1
|
Del Burgo FG, García-López MÁ, Pons T, de Luis EV, Martínez-A C, Villares R. The chromatin reader Dido3 is a regulator of the gene network that controls B cell differentiation. Cell Biosci 2025; 15:56. [PMID: 40287726 PMCID: PMC12034202 DOI: 10.1186/s13578-025-01394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The development of hematopoietic cell lineages is a highly complex process governed by a delicate interplay of various transcription factors. The expression of these factors is influenced, in part, by epigenetic signatures that define each stage of cell differentiation. In particular, the formation of B lymphocytes depends on the sequential silencing of stemness genes and the balanced expression of interdependent transcription factors, along with DNA rearrangement. We have investigated the impact of Dido3 deficiency, a protein involved in chromatin status readout, on B cell differentiation within the hematopoietic compartment of mice. Our findings revealed significant impairments in the successive stages of B cell development. The absence of Dido3 resulted in remarkable alterations in the expression of essential transcription factors and differentiation markers, which are crucial for orchestrating the differentiation process. Additionally, the somatic recombination process, responsible for generation of antigen receptor diversity, was also adversely affected. These observations highlight the vital role of epigenetic regulation, particularly the involvement of Dido3, in ensuring proper B cell differentiation. This study reveals new mechanisms underlying disruptive alterations, deepening our understanding of hematopoiesis and may potentially lead to insights that aid in the development of therapeutic interventions for disorders involving aberrant B cell development.
Collapse
Affiliation(s)
| | | | - Tirso Pons
- Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, E-28049, Madrid, Spain
| | - Enrique Vázquez de Luis
- Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, E-28049, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Carlos Martínez-A
- Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, E-28049, Madrid, Spain
| | - Ricardo Villares
- Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, E-28049, Madrid, Spain.
| |
Collapse
|
2
|
Madesh S, Murugan R, Sau A, Jubie S, Swaroop AK, Rajagopal R, Kumaradoss KM, Arockiaraj J. Nano-Encapsulated Coumarin Derivative, CS-QM2 Inhibits Neoplasm Growth: Experimented in Zebrafish Model. J Biochem Mol Toxicol 2025; 39:e70239. [PMID: 40143626 DOI: 10.1002/jbt.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Cancer remains a significant global health challenge with limited therapeutic success, prompting the need for innovative treatment strategies. This study investigates the anticancer potential of nano-encapsulated metal derivatives (CS-QM2) using a zebrafish model with chemically induced cellular neoplasia. Characterization of CS-QM2 nanoparticles revealed successful synthesis with a high entrapment efficiency and enhanced drug release under acidic conditions. Zebrafish embryos exposed to 7,12-Dimethylbenz[a]anthracene (DMBA) exhibited significant malformations, macrophage accumulation, and abnormal tissue growth, which were markedly reduced by CS-QM2 treatment. CS-QM2 significantly increases intracellular ROS, resulting in higher LPO and induces apoptosis in neoplasm tissues. Furthermore, CS-QM2 treatment alters the tumor microenvironment, reducing macrophage accumulation by decreasing neutral lipid droplets, disrupting TAM metabolic support and limiting their protumorigenic activities. Biochemical assays demonstrated restored activities of antioxidant enzymes SOD, CAT, and GSH. Gene expression analysis showed upregulation of apoptosis and tumor suppressor genes (cas3, p53) and downregulation of inflammatory genes (cox-2, nf-kb). Histological assessment and SEM analysis confirmed reduced neoplasm occurrence and tissue abnormalities. These findings suggest that CS-QM2 nanoparticles effectively inhibit neoplasm growth and modulate the tumor microenvironment through oxidative stress induction and gene expression regulation.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Avra Sau
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - S Jubie
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Besaratinia A, Blumenfeld H, Tommasi S. Exploring the Utility of Long Non-Coding RNAs for Assessing the Health Consequences of Vaping. Int J Mol Sci 2024; 25:8554. [PMID: 39126120 PMCID: PMC11313266 DOI: 10.3390/ijms25158554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Electronic cigarette (e-cig) use, otherwise known as "vaping", is widespread among adolescent never-smokers and adult smokers seeking a less-harmful alternative to combustible tobacco products. To date, however, the long-term health consequences of vaping are largely unknown. Many toxicants and carcinogens present in e-cig vapor and tobacco smoke exert their biological effects through epigenetic changes that can cause dysregulation of disease-related genes. Long non-coding RNAs (lncRNAs) have emerged as prime regulators of gene expression in health and disease states. A large body of research has shown that lncRNAs regulate genes involved in the pathogenesis of smoking-associated diseases; however, the utility of lncRNAs for assessing the disease-causing potential of vaping remains to be fully determined. A limited but growing number of studies has shown that lncRNAs mediate dysregulation of disease-related genes in cells and tissues of vapers as well as cells treated in vitro with e-cig aerosol extract. This review article provides an overview of the evolution of e-cig technology, trends in use, and controversies on the safety, efficacy, and health risks or potential benefits of vaping relative to smoking. While highlighting the importance of lncRNAs in cell biology and disease, it summarizes the current and ongoing research on the modulatory effects of lncRNAs on gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. The gaps in knowledge are identified, priorities for future research are highlighted, and the importance of empirical data for tobacco products regulation and public health is underscored.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (H.B.); (S.T.)
| | | | | |
Collapse
|
4
|
Gu W, Wang T, Lin Y, Wang Y, Chen Y, Dai Y, Duan H. Particulate polycyclic aromatic hydrocarbons and metals, DNA methylation and DNA methyltransferase among middle-school students in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172087. [PMID: 38561129 DOI: 10.1016/j.scitotenv.2024.172087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
The main components of particulate matter (PM) had been reported to change DNA methylation levels. However, the mixed effect of PM and its constituents on DNA methylation and the underlying mechanism in children has not been well characterized. To investigate the association between single or mixture exposures and global DNA methylation or DNA methyltransferases (DNMTs), 273 children were recruited (110 in low-exposed area and 163 in high-exposed area) in China. Serum benzo[a]pyridin-7,8-dihydroglycol-9, 10-epoxide (BPDE)-albumin adduct and urinary metals were determined as exposure markers. The global DNA methylation (% 5mC) and the mRNA expression of DNMT1, and DNMT3A were measured. The linear regression, quantile-based g-computation (QGC), and mediation analyses were performed to investigate the effects of individual and mixture exposure. We found that significantly lower levels of % 5mC (P < 0.001) and the mRNA expression of DNMT3A in high-PM exposed group (P = 0.031). After adjustment for age, gender, BMI z-score, detecting status of urinary cotinine, serum folate, and white blood cells, urinary arsenic (As) was negatively correlated with the % 5mC. One IQR increase in urinary As (19.97 μmol/mol creatinine) was associated with a 11.06 % decrease in % 5mC (P = 0.026). Serum BPDE-albumin adduct and urinary cadmium (Cd) were negatively correlated with the levels of DNMT1 and DNMT3A (P < 0.05). Mixture exposure was negatively associated with expression of DNMT3A in QGC analysis (β: -0.19, P < 0.001). Mixture exposure was significantly associated with decreased % 5mC in the children with non-detected cotinine or normal serum folate (P < 0.05), which the most contributors were PAHs and As. The mediated effect of hypomethylation through DNMT1 or DNMT3A pathway was not observed. Our findings indicated that individual and mixture exposure PAHs and metal components had negative associations with global DNA methylation and decreased DNMT3A expression significantly in school-age individuals.
Collapse
Affiliation(s)
- Wen Gu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yang Lin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Beijing Chaoyang District Center for Disease Prevention and Control, Beijing 100021, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; State Key Laboratory of Trauma and Chemical Poisoning, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yufei Dai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; State Key Laboratory of Trauma and Chemical Poisoning, China.
| |
Collapse
|
5
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:7951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Tommasi S, Kitapci TH, Blumenfeld H, Besaratinia A. Secondhand smoke affects reproductive functions by altering the mouse testis transcriptome, and leads to select intron retention in Pde1a. ENVIRONMENT INTERNATIONAL 2022; 161:107086. [PMID: 35063792 PMCID: PMC8891074 DOI: 10.1016/j.envint.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Human exposure to secondhand smoke (SHS) is known to result in adverse effects in multiple organ systems. However, the impact of SHS on the male reproductive system, particularly on the regulation of genes and molecular pathways that govern sperm production, maturation, and functions remains largely understudied. OBJECTIVE We investigated the effects of SHS on the testis transcriptome in a validated mouse model. METHODS Adult male mice were exposed to SHS (5 h/day, 5 days/week for 4 months) as compared to controls (clean air-exposed). RNA-seq analysis was performed on the testis of SHS-exposed mice and controls. Variant discovery and plink association analyses were also conducted to detect exposure-related transcript variants in SHS-treated mice. RESULTS Exposure of mice to SHS resulted in the aberrant expression of 131 testicular genes. Whilst approximately two thirds of the differentially expressed genes were protein-coding, the remaining (30.5%) comprised noncoding elements, mostly lncRNAs (19.1%). Variant discovery analysis identified a homozygous frameshift variant that is statistically significantly associated with SHS exposure (P = 7.744e-06) and is generated by retention of a short intron within Pde1a, a key regulator of spermatogenesis. Notably, this SHS-associated intron variant harbors an evolutionarily conserved, premature termination codon (PTC) that disrupts the open reading frame of Pde1a, presumably leading to its degradation via nonsense-mediated decay. DISCUSSION SHS alters the expression of genes involved in molecular pathways that are crucial for normal testis development and function. Preferential targeting of lncRNAs in the testis of SHS-exposed mice is especially significant considering their crucial role in the spatial and temporal modulation of spermatogenesis. Equally important is our discovery of a novel homozygous frameshift variant that is exclusively and significantly associated with SHS-exposure and is likely to represent a safeguard mechanism to regulate transcription of Pde1a and preserve normal testis function during harmful exposure to environmental agents.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| | - Tevfik H Kitapci
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Hannah Blumenfeld
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Khaledi F, Ghasemi S. A review on epigenetic effects of environmental factors causing and inhibiting cancer. Curr Mol Med 2021; 22:8-24. [PMID: 33573554 DOI: 10.2174/1566524021666210211112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic modifications refer to reversible changes in gene expression. Epigenetic changes include DNA methylation, histone modification, and non-coding RNAs that are collectively called epigenome. Various epigenetic effects account for the main impacts of environment and lifestyle on multifactorial diseases such as cancers. The environment's impacts on cancers act as double-edged swords. While some of them are involved in cancer development, some others contribute to preventing it. In this review article, the keywords 'cancer', 'epigenetic', 'lifestyle', 'carcinogen', ' cancer inhibitors" and related words were searched to finding a link between environmental factors and epigenetic mechanisms influencing cancer in ISI, PUBMED, SCOPUS, and Google Scholar databases. Based on the literature environmental factors that are effective in cancer development or cancer prevention in this review will be divided into physical, chemical, biological, and lifestyle types. Different types of epigenetic mechanisms known for each of these agents will be addressed in this review. Unregulated changes in epigenome play roles in tumorigenicity and cancer development. The action mechanism and genes targeted which are related to the signaling pathway for epigenetic alterations determine whether environmental agents are carcinogenic or prevent cancer. Having knowledge about the effective factors and related mechanisms such as epigenetic on cancer can help to prevent and better cancers treatment.
Collapse
Affiliation(s)
- Fatemeh Khaledi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| |
Collapse
|
8
|
Gao M, Li H, Dang F, Chen L, Liu X, Gao J. Induction of proliferative and mutagenic activity by benzo(a)pyrene in PC-3 cells via JAK2/STAT3 pathway. Mutat Res 2020; 821:111720. [PMID: 32841893 DOI: 10.1016/j.mrfmmm.2020.111720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Environmental carcinogen benzo(a)pyrene (BaP) is a representative compound of polycyclic aromatic hydrocarbons (PAHs). BaP is strongly associated with prostate carcinogenesis. However, the molecular mechanism of BaP in development of prostate carcinoma remains largely unknown. The aim of this study was to investigate the effect and mechanism of BaP on the development in prostate cancer. PC-3 cells were exposed to different concentrations of BaP for 24, 48, 72 h, respectively. We analyzed the effect of BaP on PC-3 cell viability, cell cycle, DNA strand breaks, mutagenic activity, and migration. The expression of associated regulatory genes and the effect of JAK2/STAT3 signaling were also measured to explore the relationships among BaP metabolism, the JAK2/STAT3 pathway and proliferative activity in PC-3 cells. We observed significant effects on proliferation, DNA strand breaks and mutagenic activity after BaP exposure in PC-3 cells, and inhibitors of CYP1 and the AhR transcription factor α -naphthoflavone (ANF) and CH223191 treatment clearly reduced both cell survival and mutagenesis associated with BaP exposure. Reduction in G0-G1 phase population and elevation in S phase were observed after BaP exposure. Migratory cells for PC-3 were significantly increased. The results were further confirmed by the expression of mRNA levels in the significant increments of Snail, Slug, MMP-9, CYP1A1, CYP1B1, CycilnD1, CDK4 and significant reduction of E-cadherin. Significant enhancements were found in the expression of JAK2, STAT3 after BaP treatment. Additionally, activator IL-6 significantly enhanced the effect of BaP on cell survival, mutagenic activity, Cyclin D1, CDK4, Snail, and JAK2/STAT3 expression in PC-3 cells. Significant reductions in cell survival, mutagenic activity, Cyclin D1, CDK4, Snail, and JAK2/STAT3 expression were found after inhibitor AG490, ANF and CHJ223191 treatment. These findings reveal that BaP enhances the proliferative and mutagenic activity via JAK2-STAT3 pathway in PC-3 cells, and provide the additional evidence to understand the crucial role of BaP in prostate cancer carcinogenesis.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China.
| | - Hong Li
- Ankang Blood Station, Shaanxi Province, 725000, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Lan Chen
- Center of Shared Experimental Facilities, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaojing Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| |
Collapse
|
9
|
Tommasi S, Yoon JI, Besaratinia A. Secondhand Smoke Induces Liver Steatosis through Deregulation of Genes Involved in Hepatic Lipid Metabolism. Int J Mol Sci 2020; 21:E1296. [PMID: 32075112 PMCID: PMC7072934 DOI: 10.3390/ijms21041296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
We investigated the role of secondhand smoke (SHS) exposure, independently of diet, in the development of chronic liver disease. Standard diet-fed mice were exposed to SHS (5 h/day, 5 days/week for 4 months). Genome-wide gene expression analysis, together with molecular pathways and gene network analyses, and histological examination for lipid accumulation, inflammation, fibrosis, and glycogen deposition were performed on the liver of SHS-exposed mice and controls, upon termination of exposure and after one-month recovery in clean air. Aberrantly expressed transcripts were found in the liver of SHS-exposed mice both pre- and post-recovery in clean air (n = 473 vs. 222). The persistent deregulated transcripts (n = 210) predominantly affected genes and functional networks involved in lipid metabolism as well as in the regulation of the endoplasmic reticulum where manufacturing of lipids occurs. Significant hepatic fat accumulation (steatosis) was observed in the SHS-exposed mice, which progressively increased as the animals underwent recovery in clean air. Moderate increases in lobular inflammation infiltrates and collagen deposition as well as loss of glycogen were also detectable in the liver of SHS-exposed mice. A more pronounced phenotype, manifested as a disrupted cord-like architecture with foci of necrosis, apoptosis, inflammation, and macrovesicular steatosis, was observed in the liver of SHS-exposed mice post-recovery. The progressive accumulation of hepatic fat and other adverse histological changes in the SHS-exposed mice are highly consistent with the perturbation of key lipid genes and associated pathways in the corresponding animals. Our data support a role for SHS in the genesis and progression of metabolic liver disease through deregulation of genes and molecular pathways and functional networks involved in lipid homeostasis.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Jae-In Yoon
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA;
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| |
Collapse
|
10
|
Xue K, Cao J, Wang Y, Zhao X, Yu D, Jin C, Xu C. Identification of Potential Therapeutic Gene Markers in Nasopharyngeal Carcinoma Based on Bioinformatics Analysis. Clin Transl Sci 2019; 13:265-274. [PMID: 31863646 PMCID: PMC7070980 DOI: 10.1111/cts.12690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common cancer found in the nasopharynx with high metastatic and invasive nature. Increasing evidences have identified the critical role of gene therapy in NPC treatment. Hence, this study was designed to identify specific gene markers that affected NPC progression through gene expression profile analysis. NPC‐related gene expression data set gene set enrichment (GSE)53819 were retrieved and analyzed to screen out differentially expressed genes (DEGs), followed by determination of their expression in noncancerous tissues and NPC specimens. Next, weighted gene co‐expression network analysis (WGCNA) was conducted on DEGs to obtain tumor‐associated gene modules. Genes in those modules were intersected with DEGs for gene ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis. Then protein‐protein interaction network of tumor‐associated genes was constructed to select genes most closely linked to NPC. Afterward, expression of chromosome 9 open reading frame 24 (c9orf24), primary ciliary dyskinesia protein 1 (PCDP1), and leucine‐rich repeat‐containing protein 46 (LRRC46) was detected in GSE53819 and further verified in GSE12452 and GSE64634. Differential analysis on GSE53819 found that 2,173 genes were aberrantly expressed in NPC, among which 917 genes are upregulated and 1,256 genes are downregulated. WGCNA showed that genes were enriched in 17 modules and 727 genes exhibited ectopic expression in NPC and enriched in cytokine‐cytokine receptor interaction, cytochrome P450, and chemical carcinogenesis signaling pathways, among which c9orf24, PCDP1, and LRRC46 were poorly expressed in NPC. Therefore, c9orf24, PCDP1, and LRRC46 might serve as prominent diagnostic markers for NPC, which presents new insights for NPC therapy.
Collapse
Affiliation(s)
- Kai Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Jinfeng Cao
- Department of Ophthalmology, The Second Hospital, Jilin University, Changchun, China
| | - Yinan Wang
- Department of Gynaecology and Obstetrics, The Second Hospital, Jilin University, Changchun, China
| | - Xue Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Dan Yu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Chunshun Jin
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| | - Chengbi Xu
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
11
|
Li J, Liu C, Guo Y, Pi F, Yao W, Xie Y, Cheng Y, Qian H. Determination of the effects of torularhodin against alcoholic liver diseases by transcriptome analysis. Free Radic Biol Med 2019; 143:47-54. [PMID: 31374322 DOI: 10.1016/j.freeradbiomed.2019.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/25/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022]
Abstract
Alcoholic liver disease (ALD) is a major cause of liver injury worldwide. Oxidative damage is one of the main injuries caused by ALD. The aim of this study was to elucidate the preventive effects of torularhodin, extracted from Sporidiobolus pararoseus, on alcoholic liver injury in mice. The mechanisms involved were investigated using transcriptome analysis. Torularhodin supplementation decreased ethanol-induced aspartate transaminase (ALT), aspartate transaminase (AST) and low density lipoprotein (LDL) levels, and increased high density lipoprotein (HDL) levels in the serum of mice. In liver tissue, treatment with torularhodin increased ethanol-induced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels and decreased tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels. Histological analysis showed that torularhodin could alleviate the negative effects of alcohol on the liver. Transcriptomic analysis showed that 806 genes were significantly differentially expressed (506 up-regulated and 300 down-regulated) after torularhodin treatment. These genes were involved in three main Gene Ontology categories (biological process, cellular component, and molecular function) and multiple pathways. Therefore, torularhodin was considered to have potential as a protective agent against ALD.
Collapse
Affiliation(s)
- Jiayi Li
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chang Liu
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yahui Guo
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Weirong Yao
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yunfei Xie
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuliang Cheng
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - He Qian
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Genetic and epigenetic alterations induced by the small-molecule panobinostat: A mechanistic study at the chromosome and gene levels. DNA Repair (Amst) 2019; 78:70-80. [PMID: 30978576 DOI: 10.1016/j.dnarep.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 11/20/2022]
Abstract
Increasing evidence supports the role of genetic and epigenetic alterations in a wide variety of human diseases, including cancer. Assessment of these alterations is hence essential for estimating the hazardous effects of human exposure to medications. Panobinostat received US Food and Drug Administration's approval in 2015 for treatment of certain tumors and its usefulness as part of a strategy to treat other diseases, such as human immunodeficiency virus infection, is currently investigated. Nevertheless, no data on in vivo genotoxical and epigenotoxical effects of panobinostat are available. The aim of the current study was to assess the genotoxical and epigenotoxical properties of panobinostat in murine bone marrow cells. Molecular mechanisms underlying these alterations were also evaluated. We show that mice treated with panobinostat doses recommended for human developed numerical chromosomal abnormalities, structural chromosomal damage, oxidative DNA damage, and DNA hypomethylation. These effects were dose-dependent. Further, panobinostat altered the expression of 23 genes implicated in DNA damage, as determined by RT² Profiler polymerase chain reaction (PCR) array, and confirmed by quantitative real-time PCR and western blotting. Collectively, these findings indicate that panobinostat exposure induces aneugenicity, clastogenicity, oxidative DNA damage, DNA hypomethylation, and down-regulation of repair gene expression, which may be responsible for panobinostat-induced genotoxical and epigenotoxical effects. Considering the potential toxicity of panobinostat, the medicinal use of panobinostat must be weighed against the risk of tumorigenesis and the demonstrated toxicity profile of panobinostat may support further development of chemotherapeutic treatments with reduced toxicity. Diminishing the metabolic liabilities associated with panobinostat exposure, and simultaneous use of panobinostat with DNA repair enhancers, are examples of strategies for drug design to reduce panobinostat carcinogenicity.
Collapse
|
13
|
Abstract
Urothelial carcinoma of the bladder is one of the most common malignancies in the industrialized world, mainly caused by smoking and occupational exposure to chemicals. The favorable prognosis of early stage bladder cancer underscores the importance of early detection for the treatment of this disease. The high recurrence rate of this malignancy also highlights the need for close post-diagnosis monitoring of bladder cancer patients. As for other malignancies, aberrant DNA methylation has been shown to play a crucial role in the initiation and progression of bladder cancer, and thus holds great promise as a diagnostic and prognostic biological marker. Here, we describe a protocol for a versatile DNA methylation enrichment method, the Methylated CpG Island Recovery Assay (MIRA), which enables analysis of the DNA methylation status in individual genes or across the entire genome. MIRA is based on the ability of the methyl-binding domain (MBD) proteins, the MBD2B/MBD3L1 complex, to specifically bind methylated CpG dinucleotides. This easy-to-perform method can be used to analyze the methylome of bladder cancer or urothelial cells shed in the urine to elucidate the evolution of bladder carcinogenesis and/or identify epigenetic signatures of chemicals known to cause this malignancy.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA.
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| |
Collapse
|
14
|
Sun YW, Chen KM, Imamura Kawasawa Y, Salzberg AC, Cooper TK, Caruso C, Aliaga C, Zhu J, Gowda K, Amin S, El-Bayoumy K. Hypomethylated Fgf3 is a potential biomarker for early detection of oral cancer in mice treated with the tobacco carcinogen dibenzo[def,p]chrysene. PLoS One 2017; 12:e0186873. [PMID: 29073177 PMCID: PMC5658092 DOI: 10.1371/journal.pone.0186873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Genetic and epigenetic alterations observed at end stage OSCC formation could be considered as a consequence of cancer development and thus changes in normal or premalignant tissues which had been exposed to oral carcinogens such as Dibenzo[def,p]chrysene (DBP) may better serve as predictive biomarkers of disease development. Many types of DNA damage can induce epigenetic changes which can occur early and in the absence of evident morphological abnormalities. Therefore we used ERRBS to generate genome-scale, single-base resolution DNA methylomes from histologically normal oral tissues of mice treated with DBP under experimental conditions known to induce maximum DNA damage which is essential for the development of OSCC induced by DBP in mice. After genome-wide correction, 30 and 48 differentially methylated sites (DMS) were identified between vehicle control and DBP treated mice using 25% and 10% differences in methylation, respectively. RT-PCR was further performed to examine the expressions of nine selected genes. Among them, Fgf3, a gene frequently amplified in head and neck cancer, showed most prominent and significant gene expression change (2.4× increases), despite the hypomethylation of Fgf3 was identified at >10kb upstream of transcription start site. No difference was observed in protein expression between normal oral tissues treated with DBP or vehicle as examined by immunohistochemistry. Collectively, our results indicate that Fgf3 hypomethylation and gene overexpression, but not protein expression, occurred in the early stage of oral carcinogenesis induced by DBP. Thus, Fgf3 hypomethylation may serve as a potential biomarker for early detection of OSCC.
Collapse
Affiliation(s)
- Yuan-Wan Sun
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Kun-Ming Chen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Yuka Imamura Kawasawa
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Anna C. Salzberg
- Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Timothy K. Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Carla Caruso
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Cesar Aliaga
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Junjia Zhu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| | - Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States of America
| |
Collapse
|
15
|
Ren N, Atyah M, Chen WY, Zhou CH. The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications. J Transl Med 2017; 15:110. [PMID: 28532423 PMCID: PMC5440915 DOI: 10.1186/s12967-017-1218-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Genotoxicity refers to the ability of harmful substances to damage genetic information in cells. Being exposed to chemical and biological agents can result in genomic instabilities and/or epigenetic alterations, which translate into a variety of diseases, cancer included. This concise review discusses, from both a genetic and epigenetic point of view, the current detection methods of different agents’ genotoxicity, along with their basic and clinical relation to human cancer, chemotherapy, germ cells and stem cells.
Collapse
Affiliation(s)
- Ning Ren
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China.
| | - Manar Atyah
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Wan-Yong Chen
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| | - Chen-Hao Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, People's Republic of China
| |
Collapse
|
16
|
El-Bayoumy K, Chen KM, Zhang SM, Sun YW, Amin S, Stoner G, Guttenplan JB. Carcinogenesis of the Oral Cavity: Environmental Causes and Potential Prevention by Black Raspberry. Chem Res Toxicol 2016; 30:126-144. [DOI: 10.1021/acs.chemrestox.6b00306] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Shang-Min Zhang
- Department
of Pathology, Yale University, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | | | | | - Gary Stoner
- Department
of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Joseph B. Guttenplan
- Department
of Basic Science, and Department of Environmental Medicine, New York University College of Dentistry and New York University School of Medicine, New York, New York 10010, United States
| |
Collapse
|
17
|
Sundar IK, Rahman I. Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1245-L1258. [PMID: 27793800 DOI: 10.1152/ajplung.00253.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/23/2016] [Indexed: 01/23/2023] Open
Abstract
Chromatin-modifying enzymes mediate DNA methylation and histone modifications on recruitment to specific target gene loci in response to various stimuli. The key enzymes that regulate chromatin accessibility for maintenance of modifications in DNA and histones, and for modulation of gene expression patterns in response to cigarette smoke (CS), are not known. We hypothesize that CS exposure alters the gene expression patterns of chromatin-modifying enzymes, which then affects multiple downstream pathways involved in the response to CS. We have, therefore, analyzed chromatin-modifying enzyme profiles and validated by quantitative real-time PCR (qPCR). We also performed immunoblot analysis of targeted histone marks in C57BL/6J mice exposed to acute and subchronic CS, and of lungs from nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). We found a significant increase in expression of several chromatin modification enzymes, including DNA methyltransferases, histone acetyltransferases, histone methyltransferases, and SET domain proteins, histone kinases, and ubiquitinases. Our qPCR validation data revealed a significant downregulation of Dnmt1, Dnmt3a, Dnmt3b, Hdac2, Hdac4, Hat1, Prmt1, and Aurkb We identified targeted chromatin histone marks (H3K56ac and H4K12ac), which are induced by CS. Thus CS-induced genotoxic stress differentially affects the expression of epigenetic modulators that regulate transcription of target genes via DNA methylation and site-specific histone modifications. This may have implications in devising epigenetic-based therapies for COPD and lung cancer.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
18
|
Quan Y, Wang N, Chen Q, Xu J, Cheng W, Di M, Xia W, Gao WQ. SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway. Oncotarget 2016; 6:26494-507. [PMID: 26317998 PMCID: PMC4694917 DOI: 10.18632/oncotarget.4764] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/25/2015] [Indexed: 12/18/2022] Open
Abstract
SIRT3 is involved in aging-related diseases including cancer, but its role in prostate cancer and detailed regulatory function are not known. We found that SIRT3 was moderately down-regulated in prostate carcinomas. Overexpression of SIRT3 by lentiviral transfection inhibited prostate cancer growth both in vitro and in vivo, whereas knockdown of SIRT3 increased prostate tumor growth. Mechanistically, the tumor suppression effect of SIRT3 was achieved via its inhibition of the PI3K/Akt pathway. Notably, upregulation of SIRT3 suppressed the phosphorylation of Akt, leading to the ubiquitination and degradation of oncoprotein c-MYC; this could be attenuated by constitutive activation of PI3K/Akt signaling. Collectively, our results unveiled SIRT3's tumor suppressive function and the underlying mechanism in prostate cancer, which might provide therapeutic implications for the disease.
Collapse
Affiliation(s)
- Yizhou Quan
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Naitao Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cheng
- Department of Urology, First People's Hospital of Xiaoshan, Hangzhou, Zhejiang, China
| | - Meijuan Di
- Department of Pathology, First People's Hospital of Xiaoshan, Hangzhou, Zhejiang, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Collaborative Innovation Center of Systems Biomedicine, Shanghai, China
| |
Collapse
|
19
|
Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 768:27-45. [PMID: 27234561 PMCID: PMC4884606 DOI: 10.1016/j.mrrev.2016.03.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/30/2023]
Abstract
Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments.
Collapse
Affiliation(s)
- Grace Chappell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
20
|
Nzabarushimana E, Prior S, Miousse IR, Pathak R, Allen AR, Latendresse J, Olsen RHJ, Raber J, Hauer-Jensen M, Nelson GA, Koturbash I. Combined exposure to protons and (56)Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung. LIFE SCIENCES IN SPACE RESEARCH 2015; 7:1-8. [PMID: 26553631 PMCID: PMC4641818 DOI: 10.1016/j.lssr.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 05/15/2023]
Abstract
Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions ((56)Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and (56)Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to (56)Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and (56)Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.
Collapse
Affiliation(s)
- Etienne Nzabarushimana
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sara Prior
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Isabelle R Miousse
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | - Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, 97239, USA
| | - Jacob Raber
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University Portland, OR, 97239, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Gregory A Nelson
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Igor Koturbash
- Department of Environmental Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
21
|
Expression of epigenetic modifiers is not significantly altered by exposure to secondhand smoke. Lung Cancer 2015; 90:598-603. [PMID: 26525280 DOI: 10.1016/j.lungcan.2015.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Secondhand smoke (SHS) is a major risk factor for lung cancer in nonsmokers. DNA damage-derived mutagenicity is a well-established mechanism of SHS-carcinogenicity; however very little is known about the impact of SHS exposure on the epigenome. MATERIALS AND METHODS We have investigated whether exposure to SHS can modulate the expression of key epigenetic regulators responsible for the establishment and/or maintenance of DNA methylation and histone modification patterns in vivo. We have sub-chronically exposed mice to a mutagenic but non-tumorigenic dose of SHS, and subsequently determined the expression levels of major epigenetic modifiers in the lungs of SHS-exposed mice, immediately after termination of exposure and following 7-month recovery in clean air. RESULTS AND CONCLUSION Quantification of the expression of genes encoding DNA methyltransferases (Dnmt1, Dnmt3a, Dnmt3b and Dnmt3l), methyl binding domain proteins (Mecp2, Mbd2 and Mbd3) and histone deacetylases (Hdac1 and Hdac2) by quantitative reverse-transcription polymerase chain reaction analysis showed modest but not statistically significant differences in the relative transcription of these key epigenetic regulators between SHS-exposed mice and age-matched controls. The non-significant changes in the expression of main epigenetic modifiers in SHS-exposed mice imply that SHS may predominantly induce genotoxic effects, particularly at non-tumorigenic doses, whereas epigenetic effects may only be secondary and manifest en route to tumor formation.
Collapse
|
22
|
Krais AM, Mühlbauer KR, Kucab JE, Chinbuah H, Cornelius MG, Wei QX, Hollstein M, Phillips DH, Arlt VM, Schmeiser HH. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts. Toxicol In Vitro 2015; 29:34-43. [PMID: 25230394 PMCID: PMC4258613 DOI: 10.1016/j.tiv.2014.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/31/2014] [Accepted: 09/05/2014] [Indexed: 01/08/2023]
Abstract
We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by (32)P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells.
Collapse
Affiliation(s)
- Annette M Krais
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Karl-Rudolf Mühlbauer
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Helena Chinbuah
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Michael G Cornelius
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Quan-Xiang Wei
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monica Hollstein
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany; Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom
| | - Heinz H Schmeiser
- Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Tommasi S, Zheng A, Besaratinia A. Exposure of mice to secondhand smoke elicits both transient and long-lasting transcriptional changes in cancer-related functional networks. Int J Cancer 2014; 136:2253-63. [PMID: 25346222 DOI: 10.1002/ijc.29284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
Abstract
Secondhand smoke (SHS) has long been linked to lung cancer and other diseases in nonsmokers. Yet, the underlying mechanisms of SHS carcinogenicity in nonsmokers remain to be elucidated. We investigated the immediate and long-lasting effects of SHS exposure on gene expression in mice in vivo. We exposed mice whole body to SHS for 5 h/day, 5 days/week for 4 months in exposure chambers of a microprocessor-controlled smoking machine. Subsequently, we performed microarray gene expression profiling, genome-wide, to construct the pulmonary transcriptome of SHS-exposed mice, immediately after discontinuation of exposure (T0) and following 1-month (T1) and 7-month (T2) recoveries in clean air. Sub-chronic exposure of mice to SHS elicited a robust transcriptomic response, including both reversible and irreversible changes in gene expression. There were 674 differentially expressed transcripts immediately after treatment (T0), of which the majority were involved in xenobiotic metabolism, signaling, and innate immune response. Reduced, yet, substantial numbers of differentially expressed transcripts were detectable in mice after cessation of SHS-exposure (254 transcripts at T1 and 30 transcripts at T2). Top biofunctional networks disrupted in SHS-exposed mice, even after termination of exposure, were implicated in cancer, respiratory disease, and inflammatory disease. Our data show that exposure of mice to SHS induces both transient and long-lasting changes in gene expression, which impact cancer-related functional networks. The pattern of transcriptional changes in SHS-exposed mice may provide clues on the underlying mechanisms of lung tumorigenesis in nonsmokers. Our findings underscore the importance of eliminating SHS from environments where nonsmokers are unavoidably exposed to this carcinogen.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | | |
Collapse
|