1
|
Ma S, Liao W, Chen Y, Gan L. Prognostic value and potential function of a novel heme-related LncRNAs signature in gastric cancer. Cell Signal 2024; 118:111152. [PMID: 38548123 DOI: 10.1016/j.cellsig.2024.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
Heme is a coordination complex formed by the binding of iron ions and porphyrin rings. Its metabolic processes are associated with various cancers, including gastric cancer (GC). In recent years, long non-coding RNAs (LncRNAs) have been identified as key regulatory factors in GC. However, the role of LncRNAs associated with heme metabolism in GC and their relationship with prognosis have not been reported. In this study, we constructed a novel LncRNAs signature related to heme metabolism (HMlncSig) and validated its prognostic value for predicting the survival of GC patients through training, test, and entire cohorts. Kaplan-Meier analysis demonstrated that patients in the high-risk group had shorter survival times. Univariate and multivariate Cox regression analysis showed that HMlncSig was an independent prognostic indicator for GC patients, regardless of other clinical pathological features. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis and gene set variation analysis pathways showed that the activation of these markers may be involved in tumor progression, influencing the survival of GC patients. The nomogram, based on HMlncSig score and clinical features, demonstrated the strong predictive ability of this signature. Additionally, significant differences were observed between the high-risk and low-risk groups in terms of immune cell subtypes, expression of immune checkpoint genes, and response to chemotherapy and immunotherapy. Through clinical validation, we found that the risk score and heme levels of GC patients were both significantly elevated and correlated with the degree of malignancy. Furthermore, we found that AP000692.1, a key gene in this signature, promoted the proliferation, migration, and invasion of GC cells. In conclusion, our HMlncSig model has significant predictive value for the prognosis of GC patients and can provide clinical guidance for personalized immunotherapy.
Collapse
Affiliation(s)
- Shuo Ma
- Medical School of Southeast University, Nanjing 210009, Jiangsu, China
| | - Wei Liao
- Department of Surgery and Anesthesia, Chongqing University Fuling Hospital, 408000 Chongqing, China
| | - Yinhao Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, 53127 Bonn, Germany.
| | - Lin Gan
- Department of General Surgery, Chongqing University Fuling Hospital, 408000 Chongqing, China.
| |
Collapse
|
2
|
Li Q, Ke W, Jiang S, Zhang M, Shan K, Li C. Dietary Hemin Remodels Gut Microbiota and Mediates Tissue Inflammation and Injury in the Small Intestine. Mol Nutr Food Res 2024; 68:e2300889. [PMID: 38676468 DOI: 10.1002/mnfr.202300889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Indexed: 04/29/2024]
Abstract
SCOPE Epidemiological studies have linked excessive red and processed meat intake to gut disorders. Under laboratory conditions, high heme content is considered the primary health risk factor for red meat. However, heme in meat is present in myoglobin, which is an indigestible protein, suggesting the different functions between myoglobin and heme. This study aims to explore how dietary myoglobin and heme affect gut health and microbiota differently. METHODS AND RESULTS Histological and biochemical assessments as well as 16S rRNA sequencing are performed. Moderate myoglobin intake (equivalent to the recommended intake of 150 g meat per day for human) has beneficial effects on the duodenal barrier. However, a too high myoglobin diet (equivalent to intake of 3000 g meat per day for human) triggers duodenum injury and alters the microbial community. The hemin diet destroys intestinal tissue and ileal microbiota more significantly. The in vitro experiments further confirm that free heme exhibits high toxicity to beneficial gut bacteria while myoglobin promotes the growth and metabolism of Limosilactobacillus reuteri. CONCLUSION Moderate intake of myoglobin or hemin is beneficial to intestinal health and microbiota, but too high amounts lead to tissue inflammation and injury in the small intestine by reshaping ileal microbiota.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Weixin Ke
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Shuai Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Miao Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Kai Shan
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| |
Collapse
|
3
|
Fahrer J, Wittmann S, Wolf AC, Kostka T. Heme Oxygenase-1 and Its Role in Colorectal Cancer. Antioxidants (Basel) 2023; 12:1989. [PMID: 38001842 PMCID: PMC10669411 DOI: 10.3390/antiox12111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| | | | | | - Tina Kostka
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| |
Collapse
|
4
|
Seika P, Janikova M, Asokan S, Janovicova L, Csizmadia E, O’Connell M, Robson SC, Glickman J, Wegiel B. Free heme exacerbates colonic injury induced by anti-cancer therapy. Front Immunol 2023; 14:1184105. [PMID: 37342339 PMCID: PMC10277564 DOI: 10.3389/fimmu.2023.1184105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Gastrointestinal inflammation and bleeding are commonly induced by cancer radiotherapy and chemotherapy but mechanisms are unclear. We demonstrated an increased number of infiltrating heme oxygenase-1 positive (HO-1+) macrophages (Mø, CD68+) and the levels of hemopexin (Hx) in human colonic biopsies from patients treated with radiation or chemoradiation versus non-irradiated controls or in the ischemic intestine compared to matched normal tissues. The presence of rectal bleeding in these patients was also correlated with higher HO-1+ cell infiltration. To functionally assess the role of free heme released in the gut, we employed myeloid-specific HO-1 knockout (LysM-Cre : Hmox1flfl), hemopexin knockout (Hx-/-) and control mice. Using LysM-Cre : Hmox1flfl conditional knockout (KO) mice, we showed that a deficiency of HO-1 in myeloid cells led to high levels of DNA damage and proliferation in colonic epithelial cells in response to phenylhydrazine (PHZ)-induced hemolysis. We found higher levels of free heme in plasma, epithelial DNA damage, inflammation, and low epithelial cell proliferation in Hx-/- mice after PHZ treatment compared to wild-type mice. Colonic damage was partially attenuated by recombinant Hx administration. Deficiency in Hx or Hmox1 did not alter the response to doxorubicin. Interestingly, the lack of Hx augmented abdominal radiation-mediated hemolysis and DNA damage in the colon. Mechanistically, we found an altered growth of human colonic epithelial cells (HCoEpiC) treated with heme, corresponding to an increase in Hmox1 mRNA levels and heme:G-quadruplex complexes-regulated genes such as c-MYC, CCNF, and HDAC6. Heme-treated HCoEpiC cells exhibited growth advantage in the absence or presence of doxorubicin, in contrast to poor survival of heme-stimulated RAW247.6 Mø. In summary, our data indicate that accumulation of heme in the colon following hemolysis and/or exposure to genotoxic stress amplifies DNA damage, abnormal proliferation of epithelial cells, and inflammation as a potential etiology for gastrointestinal syndrome (GIS).
Collapse
Affiliation(s)
- Philippa Seika
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Monika Janikova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Sahana Asokan
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Division of Microbiome and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Lubica Janovicova
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mckenzie O’Connell
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C. Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathan Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Sciences, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Charlebois E, Pantopoulos K. Nutritional Aspects of Iron in Health and Disease. Nutrients 2023; 15:2441. [PMID: 37299408 PMCID: PMC10254751 DOI: 10.3390/nu15112441] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Dietary iron assimilation is critical for health and essential to prevent iron-deficient states and related comorbidities, such as anemia. The bioavailability of iron is generally low, while its absorption and metabolism are tightly controlled to satisfy metabolic needs and prevent toxicity of excessive iron accumulation. Iron entry into the bloodstream is limited by hepcidin, the iron regulatory hormone. Hepcidin deficiency due to loss-of-function mutations in upstream gene regulators causes hereditary hemochromatosis, an endocrine disorder of iron overload characterized by chronic hyperabsorption of dietary iron, with deleterious clinical complications if untreated. The impact of high dietary iron intake and elevated body iron stores in the general population is not well understood. Herein, we summarize epidemiological data suggesting that a high intake of heme iron, which is abundant in meat products, poses a risk factor for metabolic syndrome pathologies, cardiovascular diseases, and some cancers. We discuss the clinical relevance and potential limitations of data from cohort studies, as well as the need to establish causality and elucidate molecular mechanisms.
Collapse
Affiliation(s)
- Edouard Charlebois
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
6
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Meslé MM, Gray CR, Dlakić M, DuBois JL. Bacteroides thetaiotaomicron, a Model Gastrointestinal Tract Species, Prefers Heme as an Iron Source, Yields Protoporphyrin IX as a Product, and Acts as a Heme Reservoir. Microbiol Spectr 2023; 11:e0481522. [PMID: 36862015 PMCID: PMC10100974 DOI: 10.1128/spectrum.04815-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2023] [Indexed: 03/03/2023] Open
Abstract
Members of the phylum Bacteroidetes are abundant in healthy gastrointestinal (GI) tract flora. Bacteroides thetaiotaomicron is a commensal heme auxotroph and representative of this group. Bacteroidetes are sensitive to host dietary iron restriction but proliferate in heme-rich environments that are also associated with colon cancer. We hypothesized that B. thetaiotaomicron may act as a host reservoir for iron and/or heme. In this study, we defined growth-promoting quantities of iron for B. thetaiotaomicron. B. thetaiotaomicron preferentially consumed and hyperaccumulated iron in the form of heme when presented both heme and nonheme iron sources in excess of its growth needs, leading to an estimated 3.6 to 8.4 mg iron in a model GI tract microbiome consisting solely of B. thetaiotaomicron. Protoporphyrin IX was identified as an organic coproduct of heme metabolism, consistent with anaerobic removal of iron from the heme leaving the intact tetrapyrrole as the observed product. Notably, no predicted or discernible pathway for protoporphyrin IX generation exists in B. thetaiotaomicron. Heme metabolism in congeners of B. thetaiotaomicron has previously been associated with the 6-gene hmu operon, based on genetic studies. A bioinformatics survey demonstrated that the intact operon is widespread in but confined to members of the Bacteroidetes phylum and ubiquitous in healthy human GI tract flora. Anaerobic heme metabolism by commensal Bacteroidetes via hmu is likely a major contributor to human host metabolism of the heme from dietary red meat and a driver for the selective growth of these species in the GI tract consortium. IMPORTANCE Research on bacterial iron metabolism has historically focused on the host-pathogen relationship, where the host suppresses pathogen growth by cutting off access to iron. Less is known about how host iron is shared with bacterial species that live commensally in the anaerobic human GI tract, typified by members of phylum Bacteroidetes. While many facultative pathogens avidly produce and consume heme iron, most GI tract anaerobes are heme auxotrophs whose metabolic preferences we aimed to describe. Understanding iron metabolism by model microbiome species like Bacteroides thetaiotaomicron is essential for modeling the ecology of the GI tract, which serves the long-term biomedical goals of manipulating the microbiome to facilitate host metabolism of iron and remediate dysbiosis and associated pathologies (e.g., inflammation and cancer).
Collapse
Affiliation(s)
- Margaux M. Meslé
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Chase R. Gray
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
8
|
Mervant L, Tremblay-Franco M, Olier M, Jamin E, Martin JF, Trouilh L, Buisson C, Naud N, Maslo C, Héliès-Toussaint C, Fouché E, Kesse-Guyot E, Hercberg S, Galan P, Deschasaux-Tanguy M, Touvier M, Pierre F, Debrauwer L, Guéraud F. Urinary Metabolome Analysis Reveals Potential Microbiota Alteration and Electrophilic Burden Induced by High Red Meat Diet: Results from the French NutriNet-Santé Cohort and an In Vivo Intervention Study in Rats. Mol Nutr Food Res 2023; 67:e2200432. [PMID: 36647294 DOI: 10.1002/mnfr.202200432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/22/2022] [Indexed: 01/18/2023]
Abstract
SCOPE High red and processed meat consumption is associated with several adverse outcomes such as colorectal cancer and overall global mortality. However, the underlying mechanisms remain debated and need to be elucidated. METHODS AND RESULTS Urinary untargeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics data from 240 subjects from the French cohort NutriNet-Santé are analyzed. Individuals are matched and divided into three groups according to their consumption of red and processed meat: high red and processed meat consumers, non-red and processed meat consumers, and at random group. Results are supported by a preclinical experiment where rats are fed either a high red meat or a control diet. Microbiota derived metabolites, in particular indoxyl sulfate and cinnamoylglycine, are found impacted by the high red meat diet in both studies, suggesting a modification of microbiota by the high red/processed meat diet. Rat microbiota sequencing analysis strengthens this observation. Although not evidenced in the human study, rat mercapturic acid profile concomitantly reveals an increased lipid peroxidation induced by high red meat diet. CONCLUSION Novel microbiota metabolites are identified as red meat consumption potential biomarkers, suggesting a deleterious effect, which could partly explain the adverse effects associated with high red and processed meat consumption.
Collapse
Affiliation(s)
- Loïc Mervant
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Marie Tremblay-Franco
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Maïwenn Olier
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France
| | - Emilien Jamin
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Jean-Francois Martin
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Lidwine Trouilh
- Plateforme Genome et Transcriptome (GeT-Biopuces), Toulouse Biotechnology Institute (TBI), Université ide Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, Toulouse, F-31077, France
| | - Charline Buisson
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Nathalie Naud
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Claire Maslo
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France
| | - Cécile Héliès-Toussaint
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Edwin Fouché
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Emmanuelle Kesse-Guyot
- French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France.,Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Serge Hercberg
- French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France.,Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Pilar Galan
- Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Mélanie Deschasaux-Tanguy
- French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France.,Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Mathilde Touvier
- French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France.,Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Fabrice Pierre
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Laurent Debrauwer
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Francoise Guéraud
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| |
Collapse
|
9
|
Seok JH, Kim DH, Kim HJ, Jo HH, Kim EY, Jeong JH, Park YS, Lee SH, Kim DJ, Nam SY, Lee BJ, Lee HJ. Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation. J Vet Sci 2022; 23:e74. [PMID: 36174978 PMCID: PMC9523342 DOI: 10.4142/jvs.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Previous studies have presented evidence to support the significant association between red meat intake and colon cancer, suggesting that heme iron plays a key role in colon carcinogenesis. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, exhibits anti-oxidative and anti-cancer effects. However, the effect of EGCG on red meat-associated colon carcinogenesis is not well understood. OBJECTIVES We aimed to investigate the regulatory effects of hemin and EGCG on colon carcinogenesis and the underlying mechanism of action. METHODS Hemin and EGCG were treated in Caco2 cells to perform the water-soluble tetrazolium salt-1 assay, lactate dehydrogenase release assay, reactive oxygen species (ROS) detection assay, real-time quantitative polymerase chain reaction and western blot. We investigated the regulatory effects of hemin and EGCG on an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colon carcinogenesis mouse model. RESULTS In Caco2 cells, hemin increased cell proliferation and the expression of cell cycle regulatory proteins, and ROS levels. EGCG suppressed hemin-induced cell proliferation and cell cycle regulatory protein expression as well as mitochondrial ROS accumulation. Hemin increased nuclear factor erythroid-2-related factor 2 (Nrf2) expression, but decreased Keap1 expression. EGCG enhanced hemin-induced Nrf2 and antioxidant gene expression. Nrf2 inhibitor reversed EGCG reduced cell proliferation and cell cycle regulatory protein expression. In AOM/DSS mice, hemin treatment induced hyperplastic changes in colon tissues, inhibited by EGCG supplementation. EGCG reduced the hemin-induced numbers of total aberrant crypts and malondialdehyde concentration in the AOM/DSS model. CONCLUSIONS We demonstrated that EGCG reduced hemin-induced proliferation and colon carcinogenesis through Nrf2-inhibited mitochondrial ROS accumulation.
Collapse
Affiliation(s)
- Ju Hyung Seok
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Dae Hyun Kim
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Hye Jih Kim
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Hang Hyo Jo
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Eun Young Kim
- Korea Food Culture Promotion Association, Cheongju 28553, Korea
| | - Jae-Hwang Jeong
- Department of Biotechnology and Biomedicine, Chungbuk Provincial University, Cheongju 28160, Korea
| | - Young Seok Park
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju 28644, Korea
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Sang Hun Lee
- Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Korea
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea
| | - Dae Joong Kim
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Sang Yoon Nam
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
| | - Beom Jun Lee
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea.
| | - Hyun Jik Lee
- College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Korea
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
10
|
Mazenc A, Mervant L, Maslo C, Lencina C, Bézirard V, Levêque M, Ahn I, Alquier-Bacquié V, Naud N, Héliès-Toussaint C, Debrauwer L, Chevolleau S, Guéraud F, Pierre FHF, Théodorou V, Olier M. Maternal heme-enriched diet promotes a gut pro-oxidative status associated with microbiota alteration, gut leakiness and glucose intolerance in mice offspring. Redox Biol 2022; 53:102333. [PMID: 35588638 PMCID: PMC9119830 DOI: 10.1016/j.redox.2022.102333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Maternal environment, including nutrition and microbiota, plays a critical role in determining offspring's risk of chronic diseases such as diabetes later in life. Heme iron requirement is amplified during pregnancy and lactation, while excessive dietary heme iron intake, compared to non-heme iron, has shown to trigger acute oxidative stress in the gut resulting from reactive aldehyde formation in conjunction with microbiota reshape. Given the immaturity of the antioxidant defense system in early life, we investigated the extent to which a maternal diet enriched with heme iron may have a lasting impact on gut homeostasis and glucose metabolism in 60-day-old C3H/HeN mice offspring. As hypothesized, the form of iron added to the maternal diet differentially governed the offspring's microbiota establishment despite identical fecal iron status in the offspring. Importantly, despite female offspring was unaffected, oxidative stress markers were however higher in the gut of male offspring from heme enriched-fed mothers, and were accompanied by increases in fecal lipocalin-2, intestinal para-cellular permeability and TNF-α expression. In addition, male mice displayed blood glucose intolerance resulting from impaired insulin secretion following oral glucose challenge. Using an integrated approach including an aldehydomic analysis, this male-specific phenotype was further characterized and revealed close covariations between unidentified putative reactive aldehydes and bacterial communities belonging to Bacteroidales and Lachnospirales orders. Our work highlights how the form of dietary iron in the maternal diet can dictate the oxidative status in gut offspring in a sex-dependent manner, and how a gut microbiota-driven oxidative challenge in early life can be associated with gut barrier defects and glucose metabolism disorders that may be predictive of diabetes development. Maternal heminic vs. non-heminic iron intake differentially and persistently imprints the offspring's fecal microbiota. Males from heme-fed dams exhibit increased gut lumen reactive aldehydes in absence of direct dietary exposure to heme iron. Some of the increased reactive aldehydes closely covariated with Orders belonging to Bacteroidales and Lachnospirales. Maternal exposure to dietary heme iron impairs gut barrier and glucose tolerance in male offspring.
Collapse
Affiliation(s)
- Anaïs Mazenc
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Loïc Mervant
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Plaform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toulouse, France
| | - Claire Maslo
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Corinne Lencina
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Valérie Bézirard
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Mathilde Levêque
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Ingrid Ahn
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Valérie Alquier-Bacquié
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Naud
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Héliès-Toussaint
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Plaform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toulouse, France
| | - Sylvie Chevolleau
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Plaform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toulouse, France
| | - Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabrice H F Pierre
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), INRAE, Université de Toulouse, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
11
|
Jiang S, Xue D, Zhang M, Li Q, Liu H, Zhao D, Zhou G, Li C. Myoglobin diet affected colonic mucus layer and barrier by increasing the abundance of several beneficial gut bacteria. Food Funct 2022; 13:9060-9077. [DOI: 10.1039/d2fo01799g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study aimed to explore the in vitro digestion of myoglobin diet and its relationship with the gut microbiota and intestinal barrier at two feeding time points. In vitro study...
Collapse
|
12
|
Abu-Halaka D, Gover O, Rauchbach E, Zelber-Sagi S, Schwartz B, Tirosh O. Whole body metabolism is improved by hemin added to high fat diet while counteracted by nitrite: a mouse model of processed meat consumption. Food Funct 2021; 12:8326-8339. [PMID: 34323908 DOI: 10.1039/d1fo01199e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrites and nitrates are traditional food additives used as curing agents in the food industry. They inhibit the growth of microorganisms and give a typical pink color to meat. Besides the positive effects of nitrite in foods, if present at high levels in the body, may induce hypoxia and contribute to the production of pro-carcinogenic secondary N-nitrosamines. This study investigated the whole-body metabolic effects of hemin and nitrite added to a high fat diet as red and processed red meat nutritional models. Mice were fed for 11 weeks with five different diets-(1) control diet (ND), (2) high fat diet (HFD) with 60% fat, (3) HFD with hemin (HFD + H, red meat model), (4) HFD with hemin and nitrite (HFD + HN, processed meat model), and (5) HFD with hemin, nitrite, and secondary amine (HFD + HNN, N-nitrosamine generating model)-and several metabolic parameters were determined and respiratory measurements were performed. Mice fed with the HFD + H or HFD + HNN diet had a lower epididymal white adipose tissue (eWAT) : body ratio and lower fasting glucose level than those fed the HFD alone. In addition, our results demonstrated a relief in hepatosteatosis grade among the HFD + H and HFD + HNN diet fed mice. Nitrite added to the HFD impaired the ability to use fat for energy, opposite to the effect of hemin. This study shows that nitrite in addition to pro-carcinogenesis and hypoxia can impact metabolic disease progression when added to meat.
Collapse
Affiliation(s)
- Diana Abu-Halaka
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ofer Gover
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Einat Rauchbach
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Shira Zelber-Sagi
- Faculty of Social Welfare and Health Sciences, University of Haifa, 3498838, Israel
| | - Betty Schwartz
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Oren Tirosh
- Institute of Biochemistry, School of Nutritional Sciences, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
13
|
Chronic intestinal inflammation drives colorectal tumor formation triggered by dietary heme iron in vivo. Arch Toxicol 2021; 95:2507-2522. [PMID: 33978766 PMCID: PMC8241717 DOI: 10.1007/s00204-021-03064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
The consumption of red meat is associated with an increased risk for colorectal cancer (CRC). Multiple lines of evidence suggest that heme iron as abundant constituent of red meat is responsible for its carcinogenic potential. However, the underlying mechanisms are not fully understood and particularly the role of intestinal inflammation has not been investigated. To address this important issue, we analyzed the impact of heme iron (0.25 µmol/g diet) on the intestinal microbiota, gut inflammation and colorectal tumor formation in mice. An iron-balanced diet with ferric citrate (0.25 µmol/g diet) was used as reference. 16S rRNA sequencing revealed that dietary heme reduced α-diversity and caused a persistent intestinal dysbiosis, with a continuous increase in gram-negative Proteobacteria. This was linked to chronic gut inflammation and hyperproliferation of the intestinal epithelium as attested by mini-endoscopy, histopathology and immunohistochemistry. Dietary heme triggered the infiltration of myeloid cells into colorectal mucosa with an increased level of COX-2 positive cells. Furthermore, flow cytometry-based phenotyping demonstrated an increased number of T cells and B cells in the lamina propria following heme intake, while γδ-T cells were reduced in the intraepithelial compartment. Dietary heme iron catalyzed formation of fecal N-nitroso compounds and was genotoxic in intestinal epithelial cells, yet suppressed intestinal apoptosis as evidenced by confocal microscopy and western blot analysis. Finally, a chemically induced CRC mouse model showed persistent intestinal dysbiosis, chronic gut inflammation and increased colorectal tumorigenesis following heme iron intake. Altogether, this study unveiled intestinal inflammation as important driver in heme iron-associated colorectal carcinogenesis.
Collapse
|
14
|
Abu-Ghazaleh N, Chua WJ, Gopalan V. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol 2021; 36:75-88. [PMID: 32198788 DOI: 10.1111/jgh.15042] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
The human colon harbors a high number of microorganisms that were reported to play a crucial role in colorectal carcinogenesis. In the recent decade, molecular detection and metabolomic techniques have expanded our knowledge on the role of specific microbial species in promoting tumorigenesis. In this study, we reviewed the association between microbial dysbiosis and colorectal carcinoma (CRC). Various microbial species and their association with colorectal tumorigenesis and red/processed meat consumption have been reviewed. The literature demonstrated a significant abundance of Fusobacterium nucleatum, Streptococcus bovis/gallolyticus, Escherichia coli, and Bacteroides fragilis in patients with adenoma or adenocarcinoma compared to healthy individuals. The mechanisms in which each organism was postulated to promote colon carcinogenesis were collated and summarized in this review. These include the microorganisms' ability to adhere to colon cells; modulate the inhibition of tumor suppressor genes, the activations of oncogenes, and genotoxicity; and activate downstream targets responsible for angiogenesis. The role of these microorganisms in conjugation with meat components including N-nitroso compounds, heterocyclic amines, and heme was also evident in multiple studies. The outcome of this review supports the role of red meat consumption in modulating CRC progression and the possibility of gut microbiome influencing the relationship between CRC and diet. The study also demonstrates that microbiota analysis could potentially complement existing screening methods when detecting colonic lesions.
Collapse
Affiliation(s)
- Nadine Abu-Ghazaleh
- School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Weng Joe Chua
- School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| |
Collapse
|
15
|
Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis 2020; 11:787. [PMID: 32968051 PMCID: PMC7511955 DOI: 10.1038/s41419-020-02950-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The consumption of red meat is probably carcinogenic to humans and is associated with an increased risk to develop colorectal cancer (CRC). Red meat contains high amounts of heme iron, which is thought to play a causal role in tumor formation. In this study, we investigated the genotoxic and cytotoxic effects of heme iron (i.e., hemin) versus inorganic iron in human colonic epithelial cells (HCEC), human CRC cell lines and murine intestinal organoids. Hemin catalyzed the formation of reactive oxygen species (ROS) and induced oxidative DNA damage as well as DNA strand breaks in both HCEC and CRC cells. In contrast, inorganic iron hardly affected ROS levels and only slightly increased DNA damage. Hemin, but not inorganic iron, caused cell death and reduced cell viability. This occurred preferentially in non-malignant HCEC, which was corroborated in intestinal organoids. Both hemin and inorganic iron were taken up into HCEC and CRC cells, however with differential kinetics and efficiency. Hemin caused stabilization and nuclear translocation of Nrf2, which induced heme oxygenase-1 (HO-1) and ferritin heavy chain (FtH). This was not observed after inorganic iron treatment. Chemical inhibition or genetic knockdown of HO-1 potentiated hemin-triggered ROS generation and oxidative DNA damage preferentially in HCEC. Furthermore, HO-1 abrogation strongly augmented the cytotoxic effects of hemin in HCEC, revealing its pivotal function in colonocytes and highlighting the toxicity of free intracellular heme iron. Taken together, this study demonstrated that hemin, but not inorganic iron, induces ROS and DNA damage, resulting in a preferential cytotoxicity in non-malignant intestinal epithelial cells. Importantly, HO-1 conferred protection against the detrimental effects of hemin.
Collapse
|
16
|
Kostka T, Fohrer J, Guigas C, Briviba K, Seiwert N, Fahrer J, Steinberg P, Empl MT. Synthesis and in vitro characterization of the genotoxic, mutagenic and cell-transforming potential of nitrosylated heme. Arch Toxicol 2020; 94:3911-3927. [PMID: 32671443 PMCID: PMC7603461 DOI: 10.1007/s00204-020-02846-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
Data from epidemiological studies suggest that consumption of red and processed meat is a factor contributing to colorectal carcinogenesis. Red meat contains high amounts of heme, which in turn can be converted to its nitrosylated form, NO-heme, when adding nitrite-containing curing salt to meat. NO-heme might contribute to colorectal cancer formation by causing gene mutations and could thereby be responsible for the association of (processed) red meat consumption with intestinal cancer. Up to now, neither in vitro nor in vivo studies characterizing the mutagenic and cell transforming potential of NO-heme have been published due to the fact that the pure compound is not readily available. Therefore, in the present study, an already existing synthesis protocol was modified to yield, for the first time, purified NO-heme. Thereafter, newly synthesized NO-heme was chemically characterized and used in various in vitro approaches at dietary concentrations to determine whether it can lead to DNA damage and malignant cell transformation. While NO-heme led to a significant dose-dependent increase in the number of DNA strand breaks in the comet assay and was mutagenic in the HPRT assay, this compound tested negative in the Ames test and failed to induce malignant cell transformation in the BALB/c 3T3 cell transformation assay. Interestingly, the non-nitrosylated heme control showed similar effects, but was additionally able to induce malignant transformation in BALB/c 3T3 murine fibroblasts. Taken together, these results suggest that it is the heme molecule rather than the NO moiety which is involved in driving red meat-associated carcinogenesis.
Collapse
Affiliation(s)
- Tina Kostka
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany.
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Hannover, Germany.
| | - Jörg Fohrer
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Claudia Guigas
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Karlis Briviba
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Nina Seiwert
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Zhang M, Zou X, Zhao D, Zhao F, Li C. Pork Meat Proteins Alter Gut Microbiota and Lipid Metabolism Genes in the Colon of Adaptive Immune-Deficient Mice. Mol Nutr Food Res 2020; 64:e1901105. [PMID: 32249499 DOI: 10.1002/mnfr.201901105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/11/2020] [Indexed: 12/19/2022]
Abstract
SCOPE Excessive consumption of processed meat has been linked to an increasing risk of gut diseases. It is investigated how pork meat proteins affect colon homeostasis between normal and immune-compromised mice. METHODS AND RESULTS Immune-deficient mice (Rag1-/- ) and wild-type mice are fed a diet that contains 20% casein or protein isolated from cooked pork or dry-cured pork for 3 months. Rag1-/- mice show greater variations in transcriptome responses and higher microbial diversity than wild-type mice after consumption of the pork meat protein diets. Intake of pork meat protein diets also increases body weight and induces colonic oxidative stress, low-grade inflammation, and gene expression involved in immune function, cell cycle, and migration. Key genes like Hmox1, Ppara, and Pparg are highly upregulated by pork meat protein. These changes are associated with decreased abundances of Blautia, Bifidobacterium, and Alistipes and increased abundances of Akkermansia muciniphila and Ruminococcaceae. CONCLUSION Pork meat proteins affect colon health in both wild-type and Rag1-/- mice by altering the microbiome profile under the complex interaction with adaptive immunity. The findings herein give a new insight into the understanding of meat intake, immunity, and gut health.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiaoyu Zou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Fan Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education; International Joint Laboratory of Animal Health and Food Safety, Ministry of Education; National Center for International Research on Animal Gut Nutrition, Ministry of Science and Technology, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
18
|
Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E. The Multifaceted Role of Heme in Cancer. Front Oncol 2020; 9:1540. [PMID: 32010627 PMCID: PMC6974621 DOI: 10.3389/fonc.2019.01540] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Heme, an iron-containing porphyrin, is of vital importance for cells due to its involvement in several biological processes, including oxygen transport, energy production and drug metabolism. Besides these vital functions, heme also bears toxic properties and, therefore, the amount of heme inside the cells must be tightly regulated. Similarly, heme intake from dietary sources is strictly controlled to meet body requirements. The multifaceted nature of heme renders it a best candidate molecule exploited/controlled by tumor cells in order to modulate their energetic metabolism, to interact with the microenvironment and to sustain proliferation and survival. The present review summarizes the literature on heme and cancer, emphasizing the importance to consider heme as a prominent player in different aspects of tumor onset and progression.
Collapse
Affiliation(s)
- Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
19
|
Seiwert N, Heylmann D, Hasselwander S, Fahrer J. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 2019; 1873:188334. [PMID: 31783067 DOI: 10.1016/j.bbcan.2019.188334] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the major tumor entities worldwide, with an increasing incidence in younger people. CRC formation is causally linked to various genetic, life-style and dietary risk factors. Among the ladder, the consumption of red meat has emerged as important risk factor contributing to CRC. A large body of evidence shows that heme iron is the critical component of red meat, which promotes colorectal carcinogenesis. In this review, we describe the uptake and cellular fate of both heme and inorganic iron in intestinal epithelial cells. Next, an overview on the DNA damaging properties of heme iron is provided, highlighting the DNA adducts relevant for CRC etiology. Moreover, heme triggered mechanisms leading to colonic hyperproliferation are presented, which are intimately linked to changes in the intestinal microbiota induced by heme. A special focus was set on the impact of heme iron on innate and adaptive immune cells, which could be relevant in the context of CRC. Finally, we recapitulate in vivo studies providing evidence for the tumor-promoting potential of dietary heme iron. Altogether, heme iron affects numerous key pathways involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Nina Seiwert
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
20
|
de Moura NA, Caetano BFR, Bidinotto LT, Rodrigues MAM, Barbisan LF. Dietary hemin promotes colonic preneoplastic lesions and DNA damage but not tumor development in a medium-term model of colon carcinogenesis in rats. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 846:403076. [PMID: 31585636 DOI: 10.1016/j.mrgentox.2019.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023]
Abstract
Red and processed meat consumption has been strongly related to increase the risk of colorectal cancer (CRC), although its impact is largely unknown. Hemin, an iron-containing porphyrin, is acknowledged as a putative factor of red and processed meat pro-carcinogenic effects. The aim of this study was to investigate the effects of high dietary hemin on the promotion/progression stages of 1,2-dimethylhydrazine (1,2-DMH)-induced colon carcinogenesis. Twenty-four Wistar male rats were given four subcutaneous 1,2-DMH injections and received either balanced diet or balanced diet supplemented with hemin 0.5 mmol/kg for 23 weeks. Colon specimens were analyzed for aberrant crypt foci (ACF) and tumor development. Dietary hemin significantly increased ACF number and fecal water cytotoxicity/genotoxicity in Caco-2 cells when compared to 1,2-DMH control group. However, tumor incidence, multiplicity and cell proliferation did not differ between 1,2-DMH + hemin and 1,2-DMH control group. Gene expression analysis of 91 target-genes revealed that only three genes (Figf, Pik3r5 and Tgfbr2) were down-regulated in the tumors from hemin-fed rats compared to those from 1,2-DMH control group. Therefore, the findings of this study show that high hemin intake promotes mainly DNA damage and ACF development and but does not change the number nor incidence of colon tumors induced by 1,2-DMH in male rats.
Collapse
Affiliation(s)
- Nelci A de Moura
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Brunno F R Caetano
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucas T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil
| | - Maria A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luis F Barbisan
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
21
|
Markota A, Metzger R, Heiseke AF, Jandl L, Dursun E, Eisenächer K, Reindl W, Haller D, Krug AB. Comparison of iron-reduced and iron-supplemented semisynthetic diets in T cell transfer colitis. PLoS One 2019; 14:e0218332. [PMID: 31276514 PMCID: PMC6611680 DOI: 10.1371/journal.pone.0218332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022] Open
Abstract
Clinical observations in inflammatory bowel disease patients and experimental studies in rodents suggest that iron in the intestinal lumen derived from iron-rich food or oral iron supplementation could exacerbate inflammation and that iron depletion from the diet could be protective. To test the hypothesis that dietary iron reduction is protective against colitis development, the impact of iron reduction in the diet below 10 mg/kg on the course of CD4+ CD62L+ T cell transfer colitis was investigated in adult C57BL/6 mice. Weight loss as well as clinical and histological signs of inflammation were comparable between mice pretreated with semisynthetic diets with either < 10mg/kg iron content or supplemented with 180 mg/kg iron in the form of ferrous sulfate or hemin. Accumulation and activation of Ly6Chigh monocytes, changes in dendritic cell subset composition and induction of proinflammatory Th1/Th17 cells in the inflamed colon were not affected by the iron content of the diets. Thus, dietary iron reduction did not protect adult mice against severe intestinal inflammation in T cell transfer induced colitis.
Collapse
Affiliation(s)
- Anamarija Markota
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Rebecca Metzger
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Alexander F. Heiseke
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Lisa Jandl
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Ezgi Dursun
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Katharina Eisenächer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Wolfgang Reindl
- Klinikum Mannheim, II. Medizinische Klinik, Mannheim, Germany
| | - Dirk Haller
- Chair for Nutrition and Immunology, Technical University Munich, Freising, Germany
| | - Anne B. Krug
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-University Munich, Martinsried, Germany
- * E-mail:
| |
Collapse
|
22
|
Li JM, Yu R, Zhang LP, Wen SY, Wang SJ, Zhang XY, Xu Q, Kong LD. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. MICROBIOME 2019; 7:98. [PMID: 31255176 PMCID: PMC6599330 DOI: 10.1186/s40168-019-0713-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/17/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Western-style diets arouse neuroinflammation and impair emotional and cognitive behavior in humans and animals. Our previous study showed that a high-fructose diet caused the hippocampal neuroinflammatory response and neuronal loss in animals, but the underlying mechanisms remained elusive. Here, alterations in the gut microbiota and intestinal epithelial barrier were investigated as the causes of hippocampal neuroinflammation induced by high-fructose diet. RESULTS A high-fructose diet caused the hippocampal neuroinflammatory response, reactive gliosis, and neuronal loss in C57BL/6N mice. Depletion of the gut microbiota using broad-spectrum antibiotics suppressed the hippocampal neuroinflammatory response in fructose-fed mice, but these animals still exhibited neuronal loss. Gut microbiota compositional alteration, short-chain fatty acids (SCFAs) reduction, intestinal epithelial barrier impairment, NOD-like receptor family pyrin domain-containing 6 (NLRP6) inflammasome dysfunction, high levels of serum endotoxin, and FITC-dextran were observed in fructose-fed mice. Of note, SCFAs, as well as pioglitazone (a selective peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist), shaped the gut microbiota and ameliorated intestinal epithelial barrier impairment and NLRP6 inflammasome dysfunction in fructose-fed mice. Moreover, SCFAs-mediated NLRP6 inflammasome activation was inhibited by histamine (a bacterial metabolite) in ex vivo colonic explants and suppressed in murine CT26 colon carcinoma cells transfected with NLRP6 siRNA. However, pioglitazone and GW9662 (a PPAR-γ antagonist) exerted no impact on SCFAs-mediated NLRP6 inflammasome activation in ex vivo colonic explants, suggesting that SCFAs may stimulate NLRP6 inflammasome independently of PPAR-γ activation. SCFAs and pioglitazone prevented fructose-induced hippocampal neuroinflammatory response and neuronal loss in mice. Additionally, SCFAs activated colonic NLRP6 inflammasome and increased DCX+ newborn neurons in the hippocampal DG of control mice. CONCLUSIONS Our findings reveal that gut dysbiosis is a critical factor for a high-fructose diet-induced hippocampal neuroinflammation in C57BL/6N mice possibly mediated by impairing intestinal epithelial barrier. Mechanistically, the defective colonic NLRP6 inflammasome is responsible for intestinal epithelial barrier impairment. SCFAs can stimulate NLRP6 inflammasome and ameliorate the impairment of intestinal epithelial barrier, resulting in the protection against a high-fructose diet-induced hippocampal neuroinflammation and neuronal loss. This study addresses a gap in the understanding of neuronal injury associated with Western-style diets. A new intervention strategy for reducing the risk of neurodegenerative diseases through SCFAs supplementation or dietary fiber consumption is emphasized.
Collapse
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 People’s Republic of China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 People’s Republic of China
| | - Li-Ping Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 People’s Republic of China
| | - Shi-Yu Wen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 People’s Republic of China
| | - Shui-Juan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 People’s Republic of China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 People’s Republic of China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 People’s Republic of China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 People’s Republic of China
| |
Collapse
|
23
|
Andreescu N, Puiu M, Niculescu M. Effects of Dietary Nutrients on Epigenetic Changes in Cancer. Methods Mol Biol 2019; 1856:121-139. [PMID: 30178249 DOI: 10.1007/978-1-4939-8751-1_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to disease, including cancer, through epigenetic changes. Nutrients can influence the epigenetic status through several mechanisms, such as DNA methylation, histone modifications, and miRNA-dependent gene silencing. These alterations were associated with either increased or decreased risk for cancer development. There is convincing evidence indicating that several foods have protective roles in cancer prevention, by inhibiting tumor progression directly or through modifying tumor's microenvironment that leads to hostile conditions favorable to tumor initiation or growth. While nutritional intakes from foods cannot be adequately controlled for dosage, the role of nutrients in the epigenetics of cancer has led to more research aimed at developing nutriceuticals and drugs as cancer therapies. Clinical studies are needed to evaluate the optimum doses of dietary compounds, the safety profile of dosages, to establish the most efficient way of administration, and bioavailability, in order to maximize the beneficial effects already discovered, and to ensure replicability. Thus, nutrition represents a promising tool to be used not only in cancer prevention, but hopefully also in cancer treatment.
Collapse
Affiliation(s)
- Nicoleta Andreescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.
| | - Maria Puiu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Mihai Niculescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
- Advanced Nutrigenomics, Hillsborough, NC, USA
| |
Collapse
|
24
|
Metabolic footprint and intestinal microbial changes in response to dietary proteins in a pig model. J Nutr Biochem 2019; 67:149-160. [DOI: 10.1016/j.jnutbio.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022]
|
25
|
Sasso A, Latella G. Role of Heme Iron in the Association Between Red Meat Consumption and Colorectal Cancer. Nutr Cancer 2019; 70:1173-1183. [DOI: 10.1080/01635581.2018.1521441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Arianna Sasso
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giovanni Latella
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
26
|
Iron-catalysed chemistry in the gastrointestinal tract: Mechanisms, kinetics and consequences. A review. Food Chem 2018; 268:27-39. [DOI: 10.1016/j.foodchem.2018.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/28/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
|
27
|
Gamage S, Dissabandara L, Lam AKY, Gopalan V. The role of heme iron molecules derived from red and processed meat in the pathogenesis of colorectal carcinoma. Crit Rev Oncol Hematol 2018; 126:121-128. [DOI: 10.1016/j.critrevonc.2018.03.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 02/05/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
|
28
|
Kruger C, Zhou Y. Red meat and colon cancer: A review of mechanistic evidence for heme in the context of risk assessment methodology. Food Chem Toxicol 2018; 118:131-153. [PMID: 29689357 DOI: 10.1016/j.fct.2018.04.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Abstract
On October 26, 2015, IARC published a summary of their findings regarding the association of cancer with consumption of red meat or processed meat (IARC 2015; The Lancet Oncology 2015). The Working Group concluded that there is limited evidence in human beings for carcinogenicity from the consumption of red meat and inadequate evidence in experimental animals for the carcinogenicity of consumption of red meat. Nevertheless, the working group concluded that there is strong mechanistic evidence by which ingestion of red meat can be linked to human colorectal cancer and assigned red meat to Group 2A "probably carcinogenic to humans". The Working Group cited supporting mechanistic evidence for multiple meat components, including those formed from meat processing, such as N-nitroso compounds (NOC) and heterocyclic aromatic amines, and the endogenous compound, heme iron. The mechanism of action for each of these components is different and so it is critical to evaluate the evidence for each component separately. Consequently, this review critically examined studies that investigated mechanistic evidence associated with heme iron to assess the weight of the evidence associating exposure to red meat with colorectal cancer. The evidence from in vitro studies utilized conditions that are not necessarily relevant for a normal dietary intake and thus do not provide sufficient evidence that heme exposure from typical red meat consumption would increase the risk of colon cancer. Animal studies utilized models that tested promotion of preneoplastic conditions utilizing diets low in calcium, high in fat combined with exaggerations of heme exposure that in many instances represented intakes that were orders of magnitude above normal dietary consumption of red meat. Finally, clinical evidence suggests that the type of NOC found after ingestion of red meat in humans consists mainly of nitrosyl iron and nitrosothiols, products that have profoundly different chemistries from certain N-nitroso species which have been shown to be tumorigenic through the formation of DNA adducts. In conclusion, the methodologies employed in current studies of heme have not provided sufficient documentation that the mechanisms studied would contribute to an increased risk of promotion of preneoplasia or colon cancer at usual dietary intakes of red meat in the context of a normal diet.
Collapse
Affiliation(s)
- Claire Kruger
- ChromaDex Spherix Consulting, A Business Unit of ChromaDex, Inc., Rockville, MD, United States.
| | - Yuting Zhou
- ChromaDex Spherix Consulting, A Business Unit of ChromaDex, Inc., Rockville, MD, United States
| |
Collapse
|
29
|
Cascella M, Bimonte S, Barbieri A, Del Vecchio V, Caliendo D, Schiavone V, Fusco R, Granata V, Arra C, Cuomo A. Dissecting the mechanisms and molecules underlying the potential carcinogenicity of red and processed meat in colorectal cancer (CRC): an overview on the current state of knowledge. Infect Agent Cancer 2018; 13:3. [PMID: 29371880 PMCID: PMC5769331 DOI: 10.1186/s13027-018-0174-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 01/04/2023] Open
Abstract
Meat is a crucial nutrient for human health since it represents a giant supply of proteins, minerals, and vitamins. On the opposite hand, the intake of red and processed meat is taken into account dangerous due to its potential of carcinogenesis and cancer risk improvement, particularly for colorectal cancer (CRC), although it has been reported that also the contaminations of beef infected by oncogenic bovine viruses could increase colorectal cancer's risk. Regarding the mechanisms underlying the potential carcinogenicity of red and processed meat, different hypotheses have been proposed. A suggested mechanism describes the potential role of the heterocyclic amines (HACs) and polycyclic aromatic hydrocarbons (PHAs) in carcinogenesis induced by DNA mutation. Another hypothesis states that heme, through the lipid peroxidation process and therefore the formation of N-nitroso compounds (NOCs), produces cytotoxic and genotoxic aldehydes, resulting in carcinogenesis. Furthermore, a recent proposed hypothesis, is based on the combined actions between the N-Glycolylneuraminic acid (Neu5Gc) and genotoxic compounds. The purpose of this narrative review is to shed a light on the mechanisms underlying the potential carcinogenicity of red and processed meat, by summarizing the data reported in literature on this topic.
Collapse
Affiliation(s)
- Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Antonio Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Vitale Del Vecchio
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Domenico Caliendo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Vincenzo Schiavone
- Division of Anesthesia and Intensive Care, Hospital “Pineta Grande”, Castel Volturno, Caserta, Italy
| | - Roberta Fusco
- Division of Radiology, “Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, “Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Claudio Arra
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori - IRCCS - Fondazione “G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS – “Fondazione G. Pascale”, Via Mariano Semmola, 80131 Naples, Italy
| |
Collapse
|
30
|
de Moura NA, Caetano BFR, de Moraes LN, Carvalho RF, Rodrigues MAM, Barbisan LF. Enhancement of colon carcinogenesis by the combination of indole-3 carbinol and synbiotics in hemin-fed rats. Food Chem Toxicol 2017; 112:11-18. [PMID: 29269057 DOI: 10.1016/j.fct.2017.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
The risk of developing colorectal cancer (CRC) could be associated with red and processed meat intake. Experimental data supports that hemin iron, found abundantly in red meat, promotes CRC in mice and rats, while indole-3 carbinol (I3C) and synbiotics (syn) exert anti-carcinogenic activities in most studies of colon carcinogenesis. This study aimed to investigate the modifying effects of I3C and syn (inulin + Bifidobacterium lactis), given separately or together, on dimethylhidrazine (DMH)-induced colon carcinogenesis in hemin-fed rats. All animals were given four subcutaneous DMH injections and then, two weeks after carcinogen exposure, they began a basal diet containing hemin, hemin + I3C, hemin + syn, or hemin + I3C + syn for 23 weeks. The combination of I3C + syn significantly increased fecal water genotoxicity, tumor volume and invasiveness when compared to the hemin-fed control group. The groups fed I3C or syn alone had a significant reduction in the number of preneoplastic aberrant crypt foci (ACF) lesions compared to the hemin-fed group. Dietary I3C also reduced fecal water genotoxicity. Gene expression analysis of colorectal tumors demonstrated that the combination of dietary I3C + syn increased transcript levels for Raf1 and decreased tumor progression and invasiveness related to the genes Cdh1 and Appl1. This analysis also revealed that the Tnf and Cdh1 genes were significantly up- and down-regulated, respectively, in tumors of rats that received I3C, in comparison with the hemin-fed group. These findings reveal that the joint administration of I3C and syn enhanced the development of colon tumors induced by DMH in hemin-fed rats, while they potentially reduced ACF development when given alone.
Collapse
Affiliation(s)
- Nelci A de Moura
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Brunno F R Caetano
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Leonardo N de Moraes
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Robson F Carvalho
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Maria A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP 18610-307, Brazil
| | - Luis F Barbisan
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil.
| |
Collapse
|
31
|
Constante M, Fragoso G, Calvé A, Samba-Mondonga M, Santos MM. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice. Front Microbiol 2017; 8:1809. [PMID: 28983289 PMCID: PMC5613120 DOI: 10.3389/fmicb.2017.01809] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD), where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS)-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC) mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis. Thus, luminal heme levels may further exacerbate colitis through the modulation of the gut microbiota and its metagenomic functional composition. Our data may have implications in the development of novel targets for therapeutic approaches aimed at lowering gastrointestinal heme levels through heme chelation or degradation using probiotics and nutritional interventions.
Collapse
Affiliation(s)
- Marco Constante
- Département de Médecine, Université de Montréal, MontréalQC, Canada
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| | - Gabriela Fragoso
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| | - Annie Calvé
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| | - Macha Samba-Mondonga
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| | - Manuela M. Santos
- Département de Médecine, Université de Montréal, MontréalQC, Canada
- Nutrition and Microbiome Laboratory, Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, MontréalQC, Canada
| |
Collapse
|
32
|
Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology. Annu Rev Nutr 2017; 36:543-70. [PMID: 27431370 DOI: 10.1146/annurev-nutr-071715-051039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843
| | - Karen Triff
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843;
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
33
|
Steppeler C, Sødring M, Egelandsdal B, Kirkhus B, Oostindjer M, Alvseike O, Gangsei LE, Hovland EM, Pierre F, Paulsen JE. Effects of dietary beef, pork, chicken and salmon on intestinal carcinogenesis in A/J Min/+ mice. PLoS One 2017; 12:e0176001. [PMID: 28426718 PMCID: PMC5398569 DOI: 10.1371/journal.pone.0176001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/04/2017] [Indexed: 01/26/2023] Open
Abstract
The International Agency for Research on Cancer has classified red meat as “probably carcinogenic to humans” (Group 2A). In mechanistic studies exploring the link between intake of red meat and CRC, heme iron, the pigment of red meat, is proposed to play a central role as a catalyzer of luminal lipid peroxidation and cytotoxicity. In the present work, the novel A/J Min/+ mouse was used to investigate the effects of dietary beef, pork, chicken, or salmon (40% muscle food (dry weight) and 60% powder diet) on Apc-driven intestinal carcinogenesis, from week 3–13 of age. Muscle food diets did not differentially affect carcinogenesis in the colon (flat ACF and tumors). In the small intestine, salmon intake resulted in a lower tumor size and load than did meat from terrestrial animals (beef, pork or chicken), while no differences were observed between the effects of white meat (chicken) and red meat (pork and beef). Additional results indicated that intestinal carcinogenesis was not related to dietary n-6 polyunsaturated fatty acids, intestinal formation of lipid peroxidation products (thiobarbituric acid reactive substances, TBARS), or cytotoxic effects of fecal water on Apc-/+ cells. Notably, the amount of heme reaching the colon appeared to be relatively low in this study. The greatest tumor load was induced by the reference diet RM1, underlining the importance of the basic diets in experimental CRC. The present study in A/J Min/+ mice does not support the hypothesis of a role of red meat in intestinal carcinogenesis.
Collapse
Affiliation(s)
- Christina Steppeler
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
- * E-mail:
| | - Marianne Sødring
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjørg Egelandsdal
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Bente Kirkhus
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Marije Oostindjer
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ole Alvseike
- Animalia–Norwegian Meat and Poultry Research Centre, Oslo, Norway
| | | | | | - Fabrice Pierre
- INRA UMR1331 Toxalim (Research Center in Food Toxicology), University of Toulouse, Toulouse, France
| | - Jan Erik Paulsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
34
|
Turner ND, Lloyd SK. Association between red meat consumption and colon cancer: A systematic review of experimental results. Exp Biol Med (Maywood) 2017; 242:813-839. [PMID: 28205448 PMCID: PMC5407540 DOI: 10.1177/1535370217693117] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A role for red and processed meat in the development of colorectal cancer has been proposed based largely on evidence from observational studies in humans, especially in those populations consuming a westernized diet. Determination of causation specifically by red or processed meat is contingent upon identification of plausible mechanisms that lead to colorectal cancer. We conducted a systematic review of the available evidence to determine the availability of plausible mechanistic data linking red and processed meat consumption to colorectal cancer risk. Forty studies using animal models or cell cultures met specified inclusion criteria, most of which were designed to examine the role of heme iron or heterocyclic amines in relation to colon carcinogenesis. Most studies used levels of meat or meat components well in excess of those found in human diets. Although many of the experiments used semi-purified diets designed to mimic the nutrient loads in current westernized diets, most did not include potential biologically active protective compounds present in whole foods. Because of these limitations in the existing literature, there is currently insufficient evidence to confirm a mechanistic link between the intake of red meat as part of a healthy dietary pattern and colorectal cancer risk. Impact statement Current recommendations to reduce colon cancer include the reduction or elimination of red or processed meats. These recommendations are based on data from epidemiological studies conducted among cultures where meat consumption is elevated and consumption of fruits, vegetables, and whole grains are reduced. This review evaluated experimental data exploring the putative mechanisms whereby red or processed meats may contribute to colon cancer. Most studies used levels of meat or meat-derived compounds that were in excess of those in human diets, even in cultures where meat intake is elevated. Experiments where protective dietary compounds were used to mitigate the extreme levels of meat and meat-derived compounds showed protection against colon cancer, with some essentially negating the impact of meat in the diet. It is essential that better-designed studies be conducted that use relevant concentrations of meat or meat-derived compounds in complex diets representative of the foods consumed by humans.
Collapse
Affiliation(s)
- Nancy D Turner
- Nutrition & Food Science Department, Texas A&M University, TX 77843-2253, USA
- Department of Veterinary Pathobiology, Texas A&M University, TX 77843-2253, USA
| | - Shannon K Lloyd
- Nutrition & Food Science Department, Texas A&M University, TX 77843-2253, USA
| |
Collapse
|
35
|
A critical overview on the biological and molecular features of red and processed meat in colorectal carcinogenesis. J Gastroenterol 2017; 52:407-418. [PMID: 27913919 DOI: 10.1007/s00535-016-1294-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/21/2016] [Indexed: 02/04/2023]
Abstract
A recent investigation by the World Health Organisation (WHO) has found that the consumption of processed meat and potentially red meat promotes carcinogenesis and can increase the risk of colorectal cancer. This literature review aims to summarise both the red and processed meat molecules associated with colorectal carcinogenesis and investigate their relationship with the pathogenic process of colorectal cancer. Literature relating to the carcinogenic effect of red and processed meat molecules was critically reviewed. There are multiple molecules present in red and processed meat with a potential carcinogenic effect on colorectal tissues. Processed meat is more carcinogenic compared to red meat because of the abundance of potent nitrosyl-heme molecules that form N-nitroso compounds. Studies have also noted that other molecules such as polycyclic aromatic hydrocarbons and heterocyclic amines have potential mechanisms for the initiation of colorectal cancer pathogenesis. The non-human sugar molecule N-glycolylneuraminic acid may account for the carcinogenic effects of pork despite its heme content being comparable to that of chicken. Red meat products, especially those that have been processed, have a wide variety of carcinogenic molecules known to increase the risk of colorectal cancer. Thus, the outcome of this review is consistent with the recent findings of WHO.
Collapse
|
36
|
Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease. Pharmacogenet Genomics 2017; 26:294-306. [PMID: 26959716 PMCID: PMC4853256 DOI: 10.1097/fpc.0000000000000217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background Although the association between diet and disease is well documented, the biologic mechanisms involved have not been entirely elucidated. In this study, we evaluate how dietary intake influences gene expression to better understand the underlying mechanisms through which diet operates. Methods We used data from 144 individuals who had comprehensive dietary intake and gene expression data from RNAseq using normal colonic mucosa. Using the DESeq2 statistical package, we identified genes that showed statistically significant differences in expression between individuals in high-intake and low-intake categories for several dietary variables of interest adjusting for age and sex. We examined total calories, total fats, vegetable protein, animal protein, carbohydrates, trans-fatty acids, mutagen index, red meat, processed meat, whole grains, vegetables, fruits, fiber, folate, dairy products, calcium, and prudent and western dietary patterns. Results Using a false discovery rate of less than 0.1, meat-related foods were statistically associated with 68 dysregulated genes, calcium with three dysregulated genes, folate with four dysregulated genes, and nonmeat-related foods with 65 dysregulated genes. With a more stringent false discovery rate of less than 0.05, there were nine meat-related dysregulated genes and 23 nonmeat-related genes. Ingenuity pathway analysis identified three major networks among genes identified as dysregulated with respect to meat-related dietary variables and three networks among genes identified as dysregulated with respect to nonmeat-related variables. The top networks (Ingenuity Pathway Analysis network score >30) associated with meat-related genes were (i) cancer, organismal injury, and abnormalities, tumor morphology, and (ii) cellular function and maintenance, cellular movement, cell death, and survival. Among genes related to nonmeat consumption variables, the top networks were (i) hematological system development and function, nervous system development and function, tissue morphology and (ii) connective tissue disorders, organismal injury, and abnormalities. Conclusion Several dietary factors were associated with gene expression in our data. These findings provide insight into the possible mechanisms by which diet may influence disease processes.
Collapse
|
37
|
Demeyer D, Mertens B, De Smet S, Ulens M. Mechanisms Linking Colorectal Cancer to the Consumption of (Processed) Red Meat: A Review. Crit Rev Food Sci Nutr 2017; 56:2747-66. [PMID: 25975275 DOI: 10.1080/10408398.2013.873886] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. The vast majority of CRC cases have been linked to environmental causes rather than to heritable genetic changes. Over the last decades, epidemiological evidence linking the consumption of red and, more convincingly, of processed red meat to CRC has accumulated. In parallel, hypotheses on carcinogenic mechanisms underlying an association between CRC and the intake of red and processed red meat have been proposed and investigated in biological studies. The hypotheses that have received most attention until now include (1) the presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines, two groups of compounds recognized as carcinogenic, (2) the enhancing effect of (nitrosyl)heme on the formation of carcinogenic N-nitroso compounds and lipid peroxidation. However, none of these hypotheses completely explains the link between red and processed red meat intake and the CRC risk. Consequently, scientists have proposed additional mechanisms or refined their hypotheses. This review first briefly summarizes the development of CRC followed by an in-depth overview and critical discussion of the different potential carcinogenic mechanisms underlying the increased CRC risk associated with the consumption of red and processed red meat.
Collapse
Affiliation(s)
- Daniel Demeyer
- a Superior Health Council , Brussels , Belgium.,b Laboratory for Animal Nutrition and Animal Product Quality , Faculty of Bioscience Engineering, Ghent University , Melle , Belgium
| | - Birgit Mertens
- a Superior Health Council , Brussels , Belgium.,c Program Toxicology, Department of Food , Medicines and Consumer Safety, Scientific Institute of Public Health (Site Elsene) , Brussels , Belgium
| | - Stefaan De Smet
- a Superior Health Council , Brussels , Belgium.,b Laboratory for Animal Nutrition and Animal Product Quality , Faculty of Bioscience Engineering, Ghent University , Melle , Belgium
| | | |
Collapse
|
38
|
Van Hecke T, Van Camp J, De Smet S. Oxidation During Digestion of Meat: Interactions with the Diet andHelicobacter pyloriGastritis, and Implications on Human Health. Compr Rev Food Sci Food Saf 2017; 16:214-233. [DOI: 10.1111/1541-4337.12248] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Van Hecke
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| | - John Van Camp
- the Unit of Food Chemistry and Human Nutrition; Ghent Univ.; Ghent Belgium
| | - Stefaan De Smet
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| |
Collapse
|
39
|
Hammerling U, Bergman Laurila J, Grafström R, Ilbäck NG. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Crit Rev Food Sci Nutr 2016; 56:614-34. [PMID: 25849747 DOI: 10.1080/10408398.2014.972498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiology and experimental studies provide an overwhelming support of the notion that diets high in red or processed meat accompany an elevated risk of developing pre-neoplastic colorectal adenoma and frank colorectal carcinoma (CRC). The underlying mechanisms are disputed; thus several hypotheses have been proposed. A large body of reports converges, however, on haem and nitrosyl haem as major contributors to the CRC development, presumably acting through various mechanisms. Apart from a potentially higher intestinal mutagenic load among consumers on a diet rich in red/processed meat, other mechanisms involving subtle interference with colorectal stem/progenitor cell survival or maturation are likewise at play. From an overarching perspective, suggested candidate mechanisms for red/processed meat-induced CRC appear as three partly overlapping tenets: (i) increased N-nitrosation/oxidative load leading to DNA adducts and lipid peroxidation in the intestinal epithelium, (ii) proliferative stimulation of the epithelium through haem or food-derived metabolites that either act directly or subsequent to conversion, and (iii) higher inflammatory response, which may trigger a wide cascade of pro-malignant processes. In this review, we summarize and discuss major findings of the area in the context of potentially pertinent mechanisms underlying the above-mentioned association between consumption of red/processed meat and increased risk of developing CRC.
Collapse
Affiliation(s)
- Ulf Hammerling
- a Cancer Pharmacology & Computational Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| | - Jonas Bergman Laurila
- b Sahlgrenska Biobank, Gothia Forum, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Roland Grafström
- c Institute of Environmental Medicine, The Karolinska Institute , Stockholm , Sweden.,d Knowledge Intensive Products and Services, VTT Technical Research Centre of Finland , Turku , Finland
| | - Nils-Gunnar Ilbäck
- e Clinical Microbiology & Infectious Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| |
Collapse
|
40
|
Steppeler C, Sødring M, Paulsen JE. Colorectal Carcinogenesis in the A/J Min/+ Mouse Model is Inhibited by Hemin, Independently of Dietary Fat Content and Fecal Lipid Peroxidation Rate. BMC Cancer 2016; 16:832. [PMID: 27806694 PMCID: PMC5094071 DOI: 10.1186/s12885-016-2874-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022] Open
Abstract
Background Intake of red meat is considered a risk factor for colorectal cancer (CRC) development, and heme, the prosthetic group of myoglobin, has been suggested as a potential cause. One of the proposed molecular mechanisms of heme-induced CRC is based on an increase in the rate of lipid peroxidation catalysed by heme. Methods In the present work, the novel A/J Min/+ mouse model for Apc-driven colorectal cancer was used to investigate the effect of dietary heme (0.5 μmol/g), combined with high (40 energy %) or low (10 energy %) dietary fat levels, on intestinal carcinogenesis. At the end of the dietary intervention period (week 3–11), spontaneously developed lesions in the colon (flat aberrant crypt foci (flat ACF) and tumors) and small intestine (tumors) were scored and thiobarbituric reactive substances (TBARS), a biomarker for lipid peroxidation was analysed in feces. Results Dietary hemin significantly reduced colonic carcinogenesis. The inhibitory effect of hemin was not dependent on the dietary fat level, and no association could be established between colonic carcinogenesis and the lipid oxidation rate measured as fecal TBARS. Small intestinal carcinogenesis was not affected by hemin. Fat tended to stimulate intestinal carcinogenesis. Conclusions Contradicting the hypothesis, dietary hemin did inhibit colonic carcinogenesis in the present study. The results indicate that fecal TBARS concentration is not directly related to intestinal lesions and is therefore not a suitable biomarker for CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2874-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina Steppeler
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway.
| | - Marianne Sødring
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway
| | - Jan Erik Paulsen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, PO Box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
41
|
Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beißbarth T, Wingender E, Gültas M. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Front Genet 2016; 7:42. [PMID: 27092172 PMCID: PMC4820448 DOI: 10.3389/fgene.2016.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell lines, which can be used for development of effective cancer therapy.
Collapse
Affiliation(s)
- Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Jetcy Arackal
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Mehmet Gültas
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
42
|
Taunk P, Hecht E, Stolzenberg-Solomon R. Are meat and heme iron intake associated with pancreatic cancer? Results from the NIH-AARP diet and health cohort. Int J Cancer 2016; 138:2172-89. [PMID: 26666579 DOI: 10.1002/ijc.29964] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022]
Abstract
Several studies on pancreatic cancer have reported significant positive associations for intake of red meat but null associations for heme iron. We assessed total, red, white and processed meat intake, meat cooking methods and doneness and heme iron and mutagen intake in relation to pancreatic cancer in the NIH-AARP Diet and Health Study cohort. A total of 322,846 participants (187,265 men and 135,581 women) successfully completed and returned the food frequency questionnaire between 1995 and 1996. After a mean follow-up of 9.2 years (up to 10.17 years), 1,417 individuals (895 men and 522 women) developed exocrine pancreatic cancer. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs), and trends were calculated using the median value of each quantile. Models incorporated age as the time metric and were adjusted for smoking history, body mass index, self-reported diabetes and energy-adjusted saturated fat. Pancreatic cancer risk significantly increased with intake of total meat (Q5 vs. Q1: HR = 1.20, 95% CI 1.02-1.42, p-trend = 0.03), red meat (HR = 1.22, 95% CI 1.01-1.48, p-trend = 0.02), high-temperature cooked meat (HR = 1.21, 95% CI 1.00-1.45, p-trend = 0.02), grilled/barbequed meat (HR = 1.24, 95% CI 1.03-1.50, p-trend = 0.007), well/very well done meat (HR = 1.32, 95% CI 1.10-1.58, p-trend = 0.005) and heme iron from red meat (Q4 vs. Q1: HR = 1.21, 95% CI 1.01-1.45, p-trend = 0.04). When stratified by sex, these associations remained significant in men but not women except for white meat intake in women (HR = 1.33, 95% CI 1.02-1.74, p-trend = 0.04). Additional studies should confirm our findings that consuming heme iron from red meat increases pancreatic cancer risk.
Collapse
Affiliation(s)
- Pulkit Taunk
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL.,Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Eric Hecht
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Rachael Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Rockville, MD
| |
Collapse
|
43
|
Halpern D, Gruss A. A sensitive bacterial-growth-based test reveals how intestinal Bacteroides meet their porphyrin requirement. BMC Microbiol 2015; 15:282. [PMID: 26715069 PMCID: PMC4696147 DOI: 10.1186/s12866-015-0616-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
Background Bacteroides sp. are dominant constituents of the human and animal intestinal microbiota require porphyrins (i.e., protoporphyrin IX or iron-charged heme) for normal growth. The highly stimulatory effect of porphyrins on Bacteroides growth lead us to propose their use as a potential determinant of bacterial colonization. However, showing a role for porphryins would require sensitive detection methods that work in complex samples such as feces. Results We devised a highly sensitive semi-quantitative porphyrin detection method (detection limit 1-4 ng heme or PPIX) that can be used to assay pure or complex biological samples, based on Bacteroides growth stimulation. The test revealed that healthy colonized or non-colonized murine and human hosts provide porphyrins in feces, which stimulate Bacteroides growth. In addition, a common microbiota constituent, Escherichia coli, is shown to be a porphyrin donor, suggesting a novel basis for intestinal bacterial interactions. Conclusions A highly sensitive method to detect porphyrins based on bacterial growth is devised and is functional in complex biological samples. Host feces, independently of their microbiota, and E. coli, which are present in the intestine, are shown to be porphryin donors. The role of porphyrins as key bioactive molecules can now be assessed for their impact on Bacteroides and other bacterial populations in the gut. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0616-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Halpern
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France, Jouy en Josas, 78352, France.
| | - Alexandra Gruss
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France, Jouy en Josas, 78352, France.
| |
Collapse
|
44
|
Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A 2015. [PMID: 26216954 DOI: 10.1073/pnas.1507645112] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in heme-induced hyperproliferation. To this end, mice were fed a purified control or heme diet (0.5 μmol/g heme) with or without broad-spectrum antibiotics for 14 d. Heme-induced hyperproliferation was shown to depend on the presence of the gut microbiota, because hyperproliferation was completely eliminated by antibiotics, although heme-induced luminal cytotoxicity was sustained in these mice. Colon mucosa transcriptomics revealed that antibiotics block heme-induced differential expression of oncogenes, tumor suppressors, and cell turnover genes, implying that antibiotic treatment prevented the heme-dependent cytotoxic micelles to reach the epithelium. Our results indicate that this occurs because antibiotics reinforce the mucus barrier by eliminating sulfide-producing bacteria and mucin-degrading bacteria (e.g., Akkermansia). Sulfide potently reduces disulfide bonds and can drive mucin denaturation and microbial access to the mucus layer. This reduction results in formation of trisulfides that can be detected in vitro and in vivo. Therefore, trisulfides can serve as a novel marker of colonic mucolysis and thus as a proxy for mucus barrier reduction. In feces, antibiotics drastically decreased trisulfides but increased mucin polymers that can be lysed by sulfide. We conclude that the gut microbiota is required for heme-induced epithelial hyperproliferation and hyperplasia because of the capacity to reduce mucus barrier function.
Collapse
|
45
|
Rocco-Machado N, Cosentino-Gomes D, Meyer-Fernandes JR. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis. PLoS One 2015; 10:e0129604. [PMID: 26070143 PMCID: PMC4466535 DOI: 10.1371/journal.pone.0129604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/11/2015] [Indexed: 01/02/2023] Open
Abstract
Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.
Collapse
Affiliation(s)
- Nathália Rocco-Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- * E-mail: (JRMF); (NRM)
| | - Daniela Cosentino-Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Cidade Universitária, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
- * E-mail: (JRMF); (NRM)
| |
Collapse
|
46
|
Effects of hemin and nitrite on intestinal tumorigenesis in the A/J Min/+ mouse model. PLoS One 2015; 10:e0122880. [PMID: 25836260 PMCID: PMC4383626 DOI: 10.1371/journal.pone.0122880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Red and processed meats are considered risk factors for colorectal cancer (CRC); however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat), and hemin in combination with nitrite (a model of processed meat) on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.
Collapse
|
47
|
Deferme L, Briedé JJ, Claessen SMH, Cavill R, Kleinjans JCS. Cell line-specific oxidative stress in cellular toxicity: A toxicogenomics-based comparison between liver and colon cell models. Toxicol In Vitro 2015; 29:845-55. [PMID: 25800948 DOI: 10.1016/j.tiv.2015.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/20/2015] [Accepted: 03/03/2015] [Indexed: 12/12/2022]
Abstract
Imbalance between high reactive oxygen species formation and antioxidant capacity in the colon and liver has been linked to increased cancer risk. However, knowledge about possible cell line-specific oxidative stress-mechanisms is limited. To explore this further, gene expression data from a human liver and colon cell line (HepG2/Caco-2), both exposed to menadione and H2O2 at six time points (0.5-1-2-4-8 and 24h) were compared in association with cell cycle distribution. In total, 3164 unique- and 1827 common genes were identified between HepG2 and Caco-2 cells. Despite the higher number of unique genes, most oxidative stress-related genes such as CAT, OGG1, NRF2, NF-κB, GCLC, HMOX1 and GSR were differentially expressed in both cell lines. However, cell-specific regulation of genes such as KEAP1 and GCLM, or of the EMT pathway, which are of pathophysiological importance, indicates that oxidative stress induces different transcriptional effects and outcomes in the two selected cell lines. In addition, expression levels and/or -direction of common genes were often different in HepG2 and Caco-2 cells, and this led to very diverse downstream effects as confirmed by correlating pathways to cell cycle changes. Altogether, this work contributes to obtaining a better molecular understanding of cell line-specific toxicity upon exposure to oxidative stress-inducing compounds.
Collapse
Affiliation(s)
- L Deferme
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - J J Briedé
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - S M H Claessen
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - R Cavill
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - J C S Kleinjans
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
48
|
|
49
|
Martin OCB, Lin C, Naud N, Tache S, Raymond-Letron I, Corpet DE, Pierre FH. Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats. Nutr Cancer 2014; 67:119-25. [PMID: 25514759 DOI: 10.1080/01635581.2015.976317] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme. Using a factorial design we studied if microbiota could be involved in heme-induced carcinogenesis, by modulating peroxidation. Rats treated or not with an antibiotic cocktail were given a control or a hemoglobin-diet. Fecal bacteria were counted on agar and TBARs concentration assayed in fecal water. The suppression of microbiota by antibiotics was associated with a reduction of crypt height and proliferation and with a cecum enlargement, which are characteristics of germ-free rats. Rats given hemoglobin diets had increased fecal TBARs, which were suppressed by the antibiotic treatment. A duplicate experiment in rats given dietary hemin yielded similar results. These data show that the intestinal microbiota is involved in enhancement of lipoperoxidation by heme iron. We thus suggest that microbiota could play a role in the heme-induced promotion of colorectal carcinogenesis.
Collapse
Affiliation(s)
- O C B Martin
- a Université de Toulouse , UMR1331 Toxalim INRA, Toulouse , France
| | | | | | | | | | | | | |
Collapse
|
50
|
Kortman GAM, Raffatellu M, Swinkels DW, Tjalsma H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev 2014; 38:1202-34. [PMID: 25205464 DOI: 10.1111/1574-6976.12086] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/16/2022] Open
Abstract
Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications.
Collapse
Affiliation(s)
- Guus A M Kortman
- Department of Laboratory Medicine, The Radboud Institute for Molecular Life Sciences (RIMLS) of the Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|