1
|
Dou J, Xiao H, Chen Y, Han W, Zhang S, Wu D, Chen S, Ma Y, Cai Z, Luan Q, Cui L. Diesel exhaust promoted diethylnitrosamine-induced hepatocarcinogenesis in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138219. [PMID: 40220387 DOI: 10.1016/j.jhazmat.2025.138219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Exposure to diesel exhaust (DE) has been linked to an increased risk of various cancers, including liver cancer. However, the underlying mechanisms driving this association remain insufficiently understood. In this study, we employed a diethylnitrosamine (DEN)-induced mouse liver tumor model and conducted a 19-week combined exposure (750 μg/m3) using a DE exposure system. Our results demonstrated that long-term DE exposure activates cancer-related genes and enhances the formation of DEN-induced liver tumors. Compared to the DEN group, mice in the DEN + diesel exhaust exposure (DEE) group exhibited lower body weight, higher tumor formation rates and more severe DNA damage. The tumor-promoting effect of DE may be associated with the upregulation of SEMA4D and the activation of the PI3K/AKT signaling pathway. Additionally, liver cells in the DEE group exhibited nuclear atypia, a characteristic feature of cancerous transformation. In vitro studies have revealed that exposure to diesel exhaust particles (DEP) promotes the proliferation of HepG2 cells and HUH7 cells by upregulating SEMA4D and activating the PI3K/AKT signaling pathway. This effect was attenuated by inhibiting either SEMA4D or PI3K. This study was the first to identify that DE exposure promotes the development of DEN-induced liver tumors in mice, with the mechanism potentially involving the SEMA4D/PI3K/AKT pathway. These findings provide novel insights into the hepatotoxic effects of DE and highlight the need for further investigation into its carcinogenic potential.
Collapse
Affiliation(s)
- Junjie Dou
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Hua Xiao
- Department of Occupational disease, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Wei Han
- Department of General Practice, Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Dong Wu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Sixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yuanyuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Zhengguo Cai
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Qi Luan
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Koutros S, Graubard B, Bassig BA, Vermeulen R, Appel N, Hyer M, Stewart PA, Silverman DT. Diesel Exhaust Exposure and Cause-Specific Mortality in the Diesel Exhaust in Miners Study II (DEMS II) Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87003. [PMID: 37549097 PMCID: PMC10406173 DOI: 10.1289/ehp12840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND With the exception of lung cancer, the health effects associated with diesel exhaust for other cancers and nonmalignant health outcomes are not well understood. OBJECTIVES We extended the mortality follow-up of the Diesel Exhaust in Miners Study, a cohort study of 12,315 workers, by 18 y (ending 31 December 2015), more than doubling the number of observed deaths to n = 4,887 , to evaluate associations between mortality and diesel exhaust exposure. METHODS Quantitative estimates of historical exposure to respirable elemental carbon (REC), a surrogate for diesel exhaust, were created for all jobs, by year and facility, using measurements collected from each mine, as well as historical measurements. Standardized mortality ratios (SMRs) and hazard ratios (HRs) were estimated for the entire cohort and by worker location (surface, underground). RESULTS We observed an excess of death for cancers of the lung, trachea, and bronchus (n = 409 ; SMR = 1.24 ; 95% CI: 1.13, 1.37). Among workers who ever worked underground, where the majority of diesel exposure occurred, excess deaths were evident for lung, trachea, and bronchus cancers (n = 266 ; SMR = 1.26 ; 95% CI: 1.11, 1.42). Several nonmalignant diseases were associated with excess mortality among workers ever-employed underground, including ischemic heart disease (SMR = 1.08 ; 95% CI: 1.00, 1.16), cerebrovascular disease (SMR = 1.22 ; 95% CI: 1.04, 1.43), and nonmalignant diseases of the respiratory system (SMR = 1.13 ; 95% CI: 1.01, 1.26). Continuous 15-y lagged cumulative REC exposure < 1,280 μ g / m 3 -y was associated with increased lung cancer risk (HR = 1.93 ; 95% CI: 1.24, 3.03), but the risk declined at the highest exposures (HR = 1.29 ; 95% CI: 0.74, 2.26). We also observed a significant trend in non-Hodgkin lymphoma (NHL) risk with increasing 20-y lagged cumulative REC (HR Tertile 3 vs. Tertile 1 = 3.12 ; 95% CI: 1.00, 9.79; p -trend = 0.031 ). DISCUSSION Increased risks of lung cancer mortality observed in the original study were sustained. Observed associations between diesel exposure and risk of death from NHL and the excesses in deaths for diseases of the respiratory and cardiovascular system, including ischemic heart disease and cerebrovascular disease, warrant further study and provide evidence of the potential widespread public health impact of diesel exposure. https://doi.org/10.1289/EHP12840.
Collapse
Affiliation(s)
- Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Barry Graubard
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Bryan A. Bassig
- Formerly Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Nathan Appel
- Information Management Services, Inc. Rockville, Maryland, USA
| | - Marianne Hyer
- Information Management Services, Inc. Rockville, Maryland, USA
| | | | - Debra T. Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| |
Collapse
|
3
|
Liu H, Zhang X, Sun Z, Chen Y. Ambient Fine Particulate Matter and Cancer: Current Evidence and Future Perspectives. Chem Res Toxicol 2023; 36:141-156. [PMID: 36688945 DOI: 10.1021/acs.chemrestox.2c00216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The high incidence of cancer has placed an enormous health and economic burden on countries around the world. In addition to evidence of epidemiological studies, conclusive evidence from animal experiments and mechanistic studies have also shown that morbidity and mortality of some cancers can be attributed to ambient fine particulate matter (PM2.5) exposure, especially in lung cancer. However, the underlying carcinogenetic mechanisms of PM2.5 remain unclear. Furthermore, in terms of risks of other types of cancer, both epidemiological and mechanistic evidence are more limited and scattered, and the results are also inconsistent. In order to sort out the carcinogenic effect of PM2.5, this paper reviews the association of cancers with PM2.5 based on epidemiological and biological evidence including genetic, epigenetic, and molecular mechanisms. The limitations of existing researches and the prospects for the future are also well clarified in this paper to provide insights for future studies.
Collapse
Affiliation(s)
- Hanrui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
4
|
Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants (Basel) 2022; 11:1829. [PMID: 36139904 PMCID: PMC9495690 DOI: 10.3390/antiox11091829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cells constantly produce oxidizing species because of their metabolic activity, which is counteracted by the continuous production of antioxidant species to maintain the homeostasis of the redox balance. A deviation from the metabolic steady state leads to a condition of oxidative stress. The source of oxidative species can be endogenous or exogenous. A major exogenous source of these species is tobacco smoking. Oxidative damage can be induced in cells by chemical species contained in smoke through the generation of pro-inflammatory compounds and the modulation of intracellular pro-inflammatory pathways, resulting in a pathological condition. Cessation of smoking reduces the morbidity and mortality associated with cigarette use. Next-generation products (NGPs), as alternatives to combustible cigarettes, such as electronic cigarettes (e-cig) and tobacco heating products (THPs), have been proposed as a harm reduction strategy to reduce the deleterious impacts of cigarette smoking. In this review, we examine the impact of tobacco smoke and MRPs on oxidative stress in different pathologies, including respiratory and cardiovascular diseases and tumors. The impact of tobacco cigarette smoke on oxidative stress signaling in human health is well established, whereas the safety profile of MRPs seems to be higher than tobacco cigarettes, but further, well-conceived, studies are needed to better understand the oxidative effects of these products with long-term exposure.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Davide Campagna
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| |
Collapse
|
5
|
Vilardi V, Boffetta P. Diesel exhaust exposure and risk of non-Hodgkin lymphoma: a meta-analysis. Eur J Cancer Prev 2022; 31:467-472. [PMID: 34750336 DOI: 10.1097/cej.0000000000000726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We aimed at carrying out a systematic review and meta-analysis of epidemiological studies on the association between occupational and non-occupational exposures to diesel exhaust and risk of non-Hodgkin lymphoma. METHODS We conducted a systematic search of the literature and identified 16 cohort studies and 7 case-control studies that analyzed non-Hodgkin lymphoma alone or combined with Hodgkin lymphoma or multiple myeloma, from which we extracted 29 independent risk estimates. We performed random-effects meta-analyses for ever-exposure to diesel exhaust, overall and after stratification for outcome and study design. RESULTS The meta-relative risk of non-Hodgkin lymphoma was 0.97 (95% confidence interval, 0.93-1.01; P -heterogeneity = 0.43). The meta-relative risk of results of cohort studies was 0.97 (95% confidence interval, 0.94-1.01) that of case-control studies was 1.00 (95% confidence interval, 0.84-1.17). Similar results were obtained when the meta-analysis was restricted to studies that analyzed only non-Hodgkin lymphoma. There was no indication of publication bias. CONCLUSION Our meta-analysis provided no overall evidence of an increased risk of non-Hodgkin lymphoma in subjects exposed to diesel exhausted.
Collapse
Affiliation(s)
- Valeria Vilardi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Mandakh Y, Oudin A, Erlandsson L, Isaxon C, Hansson SR, Broberg K, Malmqvist E. Association of Prenatal Ambient Air Pollution Exposure With Placental Mitochondrial DNA Copy Number, Telomere Length and Preeclampsia. FRONTIERS IN TOXICOLOGY 2022; 3:659407. [PMID: 35295138 PMCID: PMC8915808 DOI: 10.3389/ftox.2021.659407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Studies have shown that ambient air pollution is linked to preeclampsia (PE), possibly via generation of oxidative stress in the placenta. Telomere length and mitochondrial DNA copy number (mtDNAcn) are sensitive to oxidative stress damage. Objective: To study the association between prenatal exposure to ambient nitrogen oxides (NOx, a marker for traffic-related air pollution), and PE, as well as potential mediation effects by placental telomere length and mtDNAcn. Methods: This is a cross-sectional study of 42 preeclamptic and 95 arbitrarily selected normotensive pregnant women with gestational ambient NOx exposure assessment in southern Scania, Sweden. Hourly concentrations of NOx were estimated at the residential addresses by a Gaussian-plume dispersion model with 100 × 100 m spatial resolutions and aggregated into trimester-specific mean concentrations. Placental relative mtDNAcn and telomere length were measured using qPCR. Linear and logistic regression models were used to investigate associations, adjusted for perinatal and seasonal characteristics. Results: Exposure was categorized into low and high exposures by median cut-offs during first [11.9 μg/m3; interquartile range (IQR) 7.9, 17.9], second (11.6 μg/m3; IQR: 7.1, 21.1), third trimesters (11.9 μg/m3; IQR: 7.7, 19.5) and entire pregnancy (12.0 μg/m3; IQR: 7.6, 20.1). Increased risk of PE was found for high prenatal NOx exposure during the first trimester (OR 4.0; 95% CI: 1.4, 11.1; p = 0.008), and entire pregnancy (OR 3.7; 95% CI: 1.3, 10.4; p = 0.012). High exposed group during the first trimester had lower placental relative mtDNAcn compared with low exposed group (-0.20; 95% CI: -0.36, -0.04; p = 0.01). Changes in relative mtDNAcn did not mediate the association between prenatal NOx exposure and PE. No statistically significant association was found between placental relative telomere length, prenatal NOx exposure and PE. Conclusion: In this region with relatively low levels of air pollution, ambient NOx exposure during the first trimester was associated with reduced placental relative mtDNAcn and an increased risk of PE. However, we did not find any evidence that mtDNAcn or TL mediated the association between air pollution and PE. Future research should further investigate the role of mtDNAcn for pregnancy complications in relation to exposure to ambient air pollution during pregnancy.
Collapse
Affiliation(s)
- Yumjirmaa Mandakh
- Environment Society and Health, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Oudin
- Environment Society and Health, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Christina Isaxon
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.,Department of Obstetrics & Gynaecology, Skåne University Hospital, Malmö, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ebba Malmqvist
- Environment Society and Health, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Ahmed EA, Khaled HE, Elsayed AK. Long-term exposure to p-Nitrophenol induces hepatotoxicity via accelerating apoptosis and glycogen accumulation in male Japanese quails. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44420-44431. [PMID: 33846926 DOI: 10.1007/s11356-021-13806-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
p-Nitrophenol (PNP) is the main end product of organophosphorus insecticides and a derivative of diesel exhaust particles. In addition to its unfavorable impact on reproductive functions in both genders, it also has various harmful physiological effects including lung cancer and allergic rhinitis. The identification of the cellular readout that functions in metabolic pathway perpetuation is still far from clear. This research aimed to study the impact of chronic PNP exposure on the health condition of the liver in Japanese quails. Quails were exposed to different concentrations of PNP as follows: 0.0 (control), 0.01mg (PNP/0.01), 0.1mg (PNP/0.1), and 1mg (PNP/1) per kg of body weight for 2.5 months through oral administration. Liver and plasma samples were collected at 1.5, 2, and 2.5 months post-treatment for biochemical, histopathology, and immunohistochemistry assessment. The plasma aspartate aminotransferase (AST) level was assessed enzymatically. The livers were collected for histopathology, glycogen accumulation, proliferating cell nuclear antigen (PCNA), and apoptosis assessment. Our results revealed an irregularity in body weight due to the long-term exposure of PNP with a significant reduction in liver weight. PNP treatment caused histopathological alterations in the hepatic tissues which increased in severity by the long-term exposure. The low dose led to mild degeneration with lymphocytic infiltration, while the moderate dose has a congestion effect with some necrosis; meanwhile severe hepatocyte degeneration and RBCs hemolysis were noticed due to high dose of PNP. Glycogen accumulation increased in hepatocytes by prolonged exposure to p-Nitrophenol with the highest intensity in the group treated by the high dose. Moderate and high doses of PNP resulted in a significant increase in apoptosis and hepatocytes' proliferation at the different time points after treatment. This increase is markedly notable and maximized at 2.5 months post-treatment. The damage occurred in a time-dependent manner. These changes reflected on the plasma hepatic enzyme AST that was clearly increased at 2.5 months of exposure. Therefore, it could be concluded that PNP has profound toxic effects on the liver in cellular level. Taking into consideration the time and dose factors, both have a synergistic effect on the accumulation of glycogen, apoptosis, and cellular proliferation, highlighting the power of cellular investigation which will potentially open the door for earlier medical intervention to counteract this toxicity. Collectively, PNP could have critical hurtful effects on the health of human beings, wild animals as well as livestock.
Collapse
Affiliation(s)
- Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt.
| | - Howayda E Khaled
- Zoology Department, Faculty of Sciences, Suez University, Suez, Egypt
| | - Ahmed K Elsayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
8
|
Polycyclic aromatic hydrocarbon: environmental sources, associations with altered lung function and potential mechanisms. Chin Med J (Engl) 2021; 133:1603-1605. [PMID: 32590460 PMCID: PMC7386349 DOI: 10.1097/cm9.0000000000000880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
9
|
Cao L, Zhou Y, Tan A, Shi T, Zhu C, Xiao L, Zhang Z, Yang S, Mu G, Wang X, Wang D, Ma J, Chen W. Oxidative damage mediates the association between polycyclic aromatic hydrocarbon exposure and lung function. Environ Health 2020; 19:75. [PMID: 32616062 PMCID: PMC7331238 DOI: 10.1186/s12940-020-00621-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/08/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) is related to decreased lung function. However, whether oxidative damage is involved in this relationship remains unclear. This study was aimed to explore the potential mediating role of oxidative DNA or lipid damage in the association between PAH exposure and lung function. METHODS The urinary levels of monohydroxy polycyclic aromatic hydrocarbon metabolites (OH-PAHs) and lung function parameters were measured among 3367 participants from the baseline of the Wuhan-Zhuhai cohort. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane (8-iso-PGF2α) were determined to evaluate the individuals' oxidative DNA and lipid damage degrees, respectively. Linear mixed models were used to investigate the associations of urinary OH-PAHs, 8-OHdG and 8-iso-PGF2α with lung function parameters. Mediation analysis was further conducted to assess the potential role of oxidative damage in the association between urinary OH-PAHs and lung function. RESULTS Each one-percentage increase in the sum of urinary OH-PAHs, high-molecular-weight or low-molecular-weight OH-PAHs (ƩOH-PAHs, ƩHMW OH-PAH or ƩLMW OH-PAHs, respectively) was associated with a 0.2152-, 0.2076- or 0.1985- ml decrease in FEV1, and a 0.1891-, 0.2195- or 0.1634- ml decrease in FVC, respectively. Additionally, significantly positive dose-response relationships of ƩOH-PAHs, ƩHMW OH-PAH and ƩLMW OH-PAHs with urinary 8-OHdG or 8-iso-PGF2α, as well as an inverse dose-response relationship between urinary 8-OHdG and FVC, were observed (all P for trend < 0.05). Mediation analysis indicated that urinary 8-OHdG mediated 14.22% of the association between ƩHMW OH-PAH and FVC. CONCLUSION Higher levels of oxidative DNA damage might be involved in the decreased levels of FVC caused by high-molecular-weight PAH exposure.
Collapse
Affiliation(s)
- Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Aijun Tan
- Zhuhai Center for Disease Control and Prevention, Zhuhai, 519000, Guangdong, China
| | - Tingming Shi
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Abstract
OBJECTIVE Exposure to airborne particulate matter (PM) is estimated to cause millions of premature deaths annually. This work conveys known routes of exposure to PM and resultant health effects. METHODS A review of available literature. RESULTS Estimates for daily PM exposure are provided. Known mechanisms by which insoluble particles are transported and removed from the body are discussed. Biological effects of PM, including immune response, cytotoxicity, and mutagenicity, are reported. Epidemiological studies that outline the systemic health effects of PM are presented. CONCLUSION While the integrated, per capita, exposure of PM for a large fraction of the first-world may be less than 1 mg per day, links between several syndromes, including attention deficit hyperactivity disorder (ADHD), autism, loss of cognitive function, anxiety, asthma, chronic obstructive pulmonary disease (COPD), hypertension, stroke, and PM exposure have been suggested. This article reviews and summarizes such links reported in the literature.
Collapse
|
11
|
de Oliveira AAF, de Oliveira TF, Dias MF, Medeiros MHG, Di Mascio P, Veras M, Lemos M, Marcourakis T, Saldiva PHN, Loureiro APM. Genotoxic and epigenotoxic effects in mice exposed to concentrated ambient fine particulate matter (PM 2.5) from São Paulo city, Brazil. Part Fibre Toxicol 2018; 15:40. [PMID: 30340610 PMCID: PMC6194750 DOI: 10.1186/s12989-018-0276-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Metropolitan Area of São Paulo has a unique composition of atmospheric pollutants, and positive correlations between exposure and the risk of diseases and mortality have been observed. Here we assessed the effects of ambient fine particulate matter (PM2.5) on genotoxic and global DNA methylation and hydroxymethylation changes, as well as the activities of antioxidant enzymes, in tissues of AJ mice exposed whole body to ambient air enriched in PM2.5, which was concentrated in a chamber near an avenue of intense traffic in São Paulo City, Brazil. RESULTS Mice exposed to concentrated ambient PM2.5 (1 h daily, 3 months) were compared to in situ ambient air exposed mice as the study control. The concentrated PM2.5 exposed group presented increased levels of the oxidized nucleoside 8-oxo-7,8-dihydro-2'-deoxyguanosine in lung and kidney DNA and increased levels of the etheno adducts 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine in kidney and liver DNA, respectively. Apart from the genotoxic effects, the exposure to PM2.5 led to decreased levels of the epigenetic mark 5-hydroxymethylcytosine (5-hmC) in lung and liver DNA. Changes in lung, liver, and erythrocyte antioxidant enzyme activities were also observed. Decreased glutathione reductase and increased superoxide dismutase (SOD) activities were observed in the lungs, while the liver presented increased glutathione S-transferase and decreased SOD activities. An increase in SOD activity was also observed in erythrocytes. These changes are consistent with the induction of local and systemic oxidative stress. CONCLUSIONS Mice exposed daily to PM2.5 at a concentration that mimics 24-h exposure to the mean concentration found in ambient air presented, after 3 months, increased levels of DNA lesions related to the occurrence of oxidative stress in the lungs, liver, and kidney, in parallel to decreased global levels of 5-hmC in lung and liver DNA. Genetic and epigenetic alterations induced by pollutants may affect the genes committed to cell cycle control, apoptosis, and cell differentiation, increasing the chance of cancer development, which merits further investigation.
Collapse
Affiliation(s)
- Antonio Anax Falcão de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Tiago Franco de Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
- Present address: Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite 245, Porto Alegre, Rio Grande do Sul CEP 90050-170 Brazil
| | - Michelle Francini Dias
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Marisa Helena Gennari Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, CEP 05508-000 Brazil
| | - Mariana Veras
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Miriam Lemos
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratório de Poluição Atmosférica Experimental – LIM05, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246903 Brazil
- Instituto de Estudos Avançados, Universidade de São Paulo, R. do Anfiteatro, 513, São Paulo, CEP 05508060 Brazil
| | - Ana Paula Melo Loureiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes 580, Bloco 13 B, São Paulo, CEP 05508-000 Brazil
| |
Collapse
|
12
|
Reis H, Reis C, Sharip A, Reis W, Zhao Y, Sinclair R, Beeson L. Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust. ENVIRONMENT INTERNATIONAL 2018; 114:252-265. [PMID: 29524921 DOI: 10.1016/j.envint.2018.02.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 11/07/2023]
Abstract
Exposure to diesel exhaust (DE) from vehicles and industry is hazardous and affects proper function of organ systems. DE can interfere with normal physiology after acute and chronic exposure to particulate matter (PM). Exposure leads to potential systemic disease processes in the central nervous, visual, hematopoietic, respiratory, cardiovascular, and renal systems. In this review, we give an overview of the epidemiological evidence supporting the harmful effects of diesel exhaust, and the numerous animal studies conducted to investigate the specific pathophysiological mechanisms behind DE exposure. Additionally, this review includes a summary of studies that used biomarkers as an indication of biological plausibility, and also studies evaluating new technology diesel exhaust (NTDE) and its systemic effects. Lastly, this review includes new approaches to improving DE emissions, and emphasizes the importance of ongoing study in this field of environmental health.
Collapse
Affiliation(s)
- Haley Reis
- Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92350, USA
| | - Cesar Reis
- Department of Preventive Medicine, Loma Linda University Medical Center, 24785 Stewart Street, Suite 204, Loma Linda, CA 92354, USA; Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Akbar Sharip
- Department of Occupational Medicine, Loma Linda University Medical Center, 328 East Commercial Road, Suite 101, San Bernardino, CA 92408, USA
| | - Wenes Reis
- Department of Preventive Medicine, Loma Linda University Medical Center, 24785 Stewart Street, Suite 204, Loma Linda, CA 92354, USA
| | - Yong Zhao
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China; The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ryan Sinclair
- Center for Community Resilience, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lawrence Beeson
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
13
|
Douki T, Corbière C, Preterre D, Martin PJ, Lecureur V, André V, Landkocz Y, Pottier I, Keravec V, Fardel O, Moreira-Rebelo S, Pottier D, Vendeville C, Dionnet F, Gosset P, Billet S, Monteil C, Sichel F. Comparative study of diesel and biodiesel exhausts on lung oxidative stress and genotoxicity in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:514-524. [PMID: 29324381 DOI: 10.1016/j.envpol.2017.12.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The contribution of diesel exhaust to atmospheric pollution is a major concern for public health, especially in terms of occurrence of lung cancers. The present study aimed at addressing the toxic effects of a repeated exposure to these emissions in an animal study performed under strictly controlled conditions. Rats were repeatedly exposed to the exhaust of diesel engine. Parameters such as the presence of a particle filter or the use of gasoil containing rapeseed methyl ester were investigated. Various biological parameters were monitored in the lungs to assess the toxic and genotoxic effects of the exposure. First, a transcriptomic analysis showed that some pathways related to DNA repair and cell cycle were affected to a limited extent by diesel but even less by biodiesel. In agreement with occurrence of a limited genotoxic stress in the lungs of diesel-exposed animals, small induction of γ-H2AX and acrolein adducts was observed but not of bulky adducts and 8-oxodGuo. Unexpected results were obtained in the study of the effect of the particle filter. Indeed, exhausts collected downstream of the particle filter led to a slightly higher induction of a series of genes than those collected upstream. This result was in agreement with the formation of acrolein adducts and γH2AX. On the contrary, induction of oxidative stress remained very limited since only SOD was found to be induced and only when rats were exposed to biodiesel exhaust collected upstream of the particle filter. Parameters related to telomeres were identical in all groups. In summary, our results point to a limited accumulation of damage in lungs following repeated exposure to diesel exhausts when modern engines and relevant fuels are used. Yet, a few significant effects are still observed, mostly after the particle filter, suggesting a remaining toxicity associated with the gaseous or nano-particular phases.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES/CIBEST, F-38000 Grenoble, France
| | - Cécile Corbière
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - David Preterre
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France; CERTAM, 1 Rue Joseph Fourier, 76800 Saint-Etienne du Rouvray, France
| | - Perrine J Martin
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Valérie Lecureur
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 35043 Rennes, France
| | - Véronique André
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Ivannah Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - Veronika Keravec
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France; CERTAM, 1 Rue Joseph Fourier, 76800 Saint-Etienne du Rouvray, France
| | - Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| | | | - Didier Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - Cathy Vendeville
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - Frédéric Dionnet
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France; CERTAM, 1 Rue Joseph Fourier, 76800 Saint-Etienne du Rouvray, France
| | - Pierre Gosset
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- Unité de Chimie Environnementale et Interactions sur le Vivant, EA4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Christelle Monteil
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France
| | - François Sichel
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen et 76000, Rouen, France; Centre François Baclesse, Caen, France.
| |
Collapse
|
14
|
Schwotzer D, Ernst H, Schaudien D, Kock H, Pohlmann G, Dasenbrock C, Creutzenberg O. Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats. Part Fibre Toxicol 2017; 14:23. [PMID: 28701164 PMCID: PMC5508701 DOI: 10.1186/s12989-017-0204-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022] Open
Abstract
Background Nanomaterials like cerium oxide and barium sulfate are frequently processed in industrial and consumer products and exposure of humans and other organisms is likely. Generally less information is given on health effects and toxicity, especially regarding long-term exposure to low nanoparticle doses. Since inhalation is still the major route of uptake the present study focused on pulmonary effects of CeO2NM-212 (0.1, 0.3, 1.0, 3.0 mg/m3) and BaSO4NM-220 nanoparticles (50.0 mg/m3) in a 90-day exposure setup. To define particle-related effects and potential mechanisms of action, observations in histopathology, bronchoalveolar lavage and immunohistochemistry were linked to pulmonary deposition and clearance rates. This further allows evaluation of potential overload related effects. Results Lung burden values increased with increasing nanoparticle dose levels and ongoing exposure. At higher doses, cerium clearance was impaired, suggesting lung overload. Barium elimination was extremely rapid and without any signs of overload. Bronchoalveolar lavage fluid analysis and histopathology revealed lung tissue inflammation with increasing severity and post-exposure persistency for CeO2. Also, marker levels for genotoxicity and cell proliferation were significantly increased. BaSO4 showed less inflammation or persistency of effects and particularly affected the nasal cavity. Conclusion CeO2 nanoparticles penetrate the alveolar space and affect the respiratory tract after inhalation mainly in terms of inflammation. Effects at low dose levels and post-exposure persistency suggest potential long-term effects and a notable relevance for human health. The generated data might be useful to improve nanoparticle risk assessment and threshold value generation. Mechanistic investigations at conditions of non-overload and absent inflammation should be further investigated in future studies.
Collapse
Affiliation(s)
- Daniela Schwotzer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany.
| | - Heinrich Ernst
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Gerhard Pohlmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
15
|
Hallberg LM, Ward JB, Wickliffe JK, Ameredes BT. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007. ENVIRONMENTAL HEALTH INSIGHTS 2017; 11:1178630217714215. [PMID: 28659715 PMCID: PMC5479429 DOI: 10.1177/1178630217714215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES), in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment-associated DNA damage, in lung tissue (comet assay), blood serum (8-hydroxy-2'-deoxyguanosine [8-OHdG] assay), and hippocampus (lipid peroxidation assay), across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species-associated tissue derangements and suggested that the 2007 standards-based mitigation approaches were effective.
Collapse
Affiliation(s)
- Lance M Hallberg
- Sealy Center for Environmental Health and Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan B Ward
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeffrey K Wickliffe
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Bill T Ameredes
- Sealy Center for Environmental Health and Medicine, University of Texas Medical Branch, Galveston, TX, USA
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
16
|
Bisig C, Roth M, Müller L, Comte P, Heeb N, Mayer A, Czerwinski J, Petri-Fink A, Rothen-Rutishauser B. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model. ENVIRONMENTAL RESEARCH 2016; 151:789-796. [PMID: 27670152 DOI: 10.1016/j.envres.2016.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Ethanol can be produced from biomass and as such is renewable, unlike petroleum-based fuel. Almost all gasoline cars can drive with fuel containing 10% ethanol (E10), flex-fuel cars can even use 85% ethanol (E85). Brazil and the USA already include 10-27% ethanol in their standard fuel by law. Most health effect studies on car emissions are however performed with diesel exhausts, and only few data exists for other fuels. In this work we investigated possible toxic effects of exhaust aerosols from ethanol-gasoline blends using a multi-cellular model of the human lung. A flex-fuel passenger car was driven on a chassis dynamometer and fueled with E10, E85, or pure gasoline (E0). Exhausts obtained from a steady state cycle were directly applied for 6h at a dilution of 1:10 onto a multi-cellular human lung model mimicking the bronchial compartment composed of human bronchial cells (16HBE14o-), supplemented with human monocyte-derived dendritic cells and monocyte-derived macrophages, cultured at the air-liquid interface. Biological endpoints were assessed after 6h post incubation and included cytotoxicity, pro-inflammation, oxidative stress, and DNA damage. Filtered air was applied to control cells in parallel to the different exhausts; for comparison an exposure to diesel exhaust was also included in the study. No differences were measured for the volatile compounds, i.e. CO, NOx, and T.HC for the different ethanol supplemented exhausts. Average particle number were 6×102 #/cm3 (E0), 1×105 #/cm3 (E10), 3×103 #/cm3 (E85), and 2.8×106 #/cm3 (diesel). In ethanol-gasoline exposure conditions no cytotoxicity and no morphological changes were observed in the lung cell cultures, in addition no oxidative stress - as analyzed with the glutathione assay - was measured. Gene expression analysis also shows no induction in any of the tested genes, including mRNA levels of genes related to oxidative stress and pro-inflammation, as well as indoleamine 2,3-dioxygenase 1 (IDO-1), transcription factor NFE2-related factor 2 (NFE2L2), and NAD(P)H dehydrogenase [quinone] 1 (NQO1). Finally, no DNA damage was observed with the OxyDNA assay. On the other hand, cell death, oxidative stress, as well as an increase in pro-inflammatory cytokines was observed for cells exposed to diesel exhaust, confirming the results of other studies and the applicability of our exposure system. In conclusion, the tested exhausts from a flex-fuel gasoline vehicle using different ethanol-gasoline blends did not induce adverse cell responses in this acute exposure. So far ethanol-gasoline blends can promptly be used, though further studies, e.g. chronic and in vivo studies, are needed.
Collapse
Affiliation(s)
- Christoph Bisig
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Michèle Roth
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4031 Basel, Switzerland
| | - Loretta Müller
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4031 Basel, Switzerland
| | - Pierre Comte
- Bern University for Applied Sciences (UASB), Gwerdtstrasse 25, 2560 Nidau, Switzerland
| | - Norbert Heeb
- Swiss Federal Laboratories for Materials Testing and Research (EMPA), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Andreas Mayer
- Technik Thermischer Maschinen (TTM), Fohrhölzlistrasse 14B, 5443 Niederrohrdorf, Switzerland
| | - Jan Czerwinski
- Bern University for Applied Sciences (UASB), Gwerdtstrasse 25, 2560 Nidau, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
17
|
Tang J, Song M, Watanabe G, Nagaoka K, Rui X, Li C. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:27-37. [PMID: 27235926 DOI: 10.1016/j.envpol.2016.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine.
Collapse
Affiliation(s)
- Juan Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiyan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xiaoli Rui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - ChunMei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Sagai M, Win-Shwe TT. [Oxidative stress derived from airborne fine and ultrafine particles and the effects on brain-nervous system: part 1]. Nihon Eiseigaku Zasshi 2016; 70:127-33. [PMID: 25994344 DOI: 10.1265/jjh.70.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traffic-related air pollution is a major contributor to urban air pollution. Diesel exhaust (DE) is the most important component of near-road and urban air pollution and is commonly used as a surrogate model of air pollution in health effects studies. In particular, diesel exhaust particles (DEP) and the nanoparticles in DEP are considered hazardous components on health effects. It is widely known that exposure to DEP is associated with mortality due to respiratory and cardiovascular diseases. Recently, there has been accumulating evidence that DEP and the nanoparticles in DEP may be causes of neurodegenerative disorders. Here, we introduce the evidence suggesting their association with such disorders. First, we describe the chemical components and the translocation of DEP and nanoparticles to the brain, and then introduce the evidence and a mechanism by which reactive oxygen species (ROS) and any inflammatory mediators can be produced by DEP phagocytosis of macrophages, microglia and astrocyte cells in the brain. There are many lines of evidence showing that the neurodegenerative disorders are profoundly associated with enhanced oxidative and inflammatory events. Second, we describe a mechanism by which neurodegenerative diseases, such as stroke, Alzheimer's disease and Parkinson's disease, are induced via oxidative stress and inflammatory events.
Collapse
Affiliation(s)
- Masaru Sagai
- Tsukuba Institute for Healthy Life (Aomori University of Health and Welfare)
| | | |
Collapse
|
19
|
Ahmed E, Nagaoka K, Fayez M, Abdel-Daim MM, Samir H, Watanabe G. Suppressive effects of long-term exposure to P-nitrophenol on gonadal development, hormonal profile with disruption of tissue integrity, and activation of caspase-3 in male Japanese quail (Coturnix japonica). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10930-42. [PMID: 25772865 PMCID: PMC4490174 DOI: 10.1007/s11356-015-4245-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/17/2015] [Indexed: 06/03/2023]
Abstract
P-Nitrophenol (PNP) is considered to be one of nitrophenol derivatives of diesel exhaust particles. PNP is a major metabolite of some organophosphorus compounds. PNP is a persistent organic pollutant as well as one of endocrine-disrupting compounds. Consequently, bioaccumulation of PNP potentiates toxicity. The objectives of the current study were to assess in vivo adverse effects of long-term low doses of PNP exposure on reproductive system during development stage. Twenty-eight-day-old male Japanese quails were orally administered different doses of PNP (0, 0.01, 0.1, 1 mg/kg body weight) daily for 2.5 months. Testicular histopathology, hormones, caspase-3 (CASP3), and claudin-1 (CLDN1) tight junction protein, as well as plasma hormones were analyzed. The results revealed that long-term PNP exposure caused testicular histopathological changes such as vacuolation of spermatogenic cell and spermatocyte with significant testicular and cloacal gland atrophy. PNP activated CASP3 enzyme that is an apoptosis-related cysteine peptidase. Besides, it disrupted the expression of CLDN1. Furthermore, a substantial decrease in plasma concentrations of luteinizing hormone (LH) and testosterone was observed after 2 and 2.5 months in the PNP-treated groups. Meanwhile, the pituitary LH did not significantly change. Site of action of PNP may be peripheral on testicular development and/or centrally on the hypothalamic-pituitary-gonadal axis through reduction of pulsatile secretion of gonadotrophin-releasing hormone. Consequently, it may reduce the sensitivity of the anterior pituitary gland to secrete LH. In conclusion, PNP induced profound endocrine disruption in the form of hormonal imbalance, induction of CASP3, and disruption of CLDN1 expression in the testis. Hence, it may hinder the reproductive processes.
Collapse
Affiliation(s)
- Eman Ahmed
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan,
| | | | | | | | | | | |
Collapse
|
20
|
Celá P, Veselá B, Matalová E, Večeřa Z, Buchtová M. Embryonic Toxicity of Nanoparticles. Cells Tissues Organs 2014; 199:1-23. [DOI: 10.1159/000362163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 11/19/2022] Open
|
21
|
Matsunaga T, Morikawa Y, Haga M, Endo S, Soda M, Yamamura K, El-Kabbani O, Tajima K, Ikari A, Hara A. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicol Appl Pharmacol 2014; 278:180-9. [PMID: 24813866 DOI: 10.1016/j.taap.2014.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/21/2014] [Accepted: 04/26/2014] [Indexed: 01/13/2023]
Abstract
Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-l-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levels of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Mariko Haga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Kazuo Tajima
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa 920-1181, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
22
|
Yokota S, Moriya N, Iwata M, Umezawa M, Oshio S, Takeda K. Exposure to diesel exhaust during fetal period affects behavior and neurotransmitters in male offspring mice. J Toxicol Sci 2013; 38:13-23. [PMID: 23358136 DOI: 10.2131/jts.38.13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure to ambient particulate matter (PM) has been associated with the onset of cardiovascular and respiratory diseases. Diesel exhaust particles (DEP) are major components of ambient PM. We first reported DEP in the central nervous system of offspring utilizing maternal inhalation to diesel exhaust (DE). In addition, we found that the effects of maternal exposure to DE reduced spontaneous motor activity. However, it is still unknown whether maternal exposure to DE affects higher order behavioral function. Therefore, the aim of the present study was to examine the effects of fetal exposure to DE on motor coordination, impulsive behavior and monoaminergic systems in various brain regions. The results of the rotating rod test showed that DE-exposed mice displayed decreased time on the rota rod compared to control mice. However, no changes were detected between the two groups in the hanging test. Furthermore, the cliff avoidance test revealed that DE-exposed mice spent more time in the corner and fell off an inverted glass beaker compared to control mice. High performance liquid chromatography analysis revealed that noradrenaline turnover in the cerebellum was decreased by prenatal exposure to DE, and was significantly increased in the hypothalamus. Dopamine and serotonin levels in various brain regions were also changed by prenatal exposure to DE. Our study found that prenatal exposure to DE alters motor coordination, impulsive behavior and related monoamine levels. Therefore, the present study underscores the role of behavioral changes related to monoamine in response to maternal inhalation of DE.
Collapse
Affiliation(s)
- Satoshi Yokota
- Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Møller P, Danielsen PH, Jantzen K, Roursgaard M, Loft S. Oxidatively damaged DNA in animals exposed to particles. Crit Rev Toxicol 2013; 43:96-118. [PMID: 23346980 DOI: 10.3109/10408444.2012.756456] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues. Publications based on non-optimal assays of 8-oxo-7,8-dihydroguanine by antibodies and/or unrealistically high levels of 8-oxo-7,8-dihydroguanine (suggesting experimental problems due to spurious oxidation of DNA) reported more induction of DNA damage after exposure to particles than did the publications based on optimal methods. The majority of studies have used single intracavitary administration or inhalation with dose rates exceeding the pulmonary overload threshold, resulting in cytotoxicity and inflammation. It is unclear whether this is relevant for the much lower human exposure levels. Still, there was linear dose-response relationship for 8-oxo-7,8-dihydroguanine in lung tissue without obvious signs of a threshold. The dose-response function was also dependent on chemical composition and other characteristics of the administered particles, whereas dependence on species and strain could not be equivocally determined. Roles of cytotoxicity or inflammation for oxidatively induced DNA damage could not be documented or refuted. Studies on exposure to particles in the gastrointestinal tract showed consistently increased levels of 8-oxo-7,8-dihydroguanine in the liver. Collectively, there is evidence from animal experimental models that both pulmonary and gastrointestinal tract exposure to particles are associated with elevated levels of oxidatively damaged DNA in the lung and internal organs. However, there is a paucity of studies on pulmonary exposure to low doses of particles that are relevant for hazard/risk assessment.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Luo L, Hong X, Chen C, Brooks SP, Song Y. Identification of pathology from diesel exhaust particles in the bladder in a rat model by aspiration of particles from the pharynx. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:380-387. [PMID: 23467115 DOI: 10.1016/j.etap.2013.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/19/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
To determine whether diesel exhaust particles (DEPs) could be a toxic agent to the bladder, rats were exposed to different concentrations of DEPs for one month or three months. When the rats were sacrificed, morphologic changes of the urothelium were investigated. The antioxidase activity and the levels of lipid peroxidation in the bladder were assayed. In the three-month group, DEPs at doses of 21.03 μg/μl insulted the structural integrity of surface glycosaminoglycans, widened the gap between urothelial cells, increased levels of lipid peroxidation, and decreased antioxidase activities in the urinary bladder (p<0.05). Furthermore, DEPs at a dose of 5.61 μg/μl decreased glutathione, catalase, and glutathione peroxidase activities (p<0.05). These results led to the conclusion that DEPs were a toxic agent in the bladder. The toxic effects might be attributed to oxidative damage mediated by pro-oxidant/antioxidant imbalance or excessive free radicals.
Collapse
Affiliation(s)
- Longhua Luo
- Fuzong Clinical College of Fujian Medical University, Fuzhou, China.
| | | | | | | | | |
Collapse
|
25
|
Vattanasit U, Navasumrit P, Khadka MB, Kanitwithayanun J, Promvijit J, Autrup H, Ruchirawat M. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Int J Hyg Environ Health 2013; 217:23-33. [PMID: 23567252 DOI: 10.1016/j.ijheh.2013.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 01/24/2023]
Abstract
Particulate pollution is a major public health concern because epidemiological studies have demonstrated that exposure to particles is associated with respiratory diseases and lung cancer. Diesel exhaust particles (DEP), which is classified as a human carcinogen (IARC, 2012), are considered a major contributor to traffic-related particulate matter (PM) in urban areas. DEP consists of various compounds, including PAHs and metals which are the principal components that contribute to the toxicity of PM. The present study aimed to investigate effects of PM on induction of oxidative DNA damage and inflammation by using lymphocytes in vitro and in human exposed to PM in the environment. Human lymphoblasts (RPMI 1788) were treated with DEP (SRM 2975) at various concentrations (25-100 μg/ml) to compare the extent of responses with alveolar epithelial cells (A549). ROS generation was determined in each cell cycle phase of DEP-treated cells in order to investigate the influence of the cell cycle stage on induction of oxidative stress. The oxidative DNA damage was determined by measurement of 8-hydroxy-deoxyguanosine (8-OHdG) whereas the inflammatory responses were determined by mRNA expression of interleukin-6 and -8 (IL-6 and IL-8), Clara cell protein (CC16), and lung surfactant protein-A (SP-A). The results showed that RPMI 1788 and A549 cells had a similar pattern of dose-dependent responses to DEP in terms of particle uptake, ROS generation with highest level found in G2/M phase, 8-OHdG formation, and induction of IL-6 and IL-8 expression. The human study was conducted in 51 healthy subjects residing in traffic-congested areas. The effects of exposure to PM2.5 and particle-bound PAHs and toxic metals on the levels of 8-OHdG in lymphocyte DNA, IL-8 expression in lymphocytes, and serum CC16 were evaluated. 8-OHdG levels correlated with the exposure levels of PM2.5 (P<0.01) and PAHs (P<0.05), but this was not the case with IL-8. Serum CC16 showed significantly negative correlations with B[a]P equivalent (P<0.05) levels, but positive correlation with Pb (P<0.05). In conclusion, a similar pattern of the dose-dependent responses to DEP in the lymphoblasts and lung cells suggests that circulating lymphocytes could be used as a surrogate for assessing PM-induced oxidative DNA damage and inflammatory responses in the lung. Human exposure to PM leads to oxidative DNA damage whereas PM-induced inflammation was not conclusive and should be further investigated.
Collapse
Affiliation(s)
- Udomratana Vattanasit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Lak si, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand; Inter-University Program in Environmental Toxicology, Technology and Management (Chulabhorn Research Institute, Asian Institute of Technology, Mahidol University), Thailand
| | | | | | | | | | | | | |
Collapse
|
26
|
Sen S, Field JM. Genotoxicity of Polycyclic Aromatic Hydrocarbon Metabolites. ADVANCES IN MOLECULAR TOXICOLOGY 2013. [DOI: 10.1016/b978-0-444-62645-5.00003-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Li C, Li X, Jigami J, Hasegawa C, Suzuki AK, Zhang Y, Fujitani Y, Nagaoka K, Watanabe G, Taya K. Effect of nanoparticle-rich diesel exhaust on testosterone biosynthesis in adult male mice. Inhal Toxicol 2012; 24:599-608. [PMID: 22861003 DOI: 10.3109/08958378.2012.702140] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of nanoparticle-rich diesel exhaust (NR-DE) on the testicular function and factors related with the biosynthesis of testosterone gene expression were investigated in mice. Male C57BL/Jcl mice were exposed to clean air, low-dose NR-DE (Low NR-DE), high-dose NR-DE (High NR-DE) or filtered diesel exhaust (F-DE) for 8 weeks. We found that the mice exposed to High NR-DE had significantly higher testosterone levels than those in the control and F-DE groups. To determine the effects of NR-DE on testicular testosterone production, interstitial cells dissected from the male mice which were exposed to NR-DE, F-DE, or clean air for 8 weeks were incubated with or without human chorionic gonadotropin (hCG; 0.1 IU/mL) for 4 h. The concentrations of testosterone in the culture media were measured. The testosterone production was significantly increased in with or without hCG of High NR-DE exposed group, and significantly decreased in both with or without hCG of F-DE exposed groups. Moreover, several genes, which is associated with testicular cholesterol synthesis, HMG-CoA, LDL-R, SR-B1, PBR, and P450scc, P450 17α, and 17β-HSD were determined in the testis of adult male mice. The results showed High NR-DE exposure significantly increased the expression of these genes. Whereas, the levels in the F-DE exposure group returned to those in the control group, implicating that the nanoparticles in DE contribute to the observed reproductive toxicity. We conclude that enhancement of testosterone biosynthesis by NR-DE exposure may be regulated by increasing testicular enzymes of testosterone biosynthesis.
Collapse
Affiliation(s)
- ChunMei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice. Br J Cancer 2012; 108:91-8. [PMID: 23321513 PMCID: PMC3553512 DOI: 10.1038/bjc.2012.498] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. METHODS A 1-cm(2) area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. RESULTS Compared with sham-treated controls, the Spi(-) mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. CONCLUSION The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis.
Collapse
|
29
|
Yue Z, She RP, Bao HH, Tian J, Yu P, Zhu J, Chang L, Ding Y, Sun Q. Necrosis and apoptosis of renal tubular epithelial cells in rats exposed to 3-methyl-4-nitrophenol. ENVIRONMENTAL TOXICOLOGY 2012; 27:653-661. [PMID: 21374789 DOI: 10.1002/tox.20688] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 11/10/2010] [Accepted: 11/16/2010] [Indexed: 05/30/2023]
Abstract
The 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) exists in diesel exhaust particles (DEP), and is also one of the degradation products of insecticide fenitrothion. To assess potential nephrotoxicity of PNMC, male Sprague-Dawley (SD) rats were subcutaneously dosed with PNMC at 1, 10, and 100 mg/kg/day for five consecutive days. No significant changes were detected in body weights and relative weights of kidneys by the treatment of PNMC. However, the extent of cellular necrosis was found to be severe in renal tubular epithelial cells of PNMC-treated rats. In addition, PNMC exposure significantly increased the number of terminal deoxynucleotidyle transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells compared to the control in renal tubule of PNMC-treated rats. Moreover, immunohistochemical results indicated that significant decrease in the B-cell lymphoma 2 (Bcl-2) expressions andincrease in the Bcl-2 associated × protein (Bax) expression were detected in PNMC-treated rats. The ratio of Bcl-2/Bax was also reduced significantly at PNMC-treated rats dosed at 10 or 100 mg kg(-1) . Furthermore, the significant increase of FAS (CD95/APO-1) expression was found in the groups dosed at 10 or 100 mg kg(-1) of PNMC. The expression of Caspase-3 was higher in PNMC-treated rats, compared to the control group. Our results indicated that activation of mitochondria and Caspase-3 protease may contribute to the PNMC-induced apoptosis, suggesting that PNMC could cause both necrosis and apoptosis resulting in cell death of renal epithelium cells and could induce renal toxicity.
Collapse
Affiliation(s)
- Zhuo Yue
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Win-Shwe TT, Fujimaki H, Fujitani Y, Hirano S. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust. Toxicol Appl Pharmacol 2012; 262:355-62. [PMID: 22659509 DOI: 10.1016/j.taap.2012.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/17/2012] [Accepted: 05/23/2012] [Indexed: 01/21/2023]
Abstract
Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m(3)), high-dose NRDE (H-NRDE, 129 μg/m(3)), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | |
Collapse
|
31
|
Effects of exposure to nanoparticle-rich diesel exhaust on adrenocortical function in adult male mice. Toxicol Lett 2012; 209:277-81. [DOI: 10.1016/j.toxlet.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/23/2022]
|
32
|
9,10-Phenanthrenequinone promotes secretion of pulmonary aldo-keto reductases with surfactant. Cell Tissue Res 2012; 347:407-17. [DOI: 10.1007/s00441-011-1304-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/12/2011] [Indexed: 11/26/2022]
|
33
|
Xu R, Liu N, Xu X, Kong B. Antioxidative effects of whey protein on peroxide-induced cytotoxicity. J Dairy Sci 2011; 94:3739-46. [PMID: 21787910 DOI: 10.3168/jds.2010-3891] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 03/30/2011] [Indexed: 12/13/2022]
Abstract
Myoblastic toxicity is a major adverse effect caused by reactive oxygen species (ROS) when exercising heavily. Although protection or alleviation of ROS toxicity can be achieved by administration of antioxidant vitamins such as vitamin E and vitamin C, their protective effect remains controversial. Thus, alternative natural antioxidants may be potential candidates for foods for athletes. In this research, we investigated the antioxidative effect of whey protein against hydrogen peroxide (H(2)O(2)) toxicity using C(2)C(12) myoblasts. Whey protein pre-incubation prevented the decrease in cell viability after H(2)O(2) treatment. The production of 8-hydroxydeoxyguanosine associated with DNA oxidative damage was also inhibited by the whey protein pre-incubation. Endogenous antioxidant defense, such as glutathione, catalase, and superoxide dismutase activity, was also modulated by the antioxidant. At the same time, enhanced mRNA expression levels of heme oxygenase-1 and NADPH quinone oxidoreductase-1 were observed in cells pre-incubated with whey protein before H(2)O(2) abuse. These findings suggest that whey protein improved the antioxidant capacity against acute oxidative stress through multiple pathways and this protein may serve as an alternative source of antioxidants for prevention of athletic injuries caused by ROS.
Collapse
Affiliation(s)
- R Xu
- Key laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | | | | | | |
Collapse
|
34
|
Yue Z, She R, Bao H, Li W, Wang D, Zhu J, Chang L, Yu P. Exposure to 3-methyl-4-nitrophenol affects testicular morphology and induces spermatogenic cell apoptosis in immature male rats. Res Vet Sci 2011; 91:261-8. [DOI: 10.1016/j.rvsc.2010.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/28/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|
35
|
Win-Shwe TT, Fujitani Y, Hirano S, Fujimaki H. [Exposure to nanoparticle-rich diesel exhaust affects hippocampal functions in mice]. Nihon Eiseigaku Zasshi 2011; 66:628-633. [PMID: 21996758 DOI: 10.1265/jjh.66.628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Epidemiological studies have indicated associations between day-to-day particulate air pollution and increased risks of various adverse health outcomes. Although an association between exposure to diesel exhaust particles (DEPs) and the development of pulmonary inflammation has been reported, there are limited reports on the neurotoxic effects of DEPs, particularly those of nanoparticle-rich diesel exhaust (NRDE). In this minireview, we highlighted the effects of NRDE which was generated in the National Institute for Environmental Studies, on hippocampus-dependent spatial learning ability and the expression of memory-function-related genes, neurotrophins, and proinflammatory cytokines in a mouse model.
Collapse
Affiliation(s)
- Tin Tin Win-Shwe
- Center for Environmental Risk Research, National Institute for Environmental Studies. Ibaraki, Japan.
| | | | | | | |
Collapse
|
36
|
Win-Shwe TT, Yamamoto S, Fujitani Y, Hirano S, Fujimaki H. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology 2011; 6:543-53. [PMID: 21663545 DOI: 10.3109/17435390.2011.590904] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the effect of exposure to nanoparticle-rich diesel exhaust (NRDE) on hippocampal-dependent spatial learning and memory function-related gene expressions in female mice. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE), high-dose NRDE (H-NRDE) or filtered diesel exhaust (F-DE) for three months. A Morris water maze apparatus was used to examine spatial learning. The expression levels of the N-methyl-D-aspartate (NMDA) receptor subunit, proinflammatory cytokines and neurotrophin mRNAs in the hippocampus were then investigated using real-time RT-PCR. Mice exposed to H-NRDE required a longer time to reach the hidden platform and showed higher mRNA expression levels of the NMDA receptor subunit NR2A, the proinflammatory cytokine CCL3, and brain-derived neurotrophic factor (BDNF) in the hippocampus, compared with the findings in the control group. These results indicate that three months of exposure to NRDE affected spatial learning and memory function-related gene expressions in the female mouse hippocampus.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Center for Environmental Risk Research , National Institute for Environmental Studies , 16-2 Onogawa, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
37
|
Ritz C, Ruminski W, Hougaard KS, Wallin H, Vogel U, Yauk CL. Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation. Mutat Res 2011; 712:55-8. [PMID: 21570989 DOI: 10.1016/j.mrfmmm.2011.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/04/2011] [Accepted: 04/27/2011] [Indexed: 12/13/2022]
Abstract
The induction of inherited DNA sequence mutations arising in the germline (i.e., sperm or egg) of mice exposed in utero to diesel exhaust particles (DEPs) via maternal inhalation compared to unexposed controls was investigated in this study. Previous work has shown that particulate air pollutants (PAPs) from industrial environments cause DNA damage and mutations in the sperm of adult male mice. Effects on the female and male germline during critical stages of development (in utero) are unknown. In mice, previous studies have shown that expanded simple tandem repeat (ESTR) loci exhibit high rates of spontaneous mutation, making this endpoint a valuable tool for studying inherited mutation and genomic instability. In the present study, pregnant C57Bl/6 mice were exposed to 19mg/m(3) DEP from gestational day 7 through 19, alongside air exposed controls. Male and female F1 offspring were raised to maturity and mated with control CBA mice. The F2 descendents were collected and ESTR germline mutation rates were derived from full pedigrees (mother, father, offspring) of F1 male and female mice. We found no evidence for increased ESTR mutation rates in females exposed in utero to DEP relative to control females. In contrast, a statistically significant increase in the mutation frequency of male mice exposed in utero to DEP was observed (2-fold; Fisher's exact p<0.05). Thus, maternal exposure to DEP results in increased mutation in sperm during development.
Collapse
Affiliation(s)
- Caitlin Ritz
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Wei Y, Han IK, Hu M, Shao M, Zhang JJ, Tang X. Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. CHEMOSPHERE 2010; 81:1280-1285. [PMID: 20869742 DOI: 10.1016/j.chemosphere.2010.08.055] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 05/29/2023]
Abstract
Recent studies suggest that DNA oxidative damage be related to the chemical constituents of ambient particles. The purpose of this study was to examine whether particulate polycyclic aromatic hydrocarbons (PAHs) and quinone-structure chemicals increase body burden of oxidative stress in human exposed to heavy traffic volume. We recruited two nonsmoking security guards who worked at a university campus gate near a heavily trafficked road. Each subject wore a personal air sampler for 24h per day to estimate exposures to 24 PAHs and anthraquinone (AnQ) in PM(2.5). Daily pre- and post-work shift spot urines were collected for 29d from each subject. Urine samples were analyzed for 8-hydroxy-2'-deoxyguanosine (8-OHdG). Additionally, using 19 organic tracers other than 24 PAHs and AnQ, a receptor source apportionment model of chemical mass balance was applied to determine the contributions of sources on the PM: gasoline vehicle, diesel vehicle, coal burning, vegetable debris, cooking, natural gas and biomass burning. The relationship among urinary 8-OHdG, individual PAH, and AnQ was demonstrated as follows: the average urinary concentration of 8-OHdG was increased more than three times after 8-h work-shift than those before the work shift. All the 24 PAH and AnQ levels were positively and significantly associated with the post-work urinary 8-OHdG. The results from source apportionment suggest vehicular emission to be the dominant source of personal exposure to PM(2.5). Our finding indicates that personal air exposures to 24 individual PAHs and AnQ originating from traffic emissions are important in increasing oxidative burdens in human body.
Collapse
Affiliation(s)
- Yongjie Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
39
|
Inoue KI. Promoting effects of nanoparticles/materials on sensitive lung inflammatory diseases. Environ Health Prev Med 2010; 16:139-43. [PMID: 21431802 DOI: 10.1007/s12199-010-0177-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/08/2010] [Indexed: 10/19/2022] Open
Abstract
Although the adverse health effects of nanoparticles/materials have been proposed and are being clarified, their facilitating effects on preexisting pathological conditions have not been fully established. We provide insights into the environmental immunotoxicity of nanoparticles as an aggravating factor in hypersusceptible subjects, especially those with respiratory disorders, using our in vivo models. We first examined the effects of nanoparticles/materials on lung inflammation induced by bacterial endotoxin (lipopolysaccharide) as a test model against innate immunity, and demonstrated that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate lung inflammation. Secondly, we examined the effects of nanoparticles/materials on allergic pathophysiology, and showed that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic airway inflammation, including adjuvant effects on Th2-milieu. Taken together, nanoparticle exposure may synergistically facilitate pathological inflammatory conditions in the lung via both innate and adaptive immunological abnormalities.
Collapse
Affiliation(s)
- Ken-ichiro Inoue
- Department of Public Health and Molecular Toxicology, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
40
|
Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA. Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol Toxicol 2010; 26:481-98. [PMID: 20340042 DOI: 10.1007/s10565-010-9158-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 03/01/2010] [Indexed: 12/14/2022]
Abstract
This review reports the role of oxidative stress in impairing the function of lung exposed to particulate matter (PM). PM constitutes a heterogeneous mixture of various types of particles, many of which are likely to be involved in oxidative stress induction and respiratory diseases. Probably, the ability of PM to cause oxidative stress underlies the association between increased exposure to PM and exacerbations of lung disease. Mostly because of their large surface area, ultrafine particles have been shown to cause oxidative stress and proinflammatory effects in different in vivo and in vitro studies. Particle components and surface area may act synergistically inducing lung inflammation. In this vein, reactive oxygen species elicited upon PM exposure have been shown to activate a number of redox-responsive signaling pathways and Ca(2+) influx in lung target cells that are involved in the expression of genes that modulate relevant responses to lung inflammation and disease.
Collapse
Affiliation(s)
- Flavia Mazzoli-Rocha
- Laboratório de Fisiologia da Respiração, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
41
|
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res 2010; 44:1-46. [PMID: 19886744 DOI: 10.3109/10715760903300691] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Seki KI, Noya Y, Mikami Y, Taneda S, Suzuki AK, Kuge Y, Ohkura K. Isolation and identification of new vasodilative substances in diesel exhaust particles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:717-723. [PMID: 19557451 DOI: 10.1007/s11356-009-0207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/11/2009] [Indexed: 05/28/2023]
Abstract
BACKGROUND, AIM, AND SCOPE We recently developed a new isolation method for diesel exhaust particles (DEP), involving successive extraction with H(2)O, sodium bicarbonate, and sodium hydroxide, in which the sodium hydroxide extract was found to consist of phenolic components. Analysis of the extract revealed that vasodilative-active nitrophenols are in DEP in significantly higher concentrations than those estimated by an earlier method involving a combination of solvent extraction and repeated chromatography. These findings indicated that our new procedure offers a simple, efficient, and reliable method for the isolation and identification of bioactive substances in DEP. This encouraged us to extend our work toward investigating new vasodilatory substances in the sodium bicarbonate extract. MATERIALS AND METHODS DEP were collected from the exhaust of a 4JB1-type engine (ISUZU Automobile Co., Tokyo, Japan). GC-MS analysis was performed with a GCMS-QP2010 instrument (Shimadzu, Kyoto, Japan). RESULTS DEP dissolved in 1-butanol was successively extracted with water, sodium bicarbonate, and then aqueous sodium hydroxide. The sodium bicarbonate extract was neutralized and the resulting mixture of acidic components was subjected to reverse-phase (RP) column chromatography followed by RP-HPLC with fractions assayed for vasodilative activity. This led to the identification of terephthalic acid, p-hydroxybenzoic acid, isophthalic acid, phthalic acid, 3-hydroxy-4-nitrobenzoic acid, 4-hydroxy-3-nitrophenol, and 1,4,5-naphthalene tricarboxylic acid as components of DEP. DISCUSSION The sodium bicarbonate extract was rich in aromatic carboxylic acid components. Repeated reverse-phase chromatography resulted in the successful isolation of several acidic substances including the new vasodilative materials, 4-hydroxy-3-nitrobenzoic acid, and 3-hydroxy-4-nitrobenzoic acid. CONCLUSIONS Our new fractionation method for DEP has made possible the isolation of new vasodilative compounds from the sodium bicarbonate extract.
Collapse
Affiliation(s)
- Koh-ichi Seki
- Central Institute of Isotope Science, Graduate School of Medicine, Hokkaido University, Sapporo, 060-0815, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Li C, Taneda S, Taya K, Watanabe G, Li X, Fujitani Y, Ito Y, Nakajima T, Suzuki AK. Effects of inhaled nanoparticle-rich diesel exhaust on regulation of testicular function in adult male rats. Inhal Toxicol 2009; 21:803-11. [PMID: 19653803 DOI: 10.1080/08958370802524381] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We investigated the effects of nanoparticle-rich diesel exhaust (NR-DE) on reproductive function. Eight-week-old male F344 rats were divided into 12 experimental groups and exposed to either whole NR-DE at low (15.37 microg/m(3), 2.27 x 10(5) particles/cm(3)), middle (36.35 microg/m(3), 5.11 x 10(5) particles/cm(3)), or high (168.84 microg/m(3), 1.36 x 10(6) particles/cm(3)) concentrations or clean air for 4, 8, or 12 weeks (5 hours/day, 5 days/week). NR-DE exposure for 4 or 8 weeks did not affect body weight; however, body weight was significantly decreased in rats exposed to low- or high- concentration NR-DE for 12 weeks compared to the control group. Relative weights of testes, epididymides, seminal vesicles, and prostate had increased non-significantly in all NR-DE-exposed rats at 4, 8, and 12 weeks. Adrenal gland relative weights were significantly increased at 4 weeks in rats exposed to low-concentration NR-DE. Plasma luteinizing hormone and follicle stimulating hormone concentrations did not change significantly. Plasma testosterone concentrations were significantly increased after exposure to low- or middle-concentration NR-DE for 4 or 8 weeks compared to controls. Plasma immunoreactive (ir-) inhibin concentrations were significantly increased after exposure to high-concentration NR-DE for 4 weeks or middle- or high-concentration NR-DE for 12 weeks compared to controls. Testicular testosterone concentrations were significantly increased at 4, 8, and 12 weeks after exposure to low-concentration NR-DE compared to controls. In contrast, with exposure to low- or high-concentration NR-DE, testicular ir-inhibin concentrations were significantly greater than in controls, but only at 4 weeks. These results suggest that NR-DE inhalation disrupts the endocrine activity of the male reproductive system.
Collapse
Affiliation(s)
- ChunMei Li
- Research Center for Environmental Risk, National Institute for Environmental Studies, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mi Y, Zhang C, Li CM, Taneda S, Watanabe G, Suzuki AK, Taya K. Protective effect of quercetin on the reproductive toxicity of 4-nitrophenol in diesel exhaust particles on male embryonic chickens. J Reprod Dev 2009; 56:195-9. [PMID: 20035111 DOI: 10.1262/jrd.09-074n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 4-nitrophenol (PNP) in diesel exhaust particles (DEP) has been identified as a vasodilator and is a known degradation product of the insecticide parathion. In this study, the protective effect of quercetin, a potent oxygen free radical scavenger and metal chelator, against the oxidative damage of PNP on cultured testicular cells was studied in male embryonic chickens. Testicular cells from Day 18 embryos were cultured in serum-free McCoy's 5A medium and challenged with quercetin (1.0 microg/ml) alone or in combinations with PNP (10(-7)-10(-5) M) for 48 h. The oxidative damage was estimated by measuring cell viability, content of malondialdehyde (MDA), activity of superoxide dismutase (SOD) and glutathione peroxidation (GSH-Px) activity. The results showed that exposure to PNP (10(-5) M) induced condensed nuclei, vacuolated cytoplasm and a decrease in testicular cell viability and spermatogonial cell number. Exposure to PNP induced lipid peroxidation by elevation of the content of MDA. Exposure to PNP also decreased GSH-Px activity and SOD activity. However, simultaneous supplementation with quercetin restored these parameters to the same levels as the control. Consequently, PNP induced oxidative stress in spermatogonial cells, and dietary quercetin may attenuate the reproductive toxicity of PNP to restore the intracellular antioxidant system in the testicular cells of embryonic chickens.
Collapse
Affiliation(s)
- Yuling Mi
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology
| | | | | | | | | | | | | |
Collapse
|
45
|
Endocrine disruptive effect of 3-methyl-4-nitrophenol isolated from diesel exhaust particles in Hershberger assay using castrated immature rats. Biosci Biotechnol Biochem 2009; 73:2018-21. [PMID: 19734673 DOI: 10.1271/bbb.90204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine the endocrine disruptive effects of 3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) in diesel exhaust particles (DEP), the rat Hershberger assay was carried out using castrated immature rats. Castrated 28-d-old immature male rats were implanted with a 5-mm-long silastic tube containing crystalline testosterone and injected with PNMC subcutaneously at doses 1, 10, or 100 mg/kg for 5 consecutive d. The weights of the livers significantly decreased in the 10 and 100 mg/kg PNMC treatment groups as compared with the control group. The weights of the seminal vesicles significantly increased in the 10 mg/kg PNMC treatment group as compared with the control group. The weights of the Cowper's glands were significantly increased in 1 mg/kg PNMC treatment group compared with the control group. The concentrations of plasma testosterone significantly increased in the 10 and 100 mg/kg PNMC treatment groups, indicating that PNMC induced accumulation of bioactive testosterone released from the implanted tube in circulation. Plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels significantly decreased under all the doses in the PNMC treatment groups, indicating that PNMC acts on the hypothalamus-pituitary axis.
Collapse
|
46
|
Li X, Li C, Suzuki AK, Taneda S, Watanabe G, Taya K. 4-Nitrophenol isolated from diesel exhaust particles disrupts regulation of reproductive hormones in immature male rats. Endocrine 2009; 36:98-102. [PMID: 19404784 DOI: 10.1007/s12020-009-9192-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/11/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
In previous studies, we found that 4-nitrophenol (PNP) isolated from diesel exhaust particles exhibited both estrogenic and anti-androgenic activities. This compound is also a degradation product of the insecticide parathion. Here, we investigated the in vivo effect of PNP on reproductive function in immature male rats. Twenty-eight-day-old rats were injected subcutaneously with PNP (0.01, 0.1, 1, or 10 mg/kg) daily for 14 days. Plasma concentrations of luteinizing hormone (LH) were significantly lower in all PNP dosage groups than in the control group, and follicle-stimulating hormone (FSH) was significantly decreased in rats treated with 0.1, 1, or 10 mg/kg PNP. However, plasma concentrations of testosterone were significantly increased by 10 mg/kg PNP, and plasma concentrations of immunoreactive (ir)-inhibin were also significantly increased in the 0.1, 1, and 10 mg/kg PNP groups. Plasma concentrations of prolactin were significantly increased by 10 mg/kg PNP, and plasma concentrations of corticosterone were significantly increased in all treatment groups. These findings clearly show that PNP influences the hypothalamic-pituitary-gonadal axis in immature male rats, with decreased secretion of LH and FSH and increased secretion of testosterone and inhibin. PNP, therefore, appears to disrupt endocrine activity in the immature male reproductive system.
Collapse
Affiliation(s)
- Xuezheng Li
- Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Valavanidis A, Vlahoyianni T, Fiotakis K. Comparative study of the formation of oxidative damage marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) adduct from the nucleoside 2′-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity. Free Radic Res 2009; 39:1071-81. [PMID: 16298732 DOI: 10.1080/10715760500188671] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An association between exposure to ambient particulate matter (PM) and increased incidence of mortality and morbidity due to lung cancer and cardiovascular diseases has been demonstrated by recent epidemiological studies. Reactive oxygen species (ROS), especially hydroxyl radicals, generated by PM, have been suggested by many studies as an important factor in the oxidative damage of DNA by PM. The purpose of this study was to characterize quantitatively hydroxyl radical generation by various transition metals in the presence of H2O2 in aqueous buffer solution (pH 7.4) and hydroxylation of 2'-deoxyguanosine (dG) to 8-hydroxy-2'-deoxyguanosine (8-OHdG) under similar conditions. The order of metals' redox reactivity and hydroxyl radical production was Fe(II), V(IV), Cu(I), Cr(III), Ni(II), Co(II), Pb(II), Cd(II). Then, we investigated the generation of hydroxyl radicals in the presence of H2O2 by various airborne PM samples, such as total suspended particulate (TSP), PM10, PM2.5 (PM with aerodynamic diameter 10 and 2.5 microm), diesel exhaust particles (DEP), gasoline exhaust particles (GEP) and woodsmoke soot under the same conditions. When suspensions of PMs were incubated with H2O2 and dG at pH 7.4, all particles induced hydroxylation of dG and formation of 8-OHdG in a dose-dependent increase. Our findings demonstrated that PM's hydroxyl radical (HO radical) generating ability and subsequent dG hydroxylation is associated with the concentration of water-soluble metals, especially Fe and V and other redox or ionizable transition metals and not their total metal content, or insoluble metal oxides, via a Fenton-driven reaction of H2O2 with metals. Additionally, we observed, by Electron paramagnetic resonance (EPR), that PM suspensions in the presence of H2O2 generated radical species with dG, which were spin-trapped by 2-methyl-2-nitroso-propane (MNP).
Collapse
Affiliation(s)
- Athanasios Valavanidis
- University of Athens, Department of Chemistry, University Campus Zografou, 15784, Athens, Greece.
| | | | | |
Collapse
|
48
|
Maciag A, Anderson LM. Reactive Oxygen Species And Lung Tumorigenesis By Mutant K-ras: A Working Hypothesis. Exp Lung Res 2009; 31:83-104. [PMID: 15765920 DOI: 10.1080/01902140490495048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wild-type K-ras is tumor suppressive in mouse lung, but mutant K-ras is actively oncogenic. Thus, the mutant protein must acquire new, dominant protumorigenic properties. Generation of reactive oxygen species could be one such property. The authors demonstrate increased peroxides in lung epithelial cells (E10)-transfected with mutant hK-ras(va112). An associated increase in DNA damage (comet assay) correlates with increased cyclooxygenase-2 protein. This DNA damage is completely abrogated by a specific cyclooxygenase-2 inhibitor (SC58125) or by a cell-permeable modified catalase. Literature is reviewed regarding generation of reactive oxygen and cyclooxygenase-2 induction by ras, cyclooxygenase-2 release of DNA-damaging reactive oxygen, and involvement of cyclooxygenase-2 and reactive oxygen in lung cancer
Collapse
Affiliation(s)
- Anna Maciag
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
49
|
|
50
|
DNA damage response of A549 cells treated with particulate matter (PM 10 ) of urban air pollutants. Cancer Lett 2009; 278:192-200. [DOI: 10.1016/j.canlet.2009.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 11/22/2022]
|