one FG nup, NUP62, is linked to TDP-43 mislocalization in C9-ALS/FTLD iPSC neurons. Poly-glycine arginine (GR) DPR accumulation initiates the formation of cytoplasmic RNA granules that recruit NUP62 and TDP-43. Cytoplasmic NUP62 and TDP-43 interactions promotes their insolubility and NUP62:TDP-43 inclusions are frequently found in C9orf72 ALS/FTLD as well as sporadic ALS/FTLD postmortem CNS tissue. Our findings indicate NUP62 cytoplasmic mislocalization contributes to TDP-43 proteinopathy in ALS/FTLD.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Brandie Morris Verdone
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charlton G Otte
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Olivia R Shapiro
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jacob R Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katie E Copley
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Elizabeth L Daley
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Juan A Ortega
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Maria Elena Cicardi
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Kofler
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Udai B Pandey
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davide Trotti
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
C9orf72 dipeptides disrupt the nucleocytoplasmic transport machinery and cause TDP-43 mislocalisation to the cytoplasm. Sci Rep 2022; 12:4799. [PMID: 35314728 PMCID: PMC8938440 DOI: 10.1038/s41598-022-08724-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
A repeat expansion in C9orf72 is the major cause of both frontotemporal dementia and amyotrophic lateral sclerosis, accounting for approximately 1 in 12 cases of either disease. The expansion is translated to produce five dipeptide repeat proteins (DPRs) which aggregate in patient brain and are toxic in numerous models, though the mechanisms underlying this toxicity are poorly understood. Recent studies highlight nucleocytoplasmic transport impairments as a potential mechanism underlying neurodegeneration in C9orf72-linked disease, although the contribution of DPRs to this remains unclear. We expressed DPRs in HeLa cells, in the absence of repeat RNA. Crucially, we expressed DPRs at repeat-lengths found in patients (> 1000 units), ensuring our findings were relevant to disease. Immunofluorescence imaging was used to investigate the impact of each DPR on the nucleus, nucleocytoplasmic transport machinery and TDP-43 localisation. DPRs impaired the structural integrity of the nucleus, causing nuclear membrane disruption and misshapen nuclei. Ran and RanGAP, two proteins required for nucleocytoplasmic transport, were also mislocalised in DPR-expressing cells. Furthermore, DPRs triggered mislocalisation of TDP-43 to the cytoplasm, and this occurred in the same cells as Ran and RanGAP mislocalisation, suggesting a potential link between DPRs, nucleocytoplasmic transport impairments and TDP-43 pathology.
Collapse
|
17
|
Odeh HM, Fare CM, Shorter J. Nuclear-Import Receptors Counter Deleterious Phase Transitions in Neurodegenerative Disease. J Mol Biol 2022; 434:167220. [PMID: 34464655 PMCID: PMC8748273 DOI: 10.1016/j.jmb.2021.167220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023]
Abstract
Nuclear-import receptors (NIRs) engage nuclear-localization signals (NLSs) of polypeptides in the cytoplasm and transport these cargo across the size-selective barrier of the nuclear-pore complex into the nucleoplasm. Beyond this canonical role in nuclear transport, NIRs operate in the cytoplasm to chaperone and disaggregate NLS-bearing clients. Indeed, NIRs can inhibit and reverse functional and deleterious phase transitions of their cargo, including several prominent neurodegenerative disease-linked RNA-binding proteins (RBPs) with prion-like domains (PrLDs), such as TDP-43, FUS, EWSR1, TAF15, hnRNPA1, and hnRNPA2. Importantly, elevated NIR expression can mitigate degenerative phenotypes connected to aberrant cytoplasmic aggregation of RBPs with PrLDs. Here, we review recent discoveries that NIRs can also antagonize aberrant interactions and toxicity of arginine-rich, dipeptide-repeat proteins that are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) caused by G4C2 hexanucleotide repeat expansions in the first intron of C9ORF72. We also highlight recent findings that multiple NIR family members can prevent and reverse liquid-liquid phase separation of specific clients bearing RGG motifs in an NLS-independent manner. Finally, we discuss strategies to enhance NIR activity or expression, which could have therapeutic utility for several neurodegenerative disorders, including ALS, FTD, multisystem proteinopathy, limbic-predominant age-related TDP-43 encephalopathy, tauopathies, and related diseases.
Collapse
Affiliation(s)
- Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. https://twitter.com/CharlotteFare
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Kumar AV, Lapierre LR. Location, location, location: subcellular protein partitioning in proteostasis and aging. Biophys Rev 2021; 13:931-941. [PMID: 35047088 PMCID: PMC8724496 DOI: 10.1007/s12551-021-00890-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Somatic maintenance and cell survival rely on proper protein homeostasis to ensure reliable functions across the cell and to prevent proteome collapse. Maintaining protein folding and solubility is central to proteostasis and is coordinated by protein synthesis, chaperoning, and degradation capacities. An emerging aspect that influences proteostasis is the dynamic protein partitioning across different subcellular structures and compartments. Here, we review recent literature related to nucleocytoplasmic partitioning of proteins, nuclear and cytoplasmic quality control mechanisms, and their impact on the development of age-related diseases. We also highlight new points of entry to modulate spatially-regulated proteostatic mechanisms to delay aging.
Collapse
Affiliation(s)
- Anita V. Kumar
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912 USA
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912 USA
| |
Collapse
|
19
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
20
|
Vanneste J, Van Den Bosch L. The Role of Nucleocytoplasmic Transport Defects in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:12175. [PMID: 34830069 PMCID: PMC8620263 DOI: 10.3390/ijms222212175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
There is ample evidence that nucleocytoplasmic-transport deficits could play an important role in the pathology of amyotrophic lateral sclerosis (ALS). However, the currently available data are often circumstantial and do not fully clarify the exact causal and temporal role of nucleocytoplasmic transport deficits in ALS patients. Gaining this knowledge will be of great significance in order to be able to target therapeutically nucleocytoplasmic transport and/or the proteins involved in this process. The availability of good model systems to study the nucleocytoplasmic transport process in detail will be especially crucial in investigating the effect of different mutations, as well as of other forms of stress. In this review, we discuss the evidence for the involvement of nucleocytoplasmic transport defects in ALS and the methods used to obtain these data. In addition, we provide an overview of the therapeutic strategies which could potentially counteract these defects.
Collapse
Affiliation(s)
- Joni Vanneste
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Experimental Neurology, Department of Neurosciences and Leuven Brain Institute (LBI), KU Leuven–University of Leuven, B-3000 Leuven, Belgium;
- Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, B-3000 Leuven, Belgium
| |
Collapse
|
21
|
Sharpe JL, Harper NS, Garner DR, West RJH. Modeling C9orf72-Related Frontotemporal Dementia and Amyotrophic Lateral Sclerosis in Drosophila. Front Cell Neurosci 2021; 15:770937. [PMID: 34744635 PMCID: PMC8566814 DOI: 10.3389/fncel.2021.770937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.
Collapse
Affiliation(s)
- Joanne L. Sharpe
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Nikki S. Harper
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Duncan R. Garner
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Ryan J. H. West
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
22
|
Nallasivan MP, Haussmann IU, Civetta A, Soller M. Channel nuclear pore protein 54 directs sexual differentiation and neuronal wiring of female reproductive behaviors in Drosophila. BMC Biol 2021; 19:226. [PMID: 34666772 PMCID: PMC8527774 DOI: 10.1186/s12915-021-01154-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Female reproductive behaviors and physiology change profoundly after mating. The control of pregnancy-associated changes in physiology and behaviors are largely hard-wired into the brain to guarantee reproductive success, yet the gene expression programs that direct neuronal differentiation and circuit wiring at the end of the sex determination pathway in response to mating are largely unknown. In Drosophila, the post-mating response induced by male-derived sex-peptide in females is a well-established model to elucidate how complex innate behaviors are hard-wired into the brain. Here, we use a genetic approach to further characterize the molecular and cellular architecture of the sex-peptide response in Drosophila females. Results Screening for mutations that affect the sensitivity to sex-peptide, we identified the channel nuclear pore protein Nup54 gene as an essential component for mediating the sex-peptide response, with viable mutant alleles leading to the inability of laying eggs and reducing receptivity upon sex-peptide exposure. Nup54 directs correct wiring of eight adult brain neurons that express pickpocket and are required for egg-laying, while additional channel Nups also mediate sexual differentiation. Consistent with links of Nups to speciation, the Nup54 promoter is a hot spot for rapid evolution and promoter variants alter nucleo-cytoplasmic shuttling. Conclusions These results implicate nuclear pore functionality to neuronal wiring underlying the sex-peptide response and sexual differentiation as a response to sexual conflict arising from male-derived sex-peptide to direct the female post-mating response. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01154-6.
Collapse
Affiliation(s)
- Mohanakarthik P Nallasivan
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
23
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
24
|
Novak V, Rogelj B, Župunski V. Therapeutic Potential of Polyphenols in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Antioxidants (Basel) 2021; 10:antiox10081328. [PMID: 34439576 PMCID: PMC8389294 DOI: 10.3390/antiox10081328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are severe neurodegenerative disorders that belong to a common disease spectrum. The molecular and cellular aetiology of the spectrum is a highly complex encompassing dysfunction in many processes, including mitochondrial dysfunction and oxidative stress. There is a paucity of treatment options aside from therapies with subtle effects on the post diagnostic lifespan and symptom management. This presents great interest and necessity for the discovery and development of new compounds and therapies with beneficial effects on the disease. Polyphenols are secondary metabolites found in plant-based foods and are well known for their antioxidant activity. Recent research suggests that they also have a diverse array of neuroprotective functions that could lead to better treatments for neurodegenerative diseases. We present an overview of the effects of various polyphenols in cell line and animal models of ALS/FTD. Furthermore, possible mechanisms behind actions of the most researched compounds (resveratrol, curcumin and green tea catechins) are discussed.
Collapse
Affiliation(s)
- Valentina Novak
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
| | - Boris Rogelj
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Vera Župunski
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Correspondence:
| |
Collapse
|
25
|
Frottin F, Pérez-Berlanga M, Hartl FU, Hipp MS. Multiple pathways of toxicity induced by C9orf72 dipeptide repeat aggregates and G 4C 2 RNA in a cellular model. eLife 2021; 10:62718. [PMID: 34161229 PMCID: PMC8221807 DOI: 10.7554/elife.62718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/08/2021] [Indexed: 12/05/2022] Open
Abstract
The most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia is a G4C2 repeat expansion in the C9orf72 gene. This expansion gives rise to translation of aggregating dipeptide repeat (DPR) proteins, including poly-GA as the most abundant species. However, gain of toxic function effects have been attributed to either the DPRs or the pathological G4C2 RNA. Here, we analyzed in a cellular model the relative toxicity of DPRs and RNA. Cytoplasmic poly-GA aggregates, generated in the absence of G4C2 RNA, interfered with nucleocytoplasmic protein transport, but had little effect on cell viability. In contrast, nuclear poly-GA was more toxic, impairing nucleolar protein quality control and protein biosynthesis. Production of the G4C2 RNA strongly reduced viability independent of DPR translation and caused pronounced inhibition of nuclear mRNA export and protein biogenesis. Thus, while the toxic effects of G4C2 RNA predominate in the cellular model used, DPRs exert additive effects that may contribute to pathology.
Collapse
Affiliation(s)
- Frédéric Frottin
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Manuela Pérez-Berlanga
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - F Ulrich Hartl
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mark S Hipp
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
26
|
Braems E, Tziortzouda P, Van Den Bosch L. Exploring the alternative: Fish, flies and worms as preclinical models for ALS. Neurosci Lett 2021; 759:136041. [PMID: 34118308 DOI: 10.1016/j.neulet.2021.136041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterized by the loss of upper and lower motor neurons. In general, patients succumb to respiratory insufficiency due to respiratory muscle weakness. Despite many promising therapeutic strategies primarily identified in rodent models, patient trials remain rather unsuccessful. There is a clear need for alternative approaches, which could provide directions towards the justified use of rodents and which increase the likelihood to identify new promising clinical candidates. In the last decades, the use of fast genetic approaches and the development of high-throughput screening platforms in the nematode Caenorhabditis elegans, in the fruit fly (Drosophila melanogaster) and in zebrafish (Danio rerio) have contributed to new insights into ALS pathomechanisms, disease modifiers and therapeutic targets. In this mini-review, we provide an overview of these alternative small animal studies, modeling the most common ALS genes and discuss the most recent preclinical discoveries. We conclude that small animal models will not replace rodent models, yet they clearly represent an important asset for preclinical studies.
Collapse
Affiliation(s)
- Elke Braems
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Paraskevi Tziortzouda
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
27
|
Disease Mechanisms and Therapeutic Approaches in C9orf72 ALS-FTD. Biomedicines 2021; 9:biomedicines9060601. [PMID: 34070550 PMCID: PMC8229688 DOI: 10.3390/biomedicines9060601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
A hexanucleotide repeat expansion mutation in the first intron of C9orf72 is the most common known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Since the discovery in 2011, numerous pathogenic mechanisms, including both loss and gain of function, have been proposed. The body of work overall suggests that toxic gain of function arising from bidirectionally transcribed repeat RNA is likely to be the primary driver of disease. In this review, we outline the key pathogenic mechanisms that have been proposed to date and discuss some of the novel therapeutic approaches currently in development.
Collapse
|
28
|
Solomon DA, Smikle R, Reid MJ, Mizielinska S. Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Front Cell Neurosci 2021; 15:664151. [PMID: 33967699 PMCID: PMC8096919 DOI: 10.3389/fncel.2021.664151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of the C9orf72 repeat expansion mutation as causative for chromosome 9-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in 2011, a multitude of cellular pathways have been implicated. However, evidence has also been accumulating for a key mechanism of cellular compartmentalization—phase separation. Liquid-liquid phase separation (LLPS) is fundamental for the formation of membraneless organelles including stress granules, the nucleolus, Cajal bodies, nuclear speckles and the central channel of the nuclear pore. Evidence has now accumulated showing that the formation and function of these membraneless organelles is impaired by both the toxic arginine rich dipeptide repeat proteins (DPRs), translated from the C9orf72 repeat RNA transcript, and the repeat RNA itself. Both the arginine rich DPRs and repeat RNA themselves undergo phase separation and disrupt the physiological phase separation of proteins involved in the formation of these liquid-like organelles. Hence abnormal phase separation may explain a number of pathological cellular phenomena associated with C9orf72-ALS/FTD. In this review article, we will discuss the principles of phase separation, phase separation of the DPRs and repeat RNA themselves and how they perturb LLPS associated with membraneless organelles and the functional consequences of this. We will then discuss how phase separation may impact the major pathological feature of C9orf72-ALS/FTD, TDP-43 proteinopathy, and how LLPS may be targeted therapeutically in disease.
Collapse
Affiliation(s)
- Daniel A Solomon
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Rebekah Smikle
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Sarah Mizielinska
- UK Dementia Research Institute at King's College London, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| |
Collapse
|
29
|
Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 2021; 22:197-208. [PMID: 33654312 DOI: 10.1038/s41583-021-00431-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Cytoplasmic aggregation of TAR DNA-binding protein 43 (TDP43; also known as TARDBP or TDP-43) is a key pathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 typically resides in the nucleus but can shuttle between the nucleus and the cytoplasm to exert its multiple functions, which include regulation of the splicing, trafficking and stabilization of RNA. Cytoplasmic mislocalization and nuclear loss of TDP43 have both been associated with ALS and FTD, suggesting that calibrated levels and correct localization of TDP43 - achieved through an autoregulatory loop and tightly controlled nucleocytoplasmic transport - safeguard its normal function. Furthermore, TDP43 can undergo phase transitions, including its dispersion into liquid droplets and its accumulation into irreversible cytoplasmic aggregates. Thus, autoregulation, nucleocytoplasmic transport and phase transition are all part of an intrinsic control system regulating the physiological levels and localization of TDP43, and together are essential for the cellular homeostasis that is affected in neurodegenerative disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
30
|
Bridi JC, Bereczki E, Smith SK, Poças GM, Kottler B, Domingos PM, Elliott CJ, Aarsland D, Hirth F. Presynaptic accumulation of α-synuclein causes synaptopathy and progressive neurodegeneration in Drosophila. Brain Commun 2021; 3:fcab049. [PMID: 33997781 PMCID: PMC8111063 DOI: 10.1093/braincomms/fcab049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Alpha-synuclein (α-syn) mislocalization and accumulation in intracellular inclusions is the major pathological hallmark of degenerative synucleinopathies, including Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies. Typical symptoms are behavioural abnormalities including motor deficits that mark disease progression, while non-motor symptoms and synaptic deficits are already apparent during the early stages of disease. Synucleinopathies have therefore been considered synaptopathies that exhibit synaptic dysfunction prior to neurodegeneration. However, the mechanisms and events underlying synaptopathy are largely unknown. Here we investigated the cascade of pathological events underlying α-syn accumulation and toxicity in a Drosophila model of synucleinopathy by employing a combination of histological, biochemical, behavioural and electrophysiological assays. Our findings demonstrate that targeted expression of human α-syn leads to its accumulation in presynaptic terminals that caused downregulation of synaptic proteins, cysteine string protein, synapsin, and syntaxin 1A, and a reduction in the number of Bruchpilot puncta, the core component of the presynaptic active zone essential for its structural integrity and function. These α-syn-mediated presynaptic alterations resulted in impaired neuronal function, which triggered behavioural deficits in ageing Drosophila that occurred prior to progressive degeneration of dopaminergic neurons. Comparable alterations in presynaptic active zone protein were found in patient brain samples of dementia with Lewy bodies. Together, these findings demonstrate that presynaptic accumulation of α-syn impairs the active zone and neuronal function, which together cause synaptopathy that results in behavioural deficits and the progressive loss of dopaminergic neurons. This sequence of events resembles the cytological and behavioural phenotypes that characterise the onset and progression of synucleinopathies, suggesting that α-syn-mediated synaptopathy is an initiating cause of age-related neurodegeneration.
Collapse
Affiliation(s)
- Jessika C Bridi
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm 171 77, Sweden
| | - Saffron K Smith
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Gonçalo M Poças
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
- School of Biological Sciences, Monash University, Melbourne, VIC 34QP+JV, Australia
| | - Benjamin Kottler
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Lisbon 2780-157, Portugal
| | - Christopher J Elliott
- Department of Biology and York Biomedical Research Institute, University of York, York YO1 5DD, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger 4068, Norway
| | - Frank Hirth
- Department of Basic & Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RX, UK
| |
Collapse
|
31
|
Coyne AN, Rothstein JD. Nuclear lamina invaginations are not a pathological feature of C9orf72 ALS/FTD. Acta Neuropathol Commun 2021; 9:45. [PMID: 33741069 PMCID: PMC7977268 DOI: 10.1186/s40478-021-01150-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022] Open
Abstract
The most common genetic cause of familial and sporadic amyotrophic lateral sclerosis (ALS) is a GGGGCC hexanucleotide repeat expansion (HRE) in the C9orf72 gene. While direct molecular hallmarks of the C9orf72 HRE (repeat RNA foci, dipeptide repeat protein pathology) are well characterized, the mechanisms by which the C9orf72 HRE causes ALS and the related neurodegenerative disease frontotemporal dementia (FTD) remain poorly understood. Recently, alterations to the nuclear pore complex and nucleocytoplasmic transport have been accepted as a prominent pathomechanism underlying C9orf72 ALS/FTD. However, global disruptions to nuclear morphology and the nuclear lamina itself remain controversial. Here, we use a large number of induced pluripotent stem cell derived spinal neurons and postmortem human motor cortex sections to thoroughly examine nuclear morphology and nuclear lamina disruptions with light microscopy. In contrast to previous studies in artificial overexpression model systems, endogenous levels of the C9orf72 HRE do not increase the frequency of nuclear lamina invaginations. In addition, the C9orf72 HRE has no impact on overall nuclear shape and size. Notably, the frequency of nuclear Lamin B1 invaginations increases with cellular aging, independent of the C9orf72 HRE. Together, our data suggest that nuclear morphology is unaltered in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Alyssa N. Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
32
|
Schmitz A, Pinheiro Marques J, Oertig I, Maharjan N, Saxena S. Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD. Front Cell Neurosci 2021; 15:637548. [PMID: 33679328 PMCID: PMC7930069 DOI: 10.3389/fncel.2021.637548] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide expansion in the chromosome 9 open reading frame 72 gene (C9ORF72). This hexanucleotide expansion consists of GGGGCC (G4C2) repeats that have been implicated to lead to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs) through repeat-associated non-AUG (RAN) translation. Five different DPRs are currently known to be formed: glycine-alanine (GA) and glycine-arginine (GR) from the sense strand, proline-alanine (PA), and proline-arginine (PR) from the antisense strand, and glycine-proline (GP) from both strands. The exact contribution of each DPR to disease pathology is currently under intense scrutiny and is still poorly understood. However, recent advances in both neuropathological and cellular studies have provided us with clues enabling us to better understand the effect of individual DPRs on disease pathogenesis. In this review, we compile the current knowledge of specific DPR involvement on disease development and highlight recent advances, such as the impact of arginine-rich DPRs on nucleolar protein quality control, the correlation of poly-GR with neurodegeneration, and the possible involvement of chimeric DPR species. Further, we discuss recent findings regarding the mechanisms of RAN translation, its modulators, and other promising therapeutic options.
Collapse
Affiliation(s)
- Alexander Schmitz
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - João Pinheiro Marques
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Irina Oertig
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Mehta AR, Gregory JM, Dando O, Carter RN, Burr K, Nanda J, Story D, McDade K, Smith C, Morton NM, Mahad DJ, Hardingham GE, Chandran S, Selvaraj BT. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol 2021; 141:257-279. [PMID: 33398403 PMCID: PMC7847443 DOI: 10.1007/s00401-020-02252-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.
Collapse
Affiliation(s)
- Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jenna M Gregory
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Roderick N Carter
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Jyoti Nanda
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - David Story
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Karina McDade
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
34
|
Hutten S, Usluer S, Bourgeois B, Simonetti F, Odeh HM, Fare CM, Czuppa M, Hruska-Plochan M, Hofweber M, Polymenidou M, Shorter J, Edbauer D, Madl T, Dormann D. Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions. Cell Rep 2020; 33:108538. [PMID: 33357437 PMCID: PMC7814465 DOI: 10.1016/j.celrep.2020.108538] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear import receptors, also called importins, mediate nuclear import of proteins and chaperone aggregation-prone cargoes (e.g., neurodegeneration-linked RNA-binding proteins [RBPs]) in the cytoplasm. Importins were identified as modulators of cellular toxicity elicited by arginine-rich dipeptide repeat proteins (DPRs), an aberrant protein species found in C9orf72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mechanistically, the link between importins and arginine-rich DPRs remains unclear. Here, we show that arginine-rich DPRs (poly-GR and poly-PR) bind directly to multiple importins and, in excess, promote their insolubility and condensation. In cells, poly-GR impairs Impα/β-mediated nuclear import, including import of TDP-43, an RBP that aggregates in C9orf72-ALS/FTD patients. Arginine-rich DPRs promote phase separation and insolubility of TDP-43 in vitro and in cells, and this pathological interaction is suppressed by elevating importin concentrations. Our findings suggest that importins can decrease toxicity of arginine-rich DPRs by suppressing their pathological interactions.
Collapse
Affiliation(s)
- Saskia Hutten
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Francesca Simonetti
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Marian Hruska-Plochan
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mario Hofweber
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany; LMU Graduate School of Systemic Neurosciences (GSN), 82152 Planegg-Martinsried, Germany
| | - Magdalini Polymenidou
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; LMU Graduate School of Systemic Neurosciences (GSN), 82152 Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany; LMU Graduate School of Systemic Neurosciences (GSN), 82152 Planegg-Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
35
|
Pang W, Hu F. Cellular and physiological functions of C9ORF72 and implications for ALS/FTD. J Neurochem 2020; 157:334-350. [PMID: 33259633 DOI: 10.1111/jnc.15255] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
The hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the main cause of two tightly linked neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). HRE leads to not only a gain of toxicity from RNA repeats and dipeptide repeats but also reduced levels of C9ORF72 protein. However, the cellular and physiological functions of C9ORF72 were unknown until recently. Through proteomic analysis, Smith-Magenis chromosome regions 8 (SMCR8) and WD repeat-containing protein (WDR41) were identified as binding partners of C9ORF72. These three proteins have been shown to form a tight complex, but the exact functions of this complex remain to be characterized. Both C9ORF72 and SMCR8 contain a DENN domain, which has been shown to regulate the activities of small GTPases. The C9ORF72 complex has been implicated in many cellular processes, including vesicle trafficking, lysosome homeostasis, mTORC1 signaling , and autophagy. C9ORF72 deficiency in mice results in exaggerated inflammatory responses and human patients with C9ORF72 mutations have neuroinflammation phenotype. Recent studies indicate that C9ORF72 regulates trafficking and lysosomal degradation of inflammatory mediators, including toll-like receptors (TLRs) and STING, to affect inflammatory outputs. Further exploration of cellular and physiological functions of C9ORF72 will help dissect the pathological mechanism of ALS/FTD caused by C9ORF72 mutations.
Collapse
Affiliation(s)
- Weilun Pang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
36
|
Park JH, Chung CG, Park SS, Lee D, Kim KM, Jeong Y, Kim ES, Cho JH, Jeon YM, Shen CKJ, Kim HJ, Hwang D, Lee SB. Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin α3. eLife 2020; 9:60132. [PMID: 33305734 PMCID: PMC7748415 DOI: 10.7554/elife.60132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic accumulation of TDP-43 in motor neurons is the most prominent pathological feature in amyotrophic lateral sclerosis (ALS). A feedback cycle between nucleocytoplasmic transport (NCT) defect and TDP-43 aggregation was shown to contribute to accumulation of TDP-43 in the cytoplasm. However, little is known about cellular factors that can control the activity of NCT, thereby affecting TDP-43 accumulation in the cytoplasm. Here, we identified via FRAP and optogenetics cytosolic calcium as a key cellular factor controlling NCT of TDP-43. Dynamic and reversible changes in TDP-43 localization were observed in Drosophila sensory neurons during development. Genetic and immunohistochemical analyses identified the cytosolic calcium-Calpain-A-Importin α3 pathway as a regulatory mechanism underlying NCT of TDP-43. In C9orf72 ALS fly models, upregulation of the pathway activity by increasing cytosolic calcium reduced cytoplasmic accumulation of TDP-43 and mitigated behavioral defects. Together, these results suggest the calcium-Calpain-A-Importin α3 pathway as a potential therapeutic target of ALS.
Collapse
Affiliation(s)
- Jeong Hyang Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Sung Soon Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Kyung Min Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonjin Jeong
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Eun Seon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jae Ho Cho
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Yu-Mi Jeon
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - C-K James Shen
- Taipei Medical University/Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hyung-Jun Kim
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
37
|
Cunningham KM, Maulding K, Ruan K, Senturk M, Grima JC, Sung H, Zuo Z, Song H, Gao J, Dubey S, Rothstein JD, Zhang K, Bellen HJ, Lloyd TE. TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. eLife 2020; 9:59419. [PMID: 33300868 PMCID: PMC7758070 DOI: 10.7554/elife.59419] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-HRE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.
Collapse
Affiliation(s)
- Kathleen M Cunningham
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Kirstin Maulding
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Kai Ruan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Mumine Senturk
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, United States
| | - Jonathan C Grima
- Brain Science Institute, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Hyun Sung
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, BCM, Houston, United States
| | - Helen Song
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, United States
| | - Sandeep Dubey
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Jeffrey D Rothstein
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States.,Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States.,Brain Science Institute, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, United States.,Department of Molecular and Human Genetics, BCM, Houston, United States.,Department of Neuroscience, BCM, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Houston, United States
| | - Thomas E Lloyd
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States.,Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
38
|
Advani VM, Ivanov P. Stress granule subtypes: an emerging link to neurodegeneration. Cell Mol Life Sci 2020; 77:4827-4845. [PMID: 32500266 PMCID: PMC7668291 DOI: 10.1007/s00018-020-03565-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Stress Granules (SGs) are membraneless cytoplasmic RNA granules, which contain translationally stalled mRNAs, associated translation initiation factors and multiple RNA-binding proteins (RBPs). They are formed in response to various stresses and contribute to reprogramming of cellular metabolism to aid cell survival. Because of their cytoprotective nature, association with translation regulation and cell signaling, SGs are an essential component of the integrated stress response pathway, a complex adaptive program central to stress management. Recent advances in SG biology unambiguously demonstrate that SGs are heterogeneous in their RNA and protein content leading to the idea that various SG subtypes exist. These SG variants are formed in cell type- and stress-specific manners and differ in their composition, dynamics of assembly and disassembly, and contribution to cell viability. As aberrant SG dynamics contribute to the formation of pathological persistent SGs that are implicated in neurodegenerative diseases, the biology of different SG subtypes may be directly implicated in neurodegeneration. Here, we will discuss mechanisms of SG formation, their subtypes, and potential contribution to health and disease.
Collapse
Affiliation(s)
- Vivek M Advani
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
39
|
Gagliardi D, Costamagna G, Taiana M, Andreoli L, Biella F, Bersani M, Bresolin N, Comi GP, Corti S. Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Res Rev 2020; 64:101172. [PMID: 32971256 DOI: 10.1016/j.arr.2020.101172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
In 2011, a hexanucleotide repeat expansion (HRE) in the noncoding region of C9orf72 was associated with the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The main pathogenic mechanisms in C9-ALS/FTD are haploinsufficiency of the C9orf72 protein and gain of function toxicity from bidirectionally-transcribed repeat-containing RNAs and dipeptide repeat proteins (DPRs) resulting from non-canonical RNA translation. Additionally, abnormalities in different downstream cellular mechanisms, such as nucleocytoplasmic transport and autophagy, play a role in pathogenesis. Substantial research efforts using in vitro and in vivo models have provided valuable insights into the contribution of each mechanism in disease pathogenesis. However, conflicting evidence exists, and a unifying theory still lacks. Here, we provide an overview of the recently published literature on clinical, neuropathological and molecular features of C9-ALS/FTD. We highlight the supposed neuronal role of C9orf72 and the HRE pathogenic cascade, mainly focusing on the contribution of RNA foci and DPRs to neurodegeneration and discussing the several downstream mechanisms. We summarize the emerging biochemical and neuroimaging biomarkers, as well as the potential therapeutic approaches. Despite promising results, a specific disease-modifying treatment is still not available to date and greater insights into disease mechanisms may help in this direction.
Collapse
Affiliation(s)
- Delia Gagliardi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gianluca Costamagna
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Luca Andreoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Margherita Bersani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
40
|
Sun Y, Curle AJ, Haider AM, Balmus G. The role of DNA damage response in amyotrophic lateral sclerosis. Essays Biochem 2020; 64:847-861. [PMID: 33078197 PMCID: PMC7588667 DOI: 10.1042/ebc20200002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly disabling and fatal neurodegenerative disease. Due to insufficient disease-modifying treatments, there is an unmet and urgent need for elucidating disease mechanisms that occur early and represent common triggers in both familial and sporadic ALS. Emerging evidence suggests that impaired DNA damage response contributes to age-related somatic accumulation of genomic instability and can trigger or accelerate ALS pathological manifestations. In this review, we summarize and discuss recent studies indicating a direct link between DNA damage response and ALS. Further mechanistic understanding of the role genomic instability is playing in ALS disease pathophysiology will be critical for discovering new therapeutic avenues.
Collapse
Affiliation(s)
- Yu Sun
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Annabel J Curle
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Arshad M Haider
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0AH, U.K
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, U.K
| |
Collapse
|
41
|
Rostalski H, Hietanen T, Leskelä S, Behánová A, Abdollahzadeh A, Wittrahm R, Mäkinen P, Huber N, Hoffmann D, Solje E, Remes AM, Natunen T, Takalo M, Tohka J, Hiltunen M, Haapasalo A. BV-2 Microglial Cells Overexpressing C9orf72 Hexanucleotide Repeat Expansion Produce DPR Proteins and Show Normal Functionality but No RNA Foci. Front Neurol 2020; 11:550140. [PMID: 33123074 PMCID: PMC7573144 DOI: 10.3389/fneur.2020.550140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Hexanucleotide repeat expansion (HRE) in the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause underpinning frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). It leads to the accumulation of toxic RNA foci and various dipeptide repeat (DPR) proteins into cells. These C9orf72 HRE-specific hallmarks are abundant in neurons. So far, the role of microglia, the immune cells of the brain, in C9orf72 HRE-associated FTLD/ALS is unclear. In this study, we overexpressed C9orf72 HRE of a pathological length in the BV-2 microglial cell line and used biochemical methods and fluorescence imaging to investigate its effects on their phenotype, viability, and functionality. We found that BV-2 cells expressing the C9orf72 HRE presented strong expression of specific DPR proteins but no sense RNA foci. Transiently increased levels of cytoplasmic TAR DNA-binding protein 43 (TDP-43), slightly altered levels of p62 and lysosome-associated membrane protein (LAMP) 2A, and reduced levels of polyubiquitinylated proteins, but no signs of cell death were detected in HRE overexpressing cells. Overexpression of the C9orf72 HRE did not affect BV-2 cell phagocytic activity or response to an inflammatory stimulus, nor did it shift their RNA profile toward disease-associated microglia. These findings suggest that DPR proteins do not affect microglial cell viability or functionality in BV-2 cells. However, additional studies in other models are required to further elucidate the role of C9orf72 HRE in microglia.
Collapse
Affiliation(s)
- Hannah Rostalski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Hietanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stina Leskelä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Andrea Behánová
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ali Abdollahzadeh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rebekka Wittrahm
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorit Hoffmann
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center (MRC) Oulu, Oulu University Hospital, Oulu, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
42
|
West RJH, Sharpe JL, Voelzmann A, Munro AL, Hahn I, Baines RA, Pickering-Brown S. Co-expression of C9orf72 related dipeptide-repeats over 1000 repeat units reveals age- and combination-specific phenotypic profiles in Drosophila. Acta Neuropathol Commun 2020; 8:158. [PMID: 32894207 PMCID: PMC7487709 DOI: 10.1186/s40478-020-01028-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
A large intronic hexanucleotide repeat expansion (GGGGCC) within the C9orf72 (C9orf72-SMCR8 Complex Subunit) locus is the most prevalent genetic cause of both Frontotemporal Dementia (FTD) and Motor Neuron Disease (MND). In patients this expansion is typically hundreds to thousands of repeat units in length. Repeat associated non-AUG translation of the expansion leads to the formation of toxic, pathological Dipeptide-Repeat Proteins (DPRs). To date there remains a lack of in vivo models expressing C9orf72 related DPRs with a repeat length of more than a few hundred repeats. As such our understanding of how physiologically relevant repeat length DPRs effect the nervous system in an ageing in vivo system remains limited. In this study we generated Drosophila models expressing DPRs over 1000 repeat units in length, a known pathological length in humans. Using these models, we demonstrate each DPR exhibits a unique, age-dependent, phenotypic and pathological profile. Furthermore, we show co-expression of specific DPR combinations leads to distinct, age-dependent, phenotypes not observed through expression of single DPRs. We propose these models represent a unique, in vivo, tool for dissecting the molecular mechanisms implicated in disease pathology, opening up new avenues in the study of both MND and FTD.
Collapse
Affiliation(s)
- Ryan J. H. West
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN UK
| | - Joanne L. Sharpe
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - André Voelzmann
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Anna L. Munro
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ines Hahn
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Richard A. Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stuart Pickering-Brown
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Yang Q, Jiao B, Shen L. The Development of C9orf72-Related Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Disorders. Front Genet 2020; 11:562758. [PMID: 32983232 PMCID: PMC7492664 DOI: 10.3389/fgene.2020.562758] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
The expanded GGGGCC hexanucleotide repeat in the non-coding region of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). There are three main disease mechanisms: loss of function of C9ORF72 protein, gain of function from the accumulation of sense and antisense (GGGGCC)n in RNA, and from the production of toxic dipeptides repeat proteins (DPRs) by non-AUG initiated translation. While many of the downstream mechanisms have been identified, the specific pathogenic pathway is still unclear. In this article, we provide an overview on the currently available literature and propose several hypotheses: (1) The pathogenesis of C9orf72-associated ALS/FTD, which cannot be explained by a single mechanism, involves a dual mechanism of both loss and gain of function. (2) The loss of function and gain of function can cause TDP-43 aggregation and damage nucleocytoplasmic transport. (3) Neurodegeneration can be caused by an accumulation of toxic substances in neurons themselves. In addition, we suggest that microglia may cause neurodegeneration by releasing inflammatory factors to neurons. Finally, we summarize several of the most promising treatment strategies.
Collapse
Affiliation(s)
- Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| |
Collapse
|
44
|
McAlary L, Yerbury JJ, Cashman NR. The prion-like nature of amyotrophic lateral sclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:261-296. [PMID: 32958236 DOI: 10.1016/bs.pmbts.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The misfolding, aggregation, and deposition of specific proteins is the key hallmark of most progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). ALS is characterized by the rapid and progressive degenerations of motor neurons in the spinal cord and motor cortex, resulting in paralysis of those who suffer from it. Pathologically, there are three major aggregating proteins associated with ALS, including TAR DNA-binding protein of 43kDa (TDP-43), superoxide dismutase-1 (SOD1), and fused in sarcoma (FUS). While there are ALS-associated mutations found in each of these proteins, the most prevalent aggregation pathology is that of wild-type TDP-43 (97% of cases), with the remaining split between mutant forms of SOD1 (~2%) and FUS (~1%). Considering the progressive nature of ALS and its association with the aggregation of specific proteins, a growing notion is that the spread of pathology and symptoms can be explained by a prion-like mechanism. Prion diseases are a group of highly infectious neurodegenerative disorders caused by the misfolding, aggregation, and spread of a transmissible conformer of prion protein (PrP). Pathogenic PrP is capable of converting healthy PrP into a toxic form through template-directed misfolding. Application of this finding to other neurodegenerative disorders, and in particular ALS, has revolutionized our understanding of cause and progression of these disorders. In this chapter, we first provide a background on ALS pathology and genetic origin. We then detail and discuss the evidence supporting a prion-like propagation of protein misfolding and aggregation in ALS with a particular focus on SOD1 and TDP-43 as these are the most well-established models in the field.
Collapse
Affiliation(s)
- L McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - J J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Solomon DA, Mitchell JC, Salcher-Konrad MT, Vance CA, Mizielinska S. Review: Modelling the pathology and behaviour of frontotemporal dementia. Neuropathol Appl Neurobiol 2020; 45:58-80. [PMID: 30582188 DOI: 10.1111/nan.12536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD) encompasses a collection of clinically and pathologically diverse neurological disorders. Clinical features of behavioural and language dysfunction are associated with neurodegeneration, predominantly of frontal and temporal cortices. Over the past decade, there have been significant advances in the understanding of the genetic aetiology and neuropathology of FTD which have led to the creation of various disease models to investigate the molecular pathways that contribute to disease pathogenesis. The generation of in vivo models of FTD involves either targeting genes with known disease-causative mutations such as GRN and C9orf72 or genes encoding proteins that form the inclusions that characterize the disease pathologically, such as TDP-43 and FUS. This review provides a comprehensive summary of the different in vivo model systems used to understand pathomechanisms in FTD, with a focus on disease models which reproduce aspects of the wide-ranging behavioural phenotypes seen in people with FTD. We discuss the emerging disease pathways that have emerged from these in vivo models and how this has shaped our understanding of disease mechanisms underpinning FTD. We also discuss the challenges of modelling the complex clinical symptoms shown by people with FTD, the confounding overlap with features of motor neuron disease, and the drive to make models more disease-relevant. In summary, in vivo models can replicate many pathological and behavioural aspects of clinical FTD, but robust and thorough investigations utilizing shared features and variability between disease models will improve the disease-relevance of findings and thus better inform therapeutic development.
Collapse
Affiliation(s)
- D A Solomon
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - J C Mitchell
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - M-T Salcher-Konrad
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - C A Vance
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| | - S Mizielinska
- UK Dementia Research Institute, King's College London, London, Camberwell, UK.,Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, Camberwell, UK
| |
Collapse
|
46
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
47
|
Bajc Česnik A, Motaln H, Rogelj B. The Impact of ALS-Associated Genes hnRNPA1, MATR3, VCP and UBQLN2 on the Severity of TDP-43 Aggregation. Cells 2020; 9:cells9081791. [PMID: 32731393 PMCID: PMC7465640 DOI: 10.3390/cells9081791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disorder, characterized by cytoplasmic inclusions of RNA-binding protein TDP-43. Despite decades of research and identification of more than 50 genes associated with amyotrophic lateral sclerosis (ALS), the cause of TDP-43 translocation from the nucleus and its aggregation in the cytoplasm still remains unknown. Our study addressed the impact of selected ALS-associated genes on TDP-43 aggregation behavior in wild-type and aggregation prone TDP-43 in vitro cell models. These were developed by deleting TDP-43 nuclear localization signal and stepwise shortening its low-complexity region. The SH-SY5Y cells were co-transfected with the constructs of aggregation-prone TDP-43 and wild-type or mutant ALS-associated genes hnRNPA1, MATR3, VCP or UBQLN2. The investigated genes displayed a unique impact on TDP-43 aggregation, generating distinct types of cytoplasmic inclusions, similar to those already described as resembling prion strains, which could represent the basis for neurodegenerative disease heterogeneity.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (A.B.Č.); (H.M.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (A.B.Č.); (H.M.)
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia; (A.B.Č.); (H.M.)
- Biomedical Research Institute BRIS, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-477-3611
| |
Collapse
|
48
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
49
|
Phenotypic Suppression of ALS/FTD-Associated Neurodegeneration Highlights Mechanisms of Dysfunction. J Neurosci 2020; 39:8217-8224. [PMID: 31619490 DOI: 10.1523/jneurosci.1159-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A fundamental question regarding the etiology of amyotrophic lateral sclerosis (ALS) is whether the various gene mutations associated with the disease converge on a single molecular pathway or act through multiple pathways to trigger neurodegeneration. Notably, several of the genes and cellular processes implicated in ALS have also been linked to frontotemporal dementia (FTD), suggesting these two diseases share common origins with varied clinical presentations. Scientists are rapidly identifying ALS/FTD suppressors that act on conserved pathways from invertebrates to vertebrates to alleviate degeneration. The elucidation of such genetic modifiers provides insight into the molecular pathways underlying this rapidly progressing neurodegenerative disease, while also revealing new targets for therapeutic development.
Collapse
|
50
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|