1
|
Palmer RD. The protein paradox, carnivore diet & hypertrophy versus longevity.: Short term nutrition and hypertrophy versus longevity. Nutr Health 2025:2601060251314575. [PMID: 40094942 DOI: 10.1177/02601060251314575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Meat consumption has been a common food selection for humans for millennia. Meat is rich in amino acids, delivers vast amounts of nutrients and assists in short term health and hypertrophy. However, meat consumption can induce the activation of mTOR and IGF-1, accelerated aging, vascular constriction, atherosclerosis, heart disease, increased risk of diabetes, systemic inflammatory effects, cancers (including colorectal and prostate cancers), advanced glycation end products, impaired immune function / increased susceptibility to infection via downstream advanced glycation end product accumulation, polycyclic aromatic hydrocarbon ingestion, increased homocysteine levels among many other pathophysiologies. Research papers showing health benefits of meat consumption versus other papers showing the detriment of meat have led to confusion as many cohorts such as bodybuilding, health and wellness groups, carnivore diet practitioners, online social media longevity groups and more are interested in data that exists across the peer reviewed literature, however, few papers offer a super wide view where meat consumption benefits and pitfalls are taken into account.BackgroundThe need for such a systematic review is high as health enthusiasts incorrectly often quote single data points from papers showing a single benefit from consuming meat. This often leads to a higher consumption of meat. However, not all meat consumption is the same, and not all meat delivers the same benefits or detriments. Therefore, a systematic review of current literature has been performed to extrapolate the data into whether those interested in hypertrophy, short term nutrition and energy, and longevity should consume meat. Aim: The aim of this research is to dispel myths about meat consumption, such as that meat has a one size fits all benefit to all those that consume it regardless of genetics, or that consuming meat-based protein is the same across all meats.MethodsA deep analysis of almost one hundred peer reviewed papers and surveys spanning decades of cohorts having a meat-based diet compared to those consuming a plant based diet has been performed. Further analysis on specific side effects and disease has also been performed.ResultsThe results of our systematic review show clearly that meat is great for hypertrophy, short term nutrition, short term energy requirements, but a very poor choice when it comes to healthy aging and longevity.ConclusionAnimal protein is great for building muscle, short term energy, maintaining high levels of nutrients, but a carnivore diet holds too many adverse long term side effects to be considered a staple for a longevity-based diet. The evidence is very strong, that subjects interested in longevity and aging should shift their protein intake away from red and processed meats, and either toward white meats or plant-based sources if longevity is the goal.
Collapse
|
2
|
Fathi Kazerooni A, Akbari H, Hu X, Bommineni V, Grigoriadis D, Toorens E, Sako C, Mamourian E, Ballinger D, Sussman R, Singh A, Verginadis II, Dahmane N, Koumenis C, Binder ZA, Bagley SJ, Mohan S, Hatzigeorgiou A, O'Rourke DM, Ganguly T, De S, Bakas S, Nasrallah MP, Davatzikos C. The radiogenomic and spatiogenomic landscapes of glioblastoma and their relationship to oncogenic drivers. COMMUNICATIONS MEDICINE 2025; 5:55. [PMID: 40025245 PMCID: PMC11873127 DOI: 10.1038/s43856-025-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glioblastoma is a highly heterogeneous brain tumor, posing challenges for precision therapies and patient stratification in clinical trials. Understanding how genetic mutations influence tumor imaging may improve patient management and treatment outcomes. This study investigates the relationship between imaging features, spatial patterns of tumor location, and genetic alterations in IDH-wildtype glioblastoma, as well as the likely sequence of mutational events. METHODS We conducted a retrospective analysis of 357 IDH-wildtype glioblastomas with pre-operative multiparametric MRI and targeted genetic sequencing data. Radiogenomic signatures and spatial distribution maps were generated for key mutations in genes such as EGFR, PTEN, TP53, and NF1 and their corresponding pathways. Machine and deep learning models were used to identify imaging biomarkers and stratify tumors based on their genetic profiles and molecular heterogeneity. RESULTS Here, we show that glioblastoma mutations produce distinctive imaging signatures, which are more pronounced in tumors with less molecular heterogeneity. These signatures provide insights into how mutations affect tumor characteristics such as neovascularization, cell density, invasion, and vascular leakage. We also found that tumor location and spatial distribution correlate with genetic profiles, revealing associations between tumor regions and specific oncogenic drivers. Additionally, imaging features reflect the cross-sectionally inferred evolutionary trajectories of glioblastomas. CONCLUSIONS This study establishes clinically accessible imaging biomarkers that capture the molecular composition and oncogenic drivers of glioblastoma. These findings have potential implications for noninvasive tumor profiling, personalized therapies, and improved patient stratification in clinical trials.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Xiaoju Hu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Vikas Bommineni
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitris Grigoriadis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Erik Toorens
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Ballinger
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robyn Sussman
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashish Singh
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Bagley
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artemis Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tapan Ganguly
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - MacLean P Nasrallah
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Goff AL, Landecker H. Genome Engineering, Chemical Exposure, and the Germline: An Ethical Synthesis. Hastings Cent Rep 2025; 55:39-51. [PMID: 40245281 DOI: 10.1002/hast.4977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Concerns about the human germline in the context of genome editing have been at the forefront of contemporary bioethics, with the clear recognition that the heritability associated with such intervention merits special moral consideration. In contrast, the question of moral responsibility for modifications of the germline genome that result from anthropogenic environmental toxicants has received little attention. Yet, whether the impact of human technological activity on enduring shifts in human heredity occurs via purposeful genetic modification or nondirected changes that undermine genome stability, the result is irreversible genetic change in future generations. This article argues that the robust ethical reflection developed by the bioethics community to address human heritable genome editing can be used as a resource to address understudied questions of moral responsibility for anthropogenic insults to the germline. Drawing on this bioethics work, the article outlines a future-oriented ethical framework for germline responsibility in a time of widespread concern about industrial chemicals and human futures.
Collapse
|
4
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
6
|
Sasivimolrattana T, Gunawan A, Wattanathavorn W, Pholpong C, Chaiwongkot A, Bhattarakosol P, Bhattarakosol P. Upregulation of HPV16E1 and E7 expression and FOXO3a mRNA downregulation in high-grade cervical neoplasia. PeerJ 2024; 12:e18601. [PMID: 39655333 PMCID: PMC11627083 DOI: 10.7717/peerj.18601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Background Cervical cancer remains a significant global health concern, ranking as the fourth most prevalent cancer among women worldwide. Human papillomaviruses (HPV) transcribe many genes that might be responsible for cervical cancer development. This study aims to investigate the correlation between the expression of HPV16 early genes and the mRNA expression of human FOXO3a, a tumor suppressor gene, in association with various stages of cervical precancerous lesions. Methods Eighty-five positive HPV16 DNA cervical swab samples were recruited and categorized based on cytology stages, i.e., negative for intraepithelial lesion or malignancy (NILM), atypical squamous cells of undetermined significance (ASC-US), low-grade squamous intraepithelial lesion (LSIL), atypical squamous cell cannot exclude HSIL (ASC-H), high-grade squamous intraepithelial lesion (HSIL). RT-qPCR was performed to amplify HPV16E1, E4, E6, E6*I, E7, and human FOXO3a mRNA expression in all samples. The relative expression of those genes was calculated using GAPDH as a control. Detection of FOXO3a mRNA expression in the cervical cancer cell line by RT-qPCR and meta-analysis of FOXO3a expression using the RNA-Seq dataset by GEPIA2 were analyzed to support the conclusions. Results Among the cervical samples, HPV16E1 and E7 were significantly increased expression correlating to disease severity. HPV16E4 mRNA expression was 100% detected in all LSIL samples, with a significant increase observed from normal to LSIL stages. Conversely, FOXO3a mRNA expression decreased with disease severity, and the lowest expression was observed in HSIL/squamous cell carcinoma (SCC) samples. In addition, similar results of FOXO3a downregulation were also found in the cervical cancer cell line and RNA-Seq dataset of cervical cancer samples. Conclusion HPV16 early mRNA levels, including E1 and E7, increase during cancer progression, and downregulation of FOXO3a mRNA is a characteristic of cervical cancer cells and HSIL/SCC. Additionally, HPV16E4 mRNA expression was consistently detected in all LSIL samples, suggesting the presence of active viral replication. These findings might lead to further investigation into the interplay between HPV gene expression and host cell factors for targeted therapeutic strategies in cervical cancer management.
Collapse
Affiliation(s)
- Thanayod Sasivimolrattana
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aileen Gunawan
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Warattaya Wattanathavorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavis Pholpong
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Arkom Chaiwongkot
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattarasinee Bhattarakosol
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Grzesiakowska-Dul A, Kasprowicz MJ, Otwinowska-Mindur A, Baran P, Kuchta-Gładysz M. Cytokinesis-Blocking Micronucleus Assay for Assessing Nuclear Chromatin Integrity Abnormalities in Dog's Somatic Cells After Exposure to HVAD-Produced Silver Nanoparticles. Int J Mol Sci 2024; 25:12691. [PMID: 39684401 DOI: 10.3390/ijms252312691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The widespread use of silver nanoparticles in many industries is increasing every year. Along with this use, there is growing concern about the potential unintentional exposure of human and animal organisms to these nanomaterials. It has been shown that AgNPs have the ability to penetrate organisms and can have harmful effects on cells and organs in the body. In order to reduce the effects of AgNPs on living organisms, newer solutions are being investigated, such as particle stabilization or other methods of synthesizing these particles. The physical synthesis of AgNPs using high-voltage arc discharge (HVAD) may be one of these alternatives. To determine the effect of silver nanoparticles obtained by this method, cytogenetic analysis was performed on domestic dog somatic cells using a cytokinesis-blocking micronucleus assay. In the experiments performed, peripheral blood cells of the domestic dog were exposed in vitro for 3 and 24 h to three tested colloidal silver compounds (unstable AgNP-HVAD, sodium citrate-stabilized silver nanoparticles-AgNP+C, and silver nitrate). The toxicity of these compounds was evaluated at concentrations of 5, 10, and 20 µg/L, and the presence of the following cellular abnormalities was analyzed: micronuclei, nuclear buds, nucleoplasmic bridges, or multinucleated cells. The study showed a significant increase in the number of micronuclei compared to the control sample, as well as the presence of nuclear buds and nucleoplasmic bridges in somatic cells of the domestic dog, confirming the genotoxic nature of the particles. However, there was no cytotoxic effect due to the lower number of multinucleated cells and the absence of apoptotic or necrotic cells in the samples analyzed. Further studies are needed to better understand the mechanisms of toxicity of AgNPs produced by the HVAD method and the extent of their effects on mammalian somatic cells.
Collapse
Affiliation(s)
- Anna Grzesiakowska-Dul
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059 Kraków, Poland
| | - Marek Jan Kasprowicz
- Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Mickiewicza Av. 21, 31-120 Kraków, Poland
| | - Agnieszka Otwinowska-Mindur
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059 Kraków, Poland
| | - Przemysław Baran
- Veterinary Clinic "Salamandra", Nowowiejska Street 3, 30-052 Kraków, Poland
| | - Marta Kuchta-Gładysz
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059 Kraków, Poland
| |
Collapse
|
8
|
Singh AV, Bhardwaj P, Laux P, Pradeep P, Busse M, Luch A, Hirose A, Osgood CJ, Stacey MW. AI and ML-based risk assessment of chemicals: predicting carcinogenic risk from chemical-induced genomic instability. FRONTIERS IN TOXICOLOGY 2024; 6:1461587. [PMID: 39659701 PMCID: PMC11628524 DOI: 10.3389/ftox.2024.1461587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical risk assessment plays a pivotal role in safeguarding public health and environmental safety by evaluating the potential hazards and risks associated with chemical exposures. In recent years, the convergence of artificial intelligence (AI), machine learning (ML), and omics technologies has revolutionized the field of chemical risk assessment, offering new insights into toxicity mechanisms, predictive modeling, and risk management strategies. This perspective review explores the synergistic potential of AI/ML and omics in deciphering clastogen-induced genomic instability for carcinogenic risk prediction. We provide an overview of key findings, challenges, and opportunities in integrating AI/ML and omics technologies for chemical risk assessment, highlighting successful applications and case studies across diverse sectors. From predicting genotoxicity and mutagenicity to elucidating molecular pathways underlying carcinogenesis, integrative approaches offer a comprehensive framework for understanding chemical exposures and mitigating associated health risks. Future perspectives for advancing chemical risk assessment and cancer prevention through data integration, advanced machine learning techniques, translational research, and policy implementation are discussed. By implementing the predictive capabilities of AI/ML and omics technologies, researchers and policymakers can enhance public health protection, inform regulatory decisions, and promote sustainable development for a healthier future.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Preeti Bhardwaj
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Prachi Pradeep
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Madleen Busse
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Akihiko Hirose
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Christopher J. Osgood
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Michael W. Stacey
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
9
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Mazzoleni A, Awuah WA, Sanker V, Bharadwaj HR, Aderinto N, Tan JK, Huang HYR, Poornaselvan J, Shah MH, Atallah O, Tawfik A, Elmanzalawi MEAE, Ghozlan SH, Abdul-Rahman T, Moyondafoluwa JA, Alexiou A, Papadakis M. Chromosomal instability: a key driver in glioma pathogenesis and progression. Eur J Med Res 2024; 29:451. [PMID: 39227895 PMCID: PMC11373396 DOI: 10.1186/s40001-024-02043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Chromosomal instability (CIN) is a pivotal factor in gliomas, contributing to their complexity, progression, and therapeutic challenges. CIN, characterized by frequent genomic alterations during mitosis, leads to genetic abnormalities and impacts cellular functions. This instability results from various factors, including replication errors and toxic compounds. While CIN's role is well documented in cancers like ovarian cancer, its implications for gliomas are increasingly recognized. CIN influences glioma progression by affecting key oncological pathways, such as tumor suppressor genes (e.g., TP53), oncogenes (e.g., EGFR), and DNA repair mechanisms. It drives tumor evolution, promotes inflammatory signaling, and affects immune interactions, potentially leading to poor clinical outcomes and treatment resistance. This review examines CIN's impact on gliomas through a narrative approach, analyzing data from PubMed/Medline, EMBASE, the Cochrane Library, and Scopus. It highlights CIN's role across glioma subtypes, from adult glioblastomas and astrocytomas to pediatric oligodendrogliomas and astrocytomas. Key findings include CIN's effect on tumor heterogeneity and its potential as a biomarker for early detection and monitoring. Emerging therapies targeting CIN, such as those modulating tumor mutation burden and DNA damage response pathways, show promise but face challenges. The review underscores the need for integrated therapeutic strategies and improved bioinformatics tools like CINdex to advance understanding and treatment of gliomas. Future research should focus on combining CIN-targeted therapies with immune modulation and personalized medicine to enhance patient outcomes.
Collapse
Affiliation(s)
- Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | | | - Vivek Sanker
- Department Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | | | - Helen Ye Rim Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Aya Tawfik
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | | | - Sama Hesham Ghozlan
- Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| | | | | | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Funogen, Department of Research & Development, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
11
|
Hale A, Moldovan GL. Novel insights into the role of bisphenol A (BPA) in genomic instability. NAR Cancer 2024; 6:zcae038. [PMID: 39319028 PMCID: PMC11420844 DOI: 10.1093/narcan/zcae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Bisphenol A (BPA) is a phenolic chemical that has been used for over 50 years in the manufacturing of polycarbonate and polyvinyl chloride plastics, and it is one of the highest volume chemicals produced worldwide. Because BPA can bind to and activate estrogen receptors, studies have mainly focused on the effect of BPA in disrupting the human endocrine and reproductive systems. However, BPA also plays a role in promoting genomic instability and has been associated with initiating carcinogenesis. For example, it has been recently shown that exposure to BPA promotes the formation of single stranded DNA gaps, which may be associated with increased genomic instability. In this review, we outline the mechanisms by which BPA works to promote genomic instability including chromosomal instability, DNA adduct formation, ROS production, and estrogen receptor (ER) activation. Moreover, we define the ways in which BPA promotes both carcinogenesis and resistance to chemotherapy, and we provide critical insights into future directions and outstanding questions in the field.
Collapse
Affiliation(s)
- Anastasia Hale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
12
|
Cappucci U, Proietti M, Casale AM, Schiavo S, Chiavarini S, Accardo S, Manzo S, Piacentini L. Assessing genotoxic effects of plastic leachates in Drosophila melanogaster. CHEMOSPHERE 2024; 361:142440. [PMID: 38821133 DOI: 10.1016/j.chemosphere.2024.142440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Plastic polymers were largely added with chemical substances to be utilized in the items and product manufacturing. The leachability of these substances is a matter of concern given the wide amount of plastic waste, particularly in terrestrial environments, where soil represents a sink for these novel contaminants and a possible pathway of human health risk. In this study, we integrated genetic, molecular, and behavioral approaches to comparatively evaluate toxicological effects of plastic leachates, virgin and oxodegradable polypropylene (PP) and polyethylene (PE), in Drosophila melanogaster, a novel in vivo model organism for environmental monitoring studies and (eco)toxicological research. The results of this study revealed that while conventional toxicological endpoints such as developmental times and longevity remain largely unaffected, exposure to plastic leachates induces chromosomal abnormalities and transposable element (TE) activation in neural tissues. The combined effects of DNA damage and TE mobilization contribute to genome instability and increase the likelihood of LOH events, thus potentiating tumor growth and metastatic behavior ofRasV12 clones. Collectively, these findings indicate that plastic leachates exert genotoxic effects in Drosophila thus highlighting potential risks associated with leachate-related plastic pollution and their implications for ecosystems and human health.
Collapse
Affiliation(s)
- Ugo Cappucci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Mirena Proietti
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Assunta Maria Casale
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Simona Schiavo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Salvatore Chiavarini
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Sara Accardo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Sonia Manzo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy.
| | - Lucia Piacentini
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
13
|
Neven J, Issayama LK, Dewachter I, Wilson DM. Genomic stress and impaired DNA repair in Alzheimer disease. DNA Repair (Amst) 2024; 139:103678. [PMID: 38669748 DOI: 10.1016/j.dnarep.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and has received considerable attention due to its growing burden on economic, healthcare and basic societal infrastructures. The two major neuropathological hallmarks of AD, i.e., extracellular amyloid beta (Aβ) peptide plaques and intracellular hyperphosphorylated Tau neurofibrillary tangles, have been the focus of much research, with an eye on understanding underlying disease mechanisms and identifying novel therapeutic avenues. One often overlooked aspect of AD is how Aβ and Tau may, through indirect and direct mechanisms, affect genome integrity. Herein, we review evidence that Aβ and Tau abnormalities induce excessive genomic stress and impair genome maintenance mechanisms, events that can promote DNA damage-induced neuronal cell loss and associated brain atrophy.
Collapse
Affiliation(s)
- Jolien Neven
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Luidy Kazuo Issayama
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium.
| |
Collapse
|
14
|
Fiorini S, Rubini E, Perugini M, Altieri F, Chichiarelli S, Meschiari G, Arrighetti G, Vijgen J, Natali PG, Minacori M, Eufemi M. STAT3 Pathways Contribute to β-HCH Interference with Anticancer Tyrosine Kinase Inhibitors. Int J Mol Sci 2024; 25:6181. [PMID: 38892372 PMCID: PMC11173063 DOI: 10.3390/ijms25116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Organochlorine pesticides (OCPs) are a class of environmentally persistent and bioaccumulative pollutants. Among these, β-hexachlorocyclohexane (β-HCH) is a byproduct of lindane synthesis, one of the most worldwide widespread pesticides. β-HCH cellular mechanisms inducing chemical carcinogenesis correspond to many of those inducing chemoresistance, in particular, by the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathways. For this purpose, four cell lines, representative of breast, lung, prostate, and hepatocellular cancers, were treated with β-HCH, specific tyrosine kinase inhibitors (TKIs), and a STAT3 inhibitor. All cell samples were analyzed by a viability assay, immunoblotting analysis, a wound-healing assay, and a colony formation assay. The results show that β-HCH reduces the efficacy of TKIs. The STAT3 protein, in this context, plays a central role. In fact, by inhibiting its activity, the efficacy of the anticancer drug is restored. Furthermore, this manuscript aimed to draw the attention of the scientific and socio-healthcare community to the issue of prolonged exposure to contaminants and their impact on drug efficacy.
Collapse
Affiliation(s)
- Sara Fiorini
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| | - Elisabetta Rubini
- Institute of Molecular Biology and Pathology, CNR National Research Council, Via degli Apuli, 4, 00185 Rome, Italy;
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Campus “Aurelio Saliceti”, Via R. Balzarini 1, 64100 Teramo, Italy;
| | - Fabio Altieri
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| | - Silvia Chichiarelli
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| | - Giorgia Meschiari
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| | - Giulia Arrighetti
- Department of Cultures, Politics and Society, University of Turin, Via Verdi, 8, 10124 Turin, Italy;
| | - John Vijgen
- International HCH and Pesticides Association (IHPA), Elmevej 14, 2840 Holte, Denmark;
| | - Pier Giorgio Natali
- Collegium Ramazzini, Castello di Bentivoglio, Via Saliceto, 3, 40010 Bologna, Italy
- Lega Italiana per la Lotta contro i Tumori (LILT), Associazione Metropolitana di Roma, Via Nomentana, 303, 00162 Rome, Italy
| | - Marco Minacori
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Campus “Aurelio Saliceti”, Via R. Balzarini 1, 64100 Teramo, Italy;
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.F.); (F.A.); (S.C.); (G.M.); (M.M.); (M.E.)
| |
Collapse
|
15
|
Kaur M, Ghosal A, Kaur R, Chhabra K, Kapoor HS, Khetarpal P. Exposure to potentially toxic elements (PTEs) and the risk of male infertility- A Systematic review and meta-analysis. J Gynecol Obstet Hum Reprod 2024; 53:102782. [PMID: 38554943 DOI: 10.1016/j.jogoh.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Infertility has been defined as a failure to conceive for at least 12 months of regular unprotected sexual intercourse. The male factors are responsible for about 50 % of cases. Various factors such as endocrine, immunological, genetic, exposure to toxicants, and idiopathic factors are involved in male infertility. Recently, the role of PTEs in reproductive performance has been explored by various studies. OBJECTIVES Current systematic review and meta-analysis have been carried out to compile and statistically analyze the findings of relevant studies and reach some conclusion. METHODOLOGY A literature search was done according to the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines in three scientific literature databases; PubMed, Google Scholar, and Science Direct. Meta-analysis was performed using Review Manager 5.4 software. The study's protocol was registered in PROSPERO (CRD42023465776). RESULTS Meta-analysis of lead in the blood of infertile cases and healthy controls indicated a significant association with male infertility, observed standard mean difference (SMD) was 0.67 at 95 % confidence interval (CI) (0.07, 1.28), and p = 0.03. In the case of lead analysis in semen, the values are as follows: SMD = 1.19 at 95 % CI (0.42, 1.96) with p = 0.002. Significant association appears for cadmium in semen with SMD 0.92 at 95 % CI (0.54, 1.29) and p < 0.00001. No significant association was observed for arsenic, barium, and mercury in blood. CONCLUSION Most of the studies focus on the detection of PTE in semen samples followed by blood as sample type. Lead and cadmium exposure is significantly associated with male infertility. However, non-significant results for arsenic, barium, and mercury are observed.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Human Genetics, Punjabi University Patiala, 147002, India
| | - Ahelee Ghosal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Rajinder Kaur
- Department of Human Genetics, Punjabi University Patiala, 147002, India
| | - Kiran Chhabra
- Chhabra Hospital & Test Tube Baby Centre, Bathinda, 151001, India
| | | | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
16
|
Car C, Quevarec L, Gilles A, Réale D, Bonzom JM. Evolutionary approach for pollution study: The case of ionizing radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123692. [PMID: 38462194 DOI: 10.1016/j.envpol.2024.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.
Collapse
Affiliation(s)
- Clément Car
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| | - Loïc Quevarec
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France.
| | - André Gilles
- UMR Risques, ECOsystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix-Marseille Université (AMU), Marseille, France
| | - Denis Réale
- Département des Sciences Biologiques, Université Du Québec à Montréal, (UQAM), Montréal, Canada
| | - Jean-Marc Bonzom
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| |
Collapse
|
17
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
18
|
Wacka E, Nicikowski J, Jarmuzek P, Zembron-Lacny A. Anemia and Its Connections to Inflammation in Older Adults: A Review. J Clin Med 2024; 13:2049. [PMID: 38610814 PMCID: PMC11012269 DOI: 10.3390/jcm13072049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Anemia is a common hematological disorder that affects 12% of the community-dwelling population, 40% of hospitalized patients, and 47% of nursing home residents. Our understanding of the impact of inflammation on iron metabolism and erythropoiesis is still lacking. In older adults, anemia can be divided into nutritional deficiency anemia, bleeding anemia, and unexplained anemia. The last type of anemia might be caused by reduced erythropoietin (EPO) activity, progressive EPO resistance of bone marrow erythroid progenitors, and the chronic subclinical pro-inflammatory state. Overall, one-third of older patients with anemia demonstrate a nutritional deficiency, one-third have a chronic subclinical pro-inflammatory state and chronic kidney disease, and one-third suffer from anemia of unknown etiology. Understanding anemia's pathophysiology in people aged 65 and over is crucial because it contributes to frailty, falls, cognitive decline, decreased functional ability, and higher mortality risk. Inflammation produces adverse effects on the cells of the hematological system. These effects include iron deficiency (hypoferremia), reduced EPO production, and the elevated phagocytosis of erythrocytes by hepatic and splenic macrophages. Additionally, inflammation causes enhanced eryptosis due to oxidative stress in the circulation. Identifying mechanisms behind age-related inflammation is essential for a better understanding and preventing anemia in older adults.
Collapse
Affiliation(s)
- Eryk Wacka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| | - Jan Nicikowski
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| | - Pawel Jarmuzek
- Department of Neurosurgery and Neurology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland;
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 65-417 Zielona Gora, Poland; (J.N.); (A.Z.-L.)
| |
Collapse
|
19
|
de Souza AM, Dantas MRDN, Secundo EL, Silva EDC, Silva PF, Moreira SMG, de Medeiros SRB. Are hydroxyapatite-based biomaterials free of genotoxicity? A systematic review. CHEMOSPHERE 2024; 352:141383. [PMID: 38360416 DOI: 10.1016/j.chemosphere.2024.141383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Hydroxyapatite (HA) is a biomaterial widely used in clinical applications and pharmaceuticals. The literature on HA-based materials studies is focused on chemical characterization and biocompatibility. Generally, biocompatibility is analyzed through adhesion, proliferation, and differentiation assays. Fewer studies are looking for genotoxic events. Thus, although HA-based biomaterials are widely used as biomedical devices, there is a lack of literature regarding their genotoxicity. This systematic review was carried out following the PRISMA statement. Specific search strategies were developed and performed in four electronic databases (PubMed, Science Direct, Scopus, and Web of Science). The search used "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND genotoxicity OR genotoxic OR DNA damage" and "Hydroxyapatite OR Calcium Hydroxyapatite OR durapatite AND mutagenicity OR mutagenic OR DNA damage" as keywords and articles published from 2000 to 2022, after removing duplicate studies and apply include and exclusion criteria, 53 articles were identified and submitted to a qualitative descriptive analysis. Most of the assays were in vitro and most of the studies did not show genotoxicity. In fact, a protective effect was observed for hydroxyapatites. Only 20 out of 71 tests performed were positive for genotoxicity. However, no point mutation-related mutagenicity was observed. As the genotoxicity of HA-based biomaterials observed was correlated with its nanostructured forms as needles or rods, it is important to follow their effect in chronic exposure to guarantee safe usage in humans.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Estefânia Lins Secundo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Elisângela da Costa Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Priscila Fernandes Silva
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Susana Margarida Gomes Moreira
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | |
Collapse
|
20
|
Waye AA, Ticiani E, Veiga-Lopez A. Chemical mixture that targets the epidermal growth factor pathway impairs human trophoblast cell functions. Toxicol Appl Pharmacol 2024; 483:116804. [PMID: 38185387 PMCID: PMC11212468 DOI: 10.1016/j.taap.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Blaszczak E, Pasquier E, Le Dez G, Odrzywolski A, Lazarewicz N, Brossard A, Fornal E, Moskalek P, Wysocki R, Rabut G. Dissecting Ubiquitylation and DNA Damage Response Pathways in the Yeast Saccharomyces cerevisiae Using a Proteome-Wide Approach. Mol Cell Proteomics 2024; 23:100695. [PMID: 38101750 PMCID: PMC10803944 DOI: 10.1016/j.mcpro.2023.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.
Collapse
Affiliation(s)
- Ewa Blaszczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland.
| | - Emeline Pasquier
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Gaëlle Le Dez
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Lublin, Poland
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland; Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Audrey Brossard
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France
| | - Emilia Fornal
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Piotr Moskalek
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland.
| | - Gwenaël Rabut
- Univ Rennes, CNRS, INSERM, Institute of Genetics and Development of Rennes (IGDR), UMR 6290, U1305, Rennes, France.
| |
Collapse
|
22
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
23
|
Gupta MK, Kushwah AS, Singh R, Srivastava K, Banerjee M. Genetic and epigenetic alterations in MGMT gene and correlation with concomitant chemoradiotherapy (CRT) in cervical cancer. J Cancer Res Clin Oncol 2023; 149:15159-15170. [PMID: 37634205 DOI: 10.1007/s00432-023-05305-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE The MGMT (O6-methylguanine-DNA methyltransferase) gene plays a crucial role in repairing DNA damage caused by alkylating agents, including those used in chemotherapy. Genetic and epigenetic alterations can influence the regulation of MGMT gene, which in turn may impact the response to concomitant chemoradiotherapy (CRT) in cervical cancer. The present study was undertaken to evaluate the correlation of such variations in MGMT gene with the treatment outcome of concomitant chemoradiotherapy (CRT) in cervical cancer. METHODS A total of 460 study subjects (240 controls and 220 patients) were subjected to genotypic analysis of MGMT gene variants rs12917(T/C) and rs2308327(A/G) by Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). Out of them, 48 each of controls and patients were analyzed for promoter methylation and expression by methylation-specific PCR and real-time PCR, respectively. Patients (n = 48) were followed up and evaluated for treatment (CRT) outcome. Statistical analyses were done using GraphPad (9.0) and SPSS version 18.0. RESULTS Individuals with GG genotype, G allele of rs2308327, and haplotype 'TA' of both variants showed a significant increase in the development of cervical cancer (P ≤ 0.05). In epigenetic regulation, there was a significant hypermethylation of MGMT gene and down-regulation of their expression in patients compared to control individuals. In treatment outcome of CRT, GG genotype of rs2308327(A/G) gene variant showed better response and GG + AG was significantly associated with vital status (alive). Unmethylated MGMT gene showed better median overall survival up to 25 months significant in comparison to methylated MGMT promoter. CONCLUSION Gene variant rs2308327(A/G) and promoter hypermethylation regulated MGMT gene can be a good prognostic for treatment response in cervical cancer patients.
Collapse
Affiliation(s)
- Maneesh Kumar Gupta
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Atar Singh Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
- Icahn School of Medicine at Mount Sinai, New York, 10029, USA
| | - Renu Singh
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, 226003, India
| | - Kirti Srivastava
- Department of Radiotherapy, King George's Medical University, Lucknow, 226003, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
24
|
Ungureanu EL, Mocanu AL, Stroe CA, Duță DE, Mustățea G. Assessing Health Risks Associated with Heavy Metals in Food: A Bibliometric Analysis. Foods 2023; 12:3974. [PMID: 37959095 PMCID: PMC10649142 DOI: 10.3390/foods12213974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Bibliometric analysis is an effective method used to identify research trends based on historical publications that involves combining different frameworks, tools and methods, leading to the creation of different metrics. This study employed bibliometric analysis to investigate the global health risk assessment of heavy metals in food from 2000 to 2022 using Web of Science and VOSviewer. We explore publication trends, affiliations, countries, journals, citations, keywords and author collaborations. Of the 573 publications on this topic, there has been a notable increase in recent years. The Ministry of Agriculture and Rural Affairs (China) and Shahid Beheshti University of Medical Sciences (Iran) are the most prolific affiliations. Environmental Science and Pollution Research is the top journal. Notably, "heavy metals", "risk assessment", "cadmium", "lead", and "trace elements" are frequently used keywords. A study by Miraglia et al. in 2009 received the most citations. Amin Mousavi Khaneghah (Poland) is the most prolific author, with 24 papers. Articles mainly focus on contamination levels in fish, seafood, cereals, dairy, meat, and fruit/vegetables. Some studies highlight potential risks, necessitating stricter food product controls for consumer safety.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Mustățea
- National Research & Development Institute for Food Bioresources, 020323 Bucharest, Romania; (E.L.U.); (A.L.M.); (C.A.S.); (D.E.D.)
| |
Collapse
|
25
|
Scieszka D, Bolt AM, McCormick MA, Brigman JL, Campen MJ. Aging, longevity, and the role of environmental stressors: a focus on wildfire smoke and air quality. FRONTIERS IN TOXICOLOGY 2023; 5:1267667. [PMID: 37900096 PMCID: PMC10600394 DOI: 10.3389/ftox.2023.1267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a complex biological process involving multiple interacting mechanisms and is being increasingly linked to environmental exposures such as wildfire smoke. In this review, we detail the hallmarks of aging, emphasizing the role of telomere attrition, cellular senescence, epigenetic alterations, proteostasis, genomic instability, and mitochondrial dysfunction, while also exploring integrative hallmarks - altered intercellular communication and stem cell exhaustion. Within each hallmark of aging, our review explores how environmental disasters like wildfires, and their resultant inhaled toxicants, interact with these aging mechanisms. The intersection between aging and environmental exposures, especially high-concentration insults from wildfires, remains under-studied. Preliminary evidence, from our group and others, suggests that inhaled wildfire smoke can accelerate markers of neurological aging and reduce learning capabilities. This is likely mediated by the augmentation of circulatory factors that compromise vascular and blood-brain barrier integrity, induce chronic neuroinflammation, and promote age-associated proteinopathy-related outcomes. Moreover, wildfire smoke may induce a reduced metabolic, senescent cellular phenotype. Future interventions could potentially leverage combined anti-inflammatory and NAD + boosting compounds to counter these effects. This review underscores the critical need to study the intricate interplay between environmental factors and the biological mechanisms of aging to pave the way for effective interventions.
Collapse
Affiliation(s)
- David Scieszka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
26
|
Rohr P, Campanelli Dos Santos I, van Helvoort Lengert A, Alves de Lima M, Manuel Reis R, Barbosa F, Cesar Santejo Silveira H. Absolute telomere length in peripheral blood lymphocytes of workers exposed to construction environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:949-957. [PMID: 35466826 DOI: 10.1080/09603123.2022.2066069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Construction environment is composed of various substances classified as carcinogens. Thus, workers exposed in this environment can be susceptible to genomic instability that can be evaluated by absolute telomere length (TL). In this work, we evaluated TL in construction workers compared to a non-exposed group performed by qPCR assay. The TL was evaluated in 59 men exposed to the construction environment (10 years of exposure) and 49 men non-exposed. Our data showed that individuals exposed to the construction environment exhibited a significantly lower TL in relation to non-exposed group (p = 0.009). Also, on the multiple linear regression model, we observed that TL was significantly influenced by the construction environment exposure (p ≤ 0.001). Additionally, the arsenic exposure is associated to a shortening telomere (p ≤ 0.001), and the lead exposure caused an increase in TL (p ≤ 0.001). Thus, our findings suggest a modulation in TL by construction environment exposure, mainly by arsenic and lead exposure.
Collapse
Affiliation(s)
- Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | | | - Marcos Alves de Lima
- Epidemiology and Biostatistics Nucleus, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Barbosa
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
27
|
Fang YM, Chen WC, Zheng WJ, Yang YS, Zhang Y, Chen XL, Pei MQ, Lin S, He HF. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation. Front Cell Neurosci 2023; 17:1237641. [PMID: 37711511 PMCID: PMC10498389 DOI: 10.3389/fncel.2023.1237641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Spinal cord injury causes varying degrees of motor and sensory function loss. However, there are no effective treatments for spinal cord repair following an injury. Moreover, significant preclinical advances in bioengineering and regenerative medicine have not yet been translated into effective clinical therapies. The spinal cord's poor regenerative capacity makes repairing damaged and lost neurons a critical treatment step. Reprogramming-based neuronal transdifferentiation has recently shown great potential in repair and plasticity, as it can convert mature somatic cells into functional neurons for spinal cord injury repair in vitro and in vivo, effectively halting the progression of spinal cord injury and promoting functional improvement. However, the mechanisms of the neuronal transdifferentiation and the induced neuronal subtypes are not yet well understood. This review analyzes the mechanisms of resident cellular transdifferentiation based on a review of the relevant recent literature, describes different molecular approaches to obtain different neuronal subtypes, discusses the current challenges and improvement methods, and provides new ideas for exploring therapeutic approaches for spinal cord injury.
Collapse
Affiliation(s)
- Yu-Ming Fang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-Jing Zheng
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yu-Shen Yang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Li Chen
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meng-Qin Pei
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - He-Fan He
- Department of Anaesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
28
|
Wu X, Huang G, Li W, Chen Y. Ethnicity-specific association between TERT rs2736100 (A > C) polymorphism and lung cancer risk: a comprehensive meta-analysis. Sci Rep 2023; 13:13271. [PMID: 37582820 PMCID: PMC10427644 DOI: 10.1038/s41598-023-40504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023] Open
Abstract
The rs2736100 (A > C) polymorphism of the second intron of Telomerase reverse transcriptase (TERT) has been confirmed to be closely associated with the risk of Lung cancer (LC), but there is still no unified conclusion on the results of its association with LC. This study included Genome-wide association studies (GWAS) and case-control studies reported so far on this association between TERT rs2736100 polymorphism and LC to clarify such a correlation with LC and the differences in it between different ethnicities and different types of LC. Relevant literatures published before May 7, 2022 on 'TERT rs2736100 polymorphism and LC susceptibility' in PubMed, EMbase, CENTRAL, MEDLINE databases were searched through the Internet, and data were extracted. Statistical analysis of data was performed in Revman5.3 software, including drawing forest diagrams, drawing funnel diagrams and so on. Sensitivity and publication bias analysis were performed in Stata 12.0 software. The C allele of TERT rs2736100 was associated with the risk of LC (Overall population: [OR] = 1.21, 95%CI [1.17, 1.25]; Caucasians: [OR] = 1.11, 95%CI [1.06, 1.17]; Asians: [OR] = 1.26, 95%CI [1.21, 1.30]), and Asians had a higher risk of LC than Caucasians (C vs. A: Caucasians: [OR] = 1.11 /Asians: [OR]) = 1.26). The other gene models also showed similar results. The results of stratified analysis of LC patients showed that the C allele was associated with the risk of Non-small-cell lung carcinoma (NSCLC) and Lung adenocarcinoma (LUAD), and the risk of NSCLC and LUAD in Asians was higher than that in Caucasians. The C allele was associated with the risk of Lung squamous cell carcinoma (LUSC) and Small cell lung carcinoma(SCLC) in Asians but not in Caucasians. NSCLC patients ([OR] = 1.27) had a stronger correlation than SCLC patients ([OR] = 1.03), and LUAD patients ([OR] = 1.32) had a stronger correlation than LUSC patients ([OR] = 1.09).In addition, the C allele of TERT rs2736100 was associated with the risk of LC, NSCLC and LUAD in both smoking groups and non-smoking groups, and the risk of LC in non-smokers of different ethnic groups was higher than that in smokers. In the Asians, non-smoking women were more at risk of developing LUAD. The C allele of TERT rs2736100 is a risk factor for LC, NSCLC, and LUAD in different ethnic groups, and the Asian population is at a more common risk. The C allele is a risk factor for LUSC and SCLC in Asians but not in Caucasians. And smoking is not the most critical factor that causes variation in TERT rs2736100 to increase the risk of most LC (NSCLC, LUAD). Therefore, LC is a multi-etiological disease caused by a combination of genetic, environmental and lifestyle factors.
Collapse
Affiliation(s)
- Xiaozheng Wu
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Gao Huang
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Wen Li
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China
| | - Yunzhi Chen
- Department of Preclinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 510025, China.
| |
Collapse
|
29
|
Mapoko BSE, Ndi KC, Tabola L, Mouaye V, Douanla P, Nsangou N, Nkeng G, Vanvolkenburgh C, Dzekem B, Huo D, Ndom P, Olopade O. Feasibility of cancer genetic counselling and screening in Cameroon: perceived benefits and barriers. Ecancermedicalscience 2023; 17:1588. [PMID: 37799957 PMCID: PMC10550300 DOI: 10.3332/ecancer.2023.1588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 10/07/2023] Open
Abstract
Because there was no genetic testing service in Cameroon, we assessed the acceptance, perceived benefits and barriers and willingness to pay for genetic cancer screening in Cameroon amongst patients with cancers. We carried out a hospital-based, cross-sectional study on adult cancer patients at the Yaoundé General Hospital and the non-Governmental Organisation Solidarity Chemotherapy between February 1, 2021, and December 31, 2021. This was a convenience sampling that included all consenting patients. Qualitative and quantitative data were analysed by Epi info version 7 and SPSS version 20. Our study included 160 (87.5% females) cancer patients, whose ages ranged from 20 to 82 years, with a mean of 49.9 ± 13.0 years. Only 11.9% had undergone some form of genetic counselling or information sessions, and most found this to be helpful in terms of increased knowledge and prevention strategies (13, 68.4%). Almost all participants (156, 97.5%) stated they will like their relatives to undergo genetic counselling. Of these, 151 (94.4%) expressed their desire for their relatives to discuss their cancer risk with a specialist. Perceived benefits of genetic testing included cancer prevention (108, 67.5%) and motivation of self-examination (81, 50.6%). Prominent possible barriers included the cost (129, 80.6%), unavailability of equipment (49, 30.6%) and anticipated anxiety (40, 25.0%). However, a majority of the participants (156, 97.5%) were willing to test for genetic mutations. One hundred and thirty-five (84.4%) participants were willing to pay for genetic testing, with the majority of them (71.8%) ready to pay between $16.7 and $100. Almost all of the participants expressed their willingness to receive cancer genetic counselling and testing but the cost became the main barrier. This pilot study will serve as a guide to the processes of establishing a cancer risk assessment clinic in Cameroon.
Collapse
Affiliation(s)
- Berthe Sabine Esson Mapoko
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
- National Cancer Control Committee, Yaoundé 99322, Cameroon
| | - Kenn Chi Ndi
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Lionel Tabola
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Vanessa Mouaye
- National Cancer Control Committee, Yaoundé 99322, Cameroon
| | - Pelagie Douanla
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Nasser Nsangou
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Glenda Nkeng
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
| | - Carmen Vanvolkenburgh
- Center for Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bonaventure Dzekem
- Center for Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Dezheng Huo
- Center for Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Paul Ndom
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé 99322, Cameroon
- National Cancer Control Committee, Yaoundé 99322, Cameroon
| | - Olufunmilayo Olopade
- Center for Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Prueitt RL, Hixon ML, Fan T, Olgun NS, Piatos P, Zhou J, Goodman JE. Systematic review of the potential carcinogenicity of bisphenol A in humans. Regul Toxicol Pharmacol 2023:105414. [PMID: 37263405 DOI: 10.1016/j.yrtph.2023.105414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Bisphenol A (BPA) is a synthetic chemical to which humans are exposed through a variety of environmental sources. We have conducted a comprehensive, systematic review of 29 epidemiology studies and 27 experimental animal studies, published through May 2022, evaluating the potential carcinogenicity of BPA to contribute to the understanding of whether BPA is carcinogenic in humans. We conducted this review according to best practices for systematic reviews and incorporating established frameworks for study quality evaluation and evidence integration. The epidemiology studies have many limitations that increase the risk of biased results, but overall, the studies do not provide clear and consistent evidence for an association between BPA exposure and the development of any type of cancer. The experimental animal studies also do not provide strong and consistent evidence that BPA is associated with the induction of any malignant tumor type. Some of the proposed mechanisms for BPA carcinogenicity are biologically plausible, but the relevance to human exposures is not clear. We conclude that there is inadequate evidence to support a causal relationship between BPA exposure and human carcinogenicity, based on inadequate evidence in humans, as well as evidence from experimental animal studies that suggests a causal relationship is not likely.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Suite 1900, Seattle, WA, 98101, USA.
| | - Mary L Hixon
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Tongyao Fan
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Nicole S Olgun
- Gradient, 103 East Water Street, 3rd Floor, Charlottesville, VA, 22902, USA
| | - Perry Piatos
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | - Jean Zhou
- Gradient, One Beacon Street, Boston, MA, 02108, USA
| | | |
Collapse
|
31
|
Srivastava R, Singh R, Jauhari S, Lodhi N, Srivastava R. Histone Demethylase Modulation: Epigenetic Strategy to Combat Cancer Progression. EPIGENOMES 2023; 7:epigenomes7020010. [PMID: 37218871 DOI: 10.3390/epigenomes7020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Epigenetic modifications are heritable, reversible changes in histones or the DNA that control gene functions, being exogenous to the genomic sequence itself. Human diseases, particularly cancer, are frequently connected to epigenetic dysregulations. One of them is histone methylation, which is a dynamically reversible and synchronously regulated process that orchestrates the three-dimensional epigenome, nuclear processes of transcription, DNA repair, cell cycle, and epigenetic functions, by adding or removing methylation groups to histones. Over the past few years, reversible histone methylation has become recognized as a crucial regulatory mechanism for the epigenome. With the development of numerous medications that target epigenetic regulators, epigenome-targeted therapy has been used in the treatment of malignancies and has shown meaningful therapeutic potential in preclinical and clinical trials. The present review focuses on the recent advances in our knowledge on the role of histone demethylases in tumor development and modulation, in emphasizing molecular mechanisms that control cancer cell progression. Finally, we emphasize current developments in the advent of new molecular inhibitors that target histone demethylases to regulate cancer progression.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Rubi Singh
- Department of Hematology, Bioreference Laboratories, Elmwood Park, NJ 07407, USA
| | - Shaurya Jauhari
- Division of Education, Training, and Assessment, Global Education Center, Infosys Limited, Mysuru 570027, Karnataka, India
| | - Niraj Lodhi
- Clinical Research (Research and Development Division) Mirna Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rakesh Srivastava
- Molecular Biology and Microbiology, GenTox Research and Development, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
32
|
Yang P, Deng LJ, Xie JY, Li XJ, Wang XN, Sun B, Meng TQ, Xiong CL, Huang YC, Wang YX, Pan A, Chen D, Yang Y. Phthalate exposure with sperm quality among healthy Chinese male adults: The role of sperm cellular function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121755. [PMID: 37142207 DOI: 10.1016/j.envpol.2023.121755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
Adverse male reproduction caused by phthalate ester (PAE) exposure has been well documented in vivo. However, existing evidence from population studies remains inadequate to demonstrate the impact of PAE exposure on spermatogenesis and underlying mechanisms. Our present study aimed to explore the potential link between PAE exposure and sperm quality and the possible mediation by sperm mitochondrial and telomere in healthy male adults recruited from the Hubei Province Human Sperm Bank, China. Nine PAEs were determined in one pooled urine sample prepared from multiple collections during the spermatogenesis period from the same participant. Sperm telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were determined in sperm samples. The sperm concentration and count per quartile increment in mixture concentrations were -4.10 million/mL (-7.12, -1.08) and -13.52% (-21.62%, -4.59%), respectively. We found one quartile increase in PAE mixture concentrations to be marginally associated with sperm mtDNAcn (β = 0.09, 95% CI: -0.01, 0.19). Mediation analysis showed that sperm mtDNAcn significantly explained 24.6% and 32.5% of the relationships of mono-2-ethylhexyl phthalate (MEHP) with sperm concentration and sperm count (β = -0.44 million/mL, 95% CI: -0.82, -0.08; β = -1.35, 95% CI: -2.54, -0.26, respectively). Our study provided a novel insight into the mixed effect of PAEs on adverse semen quality and the potential mediation role of sperm mtDNAcn.
Collapse
Affiliation(s)
- Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong Province, PR China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, 230032, PR China
| | - Lang-Jing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Jin-Ying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Xiao-Jie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Xiao-Na Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Bin Sun
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, PR China
| | - Tian-Qing Meng
- Hubei Province Human Sperm Bank, Wuhan, 430030, Hubei Province, PR China
| | - Cheng-Liang Xiong
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, PR China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, PR China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, PR China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong Province, PR China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, Guangdong, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China.
| |
Collapse
|
33
|
Zhang D, Shimokawa T, Guo Q, Dan S, Miki Y, Sunada S. Discovery of novel DNA-damaging agents through phenotypic screening for DNA double-strand break. Cancer Sci 2023; 114:1108-1117. [PMID: 36385507 PMCID: PMC9986057 DOI: 10.1111/cas.15659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) seriously damage DNA and promote genomic instability that can lead to cell death. They are the source of conditions such as carcinogenesis and aging, but also have important applications in cancer therapy. Therefore, rapid detection and quantification of DSBs in cells are necessary for identifying carcinogenic and anticancer factors. In this study, we detected DSBs using a flow cytometry-based high-throughput method to analyze γH2AX intensity. We screened a chemical library containing 9600 compounds and detected multiple DNA-damaging compounds, although we could not identify mechanisms of action through this procedure. Thus, we also profiled a representative compound with the highest DSB potential, DNA-damaging agent-1 (DDA-1), using a bioinformatics-based method we termed "molecular profiling." Prediction and verification analysis revealed DDA-1 as a potential inhibitor of topoisomerase IIα, different from known inhibitors such as etoposide and doxorubicin. Additional investigation of DDA-1 analogs and xenograft models suggested that DDA-1 is a potential anticancer drug. In conclusion, our findings established that combining high-throughput DSB detection and molecular profiling to undertake phenotypic analysis is a viable method for efficient identification of novel DNA-damaging compounds for clinical applications.
Collapse
Affiliation(s)
- Doudou Zhang
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Shimokawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Qianqian Guo
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeaki Sunada
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Oncology, Juntendo University School of Medicine, Tokyo, Japan.,Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| |
Collapse
|
34
|
A Promising Glass Type in Electronic and Laser Applications: Elastic Moduli, Mechanical, and Photon Transmission Properties of WO3 Reinforced Ternary-Tellurite Glasses. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We report the symmetry of mechanical and gamma-ray attenuation properties for some tellurite glasses through elastic moduli, mechanical, and transmission properties as a function of varied WO3 amount in glass configuration. Four glass samples, along with different molar compositions as well as WO3/GdF3 substitution ratios, are investigated. Transmission properties using several essential parameters, such as attenuation coefficients, half-value layers, effective atomic numbers, effective conductivity, and buildup factors, are calculated in the 0.015–15 MeV energy range. Moreover, elastic moduli and Poisson’s ratios (σ) of the studied glass are calculated using the Makishima–Mackenzie model. The M4 sample with the highest WO3 addition is found with superior photon attenuation properties among the glasses investigated. Poisson’s ratio (σ) is increased, while all elastic moduli are decreased. Young’s modulus is reported as 62.23 GPa and 36.45.37 GPa at the highest and lowest WO3 mol%, respectively. It can be concluded that WO3 is a functional and monotonic tool in ternary-tellurite glasses for multiple modifications and enhancement purposes on gamma-ray attenuation, elastic moduli, and mechanical properties. It can also be concluded that increasing the WO3 amount in tellurite glasses may be considered a tool in terms of providing symmetry for mechanical and gamma-ray attenuation properties.
Collapse
|
35
|
Han M, Zhang Z, Liu S, Sheng Y, Waigi MG, Hu X, Qin C, Ling W. Genotoxicity of organic contaminants in the soil: A review based on bibliometric analysis and methodological progress. CHEMOSPHERE 2023; 313:137318. [PMID: 36410525 DOI: 10.1016/j.chemosphere.2022.137318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Organic contaminants (OCs) are ubiquitous in the environment, posing severe threats to human health and ecological balance. In particular, OCs and their metabolites could interact with genetic materials to induce genotoxicity, which has attracted considerable attention. In this review, bibliometric analysis was executed to analyze the publications on the genotoxicity of OCs in soil from 1992 to 2021. The result indicated that significant contributions were made by China and the United States in this field and the research hotspots were biological risks, damage mechanisms, and testing methods. Based on this, in this review, we summarized the manifestations and influencing factors of genotoxicity of OCs to soil organisms, the main damage mechanisms, and the most commonly utilized testing methods. OCs can induce genotoxicity and the hierarchical response of soil organisms, which could be influenced by the physicochemical properties of OCs and the properties of soil. Specific mechanisms of genotoxicity can be classified into DNA damage, epigenetic toxicity, and chromosomal aberrations. OCs with different molecular weights lead to genetic material damage by inducing the generation of ROS or forming adducts with DNA, respectively. The micronucleus test and the comet test are the most commonly used testing methods. Moreover, this review also pointed out that future studies should focus on the relationships between bioaccessibilities and genotoxicities, transcriptional regulatory factors, and potential metabolites of OCs to elaborate on the biological risks and mechanisms of genotoxicity from an overall perspective.
Collapse
Affiliation(s)
- Miao Han
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zaifeng Zhang
- Jiangsu Province Nantong Environmental Monitoring Center, Nantong 226006, PR China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Youying Sheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
36
|
Ellwanger JH, Kulmann-Leal B, Ziliotto M, Chies JAB. HIV Infection, Chromosome Instability, and Micronucleus Formation. Viruses 2023; 15:155. [PMID: 36680195 PMCID: PMC9867034 DOI: 10.3390/v15010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Genome integrity is critical for proper cell functioning, and chromosome instability can lead to age-related diseases, including cancer and neurodegenerative disorders. Chromosome instability is caused by multiple factors, including replication stress, chromosome missegregation, exposure to pollutants, and viral infections. Although many studies have investigated the effects of environmental or lifestyle genotoxins on chromosomal integrity, information on the effects of viral infections on micronucleus formation and other chromosomal aberrations is still limited. Currently, HIV infection is considered a chronic disease treatable by antiretroviral therapy (ART). However, HIV-infected individuals still face important health problems, such as chronic inflammation and age-related diseases. In this context, this article reviews studies that have evaluated genomic instability using micronucleus assays in the context of HIV infection. In brief, HIV can induce chromosome instability directly through the interaction of HIV proteins with host DNA and indirectly through chronic inflammation or as a result of ART use. Connections between HIV infection, immunosenescence and age-related disease are discussed in this article. The monitoring of HIV-infected individuals should consider the increased risk of chromosome instability, and lifestyle interventions, such as reduced exposure to genotoxins and an antioxidant-rich diet, should be considered. Therapies to reduce chronic inflammation in HIV infection are needed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Postgraduate Program in Genetics and Molecular Biology (PPGBM), Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | | | | | - José Artur Bogo Chies
- Postgraduate Program in Genetics and Molecular Biology (PPGBM), Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| |
Collapse
|
37
|
Guo S, Zhu X, Huang Z, Wei C, Yu J, Zhang L, Feng J, Li M, Li Z. Genomic instability drives tumorigenesis and metastasis and its implications for cancer therapy. Biomed Pharmacother 2023; 157:114036. [PMID: 36436493 DOI: 10.1016/j.biopha.2022.114036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Genetic instability can be caused by external factors and may also be associated with intracellular damage. At the same time, there is a large body of research investigating the mechanisms by which genetic instability occurs and demonstrating the relationship between genomic stability and tumors. Nowadays, tumorigenesis development is one of the hottest research areas. It is a vital factor affecting tumor treatment. Mechanisms of genomic stability and tumorigenesis development are relatively complex. Researchers have been working on these aspects of research. To explore the research progress of genomic stability and tumorigenesis, development, and treatment, the authors searched PubMed with the keywords "genome instability" "chromosome instability" "DNA damage" "tumor spread" and "cancer treatment". This extracts the information relevant to this study. Results: This review introduces genomic stability, drivers of tumor development, tumor cell characteristics, tumor metastasis, and tumor treatment. Among them, immunotherapy is more important in tumor treatment, which can effectively inhibit tumor metastasis and kill tumor cells. Breakthroughs in tumorigenesis development studies and discoveries in tumor metastasis will provide new therapeutic techniques. New tumor treatment methods can effectively prevent tumor metastasis and improve the cure rate of tumors.
Collapse
Affiliation(s)
- Shihui Guo
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiao Zhu
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Ziyuan Huang
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Chuzhong Wei
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiaao Yu
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Lin Zhang
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jinghua Feng
- Computational Oncology Lab, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo 255000, China.
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
38
|
Ganguly BB, Ganguly S, Kadam NN. Spectrum of stable and unstable rearrangements in lymphocytic chromosomes investigated in Bhopal population 30 years post MIC disaster amid co-exposure to lifestyle, living, and occupational hazards. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1997-2019. [PMID: 35922599 DOI: 10.1007/s11356-022-22053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Immediate assessment of genetic damage in methyl isocyanate (MIC) gas-exposed population in small and heterogeneous samples using diversified study designs and solid-stained metaphases could not depict the actual genetic impact of MIC on accidentally exposed individuals. The outcome of the then large multi-center genetic screening program was not available to the public and scientific community. Also, the routine and regular epidemiological health survey does not capture the genetic and long-term effect of MIC. Therefore, genetic screening was carried out 30 years post disaster during 2015-2017 with a view to screen the present status of chromosomal consequences in lymphocytic cells. Participants were recruited from moderate (34) and severely (78) exposed and unexposed (35) cohorts with their informed consent. Analysis of ~100 mitotic cells and karyotyping of at least 10-15 and all abnormal metaphases detected structural and numerical alterations, including stable and replicable ones. Clonal abnormalities were detected with monosomal and complex karyotypes, trisomy 8, del5q/20q, loss of Y, etc. Among all, X-chromosome was frequently involved in numerical alterations. Structural aberrations appeared higher in the then exposed populations, though abnormalities cannot be linked directly to MIC exposure 30 years post disaster. Collectively, all rearrangements were markedly higher in the severely exposed population. Altogether, the detected abnormalities appeared random and indicated genomic instability, suggesting follow-up at shorter intervals for the individuals detected with clonal aberrations. G-banding has facilitated recognition of chromosomal involvement and their breakpoints and classification of structural rearrangements. The present data has been derived from the 30-year post-disaster genetic screening.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM Center for Genetic Research & Diagnosis, MGM New Bombay Hospital, Navi Mumbai, India.
- MGM Institute of Health Sciences, Navi Mumbai, India.
| | - Shouvik Ganguly
- MGM Center for Genetic Research & Diagnosis, MGM New Bombay Hospital, Navi Mumbai, India
- MGM Dental College and Hospital, Navi Mumbai, India
| | - Nitin N Kadam
- MGM Center for Genetic Research & Diagnosis, MGM New Bombay Hospital, Navi Mumbai, India
- MGM Institute of Health Sciences, Navi Mumbai, India
| |
Collapse
|
39
|
Fragoso-Bargas N, Page CM, Joubert BR, London SJ, Lee-Ødegård S, Opsahl JO, Sletner L, Jenum AK, Qvigstad E, Prasad RB, Moen GH, Birkeland KI, Sommer C. Epigenome-wide association study of serum folate in maternal peripheral blood leukocytes. Epigenomics 2023; 15:39-52. [PMID: 36974632 PMCID: PMC10072132 DOI: 10.2217/epi-2022-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Aim: To perform an epigenome-wide association study (EWAS) of serum folate in maternal blood. Methods: Cross-ancestry (Europeans = 302, South Asians = 161) and ancestry-specific EWAS in the EPIPREG cohort were performed, followed by methyl quantitative trait loci analysis and association with cardiometabolic phenotypes. Replication was attempted using maternal folate intake and blood methylation data from the MoBa study and verified if the findings were significant in a previous EWAS of maternal serum folate in cord blood. Results & conclusion: cg19888088 (cross-ancestry) in EBF3, cg01952260 (Europeans) and cg07077240 (South Asians) in HERC3 were associated with serum folate. cg19888088 and cg01952260 were associated with diastolic blood pressure. cg07077240 was associated with variants in CASC15. The findings were not replicated and were not significant in cord blood.
Collapse
Affiliation(s)
- Nicolas Fragoso-Bargas
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Christian M Page
- Centre for Fertility & Health, Norwegian Institute of Public Health, 0403, Oslo, Norway
- Department of Mathematics, Faculty of Mathematics & Natural Sciences, University of Oslo, 0315, Oslo, Norway
| | - Bonnie R Joubert
- Department of Health & Human Services, Population Health Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Stephanie J London
- Department of Health & Human Services, Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Julia O Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Line Sletner
- Department of Pediatric & Adolescents Medicine, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Anne K Jenum
- Department of General Practice, Institute of Health & Society, University of Oslo, 0318, Oslo, Norway
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Rashmi B Prasad
- Lund University Diabetes Centre, 214 28, Malmö, Sweden
- Institute for Molecular Medicine Finland FIMM, Helsinki University, 00014, Helsinki, Finland
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
- Institute of Molecular Biosciences, The University of Queensland, St Lucia QLD 4072, Australia
- Department of Public Health & Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science & Technology, 7491, Trondheim, Norway
- The Frazer Institute, The University of Queensland, 4102, Woolloongabba, Australia
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 1QU, Bristol, United Kingdom
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity & Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|
40
|
Muciño-Hernández G, Acevo-Rodríguez PS, Cabrera-Benitez S, Guerrero AO, Merchant-Larios H, Castro-Obregón S. Nucleophagy contributes to genome stability through degradation of type II topoisomerases A and B and nucleolar components. J Cell Sci 2023; 136:286548. [PMID: 36633090 PMCID: PMC10112964 DOI: 10.1242/jcs.260563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood. Here, we describe that primary mouse embryonic fibroblasts develop a basal level of nuclear buds and micronuclei, which increase after etoposide-induced DNA double-stranded breaks. Both basal and induced nuclear buds and micronuclei colocalize with the autophagic proteins BECN1 and LC3B (also known as MAP1LC3B) and with acidic vesicles, suggesting their clearance by nucleophagy. Some of the nuclear alterations also contain autophagic proteins and type II DNA topoisomerases (TOP2A and TOP2B), or the nucleolar protein fibrillarin, implying they are also targets of nucleophagy. We propose that basal nucleophagy contributes to genome and nuclear stability, as well as in response to DNA damage.
Collapse
Affiliation(s)
- Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Pilar Sarah Acevo-Rodríguez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Sandra Cabrera-Benitez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Adán Oswaldo Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
41
|
Palmer RD. Three Tiers to biological escape velocity: The quest to outwit aging. Aging Med (Milton) 2022; 5:281-286. [PMID: 36606268 PMCID: PMC9805293 DOI: 10.1002/agm2.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
As longevity companies emerge with new products and the fields of anti-aging research develop new cutting-edge therapies, three distinct classes of longevity methodologies emerge. This discussion finds that there are three clear classes (Tiers) of longevity systems that are currently under development, and all three will be paramount to achieve biological escape velocity (where tissues can be repaired faster than aging can damage them). These classes are referred to as Tier 1, Tier 2, and Tier 3 treatments and are described in detail below. These three Tiers are required for easy identification for pharmaceutical companies and research companies to determine the type of therapy they may choose to deliver being noninvasive, invasive, time consuming, or simple end user products. Specific targets and goals need to be defined clearly from an early perspective in the development of these technologies for future precision medicines. This allows consumers of future anti-aging technologies to consider which Tier a particular therapy may be, delivering a more informed choice.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Full Spectrum BiologicsSouth PerthWestern AustraliaAustralia
- School of Aging, Science of AgingSouth PerthWestern AustraliaAustralia
| |
Collapse
|
42
|
Pesonen M, Vähäkangas K. Contribution of common plastic-related endocrine disruptors to epithelial-mesenchymal transition (EMT) and tumor progression. CHEMOSPHERE 2022; 309:136560. [PMID: 36152835 DOI: 10.1016/j.chemosphere.2022.136560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Many chemicals, including many endocrine disruptors (EDCs) are known to leach out from various plastic consumer products and waste, and are widespread in the environment. EDCs are a large group of contaminants that can interfere with hormonal metabolism or function. In addition, there are in the literature implications of contribution by EDCs in tumor progression, the last stage of carcinogenesis driven by cells with a metastatic phenotype. The process of epithelial cells losing their apical-basal polarity and cell-to-cell contacts, and acquiring migration and invasive properties typical of mesenchymal cells is called epithelial-mesenchymal transition (EMT). It is essential for tumor progression. In human cells, plastic-related EDCs, (phthalates, bisphenol A, and the alkylphenols: nonylphenol and octylphenol) reduce epithelial E-cadherin, and increase mesenchymal N-cadherin and extracellular matrix metalloproteinases. These changes are hallmarks of EMT. In xenograft mouse studies, EDCs increase migration of cells and metastatic growth in distant tissues. Their contribution to EMT and tumor progression, the topic of this review, is important from public health perspective, because of the ubiquitous exposure to these EDCs. In this mini-review we also discuss molecular mechanisms associated with EDC-induced EMT and tumor progression.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Sciences, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
43
|
Hashemi Karoii D, Azizi H, Skutella T. Microarray and in silico analysis of DNA repair genes between human testis of patients with nonobstructive azoospermia and normal cells. Cell Biochem Funct 2022; 40:865-879. [PMID: 36121211 DOI: 10.1002/cbf.3747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/16/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022]
Abstract
DNA repair processes are critical to maintaining genomic integrity. As a result, dysregulation of repair genes is likely to be linked with health implications, such as an increased prevalence of infertility and an accelerated rate of aging. We evaluated all the DNA repair genes (322 genes) by microarray. This study has provided insight into the connection between DNA repair genes, including RAD23B, OBFC2A, PMS1, UBE2V1, ERCC5, SMUG1, RFC4, PMS2L5, MMS19, SHFM1, INO80, PMS2L1, CHEK2, TRIP13, and POLD4. The microarray analysis of six human cases with different nonobstructive azoospermia revealed that RAD23B, OBFC2A, PMS1, UBE2V1, ERCC5, SMUG1, RFC4, PMS2L5, MMS19, SHFM1, and INO80 were upregulated, and expression of PMS2L1, CHEK2, TRIP13, and POLD4 was downregulated versus the normal case. For this purpose, Enrich Shiny GO, STRING, and Cytoscape online evaluation was applied to predict proteins' functional and molecular interactions and then performed to recognize the master pathways. Functional enrichment analysis revealed that the biological process (BP) terms "base-excision repair, AP site formation," "nucleotide-excision repair, DNA gap filling," and "nucleotide-excision repair, preincision complex assembly" was significantly overexpressed in upregulated differentially expressed genes (DEGs). BP analysis of downregulated DEGs highlighted "histone phosphorylation," "DNA damage response, detection DNA response," "mitotic cell cycle checkpoint signaling," and "double-strand break repair." Overrepresented molecular function (MF) terms in upregulated DEGs included "Oxidized base lesion DNA N-glycosylase activity," "uracil DNA N-glycosylase activity," "bubble DNA binding" and "DNA clamp loader activity." Interestingly, MF investigation of downregulated DEGs showed overexpression in "heterotrimeric G-protein complex," "5'-deoxyribose-5-phosphate lyase activity," "minor groove of adenine-thymine-rich DNA binding," and "histone kinase activity." Our findings suggest that these genes and their interacting hub proteins could help determine the pathophysiology of germ cell abnormalities and infertility.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Hirao-Suzuki M. Mechanisms of Cancer Malignancy Elicited by Environmental Chemicals: Analysis Focusing on Cadmium and Bisphenol A. YAKUGAKU ZASSHI 2022; 142:1161-1168. [DOI: 10.1248/yakushi.22-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
46
|
The effect of low doses of chlorpyrifos on blood and bone marrow cells in Wistar rats. Arh Hig Rada Toksikol 2022; 73:223-232. [PMID: 36226822 PMCID: PMC9837532 DOI: 10.2478/aiht-2022-73-3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the genotoxic potential of low doses of chlorpyrifos (CPF) on blood and bone marrow cells in adult male Wistar rats. CPF was administered by oral gavage at daily doses of 0.010, 0.015, and 0.160 mg/kg of body weight (bw) for 28 consecutive days. Positive control (PC) was administered 300 mg/kg bw/day of ethyl methane sulphonate (EMS) for the final three days of the experiment. Toxic outcomes of exposure were determined with the in vivo micronucleus (MN) assay and alkaline comet assay. The 28-day exposure to the 0.015 mg/kg CPF dose, which was three times higher than the current value of acute reference dose (ARfD), reduced body weight gain in rats the most. The in vivo MN assay showed significant differences in number of reticulocytes per 1000 erythrocytes between PC and negative control (NC) and between all control groups and the groups exposed to 0.015 and 0.160 mg/kg bw/day of CPF. The number of micronucleated polychromatic erythrocytes per 2000 erythrocytes was significantly higher in the PC than the NC group or group exposed to 0.015 mg/kg bw/day of CPF. CPF treatment did not significantly increase primary DNA damage in bone marrow cells compared to the NC group. However, the damage in bone marrow cells of CPF-exposed rats was much higher than the one recorded in leukocytes, established in the previous research. Both assays proved to be successful for the assessment of CPFinduced genome instability in Wistar rats. However, the exact mechanisms of damage have to be further investigated and confirmed by other, more sensitive methods.
Collapse
|
47
|
DNA Damage Response Differentially Affects BoHV-1 Gene Transcription in Cell Type-Dependent Manners. Biomedicines 2022; 10:biomedicines10092282. [PMID: 36140380 PMCID: PMC9496131 DOI: 10.3390/biomedicines10092282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, is also a promising oncolytic virus. Recent studies have demonstrated that the virus infection induces DNA damage and DNA damage response (DDR), potentially accounting for virus infection-induced cell death and oncolytic effects. However, whether the global DDR network affects BoHV-1 productive infection remains to be elucidated. In this study, we show that global DDR induced by ultraviolet (UV) irradiation prior to BoHV-1 infection differentially affected transcription of immediate early (IE) genes, such as infected cell protein 0 (bICP0) and bICP22, in a cell-type-dependent manner. In addition, UV-induced DDR may affect the stabilization of viral protein levels, such as glycoprotein C (gC) and gD, because the variation in mRNA levels of gC and gD as a consequence of UV treatment were not in line with the variation in individual protein levels. The virus productive infection also affects UV-primed DDR signaling, as demonstrated by the alteration of phosphorylated histone H2AX (γH2AX) protein levels and γH2AX formation following virus infection. Taken together, for the first time, we evidenced the interplay between UV-primed global DDR and BoHV-1 productive infection. UV-primed global DDR differentially modulates the transcription of virus genes and stabilization of virus protein. Vice versa, the virus infection may affect UV-primed DDR signaling.
Collapse
|
48
|
Pathak AK, Husain N, Kant S, Bala L. Reflection of p53 phenotype in tumor tissue by genotypic variants in glutathione S-transferases: An association with DNA damage in lung adenocarcinoma. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Toman R, Psenkova M, Tancin V, Miskeje M. Mutagens in raw ewe milk in Orava region, northern Slovakia: metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62259-62271. [PMID: 35604602 DOI: 10.1007/s11356-022-20871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The aim of this work was to determine the concentrations of selected mutagenic elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Se) in raw ewe milk from undisturbed environment in Orava region, northern Slovakia. There are possible sources of some of the analyzed metals which may be distributed from the metallurgical plants located in the Ostrava region, Czech Republic, and Katowice, Poland. In total, forty milk samples were analyzed in June and August using an inductively coupled plasma optical emission spectrometry. The differences in elements concentrations between the seasonal periods were not significant except of iron (p < 0.0001). The concentrations of most of the metals in ewe milk were low and under the permissible or recommended limits. However, arsenic and selenium concentrations were elevated and could pose a risk of the mutagenic effect, particularly in children. The frequency of element occurrence in June was as follows: Se > Fe > As > Cu > Mn > Ni > Co > Pb > Cr > Cd, and in August: Se > Fe = As > Cu > Mn > Pb > Co > Ni > Cr > Cd. The correlation analysis revealed very strong positive correlation between Cu:Pb (p < 0.05), very strong negative correlation between Fe:Se (p < 0.05). The strong correlations were also found between other elements. The present study showed that milk produced in the relatively undisturbed environment might contain various mutagenic elements. The relationships between the elements might result in the additive or synergistic effects of elements and increase the risk of their mutagenic effects even in low concentrations. Therefore, attention must be paid to the monitoring of metals in the areas where food sources destined especially for child nutrition are produced.
Collapse
Affiliation(s)
- Robert Toman
- Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic.
| | - Martina Psenkova
- Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Vladimir Tancin
- Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Michal Miskeje
- Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| |
Collapse
|
50
|
Lamkin DM, Chen S, Bradshaw KP, Xu S, Faull KF, Sloan EK, Cole SW. Low-dose exposure to PBDE disrupts genomic integrity and innate immunity in mammary tissue. Front Genet 2022; 13:904607. [PMID: 36035174 PMCID: PMC9413140 DOI: 10.3389/fgene.2022.904607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The low-dose mixture hypothesis of carcinogenesis proposes that exposure to an environmental chemical that is not individually oncogenic may nonetheless be capable of enabling carcinogenesis when it acts in concert with other factors. A class of ubiquitous environmental chemicals that are hypothesized to potentially function in this low-dose capacity are synthesized polybrominated diphenyl ethers (PBDEs). PBDEs can affect correlates of carcinogenesis that include genomic instability and inflammation. However, the effect of low-dose PBDE exposure on such correlates in mammary tissue has not been examined. In the present study, low-dose long-term (16 weeks) administration of PBDE to mice modulated transcriptomic indicators of genomic integrity and innate immunity in normal mammary tissue. PBDE increased transcriptome signatures for the Nuclear Factor Erythroid 2 Like 2 (NFE2L2) response to oxidative stress and decreased signatures for non-homologous end joining DNA repair (NHEJ). PBDE also decreased transcriptome signatures for the cyclic GMP-AMP Synthase - Stimulator of Interferon Genes (cGAS-STING) response, decreased indication of Interferon Stimulated Gene Factor 3 (ISGF3) and Nuclear Factor Kappa B (NF-κB) transcription factor activity, and increased digital cytometry estimates of immature dendritic cells (DCs) in mammary tissue. Replication of the PBDE exposure protocol in mice susceptible to mammary carcinogenesis resulted in greater tumor development. The results support the notion that ongoing exposure to low levels of PBDE can disrupt facets of genomic integrity and innate immunity in mammary tissue. Such effects affirm that synthesized PBDEs are a class of environmental chemicals that reasonably fit the low-dose mixture hypothesis.
Collapse
Affiliation(s)
- Donald M. Lamkin
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Donald M. Lamkin,
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Karen P. Bradshaw
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neuroscience, Stanford University School of Medicine, Stanford, CA, United States
| | - Shili Xu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kym F. Faull
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Erica K. Sloan
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre-Victorian Comprehensive Cancer Centre, Melbourne, VIC, Austalia
| | - Steve W. Cole
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|