1
|
Bomsztyk K, Mar D, Denisenko O, Powell S, Vishnoi M, Yin Z, Delegard J, Hadley C, Tandon N, Patel AJ, Patel AP, Ellenbogen RG, Ramakrishna R, Rostomily RC. Analysis of DNA Methylation in Gliomas: Assessment of Preanalytical Variables. J Transl Med 2024; 104:102160. [PMID: 39426568 PMCID: PMC11709230 DOI: 10.1016/j.labinv.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Precision oncology is driven by biomarkers. For glioblastoma multiforme (GBM), the most common malignant adult primary brain tumor, O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation is an important prognostic and treatment clinical biomarker. Time-consuming preanalytical steps such as biospecimen storage, fixation, sampling, and processing are sources of data irreproducibility, and all these preanalytical variables are confounded by intratumor heterogeneity of MGMT promoter methylation. To assess the effect of preanalytical variables on GBM DNA methylation, tissue storage/sampling (CryoGrid), sample preparation multisonicator (PIXUL), and 5-methylcytosine DNA immunoprecipitation (Matrix-MeDIP-qPCR/seq) platforms were used. MGMT promoter methylation status assayed by MeDIP-qPCR was validated with methylation-specific polymerase chain reaction. MGMT promoter methylation levels in frozen and formalin-fixed paraffin-embedded sample pairs were not statistically different, confirming the reliability of formalin-fixed paraffin-embedded for MGMT promoter methylation analysis. Warm ex vivo ischemia (up to 4 hours at 37 °C) and 3 cycles of repeated sample thawing and freezing did not statistically impact 5-methylcytosine at MGMT promoter, exon, and enhancer regions, indicating the resistance of DNA methylation to common variations in sample processing conditions that might be encountered in research and clinical settings. Twenty-six percent to 34% of specimens exhibited intratumor heterogeneity in the MGMT DNA promoter methylation. These data demonstrate that variations in sample fixation, ischemia duration and temperature, and DNA methylation assay technique do not have a statistically significant impact on MGMT promoter methylation assessment. However, intratumor methylation heterogeneity underscores the value of multiple biopsies at different GBM geographic tumor sites in the evaluation of MGMT promoter methylation status. Matrix-MeDIP-seq analysis revealed that MGMT promoter methylation status clustered with other differentially methylated genomic loci (eg, HOXA and lncRNAs) that are resilient to variation in the above preanalytical conditions. These observations offer new opportunities to develop more granular data-based epigenetic GBM biomarkers. In this regard, the high-throughput CryoGrid-PIXUL-Matrix toolbox could be useful.
Collapse
Affiliation(s)
- Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| | - Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Suzanne Powell
- Department of Neuropathology, Houston Methodist Hospital, Houston, Texas
| | - Monika Vishnoi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neil Cancer Center, Houston, Texas
| | - Jennifer Delegard
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Caroline Hadley
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
| | - Nitin Tandon
- Department of Neurosurgery, McGovern Medical School at UT Health, Houston, Texas
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Anoop P Patel
- Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas; Department of Neurological Surgery, University of Washington, Seattle, Washington; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
2
|
Bomsztyk K, Mar D, Denisenko O, Powell S, Vishnoi M, Delegard J, Patel A, Ellenbogen RG, Ramakrishna R, Rostomily R. Analysis of gliomas DNA methylation: Assessment of pre-analytical variables. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586350. [PMID: 38586048 PMCID: PMC10996653 DOI: 10.1101/2024.03.26.586350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Precision oncology is driven by molecular biomarkers. For glioblastoma multiforme (GBM), the most common malignant adult primary brain tumor, O6-methylguanine-DNA methyltransferase ( MGMT ) gene DNA promoter methylation is an important prognostic and treatment clinical biomarker. Time consuming pre-analytical steps such as biospecimen storage before fixing, sampling, and processing are major sources of errors and batch effects, that are further confounded by intra-tumor heterogeneity of MGMT promoter methylation. To assess the effect of pre-analytical variables on GBM DNA methylation, tissue storage/sampling (CryoGrid), sample preparation multi-sonicator (PIXUL) and 5-methylcytosine (5mC) DNA immunoprecipitation (Matrix MeDIP-qPCR/seq) platforms were used. MGMT promoter CpG methylation was examined in 173 surgical samples from 90 individuals, 50 of these were used for intra-tumor heterogeneity studies. MGMT promoter methylation levels in paired frozen and formalin fixed paraffin embedded (FFPE) samples were very close, confirming suitability of FFPE for MGMT promoter methylation analysis in clinical settings. Matrix MeDIP-qPCR yielded similar results to methylation specific PCR (MS-PCR). Warm ex-vivo ischemia (37°C up to 4hrs) and 3 cycles of repeated sample thawing and freezing did not alter 5mC levels at MGMT promoter, exon and upstream enhancer regions, demonstrating the resistance of DNA methylation to the most common variations in sample processing conditions that might be encountered in research and clinical settings. 20-30% of specimens exhibited intratumor heterogeneity in the MGMT DNA promoter methylation. Collectively these data demonstrate that variations in sample fixation, ischemia duration and temperature, and DNA methylation assay technique do not have significant impact on assessment of MGMT promoter methylation status. However, intratumor methylation heterogeneity underscores the need for histologic verification and value of multiple biopsies at different GBM geographic tumor sites in assessment of MGMT promoter methylation. Matrix-MeDIP-seq analysis revealed that MGMT promoter methylation status clustered with other differentially methylated genomic loci (e.g. HOXA and lncRNAs), that are likewise resilient to variation in above post-resection pre-analytical conditions. These MGMT -associated global DNA methylation patterns offer new opportunities to validate more granular data-based epigenetic GBM clinical biomarkers where the CryoGrid-PIXUL-Matrix toolbox could prove to be useful.
Collapse
|
3
|
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS, Purwar R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol 2022; 41:582-605. [PMID: 35938932 DOI: 10.1080/08830185.2022.2101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.
Collapse
Affiliation(s)
- Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandhya Yadav
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Godhanjali Chekuri
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ankesh Kumar Jaiswal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| |
Collapse
|
4
|
Rabé M, Dumont S, Álvarez-Arenas A, Janati H, Belmonte-Beitia J, Calvo GF, Thibault-Carpentier C, Séry Q, Chauvin C, Joalland N, Briand F, Blandin S, Scotet E, Pecqueur C, Clairambault J, Oliver L, Perez-Garcia V, Nadaradjane A, Cartron PF, Gratas C, Vallette FM. Identification of a transient state during the acquisition of temozolomide resistance in glioblastoma. Cell Death Dis 2020; 11:19. [PMID: 31907355 PMCID: PMC6944699 DOI: 10.1038/s41419-019-2200-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
Drug resistance limits the therapeutic efficacy in cancers and leads to tumor recurrence through ill-defined mechanisms. Glioblastoma (GBM) are the deadliest brain tumors in adults. GBM, at diagnosis or after treatment, are resistant to temozolomide (TMZ), the standard chemotherapy. To better understand the acquisition of this resistance, we performed a longitudinal study, using a combination of mathematical models, RNA sequencing, single cell analyses, functional and drug assays in a human glioma cell line (U251). After an initial response characterized by cell death induction, cells entered a transient state defined by slow growth, a distinct morphology and a shift of metabolism. Specific genes expression associated to this population revealed chromatin remodeling. Indeed, the histone deacetylase inhibitor trichostatin (TSA), specifically eliminated this population and thus prevented the appearance of fast growing TMZ-resistant cells. In conclusion, we have identified in glioblastoma a population with tolerant-like features, which could constitute a therapeutic target.
Collapse
Affiliation(s)
- Marion Rabé
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Solenne Dumont
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,GenoBiRD, SFR François Bonamy, Université de Nantes, Nantes, France
| | - Arturo Álvarez-Arenas
- Department of Mathematics and MôLAB-Mathematical Oncology Laboratory, University of Castilla-la Mancha, Ciudad Real, Spain
| | - Hicham Janati
- Laboratoire Jacques-Louis Lions, Inria, Mamba team and Sorbonne Université, Paris 6, UPMC, Paris, France
| | - Juan Belmonte-Beitia
- Department of Mathematics and MôLAB-Mathematical Oncology Laboratory, University of Castilla-la Mancha, Ciudad Real, Spain
| | - Gabriel F Calvo
- Department of Mathematics and MôLAB-Mathematical Oncology Laboratory, University of Castilla-la Mancha, Ciudad Real, Spain
| | | | - Quentin Séry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Laboratoire de Biologie des Cancers et Théranostic, Institut de Cancérologie de l'Ouest-St Herblain, 44805, Saint-Herblain, France
| | - Cynthia Chauvin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Noémie Joalland
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Floriane Briand
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Stéphanie Blandin
- Plate-Forme MicroPICell, SFR François Bonamy, Université de Nantes, Nantes, France
| | - Emmanuel Scotet
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Claire Pecqueur
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Jean Clairambault
- Laboratoire Jacques-Louis Lions, Inria, Mamba team and Sorbonne Université, Paris 6, UPMC, Paris, France
| | - Lisa Oliver
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CHU Nantes, 44093, Nantes, France
| | - Victor Perez-Garcia
- Department of Mathematics and MôLAB-Mathematical Oncology Laboratory, University of Castilla-la Mancha, Ciudad Real, Spain
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Laboratoire de Biologie des Cancers et Théranostic, Institut de Cancérologie de l'Ouest-St Herblain, 44805, Saint-Herblain, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Laboratoire de Biologie des Cancers et Théranostic, Institut de Cancérologie de l'Ouest-St Herblain, 44805, Saint-Herblain, France
| | - Catherine Gratas
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France. .,CHU Nantes, 44093, Nantes, France.
| | - François M Vallette
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France. .,Laboratoire de Biologie des Cancers et Théranostic, Institut de Cancérologie de l'Ouest-St Herblain, 44805, Saint-Herblain, France.
| |
Collapse
|
5
|
Looking for A Place for Dose-Dense TMZ Regimens in GBM Patients: An Experience with MGMT Exploratory Evaluation. Bioengineering (Basel) 2019; 6:bioengineering6010011. [PMID: 30678211 PMCID: PMC6466220 DOI: 10.3390/bioengineering6010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Prolonged exposure to temozolomide (TMZ) could improve clinical outcomes in recurrent glioblastoma multiforme (GBM) patients. We previously developed a dose-dense regimen of TMZ in a phase II study (180 mg/m2 from days 1 to 5 every two weeks). A retrospective analysis of patients with macroscopic residual GBM treated with “post-induction” dose-dense TMZ was conducted, adding an explorative subgroup analyses among patients with different O6-methylguanine DNA methyltransferase (MGMT) expressions (negative vs positive, < vs ≥ of 50 % of cells stained, < vs ≥ 70% of cells stained). Thirty-six patients were evaluated; after a median follow-up of 36 weeks, median Progression Free Survival (PFS) and median Overall Survival (OS) were 19 and 34 weeks, respectively. MGMT expression (70% cut-off) and sex were confirmed as independent predictors for disease control rate (DCR) at multivariate analysis. At univariate analysis ECOG-PS, Sex (female), extensive tumor resection was shown to be related to a longer PFS, while MGMT expression (cut-off 70%) to a shorter PFS. Multivariate analysis with Cox hazard regression confirmed only ECOG-PS as an independent predictor for PFS. ECOG-PS showed to be significant related to a longer OS. Our analysis showed that dose-dense TMZ regimens are still an option for patients with recurrent GBM, but should be used for re-challenge treatments. MGMT immunohistochemistry high expression might be used as a “surrogate” negative predictor for DCR for dd-TMZ treatments.
Collapse
|
6
|
Panagopoulos I, Gorunova L, Leske H, Niehusmann P, Johannessen LE, Staurseth J, Øino N, Meling TR, Heim S, Micci F, Brandal P. Pyrosequencing Analysis of MGMT Promoter Methylation in Meningioma. Cancer Genomics Proteomics 2018; 15:379-385. [PMID: 30194078 DOI: 10.21873/cgp.20096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a well-established predictor of response to the DNA-alkylating agent temozolomide in patients with glioblastoma. MATERIALS AND METHODS Pyrosequencing analysis was used to determine the MGMT promoter methylation status in 61 meningiomas, to clarify whether it might have a predictive role. RESULTS Only two tumors (3%) had a mean methylation frequency higher than the cut-off value of 10% for the four CpG sites examined. CONCLUSION The methylation of the MGMT promoter is uncommon, or occurs at a low frequency in meningiomas. There is no convincing rationale to test such tumors for their MGMT methylation status in a clinical setting.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lene E Johannessen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Julie Staurseth
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Nina Øino
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Torstein R Meling
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Cortellini A, Dal Mas A, Cannita K, Collina G, Parisi A, Pavese F, Porzio G, Verna L, Ficorella C. Where are we with treatment options after first line in small cell lung cancer?-report of two opposite cases treated with CAPTEM regimen and possible perspectives. J Thorac Dis 2018; 10:E520-E525. [PMID: 30174924 DOI: 10.21037/jtd.2018.06.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alessio Cortellini
- Department of Medical Oncology, St. Salvatore Hospital, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Dal Mas
- Department of Pathology, St. Salvatore Hospital L'Aquila, L'Aquila, Italy
| | - Katia Cannita
- Department of Medical Oncology, St. Salvatore Hospital, University of L'Aquila, L'Aquila, Italy
| | - Guido Collina
- Department of Pathology, C. & G. Mazzoni Hospital, Ascoli Piceno, Italy
| | - Alessandro Parisi
- Department of Medical Oncology, St. Salvatore Hospital, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Pavese
- Department of Medical Oncology, St. Salvatore Hospital, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giampiero Porzio
- Department of Medical Oncology, St. Salvatore Hospital, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lucilla Verna
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Corrado Ficorella
- Department of Medical Oncology, St. Salvatore Hospital, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
8
|
Predicting O6-Methylguanine-DNA Methyltransferase Protein Expression in Primary Low- and High-Grade Gliomas Using Certain Qualitative Characteristics of Amide Proton Transfer-Weighted Magnetic Resonance Imaging. World Neurosurg 2018; 116:e814-e823. [PMID: 29803064 DOI: 10.1016/j.wneu.2018.05.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To demonstrate that certain qualitative amide proton transfer-weighted (APTw) characteristics can provide practical imaging clues for predicting O6-methylguanine-DNA methyltransferase (MGMT) protein expression in primary low- and high-grade gliomas, preoperatively and noninvasively. METHODS Pathologically confirmed low- and high-grade gliomas with APT data and immunohistochemical (IHC) reports were recruited in this study. The MGMT protein expression status was classified by postsurgery specimen immunostaining. Subjects were divided into two groups, MGMT-positive and MGMT-negative group, according to the immunoreactivity of MGMT protein expression documented in IHC reports. APTw images scanned at 3T magnetic resonance preoperatively were retrospectively analyzed. Two neuroradiologists were trained to evaluate presence of certain APTw features. Kappa value was calculated to show the consistency between the 2 observers. The Mann-Whitney U test was used to evaluate relationships between the 2 groups on APTw features. Negative predictive value and positive predictive value was used to evaluate the ability of APTw characteristics in predicting MGMT protein expression. Receiver operating characteristic curve was used to evaluate the diagnostic performance of APTw characters. Two-tailed P < 0.05 was considered as statistically significant. RESULTS Forty-two subjects were recruited in this study. Among them 38 specimens presented positive MGMT immunostaining (MGMT-positive group), 4 specimens were negative MGMT immunostaing (MGMT-negative group). There were, respectively, 37 and 5 APTw images appeared positive and negative APTw features. Differences between tumors of positive and negative MGMT expression on qualitative APTw features were significant (P = 0.020). The consistency coefficient of the 2 observers was 0.876 (kappa = 0.876). Three of five llgliomas with negative APTw features showed MGMT-negative immunostaining, leading to a negative predictive value of 60%, and 36 of 37 cases presenting positive APTw characteristics were tumors of MGMT-positive expression, generating a positive predictive value of 97.3%. The area under curve was 0.849. CONCLUSIONS APTw characteristics could be promising imaging markers by which to predict IHC MGMT expression in primary low- and high-grade gliomas preoperatively and noninvasively.
Collapse
|
9
|
Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones 2018; 23:303-315. [PMID: 28952019 PMCID: PMC5904076 DOI: 10.1007/s12192-017-0843-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 02/02/2023] Open
Abstract
Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
10
|
Bhat AA, Wani HA, Ishaq S, Waza AA, Malik RA, Shabir I, Jeelani S, Kadla S, Qureshie W, Masood A, Majid S. Promoter Hypermethylation and Its Impact on Expression of MGMT Gene in the GIT Malignant Patients of Kashmiri Origin. Cancer Invest 2017; 35:116-121. [DOI: 10.1080/07357907.2016.1271887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Arif Akbar Bhat
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Hilal Ahmad Wani
- Multidisciplinary Research Unit, Government Medical College Srinagar, Srinagar, India
| | - Shiekh Ishaq
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Ajaz Ahmad Waza
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, India
| | | | - Iram Shabir
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Showkat Jeelani
- Department of Surgery, Government Medical College Srinagar, Srinagar, India
| | - Showkat Kadla
- Department of Medicine, Government Medical College Srinagar, Srinagar, India
| | - Waseem Qureshie
- Registrar, Government Medical College Srinagar, Srinagar, India
| | - Akbar Masood
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| |
Collapse
|
11
|
Bhat AA, Wani HA, Waza AA, Malik RA, Masood A, Jeelani S, Kadla S, Majid S. Diminished expression of MGMT & RASSF1A genes in gastric cancer in ethnic population of Kashmir. J Gastrointest Oncol 2016; 7:989-995. [PMID: 28078123 DOI: 10.21037/jgo.2016.06.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cancer initiation and progression are accompanied by profound changes in DNA. DNA methylation that was the first epigenetic alterations identified in cancer. DNA hypermethylation at promoter sites is closely associated with down regulation of protein and as major participant in the development and progression of series of human tumors. Therefore we hypothesized that promoter hypermethylation of RASSF1A & MGMT gene could influence susceptibility to gastric cancer (GC) as well, and we conducted this study to test the hypothesis in Kashmiri population. METHODS A hospital based case-control study; including 200 GC cases and 200 matched controls from patients who went surgical resection. Promoter hypermethylation was determined by Methylation Specific Polymerase chain reaction. The expression of MGMT & RASSF1A protein was examined by Western blotting technique. RESULTS Frequency of promoter region hypermethylation of MGMT gene were 46.5% in cases and 5.5% in controls (P<0.05) while as in case of RASSF1A frequency was 44% in cases and 4.5% in controls (P<0.05). Further, frequency of hypermethylation of both genes was found predominant in males, aged and advanced pathological stage subjects. Loss of MGMT expression was found in 46.5% cases (P<0.05) while as loss of RASSF1A expression was found in 40.5% cases (P<0.05). In both genes a positive correlation was observed between promoter CpG island hypermethylation and down regulation of respective proteins. CONCLUSIONS These findings indicate that promoter hypermethylation at CpG island may be responsible for reduction of expression at protein level which may be an initial event in carcinogenesis and the progression of GC.
Collapse
Affiliation(s)
- Arif Akbar Bhat
- Department of Biochemistry, Government Medical College Srinagar (Research Centre University of Kashmir), Srinagar, India
| | - Hilal Ahmad Wani
- Multidisciplinary Research Unit, Government Medical College Srinagar, Srinagar, India
| | - Ajaz Ahmad Waza
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, India
| | | | - Akbar Masood
- Department of Biochemistry, University of Kashmir, Hazratbal Srinagar, Srinagar, India
| | | | | | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar (Research Centre University of Kashmir), Srinagar, India
| |
Collapse
|
12
|
MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression. Cell Oncol (Dordr) 2016; 39:435-447. [PMID: 27306526 DOI: 10.1007/s13402-016-0286-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The O6-methylguanine-DNA methyltransferase (MGMT) protein removes O6-alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. METHODS In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. RESULTS Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. CONCLUSIONS The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.
Collapse
|
13
|
RETRACTED ARTICLE: Correlation of Promoter Methylation in the MGMT Gene with Glioma Risk and Prognosis: a Meta-Analysis. Mol Neurobiol 2015. [DOI: 10.1007/s12035-014-8760-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Messaoudi K, Clavreul A, Lagarce F. Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov Today 2015; 20:899-905. [PMID: 25744176 DOI: 10.1016/j.drudis.2015.02.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 02/05/2023]
Abstract
Glioblastoma multiforme (GBM) is a devastating disease and the most lethal of adult brain tumors. Treatment is based on surgery, radiotherapy and chemotherapy by oral temozolomide (TMZ), which is the most potent chemotherapy agent for the treatment of GBM. Despite TMZ efficiency, the prognosis of these tumors remains poor. This is because of inherent or acquired resistance of glioma tumor cells to TMZ. This resistance is caused by DNA repair enzyme activity, overexpression of epidermal growth factor receptor (EGFR), galectin-1, murine double minute 2 (Mdm2), p53 and phosphatase and tensin homolog (PTEN) mutations. Many strategies to overcome this resistance have been developed. In this review, we will describe the main mechanisms of GBM resistance to TMZ and different strategies developed to reverse the phenotype of these tumor cells. Finally, we will discuss the drawbacks and limitations of these strategies.
Collapse
Affiliation(s)
- Khaled Messaoudi
- LUNAM Université, Angers, France; Inserm U1066, Micro et Nanomedecines Biomimétiques, IBS, Angers Cedex 9, France
| | - Anne Clavreul
- LUNAM Université, Angers, France; Inserm U1066, Micro et Nanomedecines Biomimétiques, IBS, Angers Cedex 9, France
| | - Frédéric Lagarce
- LUNAM Université, Angers, France; Inserm U1066, Micro et Nanomedecines Biomimétiques, IBS, Angers Cedex 9, France; Service Pharmacie, CHU Angers, France.
| |
Collapse
|
15
|
Xu M, Nekhayeva I, Cross CE, Rondelli CM, Wickliffe JK, Abdel-Rahman SZ. Influence of promoter/enhancer region haplotypes on MGMT transcriptional regulation: a potential biomarker for human sensitivity to alkylating agents. Carcinogenesis 2014; 35:564-71. [PMID: 24163400 PMCID: PMC3941746 DOI: 10.1093/carcin/bgt355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/04/2013] [Accepted: 10/18/2013] [Indexed: 01/01/2023] Open
Abstract
The O6-methylguanine-DNA methyltransferase gene (MGMT) encodes the direct reversal DNA repair protein that removes alkyl adducts from the O6 position of guanine. Several single-nucleotide polymorphisms (SNPs) exist in the MGMT promoter/enhancer (P/E) region. However, the haplotype structure encompassing these SNPs and their functional/biological significance are currently unknown. We hypothesized that MGMT P/E haplotypes, rather than individual SNPs, alter MGMT transcription and can thus alter human sensitivity to alkylating agents. To identify the haplotype structure encompassing the MGMT P/E region SNPs, we sequenced 104 DNA samples from healthy individuals and inferred the haplotypes using the data generated. We identified eight SNPs in this region, namely T7C (rs180989103), T135G (rs1711646), G290A (rs61859810), C485A (rs1625649), C575A (rs113813075), G666A (rs34180180), C777A (rs34138162) and C1099T (rs16906252). Phylogenetics and Sequence Evolution analysis predicted 21 potential haplotypes that encompass these SNPs ranging in frequencies from 0.000048 to 0.39. Of these, 10 were identified in our study population as 20 paired haplotype combinations. To determine the functional significance of these haplotypes, luciferase reporter constructs representing these haplotypes were transfected into glioblastoma cells and their effect on MGMT promoter activity was determined. Compared with the most common (reference) haplotype 1, seven haplotypes significantly upregulated MGMT promoter activity (18-119% increase; P < 0.05), six significantly downregulated MGMT promoter activity (29-97% decrease; P < 0.05) and one haplotype had no effect. Mechanistic studies conducted support the conclusion that MGMT P/E haplotypes, rather than individual SNPs, differentially regulate MGMT transcription and could thus play a significant role in human sensitivity to environmental and therapeutic alkylating agents.
Collapse
Affiliation(s)
- Meixiang Xu
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Ilona Nekhayeva
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Courtney E. Cross
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Catherine M. Rondelli
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1066, USA and
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Jeffrey K. Wickliffe
- Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | | |
Collapse
|
16
|
Gupte M, Tuck AN, Sharma VP, Williams KJ. Major differences between tumor and normal human cell fates after exposure to chemotherapeutic monofunctional alkylator. PLoS One 2013; 8:e74071. [PMID: 24019948 PMCID: PMC3760805 DOI: 10.1371/journal.pone.0074071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/26/2013] [Indexed: 01/07/2023] Open
Abstract
The major dilemma of cancer chemotherapy has always been a double-edged sword, producing resistance in tumor cells and life-threatening destruction of nontumorigenic tissue. Glioblastoma is the most common form of primary brain tumor, with median survival at 14 months after surgery, radiation and temozolomide (monofunctional alkylator) therapy. Treatment failure is most often due to temozolomide-resistant tumor growth. The underlying basis for development of tumor cell resistance to temozolomide instead of death is not understood. Our current results demonstrate that both cervical carcinoma (HeLa MR) and glioblastoma (U251) tumor cells exposed to an equivalent chemotherapeutic concentration of a monofunctional alkylator undergo multiple cell cycles, maintenance of metabolic activity, and a prolonged time to death that involves accumulation of Apoptosis Inducing Factor (AIF) within the nucleus. A minority of the tumor cell population undergoes senescence, with minimal caspase cleavage. Surviving tumor cells are comprised of a very small subpopulation of individual cells that eventually resume proliferation, out of which resistant cells emerge. In contrast, normal human cells (MCF12A) exposed to a monofunctional alkylator undergo an immediate decrease in metabolic activity and subsequent senescence. A minority of the normal cell population undergoes cell death by the caspase cleavage pathway. All cytotoxic events occur within the first cell cycle in nontumorigenic cells. In summation, we have demonstrated that two different highly malignant tumor cell lines slowly undergo very altered cellular and temporal responses to chemotherapeutic monofunctional alkylation, as compared to rapid responses of normal cells. In the clinic, this produces resistance and growth of tumor cells, cytotoxicity of normal cells, and death of the patient.
Collapse
|
17
|
Buccoliero AM, Arganini L, Ammannati F, Gallina P, Di Lorenzo N, Mennonna P, Taddei GL. Oligodendrogliomas Lacking O6-Methylguanine-DNA-Methyltransferase Expression. J Chemother 2013; 17:321-6. [PMID: 16038527 DOI: 10.1179/joc.2005.17.3.321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
O6-Methylguanine-DNA-Methyltransferase (MGMT) is a DNA repair protein considered to be a chemosensitivity predictor. We evaluated the immunohistochemical MGMT expression in 28 consecutive oligodendroglial tumors (21 oligodendrogliomas, 5 mixed oligoastrocytomas, and 2 glioblastomas with prominent oligodendroglial features; 13 treated with CCNU) and compared it with that of 13 glioblastomas. Twenty-six (93%) oligodendroglial tumors were MGMT-negative, 2 (7%) were MGMT-positive. Twelve (92%) patients treated with CCNU had MGMT-negative lesions and their median survival was 73 months; 1 patient had an MGMT-positive oligodendroglioma and is alive at 28 months. Three (23%) glioblastomas were MGMT-negative and 10 (77%) MGMT-positive. The lower MGMT expression in oligodendroglial tumors compared to glioblastomas (P < 0.05), which have different chemosensitivity, suggests a possible role of MGMT in the determination of chemoresistance. Nevertheless, the heterogeneous outcome of our MGMT-negative oligodendroglial tumors treated with CCNU, indicates that MGMT expression alone is insufficient to predict the response to alkylating drugs, presumably because of the numerous mechanisms involved.
Collapse
Affiliation(s)
- A M Buccoliero
- Department of Human Pathology and Oncology, University of Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu K, Zhang L, Chen J, Hu Z, Cai G, Hong Q. Association of MeCP2 (rs2075596, rs2239464) genetic polymorphisms with systemic lupus erythematosus: a meta-analysis. Lupus 2013; 22:908-18. [DOI: 10.1177/0961203313496340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective Limited studies have shown an association between the methyl-CpG-binding protein2 ( MeCp2) genetic polymorphisms and systemic lupus erythematosus (SLE) in different populations, but the results are inconclusive. In order to get a precise and systematic estimation, a meta-analysis was performed. Methods A systematic literature search using English and Chinese databases (PubMed/Medline, Web of Knowledge, Wanfang Data (Chinese), etc.) for the eligible studies was performed. Based on heterogeneity among studies, random- or fixed-effects models were selected to analyze the risk of SLE associated with single-nucleotide polymorphisms (SNPs) of MeCP2 genetic polymorphisms. Results A significant increased risk of both SNPs of MeCP2 genetic variances associated with SLE was found. Analysis using a fixed-effects model found an increased risk of SLE with the A allele of rs2075596 (OR = 1.41, 95% CI: 1.34 to 1.49, p < 0.001), and the random-effects model also identified a risk factor of A allele of rs2239464 (OR = 1.31, 95% CI: 1.15 to 1.49, p = 0.001). Subgroup analysis and sensitivity analysis suggested that the major source of between-study heterogeneity stemmed from the difference between diverse ethnic groups. After omitting the smallest study, no publication bias was found, which further confirmed the reliability and stability of the meta-analysis. Conclusions Mutations of SNPs ( rs2075596, rs2239464) of MeCP2 showed increased risk of developing SLE. Large-scale multicenter epidemiological studies in selected populations with other risk factors are urgently required.
Collapse
Affiliation(s)
- K Liu
- Department of Public Health (Epidemiology and Health Statistics), School of Medicine, Ningbo University, People’s Republic of China
| | - L Zhang
- School of Health Management, Anhui Medical University, People’s Republic of China
| | - J Chen
- Department of Epidemiology and Health Statistics, Anhui Medical University, People’s Republic of China
| | - Z Hu
- School of Health Management, Anhui Medical University, People’s Republic of China
| | - G Cai
- School of Health Management, Anhui Medical University, People’s Republic of China
| | - Q Hong
- School of Health Management, Anhui Medical University, People’s Republic of China
| |
Collapse
|
19
|
Yang T, Qiu H, Bao W, Li B, Lu C, Du G, Luo X, Wang L, Wan X. Epigenetic inactivation of EFEMP1 is associated with tumor suppressive function in endometrial carcinoma. PLoS One 2013; 8:e67458. [PMID: 23840707 PMCID: PMC3696089 DOI: 10.1371/journal.pone.0067458] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE EFEMP1, the epidermal growth factor-containing fibulin-like extracellular matrix protein 1, functions as an oncogene or a tumor suppressor depending on the cancer types. In this study, we aim to determine whether EFEMP1 affects the tumorigenesis and progression of endometrial carcinoma. METHODS The expression of EFEMP1 was investigated using immunohistochemistry in a panel of normal endometrium (n = 40), atypical hyperplasia (n = 10) and endometrial carcinoma tissues (n = 84). Methylation status of the EFEMP1 promoter was detected by methylation-specific PCR (MSP) and bisulphite genomic sequencing. Up- or down-regulation of EFEMP1 were achieved by stable or transient transfection with pCMV6/GFP/Neo-EFEMP1 or pGPU6/GFP/Neo-shEFEMP1 respectively. Effects of EFEMP1 on tumor proliferation, invasion and migration were evaluated by MTT, plate colony formation, Transwell and wound healing assay. The nude mouse tumor xenograft assay was used to investigate function of EFEMP1 in vivo. RESULTS Compared with normal endometrium (32/40) and atypical hyperplasia (7/10), EFEMP1 expression was much lower in endometrial carcinoma tissues (16/84) (P<0.001 and P = 0.02). EFEMP1 promoter was hypermethylated in endometrial carcinoma tissues (67%) as compared to normal tissue (10%) and down-regulation of EFEMP1 was associated with promoter hypermethylation. Treatment with 5-aza-2'-deoxycytidine (5-aza-dC) and/or trichostatin A (TSA) altered EFEMP1 methylation status, and restored EFEMP1 expression. Moreover, EFEMP1 decreased secretion of MMPs and inhibited tumor cell proliferation, metastasis and invasion in vitro and suppressed tumorigenesis in nude mice. Besides, EFEMP1 increased expression of E-cadherin and suppressed expression of vimentin in endometrial carcinoma. CONCLUSION EFEMP1 is a new candidate tumor suppressor gene in endometrial carcinoma, and is frequently silenced by promoter hypermethylation. It could inhibit tumor growth and invasion both in vitro and in vivo. Our findings propose that targeting EFEMP1 might offer future clinical utility in endometrial carcinoma.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Qiu
- Department of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Bao
- Department of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bilan Li
- Department of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Lu
- Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiqiang Du
- Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Luo
- Department of the Center of Research Laboratory, International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Wang
- Department of Obstetrics and Gynecology, International Peace Maternity & Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (LW); (XW)
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (LW); (XW)
| |
Collapse
|
20
|
Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, Kang C, You Y, Jiang C, Song SW, Jiang T, Chen CC. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro Oncol 2012; 14:712-9. [PMID: 22570426 DOI: 10.1093/neuonc/nos089] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome-wide microRNA (miRNA) profiling of 82 glioblastomas demonstrated that miR-181d was inversely associated with patient overall survival after correcting for age, Karnofsky performance status, extent of resection, and temozolomide (TMZ) treatment. This association was validated using the Cancer Genome Atlas (TCGA) dataset (n= 424) and an independent cohort (n= 35). In these independent cohorts, an association of miR-181d with survival was evident in patients who underwent TMZ treatment but was not observed in patients without TMZ therapy. Bioinformatic analysis of potential genes regulated by miR-181d revealed methyl-guanine-methyl-transferase (MGMT) as a downstream target. Indeed, transfection of miR-181d downregulated MGMT mRNA and protein expression. Furthermore, luciferase reporter assays and coprecipitation studies showed a direct interaction between miR-181d and MGMT 3'UTR. The suppressive effect of miR-181d on MGMT expression was rescued by the introduction of an MGMT cDNA. Finally, MGMT expression inversely correlated with miR-181d expression in independent glioblastoma cohorts. Together, these results suggest that miR-181d is a predictive biomarker for TMZ response and that its role is mediated, in part, by posttranscriptional regulation of MGMT.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Van Neste L, Jones GR, Van Criekinge W, Clark JS. Epigenetic-based companion diagnostics. Per Med 2011; 8:623-631. [DOI: 10.2217/pme.11.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In current medical practice, when a patient is diagnosed with cancer the treating physician generally follows a standard protocol, assigning the treatment that gives a favorable response in the largest proportion of patients. However, in many individual instances this approach may not be the most effective solution and, typically, treatment is only initiated or altered once the cancer has actually started progressing. During this process, patients will lose treatment time waiting to start chemotherapy or will endure severe side effects associated with toxic chemotherapeutic treatments. While some patients are undertreated because current diagnostic methods cannot provide accurate enough information regarding the aggressiveness or drug response of their disease, others with nonaggressive forms of cancer are overtreated and unnecessarily undergo the side effects associated with chemotherapeutic treatment. Epigenetic markers have been widely investigated and are considered key regulators of cellular transcription. Histone modifications and DNA methylation have been demonstrated to play key roles in maintaining stem-cell-like states, cellular differentiation and cancer. In particular, DNA methylation is a frequent, abundant and stable cancer mark, with an inherent role in oncogenesis and tumor progression. In this article, the potential of DNA methylation as a companion diagnostic is assessed, illustrated by exploring some development paths. Epigenetic silencing of MGMT is a key example of how biomarker development, biological pathways and clinical utility come together, serving as a hallmark of epigenetic companion diagnostics.
Collapse
Affiliation(s)
| | - Gregory R Jones
- MDxHealth Inc., 302 E. Pettigrew Street, Suite 240, Durham, NC 27701, USA
| | | | - James S Clark
- MDxHealth SA, Tour 5 GIGA niveau +3, Avenue de l’Hôpital 11, 4000 Liège, Belgium
| |
Collapse
|
22
|
A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathol 2011; 121:651-61. [PMID: 21287394 DOI: 10.1007/s00401-011-0803-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 12/29/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that removes alkyl DNA adducts such as those induced by alkylating agents. Loss of MGMT expression through transcriptional silencing by hypermethylation of its CpG island (CGI) is found in diverse human cancers including glioblastomas. Glioblastomas that have MGMT methylation respond to temozolomide, an alkylating agent, resulting in improved survival. Consequently, assessment of MGMT methylation has become a therapy response and prognostic indicator. However, it is not clear whether the region of the MGMT CGI commonly analysed is the critical region involved in transcriptional control. We measured methylation levels at each CpG site for the entire MGMT CGI using bisulfite modification and pyrosequencing, and compared them with MGMT mRNA expression in glioblastoma cell lines, xenografts and normal brain tissues (41 samples). Two critical regions were identified (DMR1 and DMR2). DMR2 encompasses the commonly analysed region and was always methylated when DMR1 was methylated. A luciferase reporter assay showed that substitutions of several specific CpG sites within DMR2 significantly attenuated the promoter activity of the MGMT CGI. Our results indicate that several CpG sites within DMR2 play a critical role in the transcriptional control of MGMT, making DMR2 the optimal target for methylation testing. However, given the highly variable patterns of MGMT methylation associated with transcriptional silencing observed in this region among the tumours in this study, methylation levels need to be measured at a number of individual CpGs within DMR2 to confidently predict transcriptional silencing and thus sensitivity to alkylating agents.
Collapse
|
23
|
Brell M, Ibáñez J, Tortosa A. O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction. BMC Cancer 2011; 11:35. [PMID: 21269507 PMCID: PMC3039628 DOI: 10.1186/1471-2407-11-35] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 01/26/2011] [Indexed: 11/15/2022] Open
Abstract
Background The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably.
Collapse
Affiliation(s)
- Marta Brell
- Department of Neurosurgery, Son Dureta University Hospital, Palma de Mallorca, Spain.
| | | | | |
Collapse
|
24
|
Sciuscio D, Diserens AC, van Dommelen K, Martinet D, Jones G, Janzer RC, Pollo C, Hamou MF, Kaina B, Stupp R, Levivier M, Hegi ME. Extent and patterns of MGMT promoter methylation in glioblastoma- and respective glioblastoma-derived spheres. Clin Cancer Res 2010; 17:255-66. [PMID: 21097691 DOI: 10.1158/1078-0432.ccr-10-1931] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Quantitative methylation-specific tests suggest that not all cells in a glioblastoma with detectable promoter methylation of the O6-methylguanine DNA methyltransferase (MGMT) gene carry a methylated MGMT allele. This observation may indicate cell subpopulations with distinct MGMT status, raising the question of the clinically relevant cutoff of MGMT methylation therapy. Epigenetic silencing of the MGMT gene by promoter methylation blunts repair of O6-methyl guanine and has been shown to be a predictive factor for benefit from alkylating agent therapy in glioblastoma. EXPERIMENTAL DESIGN Ten paired samples of glioblastoma and respective glioblastoma-derived spheres (GS), cultured under stem cell conditions, were analyzed for the degree and pattern of MGMT promoter methylation by methylation-specific clone sequencing, MGMT gene dosage, chromatin status, and respective effects on MGMT expression and MGMT activity. RESULTS In glioblastoma, MGMT-methylated alleles ranged from 10% to 90%. In contrast, methylated alleles were highly enriched (100% of clones) in respective GS, even when 2 MGMT alleles were present, with 1 exception (<50%). The CpG methylation patterns were characteristic for each glioblastoma exhibiting 25% to 90% methylated CpGs of 28 sites interrogated. Furthermore, MGMT promoter methylation was associated with a nonpermissive chromatin status in accordance with very low MGMT transcript levels and undetectable MGMT activity. CONCLUSIONS In MGMT-methylated glioblastoma, MGMT promoter methylation is highly enriched in GS that supposedly comprise glioma-initiating cells. Thus, even a low percentage of MGMT methylation measured in a glioblastoma sample may be relevant and predict benefit from an alkylating agent therapy.
Collapse
Affiliation(s)
- Davide Sciuscio
- Laboratory of Brain Tumor Biology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang C, Li H, Wang Y, Liu W, Zhang Q, Zhang T, Zhang X, Han B, Zhou G. Epigenetic inactivation of the tumor suppressor gene RIZ1 in hepatocellular carcinoma involves both DNA methylation and histone modifications. J Hepatol 2010; 53:889-95. [PMID: 20675009 DOI: 10.1016/j.jhep.2010.05.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 04/20/2010] [Accepted: 05/10/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The retinoblastoma-interacting zinc finger gene RIZ1 is inactivated in many cancers, but the underlying mechanisms remain unknown. This study aimed to investigate the epigenetic mechanisms of RIZ1 inactivation by analyzing the relationship between DNA methylation and histone modifications during regulation of RIZ1 expression. METHODS Methylation-specific PCR, RT-PCR, and immunohistochemistry were performed to examine RIZ1 methylation and expression. Dynamic changes in histone H3 lysine 9 (H3K9) modifications and histone deacetylases (HDACs) associated with the promoter were analyzed by chromatin immunoprecipitation (ChIP). RESULTS RIZ1 methylation was detected in 66.7% (32/48) HCC tissues, 6.3% (3/48) corresponding non-cancerous tissues, and 66.7% (4/6) HCC cell lines. All 32 HCC tissues with promoter methylation showed complete loss of RIZ1 protein, whereas RIZ1 protein was present in all the corresponding non-cancerous tissues. Neither 5-aza-2-deoxycitidine (5-Aza-dC) nor Trichostatin A (TSA) reversed promoter methylation, but did restore RIZ1 mRNA and resulted in the downregulation of HDAC1 but not HDAC3. However, 5-Aza-dC+TSA induced a partial reversal of promoter methylation and a markedly synergistic reactivation of RIZ1. Moreover, both HDAC1 and HDAC3 were downregulated. The ChIP assays showed 5-Aza-dC and/or TSA also contributed to the dynamic conversion of trimethylated to acetylated H3K9 at the promoter. Furthermore, a decrease in H3K9 trimethylation preceded an increase in H3K9 acetylation. CONCLUSIONS Our results suggest that promoter methylation and H3K9 modifications work together to silence the RIZ1 gene in HCC. 5-Aza-dC can restore the expression of RIZ1, as reflected by its effects on histone modification levels. This finding indicates that cooperative effects between these epigenetic modifications exist.
Collapse
Affiliation(s)
- Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schlosser S, Wagner S, Mühlisch J, Hasselblatt M, Gerss J, Wolff JEA, Frühwald MC. MGMT as a potential stratification marker in relapsed high-grade glioma of children: the HIT-GBM experience. Pediatr Blood Cancer 2010; 54:228-37. [PMID: 19856394 DOI: 10.1002/pbc.22323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Studies in adults with malignant glioma suggest MGMT methylation as a stratification marker. Similar data for children are sparse. We investigated the impact of MGMT methylation and expression on survival of children with high-grade glioma (HGG) registered into the German HIT-GBM database receiving temozolomide (TMZ) as part of their treatment (n = 21 relapsed, n = 4 primary). PROCEDURE Twenty-four patients were included retrospectively. Methylation specific PCR (MSP), calibrated combined bisulfite restriction analysis (COBRA), and immunohistochemistry (IHC) were applied. Survival analyses were performed by Kaplan-Meier and Cox proportional-hazards models. RESULTS MSP demonstrated DNA methylation in 77%. Patients with a methylated MGMT promoter had a sixfold longer median EFS (P = 0.015; 5.5 months vs. 0.9 months). Considering the results of calibrated COBRA, MGMT methylation was again associated with an elevated EFS (P = 0.05; 10.2 months vs. 2.6 months) and OS (P = 0.06; 18.7 months vs. 7.2 months) only if methylation was >14%. No difference in EFS and OS at all was noted between unmethylated and tumors methylated at low level (n = 9). Twenty-two tumors were positive by IHC, 10 showed low MGMT expression (IHC score 0-4). We did not detect any difference in EFS and OS between moderate/high-expressing tumors (IHC score 6-12) and those with low or no expression (IHC score 0-4). CONCLUSION DNA methylation, but not protein expression of MGMT was associated with an increased median EFS and OS of children with relapsed HGG. MGMT methylation status warrants prospective evaluation as a stratification marker for children with HGG.
Collapse
Affiliation(s)
- Sabrina Schlosser
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Cao VT, Jung TY, Jung S, Jin SG, Moon KS, Kim IY, Kang SS, Park CS, Lee KH, Chae HJ. THE CORRELATION AND PROGNOSTIC SIGNIFICANCE OF MGMT PROMOTER METHYLATION AND MGMT PROTEIN IN GLIOBLASTOMAS. Neurosurgery 2009; 65:866-75; discussion 875. [DOI: 10.1227/01.neu.0000357325.90347.a1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE
The aim of this study was to evaluate the correlation and prognostic significance of MGMT promoter methylation and protein expression in patients with glioblastoma.
METHODS
Eighty-three patients with glioblastoma underwent surgery followed by radiotherapy and temozolomide chemotherapy between October 2000 and June 2008. To investigate the correlation between MGMT methylation and MGMT expression, methylation-specific polymerase chain reaction (MSP) and immunohistochemical staining was performed. To analyze the correlation between MGMT methylation and MGMT expression according to location, biopsies were obtained from 37 different sites within the tumors in 12 patients. Age, sex, Karnofsky Performance Scale status, extent of removal, chemotherapeutic methods, and MGMT promoter methylation and protein expression were analyzed as prognostic factors.
RESULTS
The total median survival was 15.8 months (range, 12.6–19.1 months). The results of MSP were the same at various sites in 12 patients. A correlation between MSP and immunohistochemical staining was observed in 50% of the patients. In 73 patients, negative MGMT expression was detected in 70.5% of 44 patients with MGMT promoter methylation, and positive expression was observed in 55.2% of the 29 patients with unmethylated promoters. Multivariate analysis revealed that the extent of removal (P = 0.001) and the combination of MGMT promoter methylation and negative MGMT expression (median survival, 20.06 months; P = 0.006) were significantly associated with longer survival.
CONCLUSION
We report the feasibility of using MSP combined with immunohistochemical staining as a prognostic factor. The results of the present study suggest that MGMT promoter methylation in combination with negative MGMT expression might be a good prognostic factor in patients with glioblastoma.
Collapse
Affiliation(s)
- Van Thang Cao
- Brain Tumor Research Laboratory and Research Institute of Medical Sciences, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - Tae-Young Jung
- Department of Neurosurgery and Brain Tumor Research Laboratory and Research Institute of Medical Sciences, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - Shin Jung
- Department of Neurosurgery and Brain Tumor Research Laboratory and Research Institute of Medical Sciences, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - Shu-Guang Jin
- Brain Tumor Research Laboratory and Research Institute of Medical Sciences, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery and Brain Tumor Research Laboratory and Research Institute of Medical Sciences, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - In-Young Kim
- Department of Neurosurgery and Brain Tumor Research Laboratory and Research Institute of Medical Sciences, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - Sam-Suk Kang
- Department of Neurosurgery, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - Chang-Soo Park
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| | - Hong-Jae Chae
- Department of Occupational and Environmental Medicine, Chonnam National University, Hwasun Hospital and Medical School, Gwangju, Republic of Korea
| |
Collapse
|
28
|
Park CK, Park SH, Lee SH, Kim CY, Kim DW, Paek SH, Kim DG, Heo DS, Kim IH, Jung HW. Methylation status of the MGMT gene promoter fails to predict the clinical outcome of glioblastoma patients treated with ACNU plus cisplatin. Neuropathology 2009; 29:443-9. [PMID: 19170894 DOI: 10.1111/j.1440-1789.2008.00998.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kitange GJ, Carlson BL, Schroeder MA, Grogan PT, Lamont JD, Decker PA, Wu W, James CD, Sarkaria JN. Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro Oncol 2008; 11:281-91. [PMID: 18952979 DOI: 10.1215/15228517-2008-090] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Temozolomide (TMZ)-based therapy is the standard of care for patients with glioblastoma multiforme (GBM), and resistance to this drug in GBM is modulated by the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Expression of MGMT is silenced by promoter methylation in approximately half of GBM tumors, and clinical studies have shown that elevated MGMT protein levels or lack of MGMT promoter methylation is associated with TMZ resistance in some, but not all, GBM tumors. In this study, the relationship between MGMT protein expression and tumor response to TMZ was evaluated in four GBM xenograft lines that had been established from patient specimens and maintained by serial subcutaneous passaging in nude mice. Three MGMT unmethylated tumors displayed elevated basal MGMT protein expression, but only two of these were resistant to TMZ therapy (tumors GBM43 and GBM44), while the other (GBM14) displayed a level of TMZ sensitivity that was similar in extent to that seen in a single MGMT hypermethylated line (GBM12). In tissue culture and animal studies, TMZ treatment resulted in robust and prolonged induction of MGMT expression in the resistant GBM43 and GBM44 xenograft lines, while MGMT induction was blunted and abbreviated in GBM14. Consistent with a functional significance of MGMT induction, treatment of GBM43 with a protracted low-dose TMZ regimen was significantly less effective than a shorter high-dose regimen, while survival for GBM14 was improved with the protracted dosing regimen. In conclusion, MGMT expression is dynamically regulated in some MGMT nonmethylated tumors, and in these tumors, protracted dosing regimens may not be effective.
Collapse
Affiliation(s)
- Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schroering AG, Williams KJ. Rapid induction of chromatin-associated DNA mismatch repair proteins after MNNG treatment. DNA Repair (Amst) 2008; 7:951-69. [PMID: 18468964 PMCID: PMC2483959 DOI: 10.1016/j.dnarep.2008.03.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/07/2008] [Accepted: 03/23/2008] [Indexed: 12/18/2022]
Abstract
Treatment with low concentrations of monofunctional alkylating agents induces a G2 arrest only after the second round of DNA synthesis in mammalian cells and requires a proficient mismatch repair (MMR) pathway. Here, we have investigated rapid alkylation-induced recruitment of DNA repair proteins to chromosomal DNA within synchronized populations of MMR proficient cells (HeLa MR) after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. Within the first hour, the concentrations of MutS alpha and PCNA increase well beyond their constitutive chromosomally bound levels and MutL alpha is newly recruited to the chromatin-bound MutS alpha. Remarkably, immunoprecipitation experiments demonstrate rapid association of these proteins on the alkylation-damaged chromatin, even when DNA replication is completely blocked. The extent of association of PCNA and MMR proteins on the chromatin is dependent upon the concentration of MNNG and on the specific type of replication block. A subpopulation of the MutS alpha-associated PCNA also becomes monoubiquitinated, a known requirement for PCNA to interact with translesion synthesis (TLS) polymerases. In addition, chromatin-bound SMC1 and NBS1 proteins, associated with DNA double-strand-breaks (DSBs), become phosphorylated within 1-2h of exposure to MNNG. However, these activated proteins are not co-localized on the chromatin with MutS alpha in response to MNNG exposure. PCNA, MutS alpha/MutL alpha and activated SMC1/NBS1 remain chromatin-bound for at least 6-8h after alkylation damage. Thus, cells that are exposed to low levels of alkylation treatment undergo rapid recruitment to and/or activation of key proteins already on the chromatin without the requirement for DNA replication, apparently via different DNA-damage signaling pathways.
Collapse
Affiliation(s)
- Allen G. Schroering
- University of Toledo College of Medicine, Health Science Campus, Department of Biochemistry & Cancer Biology, Toledo, OH 43614
| | - Kandace J. Williams
- University of Toledo College of Medicine, Health Science Campus, Department of Biochemistry & Cancer Biology, Toledo, OH 43614
| |
Collapse
|
31
|
Alterations in S-adenosylhomocysteine metabolism decrease O6-methylguanine DNA methyltransferase gene expression without affecting promoter methylation. Biochem Pharmacol 2008; 75:2100-11. [PMID: 18395186 DOI: 10.1016/j.bcp.2008.02.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 01/22/2023]
Abstract
The DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT) protects cells against the cytotoxic effects of alkylating agents. Therefore, modulation of MGMT expression in tumors is a possible strategy for improving the efficiency of cancer therapy. MGMT expression and activity is lost frequently in association with DNA hypermethylation of the MGMT promoter region. Since DNA and mRNA methylation are controlled by intracellular S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) levels, we hypothesized a role for AdoMet/AdoHcy ratio in the regulation of MGMT promoter methylation and mRNA expression. Our initial studies showed that AdoMet/AdoHcy ratios vary over a wide range (7.0-50) in different glioblastoma and hepatoma cell lines. The studied cell lines exhibit distinct MGMT promoter methylation patterns: MGMT promoter was completely unmethylated in LN-18 and Tu 132 cells, hypermethylated in LN-229, U87-MG, and Tu 113 cells, and partially methylated in HepG2 cells. Furthermore, MGMT promoter methylation patterns and global DNA methylation are not related to intracellular AdoMet/AdoHcy ratio under control conditions. To lower AdoMet/AdoHcy ratio to values <1 we used AdoHcy hydrolase inhibitor adenosine-2',3'-dialdehyde (30 microM) and found that neither short-term (24 h) nor long-term changes (7 weeks) in AdoMet/AdoHcy ratio altered global or MGMT promoter methylation. However, experimentally elevated AdoHcy levels significantly decreased MGMT mRNA levels by >50% in all MGMT-expressing cell lines, which is most likely the result of impaired mRNA methylation. Thus, the present study suggests elevation of AdoHcy levels by AdoHcy hydrolase inhibition as a novel pharmacological approach to modulate MGMT expression and to increase the responsiveness to alkylating agents.
Collapse
|
32
|
Nakasu S, Fukami T, Jito J, Matsuda M. Prognostic significance of loss of O6-methylguanine-DNA methyltransferase expression in supratentorial diffuse low-grade astrocytoma. ACTA ACUST UNITED AC 2007; 68:603-608. [PMID: 17825378 DOI: 10.1016/j.surneu.2006.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 12/21/2006] [Indexed: 10/22/2022]
Abstract
BACKGROUND O(6)-Methylguanine-DNA methyltransferase is a DNA repair protein. Epigenetic silencing of MGMT function by its promoter hypermethylation is considered to contribute to carcinogenesis. If loss of function in MGMT is related to tumor progression, the immunohistochemical method may predict the malignant change of gliomas. METHOD We investigated the expression of MGMT by immunohistochemical method in 28 supratentorial hemispheric diffuse astrocytomas. The prognostic significance of MGMT expression, proliferation index (MIB-1), and various clinical factors was evaluated. RESULTS There were 19 MGMT-positive and 9 MGMT-negative astrocytomas. Their rates of malignant transformation at 5 years were 12.3% and 51.4%, respectively. The difference was significant in the univariate (P = .004) and multivariate analyses (P = .044). Age, sex, extent of surgery, MIB-1 value, and radiation therapy at initial treatment did not correlate with the malignant progression. The 10-year overall survival rates were 71.8% and 58.3% in the patients with MGMT-positive and MGMT-negative tumors, respectively, and were not significantly different between these 2 groups (P = .079). Two long-term survivors with MGMT-negative tumor responded well to nitrosourea-based chemotherapy and lived more than 8 years after malignant transformation. The patients' age (P = .0047) and the degree of surgical removal (P = .0082) affected the overall survival in the univariate analysis. In the multivariate analysis, none of these factors reached significance. CONCLUSION Although the status of MGMT did not affect the overall survival, immunohistochemical evaluation of MGMT expression may be a good marker for tumor progression.
Collapse
Affiliation(s)
- Satoshi Nakasu
- Department of Neurosurgery, Shiga University of Medical Science, Shiga-ken 520-2192, Japan.
| | - Tadateru Fukami
- Department of Neurosurgery, Shiga University of Medical Science, Shiga-ken 520-2192, Japan
| | - Jyunya Jito
- Department of Neurosurgery, Shiga University of Medical Science, Shiga-ken 520-2192, Japan
| | - Masayuki Matsuda
- Department of Neurosurgery, Shiga University of Medical Science, Shiga-ken 520-2192, Japan
| |
Collapse
|
33
|
Parkinson JF, Wheeler HR, Clarkson A, McKenzie CA, Biggs MT, Little NS, Cook RJ, Messina M, Robinson BG, McDonald KL. Variation of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation in serial samples in glioblastoma. J Neurooncol 2007; 87:71-8. [PMID: 18004504 DOI: 10.1007/s11060-007-9486-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/17/2007] [Indexed: 11/25/2022]
Abstract
Methylation of the promoter region of the O ( 6 ) -methylguanine-DNA methyltransferase (MGMT) gene is known to be predictive of response to temozolomide treatment in patients with glioblastoma. Contrastingly, little is known about variation in the methylation status of the MGMT promoter after treatment or across different regions of the same tumor. About 22 samples from 10 patients who had undergone multiple resections of a glioblastoma were examined with promoter sequencing. Of these, 20 were also analyzed using Methylation Specific PCR (MSP). The methylation status of the MGMT promoter was altered in the specimens obtained pre and post treatment in 2 of 9 samples as assessed by MSP and 7 out of 10 patients as assessed by promoter sequencing. In four patients, the MGMT promoter was unmethylated at primary surgery, but displayed some methylation (32, 44, 12, and 4%) on post-treatment sampling. Alteration in MSP status from unmethylated to methylated was also observed in 2 of these 4 patients. In another patient, methylation increased from 40% on initial sampling to 68% on the second sample. The remaining two patients initially demonstrated some degree of methylation (72% and 12%); subsequent sampling showed no methylation of the MGMT promoter. To ensure variable methylation status was not due to intra-tumoral variability, three to four specimens were sampled from different regions of large glioblastomas (n = 7). Promoter sequencing revealed minimal variation in methylation in all but two sites examined. Immunohistochemistry also demonstrated minimal change in MGMT expression across the tumors. This suggests that variation in MGMT promoter methylation can occur within the same tumor after treatment, necessitating caution in clinical decision-making based on this analysis.
Collapse
Affiliation(s)
- Jonathon F Parkinson
- Cancer Genetics Group, Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW 2065, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fontijn D, Adema AD, Bhakat KK, Pinedo HM, Peters GJ, Boven E. O6-methylguanine-DNA-methyltransferase promoter demethylation is involved in basic fibroblast growth factor induced resistance against temozolomide in human melanoma cells. Mol Cancer Ther 2007; 6:2807-2815. [PMID: 17938272 DOI: 10.1158/1535-7163.mct-07-0044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a multifunctional protein and one of the most important growth factors in cutaneous melanoma development and progression. We hypothesized that high bFGF expression might be responsible for chemoresistance in advanced melanoma. M14 human melanoma cells expressing low levels of bFGF were successfully transfected with vectors encoding either the 18 kDa or all isoform proteins of bFGF. M14 cells and bFGF-overexpressing clones had a similar growth rate in vitro. Overexpression of 18 kDa or all isoform proteins of bFGF resulted in, respectively, 2.9- and 6.9-fold resistance against temozolomide. O6-alkylguanine-DNA-alkyltransferase (AGT) protein levels were highly elevated. Specific inhibition of AGT with O6-benzylguanine completely reversed the resistance in the 18 kDa clone, and partially in the clone overexpressing all isoforms. A methylation-specific PCR showed that at least in the 18 kDa overexpressing clone, increased AGT expression was the result of demethylation of the O6-methylguanine-DNA-methyltransferase promoter. In parental M14 cells, the demethylating agent 5-azacytidine generated AGT expression resulting in temozolomide resistance. Overexpression of all isoform proteins of bFGF, but not the 18 kDa isoform alone, resulted in 2.9-fold resistance against cisplatin, which could not be reversed by O6-benzylguanine. The expression levels of the mismatch repair proteins MSH2, MSH6, and MLH1 were not decreased, which likely excludes a defective mismatch repair system as a cause for cisplatin resistance. There were no changes in sensitivity to docetaxel and doxorubicin. In conclusion, bFGF overexpression can result in resistance against temozolomide mediated by demethylation of the O6-methylguanine-DNA-methyltransferase promoter.
Collapse
Affiliation(s)
- Dennis Fontijn
- Department of Medical Oncology, VU University medical center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
This review describes the history of studies on alkylation damage of mammalian genomes and its carcinogenic consequences that led to the discovery of a unique DNA repair protein, named MGMT. MGMT repairs O(6)-alkylguanine, a critical mutagenic lesion induced by alkylating agents. The follow-up studies in mammalian cells following the discovery of the ubiquitous repair protein in E. coli are summarized.
Collapse
Affiliation(s)
- Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
36
|
Povey AC, Margison GP, Santibáñez-Koref MF. Lung cancer risk and variation in MGMT activity and sequence. DNA Repair (Amst) 2007; 6:1134-44. [PMID: 17569600 DOI: 10.1016/j.dnarep.2007.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (MGMT) repairs DNA adducts that result from alkylation at the O(6) position of guanine. These lesions are mutagenic and toxic and can be produced by a variety of agents including the tobacco-specific nitrosamines, carcinogens present in cigarette smoke. Here, we review some of our work in the context of inter-individual differences in MGMT expression and their potential influence on lung cancer risk. In humans there are marked inter-individual differences in not only levels of DNA damage in the lung (N7-methylguanine) that can arise from exposure to methylating agents but also in MGMT activity in lung tissues. In the presence of such exposure, this variability in MGMT activity may alter cancer susceptibility, particularly as animal models have demonstrated that the complete absence of MGMT activity predisposes to alkylating-agent induced cancer while overexpression is protective. Recent studies have uncovered a series of polymorphisms that affect protein activity or are associated with differences in expression levels. The associations between these (and other) polymorphisms and cancer risk are inconsistent, possibly because of small sample sizes and inter-study differences in lung cancer histology. We have recently analysed a consecutive series of case-control studies and found evidence that lung cancer risk was lower in subjects with the R178 allele.
Collapse
Affiliation(s)
- Andrew C Povey
- Centre for Occupational and Environmental Health, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
37
|
Lavon I, Zrihan D, Zelikovitch B, Fellig Y, Fuchs D, Soffer D, Siegal T. Longitudinal assessment of genetic and epigenetic markers in oligodendrogliomas. Clin Cancer Res 2007; 13:1429-37. [PMID: 17332285 DOI: 10.1158/1078-0432.ccr-06-2050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Because little is known about the evolution of genetic and epigenetic changes that occur during tumor progression in oligodendrogliomas, we evaluated these changes in paired early and progressive oligodendrogliomas. EXPERIMENTAL DESIGN 1p36, 19q13, 10q22-26, and O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status were assessed in 46 paired early and progressive oligodendrogliomas from 23 patients. RESULTS In early tumors, 60.8% were of low grade compared with only 17% low-grade tumors at recurrence. Of 17 early tumors described as pure oligodendrogliomas, 76.5% remained in this lineage, regardless of their grade, whereas others changed to astrocytic tumors. Oligoastrocytic tumors had a significantly higher tendency to transform to astrocytic tumors. All pure oligodendrogliomas with 1p/19q codeletions remained phenotypically unchanged, unlike mixed tumors with codeletions, of which 83% changed their cell lineage. Of tumors with early 1p deletion, 80% remained oligodendroglial at progression, whereas 75% of tumors with an intact 1p changed to astrocytic phenotype. 10q loss was uncommon in both early and progressive tumors. The proportional gain in methylation at progression was 31% for tumors with early 1p deletion, unlike tumors with an intact 1p, which had an 87.5% gain of methylation at progression. CONCLUSIONS Pure oligodendrogliomas with 1p/19q deletion tend to retain their cell phenotype and genetic profile unlike tumors with no deletions or mixed histology. MGMT promoter methylation is more pronounced at tumor progression, particularly in tumors with an intact 1p. These observations suggest that MGMT promoter methylation is a late event in progressive oligodendrogliomas, and therefore, their chemosensitivity is not necessarily related to MGMT methylation status.
Collapse
Affiliation(s)
- Iris Lavon
- Leslie and Michael Gaffin Center for Neuro-Oncology, Sharett Institute of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Kaina B, Christmann M, Naumann S, Roos WP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 2007; 6:1079-99. [PMID: 17485253 DOI: 10.1016/j.dnarep.2007.03.008] [Citation(s) in RCA: 464] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and alkylating agents, the role of this induction in the protection against carcinogens and the development of chemotherapeutic alkylating drug resistance are still unclear. Modulation of MGMT expression in tumors and normal tissue is currently being investigated as a possible strategy for improving cancer therapy.
Collapse
Affiliation(s)
- Bernd Kaina
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | | | | | | |
Collapse
|
39
|
DNA methylation and cancer-associated genetic instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:363-92. [PMID: 18727508 DOI: 10.1007/1-4020-3764-3_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Niture SK, Doneanu CE, Velu CS, Bailey NI, Srivenugopal KS. Proteomic analysis of human O6-methylguanine-DNA methyltransferase by affinity chromatography and tandem mass spectrometry. Biochem Biophys Res Commun 2005; 337:1176-84. [PMID: 16226712 DOI: 10.1016/j.bbrc.2005.09.177] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 09/29/2005] [Indexed: 11/15/2022]
Abstract
Recent evidence suggests that human O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair protein that protects the genome against mutagens and accords tumor resistance to many anticancer alkylating agents, may have other roles besides repair. Therefore, we isolated MGMT-interacting proteins from extracts of HT29 human colon cancer cells using affinity chromatography on MGMT-Sepharose. Specific proteins bound to this column were identified by electrospray ionization tandem mass spectrometry and/or Western blotting. These procedures identified >60 MGMT-interacting proteins with diverse functions including those involved in DNA replication and repair (MCM2, PCNA, ORC1, DNA polymerase delta, MSH-2, and DNA-dependent protein kinase), cell cycle progression (CDK1, cyclin B, CDK2, CDC7, CDC10, 14-3-3 protein, and p21(waf1/cip1)), RNA processing and translation (poly(A)-binding protein, nucleolin, heterogeneous nuclear ribonucleoproteins, A2/B1, and elongation factor-1alpha), several histones (H4, H3.4, and H2A.1), and topoisomerase I. The heat shock proteins, HSP-90alpha and beta, also bound strongly with MGMT. The DNA repair activity of MGMT was greatly enhanced in the presence of interacting proteins or histones. These data, for the first time, suggest that human MGMT is likely to have additional functions, possibly, in sensing and integrating the DNA damage/repair-related signals with replication, cell cycle progression, and genomic stability.
Collapse
Affiliation(s)
- Suryakant K Niture
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | |
Collapse
|
41
|
Brell M, Tortosa A, Verger E, Gil JM, Viñolas N, Villá S, Acebes JJ, Caral L, Pujol T, Ferrer I, Ribalta T, Graus F. Prognostic Significance ofO6-Methylguanine-DNA Methyltransferase Determined by Promoter Hypermethylation and Immunohistochemical Expression in Anaplastic Gliomas. Clin Cancer Res 2005; 11:5167-74. [PMID: 16033832 DOI: 10.1158/1078-0432.ccr-05-0230] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Anaplastic gliomas constitute a heterogeneous group of tumors with different therapeutic responses to adjuvant chemotherapy with alkylating agents. O6-Methylguanine-DNA methyltransferase (MGMT), a DNA repair protein, is one of the implicated factors in glioma chemoresistance. The prognostic value of MGMT remains controversial due in part to the fact that previous published studies included heterogeneous groups of patients with different tumor grades. The aim of this study was to evaluate the prognostic significance of MGMT in patients with anaplastic glioma. EXPERIMENTAL DESIGN Ninety-three patients with anaplastic glioma were analyzed for MGMT protein expression by immunohistochemistry. In addition, for those patients from whom a good yield of DNA was obtained (n = 40), MGMT promoter methylation profile was analyzed by methylation-specific PCR. MGMT prognostic significance was evaluated together with other well-known prognostic factors. RESULTS Fifty-one tumors (54.8%) showed nuclear staining of MGMT. There was a trend towards longer overall survival for those patients with negative MGMT immunostaining (hazard ratio, 1.66; P = 0.066). In a secondary analysis including those patients who actually received chemotherapy (n = 72), the absence of MGMT expression was independently associated with better survival (hazard ratio, 2.12; P = 0.027). MGMT promoter methylation was observed in 50% of the analyzed tumors. No statistical correlation between MGMT expression and MGMT promoter hypermethylation was observed. CONCLUSIONS Unlike previous studies, we did not find a correlation between MGMT promoter methylation and survival. However, we observed a correlation between MGMT protein expression and survival in those patients who received chemotherapy thus suggesting that the absence of MGMT expression is a positive predictive marker in patients with anaplastic glioma.
Collapse
Affiliation(s)
- Marta Brell
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fan X, Roy EM, Murphy TC, Nanes MS, Kim S, Pike JW, Rubin J. Regulation of RANKL promoter activity is associated with histone remodeling in murine bone stromal cells. J Cell Biochem 2005; 93:807-18. [PMID: 15389882 DOI: 10.1002/jcb.20217] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Receptor activator of NFkappa-B ligand (RANKL) is essential for osteoclast formation, function, and survival. Although RANKL mRNA and protein levels are modulated by 1,25(OH)2D3 and other osteoactive factors, regulatory mechanisms remain unclear. In this study, we show that 2 kb or 2 kb plus exon 1 of a RANKL promoter sequence conferred neither 1,25(OH)2D3 response nor tissue specificity. The histone deacetylase inhibitors trichostatin A (TSA) and sodium butyrate (SB), however, strongly increased RANKL promoter activity. A series of 5'-deleted RANKL promoter constructs from 2,020 to 110 bp showed fourfold increased activity after TSA treatment. TSA also dose dependently enhanced endogenous RANKL mRNA expression with 50 microM of TSA treatment causing equivalent RANKL expression to that seen with 1 nM 1,25(OH)2D3. Using a chromatin immunoprecipitation (ChIP) assay we showed that TSA significantly enhanced association of both acetylated histone H3 and H4 on the RANKL promoter, with H4 > H3. A similar increase in acetylated histone H4 on the RANKL gene locus was seen after 1,25(OH)2D3 treatment, but ChIP assay did not reveal localization of VDR/RXR heterodimers on the putative VDRE of the RANKL promoter. To explore the role of H4 acetylation of 1,25(OH)2D3 stimulated RANKL, we added both TSA and 1,25(OH)2D3 together. While the combination further increased acetylation of H4 on the RANKL locus, surprisingly, TSA inhibited 1,25(OH)2D3-induced RANKL mRNA expression by 70% at all doses of 1 ,25(OH)2D3 studied. These results suggest that TSA increases of endogenous expression of RANKL involve enhanced acetylation of histones on the proximal RANKL promoter. Preventing deacetylation, however, blocks 1,25(OH)2D3 action on this gene. Chromatin remodeling is therefore involved in RANKL expression.
Collapse
Affiliation(s)
- Xian Fan
- Department of Medicine, VA Medical Center/Emory University Medical School, Atlanta, Georgia 30033, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Qi J, Zhu YQ, Huang MF, Yang D. Hypermethylation of CpG island in O 6-methylguanine-DNA methyltransferase gene was associated with K-ras G to A mutation in colorectal tumor. World J Gastroenterol 2005; 11:2022-5. [PMID: 15800999 PMCID: PMC4305730 DOI: 10.3748/wjg.v11.i13.2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the functions of promoter hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT) gene in colorectal tumorigenesis and progression.
METHODS: The promoter hypermethylation of MGMT gene was detected in 27 sporadic colorectal adenomas, 62 sporadic colorectal carcinomas and 20 normal colorectal mucosa tissues by methylation-specific PCR. At the same time, the expression of MGMT protein was carried out in the same samples using immunohistochemistry. Mutant-allele-specific amplification was used to detect K-ras G to A point mutation in codon 12.
RESULTS: None of the normal colorectal mucosa tissues showed methylated bands. Promoter hypermethylation was detected in 40.7% (11 of 27) of adenomas and 43.5% (27 of 62) of carcinomas. MGMT proteins were expressed in nucleus and cytoplasm of normal colorectal mucosa tissues. Loss of MGMT expression was found in 22.2% (6 of 27) of adenomas and 45.2% (28 of 62) of carcinomas. The difference between them was significant (P = 0.041). In the 6 adenomas and 28 carcinomas losing MGMT expression, 5 and 24 cases presented methylation, respectively (P = 0.027, P<0.001). Thirteen of the 19 colorectal tumors with K-ras G to A point mutation in codon 12 had methylated MGMT (P = 0.011). The frequencies of K-ras G to A point mutation were 35.3% (12 of 34) and 12.7% (7 of 55) in tumors losing MGMT expression and with normal expression, respectively.
CONCLUSION: Promoter hypermethylation and loss of expression of MGMT gene were common events in colorectal tumorigenesis, and loss of expression of MGMT occurs more frequently in carcinomas than in adenomas in sporadic patients. Hypermethylation of the CpG island of MGMT gene was associated with loss of MGMT expression and K-ras G to A point mutation in colorectal tumor. The frequency of K-ras G to A point mutation was increased in tumors losing MGMT expression. It suggests that epigenetic inactivation of MGMT plays an important role in colorectal neoplasia.
Collapse
Affiliation(s)
- Jian Qi
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | | | | | | |
Collapse
|
44
|
Zhu X, Zeisel SH. Gene expression profiling in phosphatidylethanolamine N-methyltransferase knockout mice. ACTA ACUST UNITED AC 2005; 134:239-55. [PMID: 15836921 DOI: 10.1016/j.molbrainres.2004.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 10/08/2004] [Accepted: 10/24/2004] [Indexed: 01/06/2023]
Abstract
Choline is derived from the diet as well as from de novo methylation of phosphatidylethanolamine catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). Pemt knockout mice have no endogenous synthesis of choline molecules. We previously reported that these mice have excess S-adenosylmethionine and hypermethylated DNA in brain, as well as increased mitosis in neural progenitor cells of the hippocampus in embryonic day 17 (E17) brain. In the present study, E17 fetal brains and adult brains were harvested and total RNA was extracted. In fetal brain, using gene expression profiling and Significance Analysis of Microarrays, we identified 107 significant genes with increased expression and 379 significant genes with decreased expression. In adult brain, we identified 381 significant genes with increased expression and 1037 significant genes with decreased expression. We observed significant changes in expression of genes regulating cell cycle (such as TP53, Fgf4, and Ing1), differentiation and neurogenesis (such as S100A4 and D14Ws), and phospholipid metabolism (such as Pip5k1a, Pitpn, and Pla2g6) as well as in a number of methyltransferase genes (including Gnmt). Some genes with expression known to be regulated by promoter methylation were suppressed in Pemt knockout brain (such as S100a4 and TP53). These findings are consistent with the biochemical changes that we previous reported in fetal brains from Pemt knockout mice. This is the first report of gene profiling in Pemt(-/-) mouse brain.
Collapse
Affiliation(s)
- Xiaonan Zhu
- Department of Nutrition, CB #7461, School of Public Health, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
45
|
Danam RP, Howell SR, Brent TP, Harris LC. Epigenetic regulation of O6-methylguanine-DNA methyltransferase gene expression by histone acetylation and methyl-CpG binding proteins. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.61.4.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Transcriptional silencing of the DNA repair gene, O6-methylguanine-DNA methyltransferase (MGMT) in a proportion of transformed cell lines is associated with methylated CpG hotspots in the MGMT 5′ flank. The goal of the study was to evaluate the mechanism by which CpG methylation of theMGMT promoter region influenced silencing of the gene. Analysis of histone acetylation status in two regions of the promoter using chromatin immunoprecipitation assay showed that a higher level of histone acetylation was associated with expression in three MGMT-expressing cell lines (HeLa CCL2, HT29, and Raji) compared with three MGMT-silenced cell lines (HeLa S3, BE, and TK6). To determine how the modulation of CpG methylation and histone acetylation influenced MGMT expression, we exposed the cells to 5-aza-2′deoxycytidine (5-Aza-dC), inhibitor of DNA methylation, which strongly up-regulated MGMT expression in three MGMT-silenced cell lines whereas trichostatin A, inhibitor of histone deacetylase, weakly induced MGMT. However, combined treatment with 5-Aza-dC and trichostatin A significantly up-regulated MGMT RNA expression to a greater extent than in cells treated with either agent alone suggesting that histone deacetylation plays a role in MGMT silencing but that CpG methylation has a dominant effect. Consistent with enhanced MGMT expression, 5-Aza-dC increased the association of acetylated histone H3 and H4 bound to the MGMT promoter. Chromatin immunoprecipitation analysis of methyl-CpG binding domain containing proteins detected a greater amount of MeCP2, MBD1, and CAF-1 bound to the MGMT promoter in MGMT-silenced cells. Our findings implicate specific MBD proteins in methylation-mediated transcriptional silencing of MGMT.
Collapse
Affiliation(s)
- Rebecca P. Danam
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sherie R. Howell
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Thomas P. Brent
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Linda C. Harris
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
46
|
Watson RE, Curtin GM, Hellmann GM, Doolittle DJ, Goodman JI. Increased DNA methylation in the HoxA5 promoter region correlates with decreased expression of the gene during tumor promotion. Mol Carcinog 2004; 41:54-66. [PMID: 15352125 DOI: 10.1002/mc.20043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Promoter-region DNA methylation inhibits transcription. A two-stage SENCAR (sensitive to mouse carcinogenesis) mouse skin carcinogenicity model was used to examine gene-specific changes in methylation during skin tumor promotion. Analysis was performed on 7,12-dimethylbenz[a]anthracene (DMBA)-initiated skin promoted with 9, 18, 27, or 36 mg cigarette smoke condensate (CSC) for 9 wk, or 27 mg CSC for 9 wk and sacrificed 6 wk afterwards (recovery group). Additionally, tumors arising following promotion with 27 mg CSC for 29 wk were assessed. Gene array analysis identified differentially expressed genes. Expression of HoxA5, a tumor suppressor gene, was decreased following 9 wk of treatment with 27 mg CSC, and returned to control levels during recovery. HoxA5 promoter methylation was measured with the enzymatic regional methylation assay (ERMA). DNA was bisulfite-modified, PCR-amplified with primers containing dam sites, incubated with [14C-methyl] S-adenosyl-L-methionine (SAM) and dam methyltransferase for DNA quantification, then incubated with [3H-methyl] SAM and SssI methylase to quantify methylation status. Higher 3H/14C ratios indicate increased methylation. The 3H/14C ratios of animals promoted with 27 or 36 mg CSC (48.2 +/- 6.9 and 24.2 +/- 6.1, respectively) were higher than the control or recovery group ratios (12.3 +/- 0.1 and 12.6 +/- 0.3, respectively); sequence analysis supported these findings. Increased methylation of p16 or O6 methylguanine methyltranferase (MGMT) was detected in 4/8 (50%) of the tumor samples from mice promoted with 27 mg CSC. These data suggest that increased DNA methylation contributes to the downregulation of HoxA5, and combined with hypermethylation of p16 or MGMT, this might facilitate the clonal expansion of increasingly aberrant cells during promotion.
Collapse
Affiliation(s)
- Rebecca E Watson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
47
|
Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 2004; 32:4100-8. [PMID: 15302911 PMCID: PMC514367 DOI: 10.1093/nar/gkh739] [Citation(s) in RCA: 566] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytosine methylation in CpG dinucleotides is believed to be important in gene regulation, and is generally associated with reduced levels of transcription. Methylation-mediated gene silencing involves a series of DNA-protein and protein-protein interactions that begins with the binding of methyl-CpG binding proteins (MBPs) followed by the recruitment of histone-modifying enzymes that together promote chromatin condensation and inactivation. It is widely known that alterations in methylation patterns, and associated gene activities, are often found in human tumors. However, the mechanisms by which methylation patterns are altered are not currently understood. In this paper, we investigate the impact of oxidative damage to a methyl-CpG site on MBP binding by the selective placement of 8-oxoguanine (8-oxoG) and 5-hydroxymethylcytosine (HmC) in a MBP recognition sequence. Duplexes containing these specific modifications were assayed for binding to the methyl-CpG binding domain (MBD) of one member of the MBP family, methyl-CpG binding protein 2 (MeCP2). Our results reveal that oxidation of either a single guanine to 8-oxoG or of a single 5mC to HmC, significantly inhibits binding of the MBD to the oligonucleotide duplex, reducing the binding affinity by at least an order of magnitude. Oxidative damage to DNA could therefore result in heritable, epigenetic changes in chromatin organization.
Collapse
Affiliation(s)
- Victoria Valinluck
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|