1
|
The methyltransferase domain of DNMT1 is an essential domain in acute myeloid leukemia independent of DNMT3A mutation. Commun Biol 2022; 5:1174. [PMID: 36329185 PMCID: PMC9633652 DOI: 10.1038/s42003-022-04139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Aberrant DNA methylation patterns are a prominent feature of cancer. Methylation of DNA is mediated by the DNA methyltransferase (DNMT) protein family, which regulates de novo (DNMT3A and DNMT3B) and maintenance (DNMT1) methylation. Mutations in DNMT3A are observed in approximately 22% of acute myeloid leukemia (AML). We hypothesized that DNMT1 or DNMT3B could function as a synthetic lethal therapeutic strategy for DNMT3A-mutant AML. CRISPR-Cas9 tiling screens were performed to identify functional domains within DNMT1/DNMT3B that exhibited greater dependencies in DNMT3A mutant versus wild-type cell lines. Although increased sensitivity to DNMT1 mutation was observed in some DNMT3A mutant cellular models tested, the subtlety of these results prevents us from basing any conclusions on a synthetic lethal relationship between DNMT1 and DNMT3A. Our data suggests that a therapeutic window for DNMT1 methyltransferase inhibition in DNMT3A-driven AML may exist, but validation in more biologically relevant models is required.
Collapse
|
2
|
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021; 3:zcab045. [PMID: 34870206 PMCID: PMC8634572 DOI: 10.1093/narcan/zcab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Xiang F, Zhu Z, Zhang M, Wang J, Chen Z, Li X, Zhang T, Gu Q, Wu R, Kang X. 3,3'-Diindolylmethane Enhances Paclitaxel Sensitivity by Suppressing DNMT1-Mediated KLF4 Methylation in Breast Cancer. Front Oncol 2021; 11:627856. [PMID: 34150611 PMCID: PMC8209418 DOI: 10.3389/fonc.2021.627856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel (PTX) is a first-line chemotherapeutic drug for the treatment of breast cancer, but drug resistance seriously limits its clinical use. The aim of the present work was to explore the effect of 3,3’-diindolylmethane (DIM) on PTX sensitivity and its possible mechanism in breast cancer. The expression of Krüppel-like factor 4 (KLF4) and DNA-methyltransferase 1 (DNMT1) in breast cancer tissues were assessed by immunohistochemistry and Western blotting. The methylation of KLF4 was evaluated by the MassARRAY platform. The lentivirus carrying KLF4 and DNMT1 gene or shRNA targeting DNMT1 were used to overexpress KLF4 or knockdown DNMT1 in MCF-7 and T47D breast cancer cells and the role of KLF4 and DNMT1 in regulation of PTX sensitivity was investigated. The effect of PTX on inhibiting the proliferation of MCF-7 and T47D cells was measured by CCK-8 assay. Flow cytometry was used to examine cell apoptosis. The expression of mRNA and protein was evaluated by qRT-PCR and Western blotting analysis, respectively. Our data showed that the expression of DNMT1 was increased, and the methylation level of CpG sites (−148 bp) in the KLF4 promoter was increased while the KLF4 expression was significantly decreased in breast cancer tissues. Overexpression of KLF4 increased the sensitivity of MCF-7 and T47D cells to PTX. DNMT1 increased the methylation of the KLF4 promoter and decrease the expression of KLF4. Knockdown of DNMT1 increased the sensitivity of MCF-7 and T47D cells to PTX. DIM enhanced the PTX sensitivity of MCF-7 and T47D cells, decreased the expression of DNMT1 and the methylation level of KLF4 promoter, thus increasing the level of KLF4. Furthermore, overexpression of DNMT1 attenuated the effect of DIM on the regulation of PTX sensitivity. Collectively, our data indicated that DNMT1-mediated hypermethylation of KLF4 promoter leads to downregulation of KLF4 in breast cancer. The level of KLF4 is correlated with the sensitivity of MCF-7 and T47D cells to PTX. DIM could enhance the antitumor efficacy of PTX on MCF-7 and T47D cells by regulating DNMT1 and KLF4.
Collapse
Affiliation(s)
- Fenfen Xiang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaowei Zhu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengzhe Zhang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zixi Chen
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxiao Li
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Zhang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Gu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Moderate DNA hypomethylation suppresses intestinal tumorigenesis by promoting caspase-3 expression and apoptosis. Oncogenesis 2021; 10:38. [PMID: 33947834 PMCID: PMC8096944 DOI: 10.1038/s41389-021-00328-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Global DNA hypomethylation is a most common epigenetic alteration in human neoplasia. However, accumulative evidence shows that global DNA hypomethylation impacts tumorigenesis in a tissue-specific manner, promoting tumorigenesis in some but suppressing tumorigenesis in others including colorectal cancer. The underlying mechanisms, especially how DNA hypomethylation suppresses tumorigenesis, remain largely unknown. Here, we investigate how DNA hypomethylation affects intestinal tumorigenesis by using an Uhrf1 tandem tudor domain knockin mutant mouse model (Uhrf1ki/ki) that exhibits a moderate ~10% reduction of global DNA methylation. We found that both chemical-induced colorectal carcinogenesis and Apc loss of heterozygosity (LOH)-induced intestinal tumorigenesis are substantially suppressed in the Uhrf1 mutant mice. Furthermore, unlike Dnmt1 hypomorphic mice in which DNA hypomethylation suppresses the incidence of macroscopic intestinal tumors but promotes the formation of microadenoma in ApcMin/+ background, Uhrf1ki/ki/ApcMin/+ mice have markedly reduced incidence of both microadenoma and macroadenoma. DNA hypomethylation does not appear to affect Apc LOH, activation of the Wnt or Hippo pathway, or tumor cell proliferation, but acts cooperatively with activated Wnt pathway to enhance the caspase-3 gene expression, activation, and apoptosis. Furthermore, increased caspase-3 expression correlates with DNA hypomethylation within the caspase-3 enhancer regions. Taken together, we present a new mouse model for investigating the role of and the molecular mechanisms by which DNA hypomethylation suppresses intestinal tumorigenesis. Our finding that a moderate DNA hypomethylation is sufficient to suppress intestinal tumorigenesis by promoting caspase-3 expression and apoptosis sheds new light on DNA-methylation inhibitor-based colorectal cancer therapeutics.
Collapse
|
5
|
Redl E, Sheibani-Tezerji R, Cardona CDJ, Hamminger P, Timelthaler G, Hassler MR, Zrimšek M, Lagger S, Dillinger T, Hofbauer L, Draganić K, Tiefenbacher A, Kothmayer M, Dietz CH, Ramsahoye BH, Kenner L, Bock C, Seiser C, Ellmeier W, Schweikert G, Egger G. Requirement of DNMT1 to orchestrate epigenomic reprogramming for NPM-ALK-driven lymphomagenesis. Life Sci Alliance 2021; 4:e202000794. [PMID: 33310759 PMCID: PMC7768196 DOI: 10.26508/lsa.202000794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Melanie Rosalia Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Maša Zrimšek
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Lorena Hofbauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| | - Michael Kothmayer
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Charles H Dietz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bernard H Ramsahoye
- Centre for Genetic and Experimental Medicine, Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), CoreLab 2, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics (LBI AD), Vienna, Austria
| |
Collapse
|
6
|
Bernard H, Teijeiro A, Chaves-Pérez A, Perna C, Satish B, Novials A, Wang JP, Djouder N. Coxsackievirus B Type 4 Infection in β Cells Downregulates the Chaperone Prefoldin URI to Induce a MODY4-like Diabetes via Pdx1 Silencing. CELL REPORTS MEDICINE 2020; 1:100125. [PMID: 33205075 PMCID: PMC7659558 DOI: 10.1016/j.xcrm.2020.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
Enteroviruses are suspected to contribute to insulin-producing β cell loss and hyperglycemia-induced diabetes. However, mechanisms are not fully defined. Here, we show that coxsackievirus B type 4 (CVB4) infection in human islet-engrafted mice and in rat insulinoma cells displays loss of unconventional prefoldin RPB5 interactor (URI) and PDX1, affecting β cell function and identity. Genetic URI ablation in the mouse pancreas causes PDX1 depletion in β cells. Importantly, diabetic PDX1 heterozygous mice overexpressing URI in β cells are more glucose tolerant. Mechanistically, URI loss triggers estrogen receptor nuclear translocation leading to DNA methyltransferase 1 (DNMT1) expression, which induces Pdx1 promoter hypermethylation and silencing. Consequently, demethylating agent procainamide-mediated DNMT1 inhibition reinstates PDX1 expression and protects against diabetes in pancreatic URI-depleted mice . Finally, the β cells of human diabetes patients show correlations between viral protein 1 and URI, PDX1, and DNMT1 levels. URI and DNMT1 expression and PDX1 silencing provide a causal link between enterovirus infection and diabetes. Coxsackievirus B type 4 infection downregulates URI and affects β cell function Genetic URI ablation in mouse pancreas recapitulates diabetes URI controls Pdx1 methylation via ERα-activating DNMT1 Coxsackievirus B type 4, URI, PDX1, and DNMT1 expression correlate in human pancreata
Collapse
MESH Headings
- Animals
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/metabolism
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/virology
- Disease Models, Animal
- Enterovirus B, Human/genetics
- Enterovirus B, Human/metabolism
- Enterovirus B, Human/pathogenicity
- Female
- Gene Expression Regulation
- Glucose/metabolism
- Glucose/pharmacology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/transplantation
- Male
- Mice
- Mice, Transgenic
- Procainamide/pharmacology
- Rats
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Hugo Bernard
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana Teijeiro
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Basanthi Satish
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Novials
- IDIBAPS, August Pi i Sunyer Biomedical Research Institute and, CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Spain
| | - Jennifer P. Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
- Corresponding author
| |
Collapse
|
7
|
Jing W, Song N, Liu YP, Qu XJ, Qi YF, Li C, Hou KZ, Che XF, Yang XH. DNMT3a promotes proliferation by activating the STAT3 signaling pathway and depressing apoptosis in pancreatic cancer. Cancer Manag Res 2019; 11:6379-6396. [PMID: 31372043 PMCID: PMC6635825 DOI: 10.2147/cmar.s201610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background Although aberrant DNA methyltransferase 3a (DNMT3a) expression is important to the tumorigenesis of pancreatic ductal adenocarcinoma (PDAC), the role of DNMT3a in PDAC prognosis is not clarified yet due to the limited studies and lacking of underlying molecular mechanism. Methods The expression of DNMT3a was examined by immunohistochemistry in PDAC tissues. Gene expression profiles assays were conducted to explore the impact of DNMT3a on biological processes and signal pathways. Cell cycle and apoptosis were measured by flow cytometry. Western blotting and real-time qPCR assays were used to explore the impact of DNMT3a on expression of protein and mRNA related to cell cycle, STAT3 signaling pathway and apoptosis. Results DNMT3a was overexpressed and closely associated with poor outcomes of PDAC. DNMT3a knockdown restrained PDAC cell proliferation, induced cell cycle arrest and promoted apoptosis in vitro. Affymetrix GeneChip Human Transcriptome Array identified that the cell cycle-related process was most significantly associated with DNMT3a. DNMT3a knockdown induced G1-S phase transition arrest by decreasing the expression of cyclin D1, which was mediated by the reduction of IL8 and the subsequent inactivation of STAT3 signaling pathway. Furthermore, exogenous apoptosis was also promoted after DNMT3a knockdown, probably via up-regulation of DNA transcription and expression in CASP8. Conclusion These findings indicate that DNMT3a plays an important role in PDAC progression. DNMT3a may serve as a prognostic biomarker and a therapeutic strategy candidate in PDAC.
Collapse
Affiliation(s)
- Wei Jing
- The First Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Na Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ya-Fei Qi
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, People's Republic of China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiang-Hong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
8
|
Gonzalez-Fierro A, Dueñas-González A. Emerging DNA methylation inhibitors for cancer therapy: challenges and prospects. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:27-35. [DOI: 10.1080/23808993.2019.1571906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Affiliation(s)
| | - Alfonso Dueñas-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM/Instituto Nacional de Can cerología, México City, Mexico
| |
Collapse
|
9
|
Huang MH, Chou YW, Li MH, Shih TE, Lin SZ, Chuang HM, Chiou TW, Su HL, Harn HJ. Epigenetic targeting DNMT1 of pancreatic ductal adenocarcinoma using interstitial control release biodegrading polymer reduced tumor growth through hedgehog pathway inhibition. Pharmacol Res 2018; 139:50-61. [PMID: 30385365 DOI: 10.1016/j.phrs.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Annually, 48,000 people die from pancreatic ductal adenocarcinoma (PDAC), ranking it the fourth among cancer-related deaths in the United States. Currently, anti-cancer drugs are not effective against PDAC, and only extends survival by 3 months. Aberrant DNA methylation has been shown to play an important role during carcinogenesis in PDAC, with approximately 80% of tumor overexpressing the DNA methyltransferase 1 (DNMT1) protein. In the present study, we used DNMTs as a screening platform to find a new DNMT inhibitor, n-butylidenephthalide (n-BP), which is identified from a Chinese herbal drug. n-BP could inhibit DNMT1 expression in both dose-dependent and time-dependent manner. It also displays an effect in suppressing growth of PDAC cells and inducing cell cycle arrest at G0/G1 phase leading apoptosis. Growth suppression can be restored by the overexpression of DNMT1 in PDAC cells. Furthermore, we found n-BP-mediated DNMT1 suppression influenced the protein stability rather than changing the RNA expression. Through microarray studies, we found that the patched domain contained 4 (PTCHD4) is the potential downstream gene of DNMT1. Following silencing of PTCHD4 expression by siRNA, n-BP decreased tumor growth inhibition. Finally, in vivo, two animal models were used to evaluate the efficacy and survival after n-BP treatment by interstitial control release polymer delivery. The results show that n-BP could effectively inhibit PDAC tumor volume growth and extend animal survival. In summary, n-BP may inhibit the growth of human PDAC cells though reducing DNMT1 and increasing the expression of PTCHD4 both in vitro and in vivo.
Collapse
Affiliation(s)
- Mao-Hsuan Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yi-Wen Chou
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ming-Hsun Li
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tina E Shih
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hong-Meng Chuang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan; Department of Pathology, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
10
|
Xie VK, Li Z, Yan Y, Jia Z, Zuo X, Ju Z, Wang J, Du J, Xie D, Xie K, Wei D. DNA-Methyltransferase 1 Induces Dedifferentiation of Pancreatic Cancer Cells through Silencing of Krüppel-Like Factor 4 Expression. Clin Cancer Res 2017; 23:5585-5597. [PMID: 28659310 PMCID: PMC5600846 DOI: 10.1158/1078-0432.ccr-17-0387] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 01/22/2023]
Abstract
Purpose: The dismal prognosis of pancreatic cancer has been linked to poor tumor differentiation. However, molecular basis of pancreatic cancer differentiation and potential therapeutic value of the underlying molecules remain unknown. We investigated the mechanistic underexpression of Krüppel-like factor 4 (KLF4) in pancreatic cancer and defined a novel epigenetic pathway of its activation for pancreatic cancer differentiation and treatment.Experimental Design: Expressions of KLF4 and DNMT1 in pancreatic cancer tissues were determined by IHC and the genetic and epigenetic alterations of KLF4 in and KLF4's impact on differentiation of pancreatic cancer were examined using molecular biology techniques. The function of dietary 3,3'-diindolylmethane (DIM) on miR-152/DNMT1/KLF4 signaling in pancreatic cancer was evaluated using both cell culture and animal models.Results: Overexpression of DNMT1 and promoter hypermethylation contributed to decreased KLF4 expression in and associated with poor differentiation of pancreatic cancer. Manipulation of KLF4 expression significantly affected differentiation marker expressions in pancreatic cancer cells. DIM treatment significantly induced miR-152 expression, which blocked DNMT1 protein expression and its binding to KLF4 promoter region, and consequently reduced promoter DNA methylation and activated KLF4 expression in pancreatic cancer cells. In addition, DIM treatment caused significant inhibition of cell growth in vitro and tumorigenesis in animal models of pancreatic cancer.Conclusions: This is the first demonstration that dysregulated KLF4 expression associates with poor differentiation of pancreatic cancer. Epigenetic activation of miR-152/DNMT1/KLF4 signaling pathway by dietary DIM causes differentiation and significant growth inhibition of pancreatic cancer cells, highlighting its translational implications for pancreatic and other cancers. Clin Cancer Res; 23(18); 5585-97. ©2017 AACR.
Collapse
Affiliation(s)
- Victoria K Xie
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiwei Li
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongmin Yan
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiliang Jia
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiawei Du
- Department of Oncology, Shanghai Tongji University East Hospital, Shanghai, P.R. China
| | - Dacheng Xie
- Department of Oncology, Shanghai Tongji University East Hospital, Shanghai, P.R. China
| | - Keping Xie
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Daoyan Wei
- Department Gastroenterology Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Esposito I, Segler A, Steiger K, Klöppel G. Pathology, genetics and precursors of human and experimental pancreatic neoplasms: An update. Pancreatology 2015; 15:598-610. [PMID: 26365060 DOI: 10.1016/j.pan.2015.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/02/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
Over the past decade, there have been substantial improvements in our knowledge of pancreatic neoplasms and their precursor lesions. Extensive genetic analyses, recently using high-throughput molecular techniques and next-generation sequencing methodologies, and the development of sophisticated genetically engineered mouse models closely recapitulating human disease, have improved our understanding of the genetic basis of pancreatic neoplasms. These advances are paving the way for refined, molecular-based classifications of pancreatic neoplasms with the potential to better predict prognosis and, possibly, response to therapy. Another major development resides in the identification of subsets of pancreatic exocrine and endocrine neoplasms which occur in the context of hereditary syndromes and whose genetic basis and tumor development have been at least partially defined. However, despite all molecular progress, correct and careful morphological characterization of tissue specimens both in the context of experimental and routine diagnostic pathology represents the basis for any further genetic investigation or clinical decision. This review focuses on the current and new concepts of classification and on the current models of tumor development, both in the field of exocrine and endocrine neoplasms, and underscores the importance of applying standardized terminology to allow adequate data interpretation and promote scientific exchange in the field of pancreas research.
Collapse
Affiliation(s)
- Irene Esposito
- Institute of Pathology, Heinrich-Heine-University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Angela Segler
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Günter Klöppel
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| |
Collapse
|
12
|
La Rosa S, Sessa F, Capella C. Acinar Cell Carcinoma of the Pancreas: Overview of Clinicopathologic Features and Insights into the Molecular Pathology. Front Med (Lausanne) 2015; 2:41. [PMID: 26137463 PMCID: PMC4469112 DOI: 10.3389/fmed.2015.00041] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022] Open
Abstract
Acinar cell carcinomas (ACCs) of the pancreas are rare pancreatic neoplasms accounting for about 1–2% of pancreatic tumors in adults and about 15% in pediatric subjects. They show different clinical symptoms at presentation, different morphological features, different outcomes, and different molecular alterations. This heterogeneous clinicopathological spectrum may give rise to difficulties in the clinical and pathological diagnosis with consequential therapeutic and prognostic implications. The molecular mechanisms involved in the onset and progression of ACCs are still not completely understood, although in recent years, several attempts have been made to clarify the molecular mechanisms involved in ACC biology. In this paper, we will review the main clinicopathological and molecular features of pancreatic ACCs of both adult and pediatric subjects to give the reader a comprehensive overview of this rare tumor type.
Collapse
Affiliation(s)
- Stefano La Rosa
- Department of Pathology, Ospedale di Circolo , Varese , Italy
| | - Fausto Sessa
- Department of Surgical and Morphological Sciences, University of Insubria , Varese , Italy
| | - Carlo Capella
- Department of Surgical and Morphological Sciences, University of Insubria , Varese , Italy
| |
Collapse
|
13
|
Hatano Y, Semi K, Hashimoto K, Lee MS, Hirata A, Tomita H, Kuno T, Takamatsu M, Aoki K, Taketo MM, Kim YJ, Hara A, Yamada Y. Reducing DNA methylation suppresses colon carcinogenesis by inducing tumor cell differentiation. Carcinogenesis 2015; 36:719-29. [PMID: 25939752 DOI: 10.1093/carcin/bgv060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/25/2015] [Indexed: 01/18/2023] Open
Abstract
The forced reduction of global DNA methylation suppresses tumor development in several cancer models in vivo. Nevertheless, the mechanisms underlying these suppressive effects remain unclear. In this report, we describe our findings showing that a genome-wide reduction in the DNA methylation levels induces cellular differentiation in association with decreased cell proliferation in Apc (Min/+) mouse colon tumor cells in vivo. Colon tumor-specific DNA methylation at Cdx1 is reduced in the DNA-hypomethylated tumors accompanied by Cdx1 derepression and an increased expression of intestinal differentiation-related genes. Furthermore, a histological analysis revealed that Cdx1 derepression in the DNA-hypomethylated tumors is correlated with the differentiation of colon tumor cells. Similarly, the treatment of human colon cancer cell lines with a hypomethylating agent induces differentiation-related genes, including CDX1. We herein propose that DNA demethylation exerts a tumor suppressive effect in the colon by inducing tumor cell differentiation.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Katsunori Semi
- Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Kyoichi Hashimoto
- Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Myeong Sup Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Toshiya Kuno
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Manabu Takamatsu
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Koji Aoki
- Division of Pharmacology, University of Fukui School of Medicine, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Makoto M Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan and
| | - Young-Joon Kim
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research and Application (CiRA), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan,
| |
Collapse
|
14
|
Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 2014; 4:80. [PMID: 24822169 PMCID: PMC4013461 DOI: 10.3389/fonc.2014.00080] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of death in US. Despite the emergence of new, targeted agents, and the use of various therapeutic combinations, none of the available treatment options are curative in patients with advanced cancer. Epigenetic alterations are increasingly recognized as valuable targets for the development of cancer therapies. DNA methylation at the 5-position of cytosine, catalyzed by DNA methyltransferases (DNMTs), is the predominant epigenetic modification in mammals. DNMT1, the major enzyme responsible for maintenance of the DNA methylation pattern is located at the replication fork and methylates newly biosynthesized DNA. DNMT2 or TRDMT1, the smallest mammalian DNMT is believed to participate in the recognition of DNA damage, DNA recombination, and mutation repair. It is composed solely of the C-terminal domain, and does not possess the regulatory N-terminal region. The levels of DNMTs, especially those of DNMT3B, DNMT3A, and DNMT3L, are often increased in various cancer tissues and cell lines, which may partially account for the hypermethylation of promoter CpG-rich regions of tumor suppressor genes in a variety of malignancies. Moreover, it has been shown to function in self-renewal and maintenance of colon cancer stem cells and need to be studied in several cancers. Inhibition of DNMTs has demonstrated reduction in tumor formation in part through the increased expression of tumor suppressor genes. Hence, DNMTs can potentially be used as anti-cancer targets. Dietary phytochemicals also inhibit DNMTs and cancer stem cells; this represents a promising approach for the prevention and treatment of many cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA ; The University of Kansas Cancer Center , Kansas City, KS , USA
| | - Ravi Thombre
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA
| | - Animesh Dhar
- The University of Kansas Cancer Center , Kansas City, KS , USA ; Department of Cancer Biology, The University of Kansas Medical Center , Kansas City, KS , USA
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA ; The University of Kansas Cancer Center , Kansas City, KS , USA ; Department of Cancer Biology, The University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
15
|
Liao GL, Xiao WD. DNA methyltransferases and pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:345-349. [DOI: 10.11569/wcjd.v22.i3.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abnormal methylation of the promoter of suppressor genes plays an important role in the occurrence and development of pancreatic cancer. The degree of methylation is closely related to the activity of DNA methyltransferases. MicroRNAs (miRNAs) are a group of endogenous, small non-coding RNA that can regulate DNA methylation (DNA methylation can also regulate miRNAs) and affect the occurrence of pancreatic cancer. In recent years, demethylation drugs or RNA interference have been widely used to study the pathogenesis and targeted therapy of pancreatic cancer, and are expected to become effective means of treatment for pancreatic cancer. This article will give a review of the functions of DNA methyltransferases and the relationship between DNA methyltransferases and pancreatic cancer.
Collapse
|
16
|
Nagaraju GP, EI-Rayes BF. SPARC and DNA methylation: Possible diagnostic and therapeutic implications in gastrointestinal cancers. Cancer Lett 2013; 328:10-7. [DOI: 10.1016/j.canlet.2012.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/17/2012] [Accepted: 08/22/2012] [Indexed: 02/06/2023]
|
17
|
Ford D. Honeybees and cell lines as models of DNA methylation and aging in response to diet. Exp Gerontol 2012; 48:614-9. [PMID: 22846460 DOI: 10.1016/j.exger.2012.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/15/2012] [Accepted: 07/18/2012] [Indexed: 02/08/2023]
Abstract
DNA methylation patterns change as individuals grow older, and DNA methylation appears susceptible to modification by the diet. Thus DNA methylation may be a mechanism through which diet can affect aging and longevity. We propose that effects on DNA methylation also contribute to the extension in lifespan observed in response to dietary restriction. Relationships between diet-induced changes in DNA methylation and parallel effects on aging and/or lifespan could, of course, be purely associative. Proof of these ideas requires experimental model systems in which it is possible to manipulate genome methylation status and to measure effects on aging and/or lifespan. Commonly-used short-lived and genetically-malleable metazoan species, such as Caenorhabditis elegans and Drosophila, are not suitable for such studies; the C. elegans genome is not methylated, and DNA methylation in Drosophila is dissimilar from mammalian DNA methylation, occurring at cytosines at sites other than in CpG sequences. The honeybee provides a potentially unique and tractable model for such studies. Female larval development into the long-lived queen phenotype or short-lived worker is determined purely by diet (royal jelly) through an effect on DNA methylation, and honeybee DNA methylation mirrors that of the mammalian genome. Mammalian cell lines and biochemical approaches offer complementary tools to address specific components of hypotheses relating to effects of diet on aging through DNA methylation in a more targeted manner. Our studies using mammalian cell lines are revealing effects of Sirt1 on DNA methylation, and indicate that Sirt1 and resveratrol affect the expression of different sets of genes.
Collapse
Affiliation(s)
- Dianne Ford
- Institute for Cell and Molecular Biosciences and Institute for Aging and Health, Newcastle University, UK.
| |
Collapse
|
18
|
van der Weyden L, Adams DJ. Using mice to unveil the genetics of cancer resistance. Biochim Biophys Acta Rev Cancer 2012; 1826:312-30. [PMID: 22613679 DOI: 10.1016/j.bbcan.2012.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/28/2022]
Abstract
In the UK, four in ten people will develop some form of cancer during their lifetime, with an individual's relative risk depending on many factors, including age, lifestyle and genetic make-up. Much research has gone into identifying the genes that are mutated in tumorigenesis with the overwhelming majority of genetically-modified (GM) mice in cancer research showing accelerated tumorigenesis or recapitulating key aspects of the tumorigenic process. Yet if six out of ten people will not develop some form of cancer during their lifetime, together with the fact that some cancer patients experience spontaneous regression/remission, it suggests there are ways of 'resisting' cancer. Indeed, there are wildtype, spontaneously-arising mutants and GM mice that show some form of 'resistance' to cancer. Identification of mice with increased resistance to cancer is a novel aspect of cancer research that is important in terms of providing both chemopreventative and therapeutic options. In this review we describe the different mouse lines that display a 'cancer resistance' phenotype and discuss the molecular basis of their resistance.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| | | |
Collapse
|
19
|
He S, Wang F, Yang L, Guo C, Wan R, Ke A, Xu L, Hu G, Xu X, Shen J, Wang X. Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer. PLoS One 2011; 6:e27684. [PMID: 22110720 PMCID: PMC3215738 DOI: 10.1371/journal.pone.0027684] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/21/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIMS GLI1, as an indispensable transcriptional factor of Hedgehog signaling pathway, plays an important role in the development of pancreatic cancer (PC). DNA methyltransferases (DNMTs) mediate the methylation of quantity of tumor-related genes. Our study aimed to explore the relationship between GLI1 and DNMTs. METHODS Expressions of GLI1 and DNMTs were detected in tumor and adjacent normal tissues of PC patients by immunohistochemistry (IHC). PANC-1 cells were treated by cyclopamine and GLI1-siRNA, while BxPC-3 cells were transfected with overexpression-GLI1 lentiviral vector. Then GLI1 and DNMTs expression were analyzed by qRT-PCR and western blot (WB). Then we took chromatin immunoprecipitation (ChIP) to demonstrate GLI1 bind to DNMT1. Finally, nested MSP was taken to valuate the methylation levels of APC and hMLH1, when GLI1 expression altered. RESULTS IHC result suggested the expressions of GLI1, DNMT1 and DNMT3a in PC tissues were all higher than those in adjacent normal tissues (p<0.05). After GLI1 expression repressed by cyclopamine in mRNA and protein level (down-regulation 88.1±2.2%, 86.4±2.2%, respectively), DNMT1 and DNMT3a mRNA and protein level decreased by 91.6%±2.2% and 83.8±4.8%, 87.4±2.7% and 84.4±1.3%, respectively. When further knocked down the expression of GLI1 by siRNA (mRNA decreased by 88.6±2.1%, protein decreased by 63.5±4.5%), DNMT1 and DNMT3a mRNA decreased by 80.9±2.3% and 78.6±3.8% and protein decreased by 64.8±2.8% and 67.5±5.6%, respectively. Over-expression of GLI1 by GLI1 gene transfection (mRNA increased by 655.5±85.9%, and protein increased by 272.3±14.4%.), DNMT1 and DNMT3a mRNA and protein increased by 293.0±14.8% and 578.3±58.5%, 143.5±17.4% and 214.0±18.9%, respectively. ChIP assays showed GLI1 protein bound to DNMT1 but not to DNMT3a. Results of nested MSP demonstrated GLI1 expression affected the DNA methylation level of APC but not hMLH1 in PC. CONCLUSION DNMT1 and DNMT3a are regulated by GLI1 in PC, and DNMT1 is its direct target gene.
Collapse
Affiliation(s)
- ShanShan He
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Feng Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - LiJuan Yang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - ChuanYong Guo
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Rong Wan
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - AiWu Ke
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Ling Xu
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - GuoYong Hu
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - XuanFu Xu
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - Jie Shen
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
| | - XingPeng Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University, Shanghai, People's Republic of China
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|