1
|
Baba Y, Tajima K, Yoshimura K. Intestinal and esophageal microbiota in esophageal cancer development and treatment. Gut Microbes 2025; 17:2505118. [PMID: 40376843 PMCID: PMC12087659 DOI: 10.1080/19490976.2025.2505118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 03/03/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Esophageal cancer (EC) is the eleventh most commonly diagnosed cancer, and its prognosis remains poor. Several challenges remain for improving the clinical outcomes of EC, and improving technologies for early detection, diversifying treatment options, and advancing personalized treatment are essential. Alterations in the intestinal and esophageal microbiota are associated with the pathogenesis and progression of EC; for instance, Fusobacterium nucleatum is important in the pathogenesis and progression of esophageal squamous cell carcinoma. Therefore, a novel diagnostic biomarker may be identified using the intestinal microbiota. Furthermore, targeting the intestinal and esophageal microbiota may help in the early detection of EC, use of a novel prognostic biomarker, and even the detection of a therapeutic target, resulting in a more individualized therapeutic approach for EC. In this review, we summarize the clinical research focused on the intestinal and esophageal microbiota in EC development and its treatment, and discuss the challenges in the clinical application of intestinal and esophageal microbiota.
Collapse
Affiliation(s)
- Yuta Baba
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa Medical University, Tokyo, Japan
- Division of Hematology, Department of Medicine, Showa Medical University Fujigaoka Hospital, Kanagawa, Japan
| | - Kohei Tajima
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa Medical University, Tokyo, Japan
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Guan Y, Cheng H, Zhang N, Cai Y, Zhang Q, Jiang X, Wang A, Zeng H, Jia B. The role of the esophageal and intestinal microbiome in gastroesophageal reflux disease: past, present, and future. Front Immunol 2025; 16:1558414. [PMID: 40061946 PMCID: PMC11885504 DOI: 10.3389/fimmu.2025.1558414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Gastroesophageal reflux disease (GERD) is one of the common diseases of the digestive system, and its incidence is increasing year by year, in addition to its typical symptoms of acid reflux and heartburn affecting the quality of patients' survival. The pathogenesis of GERD has not yet been clarified. With the development of detection technology, microbiome have been studied in depth. Normal microbiome are symbiotic with the host and can assist the host to fulfill the roles of digestion and absorption, and promote the development of the host. Dysbiosis of the microbiome forms a new internal environment, under which it may affect the development of GERD from the perspectives of molecular mechanisms: microbial activation of Toll-like receptors, microbial stimulation of cyclooxygenase-2 expression, microbial stimulation of inducible nitrous oxide synthase, and activation of the NLRP3 inflammatory vesicle; immune mechanisms; and impact on the dynamics of the lower gastrointestinal tract. This review will explore the esophageal microbiome and intestinal microbiome characteristics of GERD and the mechanisms by which dysbiotic microbiome induces GERD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Boyi Jia
- Department of Spleen and Stomach Diseases, Fangshan Traditional Medical Hospital of Beijing, Beijing, China
| |
Collapse
|
3
|
Liu X, Li B, Liang L, Han J, Mai S, Liu L. From microbes to medicine: harnessing the power of the microbiome in esophageal cancer. Front Immunol 2024; 15:1450927. [PMID: 39600698 PMCID: PMC11588724 DOI: 10.3389/fimmu.2024.1450927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Esophageal cancer (EC) is a malignancy with a high incidence and poor prognosis, significantly influenced by dysbiosis in the esophageal, oral, and gut microbiota. This review provides an overview of the roles of microbiota dysbiosis in EC pathogenesis, emphasizing their impact on tumor progression, drug efficacy, biomarker discovery, and therapeutic interventions. Lifestyle factors like smoking, alcohol consumption, and betel nut use are major contributors to dysbiosis and EC development. Recent studies utilizing advanced sequencing have revealed complex interactions between microbiota dysbiosis and EC, with oral pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum promoting inflammation and suppressing immune responses, thereby driving carcinogenesis. Altered esophageal microbiota, characterized by reduced beneficial bacteria and increased pathogenic species, further exacerbate local inflammation and tumor growth. Gut microbiota dysbiosis also affects systemic immunity, influencing chemotherapy and immunotherapy efficacy, with certain bacteria enhancing or inhibiting treatment responses. Microbiota composition shows potential as a non-invasive biomarker for early detection, prognosis, and personalized therapy. Novel therapeutic strategies targeting the microbiota-such as probiotics, dietary modifications, and fecal microbiota transplantation-offer promising avenues to restore balance and improve treatment efficacy, potentially enhancing patient outcomes. Integrating microbiome-focused strategies into current therapeutic frameworks could improve EC management, reduce adverse effects, and enhance patient survival. These findings highlight the need for further research into microbiota-tumor interactions and microbial interventions to transform EC treatment and prevention, particularly in cases of late-stage diagnosis and poor treatment response.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bang Li
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Department of Gastroenterology and Hepatology, Guangzhou Key Laboratory of Digestive Diseases, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jimin Han
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
4
|
Sharma T, Gupta A, Chauhan R, Bhat AA, Nisar S, Hashem S, Akhtar S, Ahmad A, Haris M, Singh M, Uddin S. Cross-talk between the microbiome and chronic inflammation in esophageal cancer: potential driver of oncogenesis. Cancer Metastasis Rev 2022; 41:281-299. [PMID: 35511379 PMCID: PMC9363391 DOI: 10.1007/s10555-022-10026-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is frequently considered a lethal malignancy and is often identified at a later stage. It is one of the major causes of cancer-related deaths globally. The conventional treatment methods like chemotherapy, radiotherapy, and surgery offer limited efficacy and poor clinical outcome with a less than 25% 5-year survival rate. The poor prognosis of EC persists despite the growth in the development of diagnostic and therapeutic modalities to treat EC. This underlines the need to elucidate the complex molecular mechanisms that drive esophageal oncogenesis. Apart from the role of the tumor microenvironment and its structural and cellular components in tumorigenesis, mounting evidence points towards the involvement of the esophageal microbiome, inflammation, and their cross-talk in promoting esophageal cancer. The current review summarizes recent research that delineates the underlying molecular mechanisms by which the microbiota and inflammation promote the pathophysiology of esophageal cancer, thus unraveling targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Tarang Sharma
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, PA, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
The Role of Microbiota in the Pathogenesis of Esophageal Adenocarcinoma. BIOLOGY 2021; 10:biology10080697. [PMID: 34439930 PMCID: PMC8389269 DOI: 10.3390/biology10080697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Esophageal adenocarcinoma has a poor 5-year survival rate and is among the highest mortality cancers. Changes in the esophageal microbiome have been associated with cancer pathogenesis; however, the molecular mechanism remains obscure. This review article critically analyzes the molecular mechanisms through which microbiota may mediate the development and progression of esophageal adenocarcinoma and its precursors-gastroesophageal reflux disease and Barrett’s esophagus. It summarizes changes in esophageal microbiome composition in normal and pathologic states and subsequently discusses the role of altered microbiota in disease progression. The potential role of esophageal microbiota in protecting against the development of esophageal adenocarcinoma is also discussed. By doing so, this article highlights specific directions for future research developing microbiome-mediated therapeutics for esophageal adenocarcinoma. Abstract Esophageal adenocarcinoma (EAC) is associated with poor overall five-year survival. The incidence of esophageal cancer is on the rise, especially in Western societies, and the pathophysiologic mechanisms by which EAC develops are of extreme interest. Several studies have proposed that the esophageal microbiome may play an important role in the pathophysiology of EAC, as well as its precursors—gastroesophageal reflux disease (GERD) and Barrett’s esophagus (BE). Gastrointestinal microbiomes altered by inflammatory states have been shown to mediate tumorigenesis directly and are now being considered as novel targets for both cancer treatment and prevention. Elucidating molecular mechanisms through which the esophageal microbiome potentiates the development of GERD, BE, and EAC will provide a foundation on which new therapeutic targets can be developed. This review summarizes current findings that elucidate the molecular mechanisms by which microbiota promote the pathogenesis of GERD, BE, and EAC, revealing potential directions for additional research on the microbiome-mediated pathophysiology of EAC.
Collapse
|
6
|
Impact of Deoxycholic Acid on Oesophageal Adenocarcinoma Invasion: Effect on Matrix Metalloproteinases. Int J Mol Sci 2020; 21:ijms21218042. [PMID: 33126685 PMCID: PMC7672620 DOI: 10.3390/ijms21218042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) have been implicated in the development of oesophagitis, Barrett’s oesophagus and oesophageal adenocarcinoma (OAC). However, whether BAs promote cancer invasiveness has not been elucidated. We evaluated the role of BAs, in particular deoxycholic acid (DCA), in OAC invasion. Migration and invasiveness in untreated and BA-treated oesophageal SKGT-4 cancer cells were evaluated. Activity and expression of different matrix metalloproteinases (MMPs) were determined by zymography, ELISA, PCR and Western blot. Finally, human OAC tissues were stained for MMP-10 by immunohistochemistry. It was found that SKGT-4 cells incubated with low concentrations of DCA had a significant increase in invasion. In addition, MMP-10 mRNA and protein expression were also increased in the presence of DCA. MMP-10 was found to be highly expressed both in-vitro and in-vivo in neoplastic OAC cells relative to non-neoplastic squamous epithelial cells. Our results show that DCA promotes OAC invasion and MMP-10 overexpression. This study will advance our understanding of the pathophysiological mechanisms involved in human OAC and shows promise for the development of new therapeutic strategies.
Collapse
|
7
|
Steins A, Klaassen R, Jacobs I, Schabel MC, van Lier MGJTB, Ebbing EA, Hectors SJ, Tas SW, Maracle CX, Punt CJA, Siebes M, Bergman JJGHM, Medema JP, Wilmink JW, Mathot RAA, Strijkers GJ, Bijlsma MF, van Laarhoven HWM. Rapid stromal remodeling by short-term VEGFR2 inhibition increases chemotherapy delivery in esophagogastric adenocarcinoma. Mol Oncol 2020; 14:704-720. [PMID: 31733011 PMCID: PMC7138404 DOI: 10.1002/1878-0261.12599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Anti-angiogenic agents combined with chemotherapy is an important strategy for the treatment of solid tumors. However, survival benefit is limited, urging the improvement of combination therapies. We aimed to clarify the effects of vascular endothelial growth factor receptor 2 (VEGFR2) targeting on hemodynamic function and penetration of drugs in esophagogastric adenocarcinoma (EAC). Patient-derived xenograft (PDX) models of EAC were subjected to long-term and short-term treatment with anti-VEGFR2 therapy followed by chemotherapy injection or multi-agent dynamic contrast-enhanced (DCE-) MRI and vascular casting. Long-term anti-VEGFR2-treated tumors showed a relatively lower flow and vessel density resulting in reduced chemotherapy uptake. On the contrary, short-term VEGFR2 targeting resulted in relatively higher flow, rapid vasodilation, and improved chemotherapy delivery. Assessment of the extracellular matrix (ECM) revealed that short-term anti-angiogenic treatment drastically remodels the tumor stroma by inducing nitric oxide synthesis and hyaluronan degradation, thereby dilating the vasculature and improving intratumoral chemotherapy delivery. These previously unrecognized beneficial effects could not be maintained by long-term VEGFR2 inhibition. As the identified mechanisms are targetable, they offer direct options to enhance the treatment efficacy of anti-angiogenic therapy combined with chemotherapy in EAC patients.
Collapse
Affiliation(s)
- Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, The Netherlands.,Oncode Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Remy Klaassen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Igor Jacobs
- Department of Biomedical Engineering, Biomedical NMR, Eindhoven, The Netherlands.,Oncology Solutions, Philips Research, Eindhoven, The Netherlands
| | - Matthias C Schabel
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Monique G J T B van Lier
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Eva A Ebbing
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Stefanie J Hectors
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sander W Tas
- Department of Rheumatology and Immunology, Amsterdam UMC, University of Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Chrissta X Maracle
- Department of Rheumatology and Immunology, Amsterdam UMC, University of Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Maria Siebes
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jacques J G H M Bergman
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, The Netherlands.,Oncode Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Ron A A Mathot
- Department of Hospital Pharmacy, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, The Netherlands.,Oncode Institute, Amsterdam UMC, University of Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Esophageal Cancer Development: Crucial Clues Arising from the Extracellular Matrix. Cells 2020; 9:cells9020455. [PMID: 32079295 PMCID: PMC7072790 DOI: 10.3390/cells9020455] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, the extracellular matrix (ECM) has been reported as playing a relevant role in esophageal cancer (EC) development, with this compartment being related to several aspects of EC genesis and progression. This sounds very interesting due to the complexity of this highly incident and lethal tumor, which takes the sixth position in mortality among all tumor types worldwide. The well-established increase in ECM stiffness, which is able to trigger mechanotransduction signaling, is capable of regulating several malignant behaviors by converting alteration in ECM mechanics into cytoplasmatic biochemical signals. In this sense, it has been shown that some molecules play a key role in these events, particularly the different collagen isoforms, as well as enzymes related to its turnover, such as lysyl oxidase (LOX) and matrix metalloproteinases (MMPs). In fact, MMPs are not only involved in ECM stiffness, but also in other events related to ECM homeostasis, which includes ECM remodeling. Therefore, the crucial role of distinct MMPs isoform has already been reported, especially MMP-2, -3, -7, and -9, along EC development, thus strongly associating these proteins with the control of important cellular events during tumor progression, particularly in the process of invasion during metastasis establishment. In addition, by distinct mechanisms, a vast diversity of glycoproteins and proteoglycans, such as laminin, fibronectin, tenascin C, galectin, dermatan sulfate, and hyaluronic acid exert remarkable effects in esophageal malignant cells due to the activation of oncogenic signaling pathways mainly involved in cytoskeleton alterations during adhesion and migration processes. Finally, the wide spectrum of interactions potentially mediated by ECM may represent a singular intervention scenario in esophageal carcinogenesis natural history and, due to the scarce knowledge on the cellular and molecular mechanisms involved in EC development, the growing body of evidence on ECM’s role along esophageal carcinogenesis might provide a solid base to improve its management in the future.
Collapse
|
9
|
Li D, Deconda D, Li A, Habr F, Cao W. Effect of Proton Pump Inhibitor Therapy on NOX5, mPGES1 and iNOS expression in Barrett's Esophagus. Sci Rep 2019; 9:16242. [PMID: 31700071 PMCID: PMC6838155 DOI: 10.1038/s41598-019-52800-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Acid reflux may contribute to the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma (EA). However, it is not clear whether the molecular changes present in BE patients are reversible after proton pump inhibitor (PPI) treatment. In this study we examined whether PPI treatment affects NOX5, microsomal prostaglandin E synthase (mPGES)-1 and inducible nitric oxide synthase (iNOS) expression. We found that NADPH oxidase 5 (NOX5), mPGES-1 and iNOS were significantly increased in BE mucosa. One-month PPI treatment significantly decreased NOX5, mPGES1 and iNOS. In BAR-T cells, NOX5 mRNA and p16 promoter methylation increased after pulsed acid treatment in a time-dependent manner. Four or eight-week-acid induced increase in NOX5 mRNA, NOX5 protein and p16 methylation may be reversible. Twelve-week acid treatment also significantly increased NOX5, mPGES1 and iNOS mRNA expression. However, twelve-week-acid-induced changes only partially restored or did not recover at all after the cells were cultured at pH 7.2 for 8 weeks. We conclude that NOX5, mPGES1 and iNOS may be reversible after PPI treatment. Short-term acid-induced increase in NOX5 expression and p16 methylation might be reversible, whereas long-term acid-induced changes only partially recovered 8 weeks after removal of acid treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | | | - Aihua Li
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Fadlallah Habr
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| | - Weibiao Cao
- Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA. .,Department of Pathology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
10
|
Fitzgerald RC, Corley DA. Will a Proton Pump Inhibitor and an Aspirin Keep the Doctor Away for Patients With Barrett's Esophagus? Gastroenterology 2019; 156:1228-1231. [PMID: 30849313 DOI: 10.1053/j.gastro.2019.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| |
Collapse
|
11
|
Tan G, Qiu M, Chen L, Zhang S, Ke L, Liu J. JS-K, a nitric oxide pro-drug, regulates growth and apoptosis through the ubiquitin-proteasome pathway in prostate cancer cells. BMC Cancer 2017; 17:376. [PMID: 28549433 PMCID: PMC5446692 DOI: 10.1186/s12885-017-3351-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/12/2017] [Indexed: 01/17/2023] Open
Abstract
Background In view of the fact that JS-K might regulate ubiquitin E3 ligase and that ubiquitin E3 ligase plays an important role in the mechanism of CRPC formation, the goal was to investigate the probable mechanism by which JS-K regulates prostate cancer cells. Methods Proliferation inhibition by JS-K on prostate cancer cells was examined usingCCK-8 assays. Caspase 3/7 activity assays and flow cytometry were performed to examine whether JS-K induced apoptosis in prostate cancer cells. Western blotting and co-immunoprecipitation analyses investigated JS-K’s effects on the associated apoptosis mechanism. Real time-PCR and Western blotting were performed to assess JS-K’s effect on transcription of specific AR target genes. Western blotting was also performed to detect Siah2 and AR protein concentrations and co-immunoprecipitation to detect interactions of Siah2 and AR, NCoR1 and AR, and p300 and AR. Results JS-K inhibited proliferation and induced apoptosis in prostate cancer cells. JS-K increased p53 and Mdm2 concentrations and regulated the caspase cascade reaction-associated protein concentrations. JS-K inhibited transcription of AR target genes and down-regulated PSA protein concentrations. JS-K inhibited Siah2 interactions and also inhibited the ubiquitination of AR. With further investigation, JS-K was found to stabilize AR and NCoR1 interactions and diminish AR and p300 interactions. Conclusions The present results suggested that JS-K might have been able to inhibit proliferation and induce apoptosis via regulation of the ubiquitin-proteasome degradation pathway, which represented a promising platform for the development of new compounds for PCa treatments. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3351-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guobin Tan
- Laboratory of Urology, Guangdong Medical College, Zhanjiang, Guangdong, 524001, China
| | - Mingning Qiu
- Laboratory of Urology, Guangdong Medical College, Zhanjiang, Guangdong, 524001, China
| | - Lieqian Chen
- Laboratory of Urology, Guangdong Medical College, Zhanjiang, Guangdong, 524001, China
| | - Sai Zhang
- Laboratory of Urology, Guangdong Medical College, Zhanjiang, Guangdong, 524001, China
| | - Longzhi Ke
- Laboratory of Urology, Guangdong Medical College, Zhanjiang, Guangdong, 524001, China
| | - Jianjun Liu
- Laboratory of Urology, Guangdong Medical College, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
12
|
Kusaka G, Uno K, Iijima K, Shimosegawa T. Role of nitric oxide in the pathogenesis of Barrett’s-associated carcinogenesis. World J Gastrointest Pathophysiol 2016; 7:131-137. [PMID: 26909236 PMCID: PMC4753179 DOI: 10.4291/wjgp.v7.i1.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
Barrett’s esophagus (BE), a premalignant condition to Barrett’s adenocarcinoma (BAC), is closely associated with chronic inflammation due to gastro-esophageal reflux. Caudal type homeobox 2 (CDX2), a representative marker of BE, is increased during the metaplastic and neoplastic transformation of BE. Nitric oxide (NO) has been proposed to be a crucial mediator of Barrett’s carcinogenesis. We previously demonstrated that CDX2 might be induced directly under stimulation of large amounts of NO generated around the gastro-esophageal junction (GEJ) by activating epithelial growth factor receptor in a ligand-independent manner. Thus, we reviewed recent developments on the role of NO in Barrett’s carcinogenesis. Notably, recent studies have reported that microbial communities in the distal esophagus are significantly different among groups with a normal esophagus, reflux esophagitis, BE or BAC, despite there being no difference in the bacterial quantity. Considering that microorganism components can be one of the major sources of large amounts of NO, these studies suggest that the bacterial composition in the distal esophagus might play an important role in regulating NO production during the carcinogenic process. Controlling an inflammatory reaction due to gastro-esophageal reflux or bacterial composition around the GEJ might help prevent the progression of Barrett’s carcinogenesis by inhibiting NO production.
Collapse
|
13
|
Enhancement of radiosensitivity in human esophageal carcinoma cells by fenofibrate and its potential mechanism. TUMORI JOURNAL 2015; 101:123-30. [PMID: 25712601 DOI: 10.5301/tj.5000228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2014] [Indexed: 12/31/2022]
Abstract
AIMS AND BACKGROUND Fenofibrate is a specific agonist of PPARα, and is characterized by relatively low systemic toxicity. Recent studies have revealed that fenofibrate suppresses the growth of several cancer lines in vitro, but the exact relation between fenofibrate and irradiation has not been explored. The purpose of this study was to investigate the radiosensitivity enhancement effects of fenofibrate combined with radiation on the human esophageal carcinoma cell lines Eca-109 and TE1, and the potential mechanism underlying these effects. METHODS AND STUDY DESIGN The Eca-109 and TE1 cell lines were tested by the CCK-8 assay for cell proliferation. The multitarget click model was used to delineate the survival curve and radiosensitivity was determined after cells were treated with fenofibrate and/or x-ray radiation. Flow cytometry was used to examine the effect of fenofibrate and radiation on the cell cycle. The expression of vascular endothelial growth factor (VEGF) protein was detected by Western blot analysis. RESULTS When given alone, fenofibrate had a time- and concentration-dependent cytotoxic effect on cells. The dose-enhancement ratio for combined fenofibrate and radiation increased markedly compared with fenofibrate alone. Further, the ratio of cells in the G2/M phase after fenofibrate and radiation was higher than that after fenofibrate or irradiation alone. The expression of VEGF protein was suppressed after treatment with fenofibrate alone or fenofibrate plus radiation. CONCLUSIONS Fenofibrate can enhance the radiosensitivity of human esophageal carcinoma cells by increasing G2/M phase arrest. Modulation of VEGF expression could contribute in vivo to a favorable interaction.
Collapse
|
14
|
O'Sullivan KE, Phelan JJ, O'Hanlon C, Lysaght J, O'Sullivan JN, Reynolds JV. The role of inflammation in cancer of the esophagus. Expert Rev Gastroenterol Hepatol 2014; 8:749-60. [PMID: 24857183 DOI: 10.1586/17474124.2014.913478] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Esophageal adenocarcinoma is the eighth most common malignancy worldwide. The overall prognosis is poor, with 5-year survival ranges of approximately 15-25%, and 30-50% for patients who can be treated with curative intent. There has been a marked increase in incidence of esophageal adenocarcinoma over the last 30 years, with chronic and severe reflux, diet and obesity identified as principal factors fuelling this rise in the West. Esophageal adenocarcinoma is an exemplar model of an inflammation-associated cancer. The key molecular pathways driving tumor development and influencing tumor biology are the subject of considerable research efforts, and is the principal focus of this review. In addition, the diverse range of changes occurring in the local immune response, tissue microenvironment, metabolic profile, intracellular signaling mechanisms and microRNA signatures are discussed, as well as novel targeted therapies.
Collapse
Affiliation(s)
- Katie E O'Sullivan
- Department of Surgery, Institute of Molecular Medicine, St. James Hospital, Dublin 8, Ireland
| | | | | | | | | | | |
Collapse
|
15
|
Iijima K, Shimosegawa T. Involvement of luminal nitric oxide in the pathogenesis of the gastroesophageal reflux disease spectrum. J Gastroenterol Hepatol 2014; 29:898-905. [PMID: 24863184 DOI: 10.1111/jgh.12548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/16/2022]
Abstract
Over the last 3 decades, the incidence of esophageal adenocarcinoma has dramatically increased in Western countries; a similar increase may be observed in Asian countries in the near future. Esophageal adenocarcinoma arises from a sequential gastroesophageal reflux disease (GERD) spectrum from reflux erosive esophagitis, to Barrett's esophagus, and finally to esophageal adenocarcinoma. At present, gastric acid and bile are assumed to be primarily involved in the etiology of the GERD spectrum. We reported in 2002 that, at the gastroesophageal junction in humans, abundant amounts of nitric oxide (NO) are generated luminally through the entero-salivary re-circulation of dietary nitrate. Since then, we have carried out a series of experiments to demonstrate that NO diffuses into the adjacent epithelium at cytotoxic levels. This diffusion results in disruption of the epithelial barrier function, exacerbation of inflammation, acceleration of columnar transformation in the esophagus (Barrett's esophagus) via the induction of caudal-type homeobox 2, and the shifting of carcinogenic N-nitroso compound formation from the luminal to epithelial compartment. These results suggest that, in addition to conventionally recognized causative factors, luminal NO could also be involved in the pathogenesis of the GERD spectrum. In addition, we recently showed that there is a prominent gender-related difference in NO-related cytotoxicity in the esophagus and that estrogen attenuated the esophageal tissue damage via the estrogen receptor in female rats. The role of estrogen in attenuating the esophageal tissue damage in NO-related esophageal damage could explain the well-recognized male predominance in the GERD spectrum in humans.
Collapse
Affiliation(s)
- Katsunori Iijima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
16
|
Abstract
Barrett's esophagus (BE) is defined as the metaplastic conversion of the distal esophageal squamous epithelium to intestinalized columnar epithelium. It is a premalignant condition associated with esophageal adenocarcinoma (EAC) and is the major risk factor for EAC. Recent studies suggest that the molecular mechanisms responsible for the pathogenesis of BE are closely related to transcription factors, signaling proteins and microRNAs (miRNAs). MiRNAs are expected to be used as novel biomarkers for the diagnosis, prognosis assessment and targeted treatment of EAC. This article summarizes recent results involving stem cells, immune factors, transcription factors, DNA methylation, nitric oxide, signaling pathways, microRNAs in the development of BE. Understanding of the molecular mechanisms behind the pathogenesis of BE has important implications for improved management of BE and EAC.
Collapse
|
17
|
Sandner A, Illert J, Koitzsch S, Unverzagt S, Schön I. Reflux induces DNA strand breaks and expression changes of MMP1+9+14 in a human miniorgan culture model. Exp Cell Res 2013; 319:2905-15. [PMID: 24075964 DOI: 10.1016/j.yexcr.2013.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/16/2022]
Abstract
Gastroesophageal reflux disease has been implicated in the pathogenesis of adenocarcinoma of the oesophagus. The same applies to laryngopharyngeal reflux (LPR) and squamous cell cancer of the head and neck, but so far, this link has not been proven. The impact of low pH and bile acids has not been studied extensively in cells other than oesophageal cancer cell lines and tissue. The aims of this study were to investigate the pathogenic potential of reflux and its single components on the mucosa of the upper respiratory tract. We measured DNA stability in human miniorgan cultures (MOCs) and primary epithelial cell cultures (EpCs) in response to reflux by the alkaline comet assay. As matrix metalloproteinases (MMPs) are involved in extracellular matrix remodelling processes and may contribute to cancer progression, we studied the expression of MMP1, -9, and -14 in MOCs, EpC, UM-SCC-22B, and FADUDD. DNA strand breaks (DNA-SBs) increased significantly at low pH and after incubation with human or artificial gastric juice. Single incubation with glycochenodeoxycholic acid also showed a significant increase in DNA-SBs. In epithelial cell cultures, human gastric juice increased the number of DNA-SBs at pH 4.5 and 5.5. Artificial gastric juice significantly up regulated the gene expression of MMP9. Western blot analysis confirmed the results of gene expression analysis, but the up regulation of MMP1, -9, and -14 was donor-specific. Reflux has the ability to promote genomic instability and may contribute to micro environmental changes suitable for the initiation of malignancy. Further functional gene analysis may elucidate the role of laryngopharyngeal reflux in the development of head neck squamous cell carcinoma (HNSCC).
Collapse
Affiliation(s)
- Annett Sandner
- Department of Otolaryngology, Head and Neck Surgery, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany.
| | | | | | | | | |
Collapse
|
18
|
Soliman HM, Elmansy RA, Elseweidy MM, Taha MM. Effect of Helicobacter pylori on the mucosa of the lower end of the esophagus in induced chronic gastritis in adult albino rats. THE EGYPTIAN JOURNAL OF HISTOLOGY 2013; 36:265-278. [DOI: 10.1097/01.ehx.0000426164.72726.a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Kusaka G, Uno K, Iijima K, Endo H, Asano N, Koike T, Imatani A, Shimosegawa T. The role of nitric oxide in the induction of caudal-type homeobox 2 through epidermal growth factor receptor in the development of Barrett's esophagus. Scand J Gastroenterol 2012; 47:1148-1158. [PMID: 22834965 DOI: 10.3109/00365521.2012.703232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The high concentration of nitric oxide (NO) around the gastro-esophageal junction (GEJ) might play an important role in the development of Barrett's esophagus (BE), a precursor of Barrett's adenocarcimona. Although previous studies revealed that the expression of caudal-type homeobox 2 (CDX2), an important marker of BE, might be induced through Epidermal Growth Factor Receptor (EGFR), the roles of NO in this signal transduction remain unclear. MATERIAL AND METHODS First, we investigated the expressions of EGFR, CDX2 and nitrotyrosine by immunohistochemical study for BE and squamous epithelium of human specimens. Second, we studied the effect of peroxynitrite, peroxynitrite stimulator, SIN-1, or NO donor, NOC7, on the expression of phosphorylated EGFR and CDX2 in KYSE30, an EGFR-rich human esophageal squamous cell carcinoma cell-line. Specific inhibitors for EGFR, AG1478 and small interfering RNA for EGFR (EGFR-siRNA) were employed to elucidate the role of EGFR in the induction of CDX2. RESULTS The immunohistochemical study revealed that the expressions of EGFR, CDX2 and nitrotyrosine in BE were stronger than those in squamous epithelium with positive correlations. Exposure to peroxynitrite, SIN-1 or NOC7 induced EGFR phosphorylation and CDX2 expression in dose- and time-dependent manners. Both EGFR phosphorylation and CDX2 induction were significantly diminished by AG 1478 and EGFR-siRNA. CONCLUSIONS We revealed for the first time that extrinsic NO might directly induce CDX2 expression through EGFR phosphorylation. We suggested that NO had an important role in the development of BE from squamous epithelium around GEJ.
Collapse
Affiliation(s)
- Gen Kusaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ridnour LA, Barasch KM, Windhausen AN, Dorsey TH, Lizardo MM, Yfantis HG, Lee DH, Switzer CH, Cheng RYS, Heinecke JL, Brueggemann E, Hines HB, Khanna C, Glynn SA, Ambs S, Wink DA. Nitric oxide synthase and breast cancer: role of TIMP-1 in NO-mediated Akt activation. PLoS One 2012; 7:e44081. [PMID: 22957045 PMCID: PMC3434220 DOI: 10.1371/journal.pone.0044081] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 07/31/2012] [Indexed: 01/14/2023] Open
Abstract
Prediction of therapeutic response and cancer patient survival can be improved by the identification of molecular markers including tumor Akt status. A direct correlation between NOS2 expression and elevated Akt phosphorylation status has been observed in breast tumors. Tissue inhibitor matrix metalloproteinase-1 (TIMP-1) has been proposed to exert oncogenic properties through CD63 cell surface receptor pathway initiation of pro-survival PI3k/Akt signaling. We employed immunohistochemistry to examine the influence of TIMP-1 on the functional relationship between NOS2 and phosphorylated Akt in breast tumors and found that NOS2-associated Akt phosphorylation was significantly increased in tumors expressing high TIMP-1, indicating that TIMP-1 may further enhance NO-induced Akt pathway activation. Moreover, TIMP-1 silencing by antisense technology blocked NO-induced PI3k/Akt/BAD phosphorylation in cultured MDA-MB-231 human breast cancer cells. TIMP-1 protein nitration and TIMP-1/CD63 co-immunoprecipitation was observed at NO concentrations that induced PI3k/Akt/BAD pro-survival signaling. In the survival analysis, elevated tumor TIMP-1 predicted poor patient survival. This association appears to be mainly restricted to tumors with high NOS2 protein. In contrast, TIMP-1 did not predict poor survival in patient tumors with low NOS2 expression. In summary, our findings suggest that tumors with high TIMP-1 and NOS2 behave more aggressively by mechanisms that favor Akt pathway activation.
Collapse
Affiliation(s)
- Lisa A. Ridnour
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (LAR); (DAW)
| | - Kimberly M. Barasch
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alisha N. Windhausen
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Michael M. Lizardo
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Harris G. Yfantis
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Dong H. Lee
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States of America
| | - Christopher H. Switzer
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robert Y. S. Cheng
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie L. Heinecke
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | | | - Harry B. Hines
- USAMRIID, Fort Detrick, Maryland, United States of America
| | - Chand Khanna
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sharon A. Glynn
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David A. Wink
- Radiation Biology Branch, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: (LAR); (DAW)
| |
Collapse
|
21
|
Alexandre L, Broughton T, Loke Y, Beales ILP. Meta-analysis: risk of esophageal adenocarcinoma with medications which relax the lower esophageal sphincter. Dis Esophagus 2012; 25:535-544. [PMID: 22129441 DOI: 10.1111/j.1442-2050.2011.01285.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reasons for the rising annual incidence of esophageal adenocarcinoma (EAC) remain uncertain. Previous studies have given conflicting results, but some have suggested that drugs which relax the lower esophageal sphincter (LES) may increase the risk of EAC. This study is to determine systematically the risk of EAC associated with individual medications which relax the LES and compare risks with esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA). Relevant published studies were identified by systematic searching PubMed for case-control studies reporting on risk of EAC, ESCC or GCA with use of medications known to reduce LES pressure. Pooled odds ratios (ORs) were calculated for each malignancy. Data were analyzed from four case-control studies involving 9,412 participants. EAC was significantly associated with theophylline use (OR 1.55, 95% confidence interval [CI] 1.05-2.28; P= 0.03, I(2) = 0%) and anticholinergic medications (OR 1.66, 95% CI 1.13-2.44; P= 0.01, I(2) = 84%). This effect was not observed in cases of ESCC or GCA. Other drug groups including calcium channel modulators and nitrates did not increase the risk of EAC. An inverse relationship was observed between ESCC and nitrates and between GCA and benzodiazepines. The lack of increased EAC risk with many commonly used medications is reassuring. However, a significant correlation was found between EAC and the use of anticholinergics and theophyllines. This may reflect common causality between obstructive lung disease and EAC, and further studies to explore these relationships are warranted.
Collapse
Affiliation(s)
- L Alexandre
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | | | | | | |
Collapse
|
22
|
Takata Y, Kristal AR, Santella RM, King IB, Duggan DJ, Lampe JW, Rayman MP, Blount PL, Reid BJ, Vaughan TL, Peters U. Selenium, selenoenzymes, oxidative stress and risk of neoplastic progression from Barrett's esophagus: results from biomarkers and genetic variants. PLoS One 2012; 7:e38612. [PMID: 22715394 PMCID: PMC3371043 DOI: 10.1371/journal.pone.0038612] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Clinical trials have suggested a protective effect of selenium supplementation on the risk of esophageal cancer, which may be mediated through the antioxidant activity of selenoenzymes. We investigated whether serum selenium concentrations, selenoenzyme activity, oxidative stress and genetic variation in selenoenzymes were associated with the risk of neoplastic progression to esophageal adenocarcinoma (EA) and two intermediate endpoints, aneuploidy and tetraploidy. In this prospective cohort study, during an average follow-up of 7.3 years, 47 EA cases, 41 aneuploidy cases and 51 tetraploidy cases accrued among 361 participants from the Seattle Barrett's Esophagus Research Study who were free of EA at the time of blood draw and had at least one follow-up visit. Development to EA was assessed histologically and aneuploidy and tetraploidy by DNA content flow cytometry. Serum selenium concentrations were measured using atomic absorption spectrometry, activity of glutathione peroxidase (GPX) 1 and GPX3 by substrate-specific coupled test procedures, selenoprotein P (SEPP1) concentrations and protein carbonyl content by ELISA method and malondialdehyde concentrations by HPLC. Genetic variants in GPX1-4 and SEPP1 were genotyped. Serum selenium was not associated with the risk of neoplastic progression to EA, aneuploidy or tetraploidy (P for trend = 0.25 to 0.85). SEPP1 concentrations were positively associated with the risk of EA [hazard ratio (HR) = 3.95, 95% confidence intervals (CI) = 1.42-10.97 comparing the third tertile with the first] and with aneuploidy (HR = 6.53, 95% CI = 1.31-32.58), but not selenoenzyme activity or oxidative stress markers. No genetic variants, overall, were associated with the risk of neoplastic progression to EA (global p = 0.12-0.69). Our results do not support a protective effect of selenium on risk of neoplastic progression to EA. Our study is the first to report positive associations of plasma SEPP1 concentrations with the risk of EA and aneuploidy, which warrants further investigation.
Collapse
Affiliation(s)
- Yumie Takata
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alan R. Kristal
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Regina M. Santella
- Department of Environmental Health Sciences, Columbia University, New York, New York, United States of America
| | - Irena B. King
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - David J. Duggan
- Division of Genetic Basis of Human Disease, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Johanna W. Lampe
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Margaret P. Rayman
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Patricia L. Blount
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brian J. Reid
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Thomas L. Vaughan
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ulrike Peters
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|