1
|
Singh N, Lilge L. Light-based therapy of infected wounds: a review of dose considerations for photodynamic microbial inactivation and photobiomodulation. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:030901. [PMID: 39925694 PMCID: PMC11803141 DOI: 10.1117/1.jbo.30.3.030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Significance Chronic or surgical wound infections in healthcare remain a worldwide problem without satisfying options. Systemic or topical antibiotic use is an inadequate solution, given the increase in antimicrobial-resistant microbes. Hence, antibiotic-free alternatives are needed. Antimicrobial photodynamic inactivation (aPDI) has been shown to be effective in wound disinfection. Among the impediments to the wide utility of aPDI for wounds is the high variability in reported photosensitizer and light dose to be effective and unintentional detrimental impact on the wound closure rates. Additionally, the time required by the healthcare professional to deliver this therapy is excessive in the present form of delivery. Aim We reviewed the dose ranges for various photosensitizers required to achieve wound disinfection or sterilization while not unintentionally inhibiting wound closure through concomitant photobiomodulation (PBM) processes. Approach To allow comparison of aPDI or PBM administered doses, we employ a unified dose concept based on the number of absorbed photons per unit volume by the photosensitizer or cytochrome C oxidase for aPDI and PBM, respectively. Results One notes that for current aPDI protocols, the absorbed photons per unit volume for wound disinfection or sterilization can lead to inhibiting normal wound closure through PBM processes. Conclusion Options to reduce the dose discrepancy between effective aPDI and PBM are discussed.
Collapse
Affiliation(s)
- Nidhi Singh
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Lothar Lilge
- University of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
- University Health Network, Princess Margret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Cui M, Zhang J, Han P, Shi L, Li X, Zhang Z, Bao H, Ma Y, Tao Z, Dong X, Fu L, Wu Y. Two-dimensional nanomaterials: A multifunctional approach for robust for diabetic wound repair. Mater Today Bio 2024; 28:101186. [PMID: 39221220 PMCID: PMC11364902 DOI: 10.1016/j.mtbio.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic wounds pose a clinical challenge due to persistent inflammation, severe bacterial infections, inadequate vascularization, and pronounced oxidative stress. Current therapeutic modalities fail to provide satisfactory outcomes in managing these conditions, resulting in considerable patient distress. Two-dimensional nanomaterials (2DNMs), characterized by their unique nanosheet structures, expansive surface areas, and remarkable physicochemical properties, have garnered considerable attention for their potential in therapeutic applications. Emerging 2DNMs can be loaded with various pharmacological agents, including small molecules, metal ions, and liposomes. Moreover, they can be integrated with various biomaterials such as hydrogels, microneedles, and microspheres, thus demonstrating unprecedented advantages in expediting the healing process of diabetic wounds. Moreover, 2DNMs exhibit exceptional performance characteristics, including high biocompatibility, effective antimicrobial properties, optimal phototherapeutic effects, and enhanced electrostimulation capabilities. These properties enable them to modulate the wound microenvironment, leading to widespread application in tissue repair with remarkable outcomes. This review delineates several emerging 2DNMs, such as graphene and its derivatives, black phosphorus, MXenes, and transition metal dichalcogenides, in the context of diabetic wound repair. Furthermore, it elucidates the translational challenges and future perspectives of 2DNMs in wound healing treatments. Overall, 2DNMs present a highly promising strategy for ameliorating diabetic wounds, thus providing novel avenues for diagnostic and therapeutic strategies in diabetic wound management.
Collapse
Affiliation(s)
- Mingming Cui
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jin Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, Quzhou, 324004, China
| | - Pengfei Han
- Clinical Laboratory, Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Ling Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xing Li
- Department of Clinical Laboratory, The Quzhou Afiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, 324000, China
| | - Zhe Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Haihua Bao
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yubo Ma
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ziwei Tao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xianghui Dong
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Li Fu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
3
|
Karimi M, Sadeghi E, Zahedifar M, Mirzaei H, Nejati M, Hamblin MR. Green Synthesis of Au-Doped Tin Oxide Nanoparticles Using Teucrium Polium Extract with Potential Applications in Photodynamic Therapy. Photobiomodul Photomed Laser Surg 2024; 42:643-652. [PMID: 39315923 DOI: 10.1089/photob.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Objective: The green synthesis of Tin(IV) oxide (SnO2): Gold (Au) nanoparticles (NPs) using Teucrium polium medicinal plant extract was investigated, and the NPs were characterized and tested as photosensitizers to produce reactive oxygen species (ROS). Methods: The cytotoxic effect on C26 cells was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) technique. The results showed their toxicity in a dose-dependent manner. The green synthesis of SnO2:Au NPs was achieved for the first time using an extract of T. polium medicinal plant as a reducing and stabilizing agent. The produced NPs were examined for their application in photodynamic therapy (PDT) for cancer. Results: Methylene blue and anthracene were used to confirm that the photosensitizer could produce ROS when excited with UVA radiation. The anticancer activity of SnO2:Au was investigated in vitro using the C26 cell line and an MTT assay, showing that PDT with SnO2:Au NPs could inhibit cancer cell proliferation. Conclusions: The significant afterglow of the SnO2:Au NPs could cause the generation of ROS to continue several minutes after switching off the light source.
Collapse
Affiliation(s)
- Merat Karimi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Ehsan Sadeghi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Department of Physics, University of Kashan, Kashan, Iran
| | - Mostafa Zahedifar
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Department of Physics, University of Kashan, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Moloudi K, Azariasl S, Abrahamse H, George BP, Yasuda H. Expected role of photodynamic therapy to relieve skin damage in nuclear or radiological emergency: Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104517. [PMID: 39032581 DOI: 10.1016/j.etap.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Nuclear and radiological accidents can occur due to poor management, in transportation, radiation therapy and nuclear wards in hospitals, leading to extreme radiation exposure and serious consequences for human health. Additionally, in many of previous radiological accidents, skin damage was observed in patients and survivors due to the high radiation exposure. However, as part of a medical countermeasures in a nuclear/radiological emergency, it is critical to plan for the treatment of radiation-induced skin damage. Hence, the new, non-invasive technology of photodynamic therapy (PDT) is projected to be more effectively used for treating skin damage caused by high-dose radiation. PDT plays an important role in treating, repairing skin damage and promoting wound healing as evidenced by research. This review, highlighted and recommended potential impacts of PDT to repair and decrease radiation-induced skin tissue damage. Moreover, we have suggested some photosensitizer (PS) agent as radio-mitigator drugs to decrease radiobiological effects.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Samayeh Azariasl
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| |
Collapse
|
5
|
Yu E, Tai P, Perera F, Jordan K. Photodynamic Therapy Healing a Refractory Radiation-Induced Ulcer on the Chest Wall Postmastectomy Radiotherapy for Breast Cancer: A Case Report and Literature Overview. Cureus 2024; 16:e67962. [PMID: 39328646 PMCID: PMC11427079 DOI: 10.7759/cureus.67962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Photodynamic therapy (PDT) has been used to treat cancers. It has also been used to treat infectious diseases and inflammatory conditions. PDT promotes wound healing, while clinical use of PDT for wound healing is uncommon and not thoroughly investigated. We report a 75-year-old female with a radiation-induced non-healing ulcer for five years on the chest wall postmastectomy radiotherapy. Biopsy showed epidermal erosion with dermal inflammation but no recurrent cancer. She was referred from the wound care clinic after multiple unsuccessful attempts to manage wound healing for two years involving daily home nursing visits. PDT was discussed with the patient who consented to PDT instead of hyperbaric oxygen therapy (HBOT) for fear of its side effects. Her wound improved after a total of three treatments and the process of wound healing continued for 14 months since her first treatment session. The presented case supports the beneficial effects of PDT on chronic ulceration impeding healing of a postmastectomy radiotherapy wound. To our knowledge, this report is unique in documenting details of PDT healing a chronic refractory ulcer of five years, which developed after cancer therapy (mastectomy and radiotherapy). Further clinical study of PDT is needed on wound healing post-surgery and radiation in cancer patients. An overview of HBOT in comparison with PDT for wound healing is presented.
Collapse
Affiliation(s)
- Edward Yu
- Department of Oncology, Western University, London, CAN
| | - Patricia Tai
- Department of Oncology, University of Saskatchewan, Saskatoon, CAN
| | | | - Kevin Jordan
- Department of Oncology, Western University, London, CAN
| |
Collapse
|
6
|
Zhao H, Ren Y, Kou H, Zhang J, Zhang X. Increased CD56 expression after photodynamic therapy indicates an increased natural killer cell count following early photodynamic therapy for cutaneous squamous cell carcinoma. Oncol Lett 2024; 28:372. [PMID: 38910905 PMCID: PMC11190733 DOI: 10.3892/ol.2024.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/07/2024] [Indexed: 06/25/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common type of skin cancer. Photodynamic therapy (PDT) is a promising therapeutic method for managing cSCC due to its proven ability to target specific areas over time and its low risk of side effects. PDT may cause tissue damage and vascular shutdown, and may regulate local immunological responses. The present study aimed to investigate and compare the early lymphocyte modifications before and after PDT for SCC. A total of 10 patients with SCC were identified by pathological investigation. Initially, all wounds were treated with 20% aminolevulinic acid (ALA)-PDT as the initial stage in the therapeutic procedure. The wounds were treated by exposing them to red LED light with a wavelength of 635 nm, an energy density of 100 J/cm2 and an intensity of 80 mW/cm2. The tumor tissue was surgically removed 24 h later, and another round of PDT therapy was administered. Immunohistochemistry for CD3 and CD56 was conducted on the wound tissue post-surgery. If the wound showed granulation, necrosis or secretion, debridement was added to the therapy. All patients were monitored for 0.6-1.0 year post-treatment. ALA-PDT combination surgery fully controlled the tumor tissue in all 10 patients. The immunohistochemical analysis of the wound tissues showed that the expression of CD56 increased, while the expression of CD3 was not different after photodynamic therapy. These results also indirectly indicated that the overall count of NK cells in the 10 patients increased, nevertheless, there was no alteration in the T lymphocyte count. In conclusion, the ALA-PDT combination surgical therapy for cSCC demonstrates favorable results. An increase in CD56 expression may be a mechanism for the effective treatment of cSCC with PDT.
Collapse
Affiliation(s)
- Hongqing Zhao
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
- Department of Plastic and Cosmetic Surgery, Nanbu County People's Hospital, Nanchong, Sichuan 637300, P.R. China
| | - Yuan Ren
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
- Department of Plastic and Cosmetic Surgery, Army Medical University, Chongqing 400042, P.R. China
| | - Huiling Kou
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Junbo Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xingcun Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
7
|
Giannakopoulos E, Katopodi A, Rallis M, Politopoulos K, Alexandratou E. The effect of low-dose photodynamic therapy using the photosensitizer chloroaluminum phthalocyanine on a scratch wound model in skin fibroblasts. JOURNAL OF BIOPHOTONICS 2024:e202400033. [PMID: 38962832 DOI: 10.1002/jbio.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Different approaches on wound healing have been developed over the years but they suffer from high costs and adverse effects for the patients. The current paper was designed to study low dose PDT, a novel healing approach, in an in vitro fibroblasts wound healing model. Chloroaluminum phthalocyanine (AlClPc) was used as photosensitizer and was activated by a red diode laser at 661 nm. After PDT optimization, wound closure rate and reactive oxygen species were quantified by image processing and analysis. Our results revealed that wound healing rates were significantly higher in PDT treated groups than in the control. Additionally, the study revealed that a prolonged ROS increase did not promote wound closure, while a small increase acted as a trigger, resulting in faster wound closure. Concluding, low dose PDT using AlClPc enhances wound healing in vitro in a ROS dependent manner, allowing the assumption of similar positive effects in vivo.
Collapse
Affiliation(s)
- Efstathios Giannakopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Annita Katopodi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Michail Rallis
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
8
|
Khorsandi K, Fekrazad R. Skin wound healing in diabetic rat model using low-dose photodynamic therapy. Biotechnol Appl Biochem 2024; 71:681-690. [PMID: 38409884 DOI: 10.1002/bab.2568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/20/2024] [Indexed: 02/28/2024]
Abstract
Chronic wound is one of the major challenges in medicine and imposes a heavy financial burden on the healthcare of different countries. Diabetic foot ulcers as one of the important examples for chronic wounds can lead to lower limb amputation, disability, and death in diabetics. In this regard, novel technology with low side effects got attention in recent years. Low-dose photodynamic therapy (LDPDT) is one of the noninvasive techniques that can be considered for wound healing in diabetic wounds. In this experiment, we aim to study the effect of LDPDT on diabetic rats' wound healing and compare it to healthy rats. In this in vitro experimental study, 32 male rats were used. Rats in both normal and diabetic (streptozotocin injection) groups after being wounded (two wounds [0.8 × 0.8 cm]) on the back of each rat were randomly divided into four groups, including the control group (without treatment), radiation-only (660 nm-1 J/cm2) group, 5-ALA-only (1 µg/mL) group, and LDPDT-recipient group. The procedure has been done for 2 days, and at the end of Days 3, 7, 14, and 21, the wound sample was sent to the histopathology laboratory, and the wound size and tissue indices in these groups were evaluated by histology and microscopy techniques. The impact of low concentrations of 5-ALA and low irradiation energy density in both normal and diabetic rats were positive, which accelerated the wound-healing process as seen in the histology study. In diabetic rats treated with only radiation and LDPDT, the process of epithelial regeneration, collagen production, reduction of mast cells, and production of follicles was more as compared to the normal group. The results suggest that LDPDT can have a positive impact on the diabetic rat model wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
9
|
Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. Int J Mol Sci 2024; 25:4674. [PMID: 38731893 PMCID: PMC11083137 DOI: 10.3390/ijms25094674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.
Collapse
Affiliation(s)
- Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan;
| | - Sadayuki Shigeki
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan
| |
Collapse
|
10
|
Chen P, Zou Y, Liu Y, Han W, Zhang M, Wu Y, Yin R. Low-level photodynamic therapy in chronic wounds. Photodiagnosis Photodyn Ther 2024; 46:104085. [PMID: 38614272 DOI: 10.1016/j.pdpdt.2024.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Chronic wounds refer to those that can't reconstruct anatomical and physical functional integrity, and are usually associated with signs of microbial infection. Current therapies include debridement and dressing change, local or systemic application of antibiotics, and medical dressing care, which are not ideal for the healing of chronic wounds. OBJECTIVE To explore the efficacy and safety of photodynamic therapy (ALA-PDT) for the treatment of chronic infectious wounds. MATERIALS AND METHODS ALA-PDT was used in ten patients with persistent wound infections and systemic complications who did not respond to conventional treatment. 5 % ALA solution was applied to the wound surface after debridement, incubated for 3 h with light protection, and then irradiated with red light for 20 min. This procedure was repeated every two weeks, and any adverse reactions were recorded. After the end of three treatments, the patients were followed up for 3 months. RESULTS Patients who exhibit resistance to traditional therapies demonstrate a favorable therapeutic outcome with ALA-PDT, although complications may impede wound healing. All participants successfully underwent ALA-PDT treatment and subsequent monitoring, with 90 % achieving complete healing. Common adverse reactions to ALA-PDT encompass treatment-related pain, temporary erythema, and swelling, all of which are well-tolerated by patients without enduring severe consequences. CONCLUSIONS ALA-PDT proves to be an efficacious intervention for managing chronic wounds, irrespective of the presence of localized infections or systemic complications.
Collapse
Affiliation(s)
- Pan Chen
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yongzhen Zou
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueling Liu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Weidong Han
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yaguang Wu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Dermatology, Southwest Hospital Jiangbei Area (The 958th Hospital of Chinese People's Liberation Army), Chongqing, 400020, China.
| |
Collapse
|
11
|
Teranishi R, Ozawa T, Katayama B, Shimojo Y, Ito N, Awazu K, Tsuruta D. Effect of photodynamic therapy with 5-aminolevulinic acid and EDTA-2Na against mixed infection of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12959. [PMID: 38528712 DOI: 10.1111/phpp.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND The increasing abundance of drug-resistant bacteria is a global threat. Photodynamic therapy is an entirely new, non-invasive method for treating infections caused by antibiotic-resistant strains. We previously described the bactericidal effect of photodynamic therapy on infections caused by a single type of bacterium. We showed that gram-positive and gram-negative bacteria could be killed with 5-aminolevulic acid and 410 nm light, respectively. However, clinically, mixed infections are common and difficult to treat. OBJECTIVE We investigated the bactericidal effects of photodynamic therapy on mixed infections of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. METHODS We compared bacterial growth with and without photodynamic therapy in vitro. Then, in vivo, we studied mixed infections in a mouse skin ulcer model. We evaluated the rates of ulcer area reduction and transitions to healing in treated and untreated mice. In addition, a comparison was made between PDT and existing topical drugs. RESULTS We found that photodynamic therapy markedly reduced the growth of both methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, in culture, and it reduced the skin ulcer areas in mice. PDT was also more effective than existing topical medicines. CONCLUSION This study showed that photodynamic therapy had antibacterial effects against a mixed infection of gram-positive and gram-negative bacteria, and it promoted skin ulcer healing. These results suggested that photodynamic therapy could be effective in both single- and mixed-bacterial infections.
Collapse
Affiliation(s)
- Rie Teranishi
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Bunpei Katayama
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yu Shimojo
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nobuhisa Ito
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan
| | - Kunio Awazu
- Medical Beam Physics Laboratory, Osaka University Graduate School of Engineering, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Gao M, Guo H, Dong X, Wang Z, Yang Z, Shang Q, Wang Q. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement. Front Pharmacol 2024; 15:1345779. [PMID: 38425646 PMCID: PMC10901993 DOI: 10.3389/fphar.2024.1345779] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
A wound takes a long time to heal and involves several steps. Following tissue injury, inflammation is the primary cause of tissue regeneration and repair processes. As a result, the pathophysiological processes involving skin damage, healing, and remodeling depend critically on the control of inflammation. The fact that it is a feasible target for improving the prognosis of wound healing has lately become clear. Mesenchymal stem cells (MSCs) are an innovative and effective therapeutic option for wound healing due to their immunomodulatory and paracrine properties. By controlling the inflammatory milieu of wounds through immunomodulation, transplanted MSCs have been shown to speed up the healing process. In addition to other immunomodulatory mechanisms, including handling neutrophil activity and modifying macrophage polarization, there may be modifications to the activation of T cells, natural killer (NK) cells, and dendritic cells (DCs). Furthermore, several studies have shown that pretreating MSCs improves their ability to modulate immunity. In this review, we summarize the existing knowledge about how MSCs influence local inflammation in wounds by influencing immunity to facilitate the healing process. We also provide an overview of MSCs optimizing techniques when used to treat wounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiying Wang
- Department of Plastic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Su R, Su W, Cai J, Cen L, Huang S, Wang Y, Li P. Photodynamic antibacterial application of TiO 2/curcumin/hydroxypropyl-cyclodextrin and its konjac glucomannan composite films. Int J Biol Macromol 2024; 254:127716. [PMID: 37924903 DOI: 10.1016/j.ijbiomac.2023.127716] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Although photodynamic therapy (PDT) has great advantages for the treatment of bacterial infections, photosensitizers (PSs) often have many disadvantages that limit their application. Improving the shortcomings of PSs and developing efficient PDT antimicrobial materials remain serious challenges. In this study, a nanocomposite drug (TiO2/curcumin/hydroxypropyl-cyclodextrin, TiO2/Cur/HPCD) was constructed and combined with konjac glucomannan to form composite films (TiO2/Cur/HPCD films, KTCHD films). The stabilities of TiO2 and Cur were improved in the presence of HPCD. The particle size of TiO2/Cur/HPCD was approximately 33.9 nm, and the addition of TiO2/Cur/HPCD enhanced the mechanical properties of the films. Furthermore, TiO2/Cur/HPCD and KTCHD films exhibited good biocompatibility and PDT antibacterial effects. The antibacterial rate of TiO2/Cur/HPCD was 74.46 % against MRSA at 500 μg/mL and 99.998 % against E. coli at 400 μg/mL, while it was adsorbed on the surface of bacteria to improve the effectiveness of the treatment. In addition, studies in mice confirmed that TiO2/Cur/HPCD and KTCHD films can treat bacterial infections and promote wound healing, with a highest wound healing rate of 84.6 % in the KTCHD-10 films + Light group on day 12. Overall, TiO2/Cur/HPCD is a promising nano-antibacterial agent and KTCHD films have the potential to be employed as antibacterial and environment-friendly trauma dressings.
Collapse
Affiliation(s)
- Rixiang Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China; Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Jinyun Cai
- Guangxi University of Chinese Medicine, Nanning, China
| | - Lei Cen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | | | - Yu Wang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
14
|
Sun D, Guo K, Liu N, Li Y, Li Y, Hu Y, Li S, Fu Z, Wang Y, Wu Y, Zhang Y, Li J, Li C, Wang Z, Kang Z, Sun J, Wang Y, Yang X. Peptide RL-QN15 promotes wound healing of diabetic foot ulcers through p38 mitogen-activated protein kinase and smad3/miR-4482-3p/vascular endothelial growth factor B axis. BURNS & TRAUMA 2023; 11:tkad035. [PMID: 38026443 PMCID: PMC10654477 DOI: 10.1093/burnst/tkad035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/31/2023] [Accepted: 06/18/2023] [Indexed: 12/01/2023]
Abstract
Background Wound management of diabetic foot ulcers (DFUs) is a complex and challenging task, and existing strategies fail to meet clinical needs. Therefore, it is important to develop novel drug candidates and discover new therapeutic targets. However, reports on peptides as molecular probes for resolving issues related to DFUs remain rare. This study utilized peptide RL-QN15 as an exogenous molecular probe to investigate the underlying mechanism of endogenous non-coding RNA in DFU wound healing. The aim was to generate novel insights for the clinical management of DFUs and identify potential drug targets. Methods We investigated the wound-healing efficiency of peptide RL-QN15 under diabetic conditions using in vitro and in vivo experimental models. RNA sequencing, in vitro transfection, quantitative real-time polymerase chain reaction, western blotting, dual luciferase reporter gene detection, in vitro cell scratches, and cell proliferation and migration assays were performed to explore the potential mechanism underlying the promoting effects of RL-QN15 on DFU repair. Results Peptide RL-QN15 enhanced the migration and proliferation of human immortalized keratinocytes (HaCaT cells) in a high-glucose environment and accelerated wound healing in a DFU rat model. Based on results from RNA sequencing, we defined a new microRNA (miR-4482-3p) related to the promotion of wound healing. The bioactivity of miR-4482-3p was verified by inhibiting and overexpressing miR-4482-3p. Inhibition of miR-4482-3p enhanced the migration and proliferation ability of HaCaT cells as well as the expression of vascular endothelial growth factor B (VEGFB). RL-QN15 also promoted the migration and proliferation ability of HaCaT cells, and VEGFB expression was mediated via inhibition of miR-4482-3p expression by the p38 mitogen-activated protein kinase (p38MAPK) and smad3 signaling pathways. Conclusions RL-QN15 is an effective molecule for the treatment of DFUs, with the underlying mechanism related to the inhibition of miR-4482-3p expression via the p38MAPK and smad3 signaling pathways, ultimately promoting re-epithelialization, angiogenesis and wound healing. This study provides a theoretical basis for the clinical application of RL-QN15 as a molecular probe in promoting DFU wound healing.
Collapse
Affiliation(s)
- Dandan Sun
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Kun Guo
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yuansheng Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yan Hu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhuo Wang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zijian Kang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jun Sun
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan MinZu University, No. 2929 Yuehua Street, Chenggong District, Kunming, 650504, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology and & Embryology, Faculty of Basic Medical Science, Kunming Medical University, No. 1168 Chunrong West Road, Chenggong District, Kunming, 650500, Yunnan, China
| |
Collapse
|
15
|
Minagawa E, Yamauchi N, Taguchi Y, Umeda M. Photodynamic reactions using high-intensity red LED promotes gingival wound healing by ROS induction. Sci Rep 2023; 13:17081. [PMID: 37816801 PMCID: PMC10564724 DOI: 10.1038/s41598-023-43966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
Photodynamic therapy is a treatment that combines a light source with a photosensitizer. LEDs have attracted considerable attention in clinical dentistry because they are inexpensive and safe to use. Although the interaction between photosensitizers and LEDs in dental practice is effective for treating periodontal disease by killing periodontopathic bacteria, little is known about the effects of LEDs on human gingival fibroblasts (HGnFs), which play an important role in gingival wound healing. In this study, we investigated the effects of high-intensity red LED irradiation on HGnFs after the addition of methylene blue (MB), one of the least harmful photosensitizers, on wound healing and reactive oxygen species (ROS) production induced by photodynamic reactions. We found that irradiation of MB with high-intensity red LED at controlled energy levels promoted cell proliferation, migration, and production of wound healing factors. Furthermore, ROS production by a photodynamic reaction enabled the translocation of phosphorylated Grb2-associated binder-1, activating Extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase signals. Our findings suggest that proper control of ROS production has a beneficial effect on gingival fibroblasts, which constitute periodontal tissue, from the perspective of gingival wound healing.
Collapse
Affiliation(s)
- Emika Minagawa
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan.
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, Japan
| |
Collapse
|
16
|
Meng S, Wu H, Xiao D, Lan S, Dong A. Recent advances in bacterial cellulose-based antibacterial composites for infected wound therapy. Carbohydr Polym 2023; 316:121082. [PMID: 37321715 DOI: 10.1016/j.carbpol.2023.121082] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Wound infection arising from pathogenic bacteria brought serious trouble to the patient and medical system. Among various wound dressings that are effective in killing pathogenic bacteria, antimicrobial composites based on bacterial cellulose (BC) are becoming the most popular materials due to their success in eliminating pathogenic bacteria, preventing wound infection, and promoting wound healing. However, as an extracellular natural polymer, BC is not inherently antimicrobial, which means that it must be combined with other antimicrobials to be effective against pathogens. BC has many advantages over other polymers, including nano-structure, significant moisture retention, non-adhesion to the wound surface, which has made it superior to other biopolymers. This review introduces the recent advances in BC-based composites for the treatment of wound infection, including the classification and preparation methods of composites, the mechanism of wound treatment, and commercial application. Moreover, their wound therapy applications include hydrogel dressing, surgical sutures, wound healing bandages, and patches are summarized in detail. Finally, the challenges and future prospects of BC-based antibacterial composites for the treatment of infected wounds are discussed.
Collapse
Affiliation(s)
- Suriguga Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| | - Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
17
|
Petrini M, D’Amico E, Pierfelice TV, Aceto GM, Karaban M, Felice P, Piattelli A, Barone A, Iezzi G. Photodynamic Therapy with Aminolevulinic Acid Enhances the Cellular Activity of Cells Cultured on Porcine Acellular Dermal Matrix Membranes Used in Periodontology. Gels 2023; 9:584. [PMID: 37504463 PMCID: PMC10379034 DOI: 10.3390/gels9070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
This study aims to test a photodynamic protocol based on a gel containing aminolevulinic acid followed by red-LED (ALAD-PDT) irradiation on human gingival fibroblasts (hGFs) and osteoblasts (hOBs) cultured on a porcine acellular dermal matrix membrane (PADMM). In the previous literature, ALAD-PDT showed solid antibacterial activity and proliferative induction on HGFs cultured on plates and HOBs cultured on a cortical lamina. PADMMs are used in dentistry and periodontology to treat gingival recessions and to increase the tissue thickness in the case of a thin biotype without the risks or postoperative discomfort associated with connective tissue grafts. However, one of the possible complications in this type of surgery is represented by bacterial invasion and membrane exposition during the healing period. We hypothesized that the addition of ALAD-PDT to PADMMs could enhance more rapid healing and decrease the risks connected with bacterial invasion. In periodontal surgery, PADMMs are inserted after a full-thickness flap elevation between the bone and the flap. Consequently, all procedures were performed in parallel on hOBs and hGFs obtained by dental patients. The group control (CTRL) was represented by the unexposed cells cultured on the membranes, group LED (PDT) were the cells subjected to 7 min of red LED irradiation, and ALAD-PDT were the cells subjected to 45 min of ALAD incubation and then to 7 min of red LED irradiation. After treatments, all groups were analyzed for MTT assay and subjected to histological examination at 3 and 7 days and to the SEM observations at 3, 7, and 14 days. Different bone mineralization assays were performed to quantify the effects of ALAD-PDT on hOBs: ALP activity, ALP gene expression, osteocalcin, and alizarin red. The effects of ALAD-PDT on hGFs were evaluated by quantifying collagen 1, fibronectin, and MMP-8. Results showed that ALAD-PDT promoted cellular induction, forming a dense cellular network on hOBs and hGFs, and the assays performed showed statistically significantly higher values for ALAD-PDT with respect to LED alone and CTRLs. In conclusion, ALAD-PDT could represent a promising aid for enhancing the healing of gingival tissues after PADMM applications.
Collapse
Affiliation(s)
- Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (E.D.); (T.V.P.); (G.M.A.); (G.I.)
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (E.D.); (T.V.P.); (G.M.A.); (G.I.)
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (E.D.); (T.V.P.); (G.M.A.); (G.I.)
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (E.D.); (T.V.P.); (G.M.A.); (G.I.)
| | - Maryia Karaban
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.K.); (P.F.)
| | - Pietro Felice
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (M.K.); (P.F.)
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Antonio Barone
- Department of Surgical, Medical, Molecular Pathologies and of the Critical Needs, School of Dentistry, University of Pisa, 56126 Pisa, Italy;
- Complex Unit of Stomatology and Oral Surgery, University Hospital of Pisa, 56126 Pisa, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (E.D.); (T.V.P.); (G.M.A.); (G.I.)
| |
Collapse
|
18
|
Intan PR, Noviantari A, Alegantina S. Response to Article "Evaluation of the Antioxidant and Wound Healing Properties of 80% Methanol Extract and Solvent Fractions of the Leaves of Vernonia auriculifera Hiern. (Asteraceae)" [Letter]. Clin Cosmet Investig Dermatol 2023; 16:1107-1108. [PMID: 37123624 PMCID: PMC10145366 DOI: 10.2147/ccid.s417345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Putri Reno Intan
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong - Bogor, West Java, Indonesia
- Correspondence: Putri Reno Intan, Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Genomic Building, Cibinong Science Center, Jalan Raya Bogor Km. 46, Cibinong - Bogor, West Java, 16911, Indonesia, Email
| | - Ariyani Noviantari
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong - Bogor, West Java, Indonesia
| | - Sukmayati Alegantina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong - Bogor, West Java, Indonesia
| |
Collapse
|
19
|
Adverse Effect of Blue Light on DNA Integrity Is Accelerated by 5-Aminolevulinic Acid in HaCaT Human Keratinocyte Cells and B16F1 Murine Melanoma Cells. BIOLOGY 2022; 11:biology11121743. [PMID: 36552253 PMCID: PMC9774801 DOI: 10.3390/biology11121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Several studies have suggested the potential benefits of 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT). 5-ALA is a precursor of heme, which generates reactive oxygen species (ROS) following photoirradiation. Some reports indicate that blue light induces intracellular ROS production. In the present study, we elucidated the effects of blue light and 5-ALA on DNA integrity in B16F1 murine melanoma and human keratinocyte HaCaT cells using a variety of comet assay techniques. Co-treatment with blue light and 5-ALA significantly decreased cell viability in both cell lines. A neutral comet assay was performed to assess DNA double-strand break (DSB) formation and blue light and 5-ALA caused DSBs. We also performed an alkali comet assay to detect single-strand breaks (SSB) and alkali labile sites (ALS). The results indicated that 5-ALA accelerated blue light-induced SSB formation. In addition, modified comet assays were done using two types of enzymes to evaluate oxidative DNA damages. The results indicated that blue light and 5-ALA generated oxidized purine and pyrimidines in both cell lines. In summary, co-treatment with 5-ALA and photoirradiation may cause unexpected DNA damage in cells and tissues.
Collapse
|
20
|
Chen D, Li Q, Zhang H, Kou F, Li Q, Lyu C, Wei H. Traditional Chinese medicine for hypertrophic scars—A review of the therapeutic methods and potential effects. Front Pharmacol 2022; 13:1025602. [PMID: 36299876 PMCID: PMC9589297 DOI: 10.3389/fphar.2022.1025602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic scar (HS) is a typical pathological response during skin injury, which can lead to pain, itching, and contracture in patients and even affect their physical and mental health. The complexity of the wound healing process leads to the formation of HS affected by many factors. Several treatments are available for HS, whereas some have more adverse reactions and can even cause new injuries with exacerbated scarring. Traditional Chinese Medicine (TCM) has a rich source, and most botanical drugs have few side effects, providing new ideas and methods for treating HS. This paper reviews the formation process of HS, the therapeutic strategy for HS, the research progress of TCM with its relevant mechanisms in the treatment of HS, and the related new drug delivery system of TCM, aiming to provide ideas for further research of botanical compounds in the treatment of HS, to promote the discovery of more efficient botanical candidates for the clinical treatment of HS, to accelerate the development of the new drug delivery system and the final clinical application, and at the same time, to promote the research on the anti-HS mechanism of multiherbal preparations (Fufang), to continuously improve the quality control and safety and effectiveness of anti-HS botanical drugs in clinical application.
Collapse
Affiliation(s)
- Daqin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huimin Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Kou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Qinghai Province Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Chunming Lyu, ; Hai Wei,
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chunming Lyu, ; Hai Wei,
| |
Collapse
|
21
|
Du L, Zeng D, Hu X, Ren X, He D. The efficacy of autologous platelet-rich gel and traditional Chinese medicine in diabetic foot treatment: a parallel randomized controlled clinical trial. Ann Vasc Surg 2022; 87:529-537. [PMID: 36064130 DOI: 10.1016/j.avsg.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Diabetic Foot (DF) is a prevalent metabolic infection. DF wounds are the basis for all cases of non-traumatic lower limbs amputations in diabetes. DF care approaches include debridement of wound, pressure relief in the wounded area, proper wound, infection and ischemia management. However, there is a need for research to develop more effective therapeutic approaches. This study investigated the effectivity and safety of autologous platelet-rich gel combined with conventional treatment and traditional Chinese medicine (TCM) in diabetic foot ulcers therapy. METHODS Sixty diabetic foot ulcer patients were divided into treatment and control groups of 30 patients each. The treatment group involved a combination of autologous platelet-rich gel, conventional treatment, and TCM. The control group was only treated with a combination of conventional therapy and TCM. Laboratory variables, including platelets, hemoglobin, albumin, and HbA1c, were analyzed and compared between treatment and control groups at baseline and end-point. Healing area, volume, and rates were compared in both groups. RESULTS basic patients' data and the wound conditions had no significant difference between treatment and control group. The treatment and control groups cure rates were 93.3% vs. 50%, respectively. The healing rate per two weeks was significantly higher in the treatment than in control group (0.78±0.05 vs. 0.43±0.04). There was no statistically significant difference in the platelets, hemoglobin, albumin, and HbA1c levels in the treatment and control groups. CONCLUSION Autologous platelet-rich gel combined with conventional treatment and traditional Chinese medicine (TCM) is effective and safe for diabetic foot ulcers treatment.
Collapse
Affiliation(s)
- Liangliang Du
- Department of Endocrinology, Yueyang Hospital of Traditional Chinese Medicine, No.269 Fengqiao Lake Road, Yueyang City, Hunan Province
| | - Douyun Zeng
- Department of Endocrinology, Yueyang Hospital of Traditional Chinese Medicine, No.269 Fengqiao Lake Road, Yueyang City, Hunan Province
| | - Xian Hu
- Department of Endocrinology, Yueyang Hospital of Traditional Chinese Medicine, No.269 Fengqiao Lake Road, Yueyang City, Hunan Province
| | - Xi Ren
- Department of Endocrinology, Yueyang Hospital of Traditional Chinese Medicine, No.269 Fengqiao Lake Road, Yueyang City, Hunan Province
| | - Dazhi He
- Department of Endocrinology, Yueyang Hospital of Traditional Chinese Medicine, No.269 Fengqiao Lake Road, Yueyang City, Hunan Province.
| |
Collapse
|
22
|
Ning X, He G, Zeng W, Xia Y. The photosensitizer-based therapies enhance the repairing of skin wounds. Front Med (Lausanne) 2022; 9:915548. [PMID: 36035433 PMCID: PMC9403269 DOI: 10.3389/fmed.2022.915548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Wound repair remains a clinical challenge and bacterial infection is a common complication that may significantly delay healing. Therefore, proper and effective wound management is essential. The photosensitizer-based therapies mainly stimulate the photosensitizer to generate reactive oxygen species through appropriate excitation source irradiation, thereby killing pathogenic microorganisms. Moreover, they initiate local immune responses by inducing the recruitment of immune cells as well as the production of proinflammatory cytokines. In addition, these therapies can stimulate the proliferation, migration and differentiation of skin resident cells, and improve the deposition of extracellular matrix; subsequently, they promote the re-epithelialization, angiogenesis, and tissue remodeling. Studies in multiple animal models and human skin wounds have proved that the superior sterilization property and biological effects of photosensitizer-based therapies during different stages of wound repair. In this review, we summarize the recent advances in photosensitizer-based therapies for enhancing tissue regeneration, and suggest more effective therapeutics for patients with skin wounds.
Collapse
Affiliation(s)
- Xiaoying Ning
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Gang He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yumin Xia,
| |
Collapse
|
23
|
Cellular Mechanisms in Acute and Chronic Wounds after PDT Therapy: An Update. Biomedicines 2022; 10:biomedicines10071624. [PMID: 35884929 PMCID: PMC9313247 DOI: 10.3390/biomedicines10071624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
PDT is a two-stage treatment that combines light energy with a photosensitizer designed to destroy cancerous and precancerous cells after light activation. Photosensitizers are activated by a specific wavelength of light energy, usually from a laser. The photosensitizer is nontoxic until it is activated by light. However, after light activation, the photosensitizer becomes toxic to the targeted tissue. Among sensitizers, the topical use of ALA, a natural precursor of protoporphyrin IX, a precursor of the heme group, and a powerful photosensitizing agent, represents a turning point for PDT in the dermatological field, as it easily absorbable by the skin. Wound healing requires a complex interaction and coordination of different cells and molecules. Any alteration in these highly coordinated events can lead to either delayed or excessive healing. The goal of this review is to elucidate the cellular mechanisms involved, upon treatment with ALA-PDT, in chronic wounds, which are often associated with social isolation and high costs in terms of care.
Collapse
|
24
|
Effects of ALA-PDT on the macrophages in wound healing and its related mechanisms in vivo and in vitro. Photodiagnosis Photodyn Ther 2022; 38:102816. [PMID: 35378277 DOI: 10.1016/j.pdpdt.2022.102816] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Several studies have suggested the effectiveness of photodynamic therapy (PDT) for wound healing. Macrophages are critical immune cells necessary for regulated inflammation during wound repair. However, the available information regarding the effects of PDT on macrophages during cutaneous wound healing remains insufficient. This study aimed to further investigate these aspects in vivo and in vitro. METHODS Mouse full-thickness wound models were used as the study samples to investigate the therapeutic effects and mechanisms of 5-aminolevulinic acid (ALA) PDT. Wound healing rate, granulation tissue formation, local inflammation, M1/M2 macrophages differentiation, were measured at different time points treated by ALA-PDT. The polarization of macrophages induced by ALA-PDT was further evaluated in vitro using PCR and western blot analysis. RESULTS ALA-PDT could promote formation of granulation tissue, increase inflammatory infiltration and activate M1 macrophages in the early stage of injury. While, ALA-PDT could also facilitate absorption of granulation tissue, inhibit inflammatory infiltration and enhance M2 macrophages polarization in the later stage of wound repair. In vitro, ALA-PDT could modulate the ratio of M2 polarization to M1 polarization via NF-κB signaling pathway. CONCLUSIONS ALA-PDT topical application stimulates wound healing by regulating formation of granulation tissue, inflammatory process and M1/M2 macrophages differentiation. The study places a preliminary theoretical basis for topical ALA-PDT to be administered clinically in cutaneous wounds healing.
Collapse
|
25
|
Liu M, Liu Z, Chen Y, Peng S, Yang J, Chen C, Wang J, Shang R, Tang Y, Huang Y, Zhang X, Hu X, Liou YC, Luo G, He W. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization. Stem Cell Res Ther 2022; 13:121. [PMID: 35313958 PMCID: PMC8935714 DOI: 10.1186/s13287-022-02783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background Efficient re-epithelialization is important for successful skin wound healing. The proportion of epidermal stem cells (EpSCs) and dendritic epidermal T cells (DETCs) determines the extent of wound re-epithelialization, especially in large areas of skin tissue loss. However, it remains unknown whether and how DETCs regulate the status of EpSCs to impact wound re-epithelialization. Methods To investigate how DETCs regulate EpSCs in skin re-epithelialization, we utilized normal or full-thickness skin deficient wide type (WT) mice and Tcrσ knockout (Tcrσ−/−) mice with DETCs or DETCs-derived exosomes (Exos) treatment. Flow cytometry analysis (FCAS), BrdU labelled experiments, immunofluorescence and immunohistochemical assays were performed to detect the proportion of EpSCs in the epidermis. Wound closure rate and re-epithelialization were assayed by a macroscopical view and hematoxylin–eosin (H&E) staining. EpSCs in vitro were co-cultured with DETCs in a transwell-dependent or -independent manner, or supplement with GW4869 or Exos (5 µg/mL, 15 µg/mL and 45 µg/mL), and the proliferation of EpSCs was detected by means of FCAS and CFSE. Results Our data showed that the proportion of CD49fbriCD71dim cells, K15+ cells and BrdU+ cells in the normal epidermis of Tcrδ−/− mice had no significant difference compared to WT mice. For wounded Tcrδ−/− mice, DETCs treatment increase the proportion of CD49fbriCD71dim cells, K15+ cells and BrdU+ cells in the epidermis around the wound in comparison to PBS treatment. DETCs significantly increased the number of CD49fbriCD7dim cells and K15+ cells through transwell-dependent or -independent manners relative to control group. Furthermore, Exos stimuli remarkedly promote the proliferation of EpSCs compared to control group, while the increasement was suppressed when DETCs were interfered with GW4869. Gross observation and H&E staining showed that Exos significantly accelerated wound closure and increased re-epithelialization length in Tcrδ−/− mice when compared to control mice. Additionally, we found in vivo that Exos observably facilitated the proliferation of CD49fbriCD7dim cells and K15+ cells. Conclusions We revealed that DETCs enhanced the proliferation of EpSCs in the epidermis around the wounds to accelerate re-epithelialization in which Exos played important roles in the remote regulation of EpSCs proliferation. Together, these findings suggest a mechanistic link among DETC-derived exosomes, the proliferation of EpSCs, and wound re-epithelialization in the skin.
Collapse
Affiliation(s)
- Mian Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Shiya Peng
- Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Academy of Biological Engineering, Chongqing University, Chongqing, 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yih-Cherng Liou
- Department Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| |
Collapse
|
26
|
Zuhayri H, Nikolaev VV, Lepekhina TB, Sandykova EA, Krivova NA, Kistenev YV. The In Vivo Quantitative Assessment of the Effectiveness of Low-Dose Photodynamic Therapy on Wound Healing Using Optical Coherence Tomography. Pharmaceutics 2022; 14:399. [PMID: 35214134 PMCID: PMC8877015 DOI: 10.3390/pharmaceutics14020399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The effect of low-dose photodynamic therapy on in vivo wound healing was investigated using optical coherence tomography. This work aims to develop an approach to quantitative assessment of the wound's state during wound healing including the effect of low-dose photodynamic therapy using topical application of two different photosensitizers, 5-aminolevulinic acid and methylene blue, and two laser doses of 1 J/cm2 and 4 J/cm2. It was concluded that the laser dose of 4 J/cm2 was better compared to 1 J/cm2 and allowed the wound healing process to accelerate.
Collapse
Affiliation(s)
| | | | | | | | | | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Lenin Ave. 36, 634050 Tomsk, Russia; (H.Z.); (V.V.N.); (T.B.L.); (E.A.S.); (N.A.K.)
| |
Collapse
|
27
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|