1
|
Wei L, Zhou M, Hu P, Jia S, Zhong S. Abnormal brain activation in autism spectrum disorder during negative emotion processing: A meta-analysis of functional neuroimaging studies. J Psychiatr Res 2025; 185:1-10. [PMID: 40138749 DOI: 10.1016/j.jpsychires.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Autism Spectrum Disorder (ASD) has deficits in emotional processing, which is one of the most common abnormalities in ASD social skills. Studies have shown that negative emotions seem to stimulate brain activity more effectively. Therefore, it is necessary to explore the neural mechanisms underlying the abnormal performance of ASD in processing negative emotions. Considering the various results on negative emotions due to factors such as experimental paradigms and sample sizes, meta-analysis can consolidate multiple studies to obtain more reliable conclusions and explore potential factors. Therefore, this study conducted meta-analysis on negative emotions to explore the abnormal brain activation patterns of negative emotion processing in ASD. Our results revealed abnormal brain activation patterns in ASD at the systemic level when processing negative emotions, such as -abnormal hypoactivation in the bilateral inferior frontal gyrus, right cerebellum, left fusiform gyrus, and left amygdala, and abnormally complementary hyperactivation in the bilateral temporal gyrus. The negative emotion processing deficits in ASD seem to stem from the aforementioned comprehensive damage to brain regions from the mirror neuron system and the limbic system. Further, there were differences in abnormal brain activation patterns in explicit and implicit processing of negative emotions. These abnormal activation regions were significantly positively correlated with the severity of communication and social deficits in ASD, indicating impaired social skills in negative emotion processing. These findings contribute to further understanding of the pathophysiology of ASD and provide new perspectives for the treatment, rehabilitation, and diagnosis of ASD related impairments.
Collapse
Affiliation(s)
- Long Wei
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, 250101, China
| | - Meihao Zhou
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, 250101, China
| | - Pinyuan Hu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Shouqiang Jia
- Department of Radiology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, 271199, China
| | - Suyu Zhong
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| |
Collapse
|
2
|
Yin S, Sun S, Li J, Feng Y, Zheng L, Chen K, Ma J, Xu F, Yao D, Xu P, Liang XS, Zhang T. Temporal and spatial variability of large-scale dynamic brain networks in ASD. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02679-9. [PMID: 40019496 DOI: 10.1007/s00787-025-02679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by significant impairments in social-cognitive functioning. Prior studies have identified abnormal brain functional connectivity (FC) patterns in individuals with ASD, which are associated with core symptoms and serve as potential biomarkers for diagnosis. However, the patterns of temporal and spatial variability in dynamic functional connectivity networks (dFCNs) in ASD and their relationship with ASD behaviors remain underexplored. This study uses fuzzy entropy to analyze the temporal variability and spatial variability of dFCNs, aiming to reveal distinctive FC patterns in ASD and identify new biomarkers. We conducted a comparative analysis between ASD and healthy controls (HCs), examining the association with clinical symptoms. Our findings indicate increased FC temporal variability in sensorimotor, subcortical, and cerebellar networks in ASD compared to HCs. Additionally, increased spatial variability was observed primarily in visual, limbic, subcortical, and cerebellar networks. Notably, these variability patterns correlated with symptom severity in ASD. Utilizing these spatiotemporal variability features, we developed multi-site classification models that achieved high accuracy (81.25%) in identifying ASD. These results provide novel insights into the neural mechanisms and clinical characteristics of ASD, suggesting that integrated spatiotemporal dFCN features may enhance diagnostic accuracy.
Collapse
Affiliation(s)
- Shunjie Yin
- Mental Health Education Center, School of Science, Xihua University, Chengdu, 610039, PR China
- The Artificial Intelligence Department Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China
| | - Shan Sun
- Mental Health Education Center, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jia Li
- Mental Health Education Center, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yu Feng
- Key Laboratory for Neuro Information of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Liqin Zheng
- Key Laboratory for Neuro Information of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Kai Chen
- Mental Health Education Center, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jiwang Ma
- The Artificial Intelligence Department Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China
| | - Fen Xu
- The Artificial Intelligence Department Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China
| | - Dezhong Yao
- Key Laboratory for Neuro Information of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Peng Xu
- Key Laboratory for Neuro Information of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - X San Liang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, PR China.
| | - Tao Zhang
- Mental Health Education Center, School of Science, Xihua University, Chengdu, 610039, PR China.
- The Artificial Intelligence Department Division of Frontier Research, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
3
|
Lee Masson H. Dynamic functional adaptations during touch observation in autism: connectivity strength is linked to attitudes towards social touch and social responsiveness. Mol Autism 2025; 16:11. [PMID: 39966865 PMCID: PMC11837348 DOI: 10.1186/s13229-025-00644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Autistic adults experience differences in social interactions involving physical contact. Brain imaging studies suggest that these differences may be related to atypical brain responses to social-affective cues, affecting both the experience of receiving touch and observing it in others. However, it remains unclear whether these atypical responses are limited to specific brain regions or represent broader alterations in brain connectivity. The current study investigated how the functional network architecture is modulated during touch observation associated with autism and explored the extent to which changes in this architecture are associated with individual differences in social touch preferences and social responsiveness. METHODS By integrating generalized psychophysiological interaction (gPPI) analysis with independent component analysis (ICA), the current study analyzed existing fMRI datasets, in which 21 autistic and 21 non-autistic male adults viewed videos of social and nonsocial touch while undergoing MRI scans. RESULTS A gPPI analysis of regions of interest revealed that autistic adults exhibited increased connectivity between sensory and social brain regions. The strength of some of these connections was positively associated with a higher preference for social touch and greater social responsiveness, suggesting neural compensatory mechanisms that may help autistic adults better understand the meaning of touch. At the level of large-scale brain networks extracted using ICA, atypical connectivity was predominantly observed between the sensorimotor network and other networks involved in social-emotional processing. Increased connectivity was observed in the sensorimotor network during nonsocial touch, suggesting that embodied simulation, the process by which individuals internally simulate touch experience of others in this context, may be more engaged when observing human-object interactions than during human-to-human touch. LIMITATIONS This study focused on a specific subgroup of 21 autistic male adults with minimal support needs. Future research would benefit from including a more diverse autistic sample. CONCLUSIONS This study reveals atypical context-dependent modulation of functional brain architecture associated with autism during touch observation. Neural compensatory mechanisms in autistic individuals who enjoy social touch and show higher social responsiveness may function as adaptive social responses. However, these compensations may be limited to specific brain regions, rather than occurring at the level of large-scale brain networks.
Collapse
Affiliation(s)
- Haemy Lee Masson
- Centre for Neurodiversity and Development, Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
4
|
Segura P, Pagani M, Bishop SL, Thomson P, Colcombe S, Xu T, Factor ZZ, Hector EC, Kim SH, Lombardo MV, Gozzi A, Castellanos XF, Lord C, Milham MP, Martino AD. Connectome-based symptom mapping and in silico related gene expression in children with autism and/or attention-deficit/hyperactivity disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.09.24318621. [PMID: 39711728 PMCID: PMC11661353 DOI: 10.1101/2024.12.09.24318621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Clinical, neuroimaging and genomics evidence have increasingly underscored a degree of overlap between autism and attention-deficit/hyperactivity disorder (ADHD). This study explores the specific contribution of their core symptoms to shared biology in a sample of N=166 verbal children (6-12 years) with rigorously-established primary diagnoses of either autism or ADHD (without autism). We investigated the associations between inter-individual differences in clinician-based dimensional measures of autism and ADHD symptoms and whole-brain low motion intrinsic functional connectivity (iFC). Additionally, we explored their linked gene expression patterns in silico. Whole-brain multivariate distance matrix regression revealed a transdiagnostic association between autism severity and iFC of two nodes: the middle frontal gyrus of the frontoparietal network and posterior cingulate cortex of the default mode network. Across children, the greater the iFC between these nodes, the more severe the autism symptoms, even after controlling for ADHD symptoms. Results from segregation analyses were consistent with primary findings, underscoring the significance of internetwork iFC interactions for autism symptom severity across diagnoses. No statistically significant brain-behavior relationships were observed for ADHD symptoms. Genetic enrichment analyses of the iFC maps associated with autism symptoms implicated genes known to: (i) have greater rate of variance in autism and ADHD, and (ii) be involved in neuron projection, suggesting shared genetic mechanisms for this specific brain-clinical phenotype. Overall, these findings underscore the relevance of transdiagnostic dimensional approaches in linking clinically-defined phenomena to shared presentations at the macroscale circuit- and genomic-levels among children with diagnoses of autism and ADHD.
Collapse
Affiliation(s)
- Patricia Segura
- Child Mind Institute, New York, NY, USA
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - Marco Pagani
- Child Mind Institute, New York, NY, USA
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Istituzioni Mercati Tecnologie School for Advanced Studies, Lucca, Italy
| | - Somer L. Bishop
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | | | - Stanley Colcombe
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | | | - Emily C. Hector
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - So Hyun Kim
- School of Psychology, Korea University, Seoul, South Korea
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, 38068, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Xavier F. Castellanos
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Catherine Lord
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Michael P. Milham
- Child Mind Institute, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | |
Collapse
|
5
|
Chen T, Jiang J, Xu M, Dai Y, Gao X, Jiang C. Atypical prefrontal neural activity during an emotional interference control task in adolescents with autism spectrum disorder: A functional near-infrared spectroscopy study. Neuroimage 2024; 302:120907. [PMID: 39490560 DOI: 10.1016/j.neuroimage.2024.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Autism spectrum disorder (ASD) is typically characterized by impairments in social interaction and communication, which may be associated with a failure to naturally orient to social stimuli, particularly in recognizing and responding to facial emotions. As most previous studies have used nonsocial stimuli to investigate inhibitory control in children and adults with ASD, little is known about the behavioral and neural activation patterns of emotional inhibitory control in adolescent with ASD. Functional neuroimaging studies have underscored the key role of the prefrontal cortex (PFC) in inhibitory control and emotional face processing. Thus, this study aimed to examine whether adolescent with ASD exhibited altered PFC processing during an emotional Flanker task by using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-one adolescents with high-functioning ASD and 26 typically developing (TD) adolescents aged 13-16 years were recruited. All participants underwent an emotional Flanker task, which required to decide whether the centrally positioned facial emotion is consistent with the laterally positioned facial emotion. TD adolescents exhibited larger RT and mean O2Hb level in the incongruent condition than the congruent condition, evoking cortical activations primarily in right PFC regions in response to the emotional Flanker effect. In contrast, ASD adolescents failed to exhibit the processing advantage for congruent versus incongruent emotional face in terms of RT, but showed cortical activations primarily in left PFC regions in response to the emotional Flanker effect. These findings suggest that adolescents with ASD rely on different neural strategies to mobilize PFC neural resources to address the difficulties they experience when inhibiting the emotional face.
Collapse
Affiliation(s)
- Tingting Chen
- Faculty of Dance Education, Beijing Dance Academy, Beijing, PR China
| | - Jiarui Jiang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, PR China
| | - Mingchao Xu
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Yuanfu Dai
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Xiaoyan Gao
- Department of Graduate, Capital University of Physical Education and Sports, Beijing, PR China
| | - Changhao Jiang
- Beijing Key Lab of Physical Fitness Evaluation and Tech Analysis, Capital University of Physical Education and Sports, Beijing, PR China.
| |
Collapse
|
6
|
Ju J, Li X, Pan Y, Du J, Yang X, Men S, Liu B, Zhang Z, Zhong H, Mai J, Wang Y, Hou ST. Adenosine mediates the amelioration of social novelty deficits during rhythmic light treatment of 16p11.2 deletion female mice. Mol Psychiatry 2024; 29:3381-3394. [PMID: 38740879 PMCID: PMC11541200 DOI: 10.1038/s41380-024-02596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Non-invasive brain stimulation therapy for autism spectrum disorder (ASD) has shown beneficial effects. Recently, we and others demonstrated that visual sensory stimulation using rhythmic 40 Hz light flicker effectively improved cognitive deficits in mouse models of Alzheimer's disease and stroke. However, whether rhythmic visual 40 Hz light flicker stimulation can ameliorate behavioral deficits in ASD remains unknown. Here, we show that 16p11.2 deletion female mice exhibit a strong social novelty deficit, which was ameliorated by treatment with a long-term 40 Hz light stimulation. The elevated power of local-field potential (LFP) in the prefrontal cortex (PFC) of 16p11.2 deletion female mice was also effectively reduced by 40 Hz light treatment. Importantly, the 40 Hz light flicker reversed the excessive excitatory neurotransmission of PFC pyramidal neurons without altering the firing rate and the number of resident PFC neurons. Mechanistically, 40 Hz light flicker evoked adenosine release in the PFC to modulate excessive excitatory neurotransmission of 16p11.2 deletion female mice. Elevated adenosine functioned through its cognate A1 receptor (A1R) to suppress excessive excitatory neurotransmission and to alleviate social novelty deficits. Indeed, either blocking the A1R using a specific antagonist DPCPX or knocking down the A1R in the PFC using a shRNA completely ablated the beneficial effects of 40 Hz light flicker. Thus, this study identified adenosine as a novel neurochemical mediator for ameliorating social novelty deficit by reducing excitatory neurotransmission during 40 Hz light flicker treatment. The 40 Hz light stimulation warrants further development as a non-invasive ASD therapeutics.
Collapse
Affiliation(s)
- Jun Ju
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Xuanyi Li
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Yifan Pan
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Jun Du
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Xinyi Yang
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Siqi Men
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Bo Liu
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Zhenyu Zhang
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Haolin Zhong
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Jinyuan Mai
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China
| | - Yizheng Wang
- Huashan Hospital, Fudan University, Shanghai, PR China
| | - Sheng-Tao Hou
- Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, PR China.
| |
Collapse
|
7
|
Sridhar A, Joanne Jao Keehn R, Wilkinson M, Gao Y, Olson M, Mash LE, Alemu K, Manley A, Marinkovic K, Müller RA, Linke A. Increased heterogeneity and task-related reconfiguration of functional connectivity during a lexicosemantic task in autism. Neuroimage Clin 2024; 44:103694. [PMID: 39509989 PMCID: PMC11574795 DOI: 10.1016/j.nicl.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Autism spectrum disorder (ASD) is highly heterogeneous in etiology and clinical presentation. Findings on intrinsic functional connectivity (FC) or task-induced FC in ASD have been inconsistent including both over- and underconnectivity and diverse regional patterns. As FC patterns change across different cognitive demands, a novel and more comprehensive approach to network architecture in ASD is to examine the change in FC patterns between rest and task states, referred to as reconfiguration. This approach is suitable for investigating inefficient network connectivity that may underlie impaired behavioral functioning in clinical disorders. We used functional magnetic resonance imaging (fMRI) to examine FC reconfiguration during lexical processing, which is often affected in ASD, with additional focus on interindividual variability. Thirty adolescents with ASD and a matched group of 23 typically developing (TD) participants completed a lexicosemantic decision task during fMRI, using multiecho-multiband pulse sequences with advanced BOLD signal sensitivity and artifact removal. Regions of interest (ROIs) were selected based on task-related activation across both groups, and FC and reconfiguration were compared between groups. The ASD group showed increased interindividual variability and overall greater reconfiguration than the TD group. An ASD subgroup with typical performance accuracy (at the level of TD participants) showed reduced similarity and typicality of FC during the task. In this ASD subgroup, greater FC reconfiguration was associated with increased language skills. Findings suggest that intrinsic functional networks in ASD may be inefficiently organized for lexicosemantic decisions and may require greater reconfiguration during task processing, with high performance levels in some individuals being achieved through idiosyncratic mechanisms.
Collapse
Affiliation(s)
- Apeksha Sridhar
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Molly Wilkinson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Yangfeifei Gao
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Michael Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Lisa E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Kalekirstos Alemu
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Ashley Manley
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Ksenija Marinkovic
- Spatio-Temporal Brain Imaging Laboratory, Department of Psychology, San Diego State University, CA, United States
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States
| | - Annika Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, CA, United States.
| |
Collapse
|
8
|
Gao L, Cao Y, Zhang Y, Liu J, Zhang T, Zhou R, Guo X. Sex differences in the flexibility of dynamic network reconfiguration of autism spectrum disorder based on multilayer network. Brain Imaging Behav 2024; 18:1172-1185. [PMID: 39212890 DOI: 10.1007/s11682-024-00907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Dynamic network reconfiguration alterations in the autism spectrum disorder (ASD) brain have been frequently reported. However, since the prevalence of ASD in males is approximately 3.8 times higher than that in females, and previous studies of dynamic network reconfiguration of ASD have predominantly used male samples, it is unclear whether sex differences exist in dynamic network reconfiguration in ASD. This study used resting-state functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange database, which included balanced samples of 64 males and 64 females with ASD, along with 64 demographically-matched typically developing control (TC) males and 64 TC females. The multilayer network analysis was used to explore the flexibility of dynamic network reconfiguration. The two-way analysis of variance was further performed to examine the sex-related changes in ASD in flexibility of dynamic network reconfiguration. A diagnosis-by-sex interaction effect was identified in the cingulo-opercular network (CON), central executive network (CEN), salience network (SN), and subcortical network (SUB). Compared with TC females, females with ASD showed lower flexibility in CON, CEN, SN, and SUB. The flexibility of CEN and SUB in males with ASD was higher than that in females with ASD. In addition, the flexibility of CON, CEN, SN, and SUB predicted the severity of social communication impairments and stereotyped behaviors and restricted interests only in females with ASD. These findings highlight significant sex differences in the flexibility of dynamic network reconfiguration in ASD and emphasize the importance of further study of sex differences in future ASD research.
Collapse
Affiliation(s)
- Le Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Yabo Cao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Yigeng Zhang
- Department of Computer Science, University of Houston, Houston, TX, 77204-3010, USA
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Rongjuan Zhou
- Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
9
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
10
|
Jiang A, Ma X, Li S, Wang L, Yang B, Wang S, Li M, Dong G. Age-atypical brain functional networks in autism spectrum disorder: a normative modeling approach. Psychol Med 2024; 54:2042-2053. [PMID: 38563297 DOI: 10.1017/s0033291724000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Despite extensive research into the neural basis of autism spectrum disorder (ASD), the presence of substantial biological and clinical heterogeneity among diagnosed individuals remains a major barrier. Commonly used case‒control designs assume homogeneity among subjects, which limits their ability to identify biological heterogeneity, while normative modeling pinpoints deviations from typical functional network development at individual level. METHODS Using a world-wide multi-site database known as Autism Brain Imaging Data Exchange, we analyzed individuals with ASD and typically developed (TD) controls (total n = 1218) aged 5-40 years, generating individualized whole-brain network functional connectivity (FC) maps of age-related atypicality in ASD. We then used local polynomial regression to estimate a networkwise normative model of development and explored correlations between ASD symptoms and brain networks. RESULTS We identified a subset exhibiting highly atypical individual-level FC, exceeding 2 standard deviation from the normative value. We also identified clinically relevant networks (mainly default mode network) at cohort level, since the outlier rates decreased with age in TD participants, but increased in those with autism. Moreover, deviations were linked to severity of repetitive behaviors and social communication symptoms. CONCLUSIONS Individuals with ASD exhibit distinct, highly individualized trajectories of brain functional network development. In addition, distinct developmental trajectories were observed among ASD and TD individuals, suggesting that it may be challenging to identify true differences in network characteristics by comparing young children with ASD to their TD peers. This study enhances understanding of the biological heterogeneity of the disorder and can inform precision medicine.
Collapse
Affiliation(s)
- Anhang Jiang
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, P.R. China
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, P.R. China
| | - Xuefeng Ma
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, P.R. China
| | - Shuang Li
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, P.R. China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, P.R. China
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Bo Yang
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, P.R. China
| | - Shizhen Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, P.R. China
| | - Mei Li
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, P.R. China
- Center for Mental Health Education and Counselling, Hangzhou Normal University, Hangzhou, Zhejiang Province, P.R. China
| | - Guangheng Dong
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
11
|
Guo X, Xu C, Chen J, Wu Z, Hou S, Wei Z. Disrupted cognitive and affective empathy network interactions in autistic children viewing social animation. Soc Cogn Affect Neurosci 2024; 19:nsae028. [PMID: 38597901 PMCID: PMC11071513 DOI: 10.1093/scan/nsae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Empathy can be divided into two core components, cognitive empathy (CE) and affective empathy (AE), mediated by distinct neural networks. Deficient empathy is a central feature of autism spectrum conditions (ASCs), but it is unclear if this deficit results from disruption solely within empathy networks or from disrupted functional integration between CE and AE networks. To address this issue, we measured functional connectivity (FC) patterns both within and between empathy networks in autistic children (4-8 years, n = 31) and matched typically developing (TD) children (n = 26) using near-infrared spectroscopy during the presentation of an animated story evoking CE and AE. Empathy and social communication ability were also assessed using the Empathy Quotient/Systemizing Quotient (EQ/SQ) and Social Responsiveness Scale, respectively. The results showed that the FC in the AE network of autistic children did not differ from the TD group across conditions; however, the ASC group showed weaker FC in the CE network under the CE condition and weaker FC between networks when processing AE information, the latter of which was negatively correlated with EQ scores in ASC. The empathy defect in ASC may involve abnormal integration of CE and AE network activities under AE conditions.
Collapse
Affiliation(s)
- Xinrong Guo
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Child Psychiatry and Rehabilitation, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518040, China
| | - Chuanyong Xu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518040, China
| | - Zhiliu Wu
- Department of Child Psychiatry and Rehabilitation, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518040, China
| | - Shumeng Hou
- Department of Humanity and Social Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhen Wei
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
- Department of Child Psychiatry and Rehabilitation, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518040, China
| |
Collapse
|
12
|
de Medeiros Marcos GVT, Feitosa DDM, Paiva KM, Oliveira RF, da Rocha GS, de Medeiros Guerra LM, de Araújo DP, Goes HM, Costa S, de Oliveira LC, Guzen FP, de Souza Júnior JE, de Moura Freire MA, de Aquino ACQ, de Gois Morais PLA, de Paiva Cavalcanti JRL. Volumetric alterations in the basal ganglia in autism Spectrum disorder: A systematic review. Int J Dev Neurosci 2024; 84:163-176. [PMID: 38488315 DOI: 10.1002/jdn.10322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 05/04/2024] Open
Abstract
INTRODUCTION Recent research indicates that some brain structures show alterations in conditions such as Autism Spectrum Disorder (ASD). Among them, are the basal ganglia that are involved in motor, cognitive and behavioral neural circuits. OBJECTIVE Review the literature that describes possible volumetric alterations in the basal ganglia of individuals with ASD and the impacts that these changes have on the severity of the condition. METHODOLOGY This systematic review was registered in the design and reported according to the PRISMA Items and registered in PROSPERO (CRD42023394787). The study analyzed data from published clinical, case-contemplate, and cohort trials. The following databases were consulted: PubMed, Embase, Scopus, and Cochrane Central Register of Controlled Trials, using the Medical Subject Titles (MeSH) "Autism Spectrum Disorder" and "Basal Ganglia". The last search was carried out on February 28, 2023. RESULTS Thirty-five eligible articles were collected, analyzed, and grouped according to the levels of alterations. CONCLUSION The present study showed important volumetric alterations in the basal ganglia in ASD. However, the examined studies have methodological weaknesses that do not allow generalization and correlation with ASD manifestations.
Collapse
Affiliation(s)
| | | | - Karina Maia Paiva
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Rodrigo Freire Oliveira
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Gabriel Sousa da Rocha
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Luís Marcos de Medeiros Guerra
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Dayane Pessoa de Araújo
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | | | - Silva Costa
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Lucidio Clebeson de Oliveira
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Fausto Pierdoná Guzen
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - José Edvan de Souza Júnior
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Marco Aurélio de Moura Freire
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Antonio Carlos Queiroz de Aquino
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | | | | |
Collapse
|
13
|
Nowling D, Crum KI, Joseph J. Sex differences in development of functional connections in the face processing network. J Neuroimaging 2024; 34:280-290. [PMID: 38169075 PMCID: PMC10939922 DOI: 10.1111/jon.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Understanding sex differences in typical development of the face processing network is important for elucidating disruptions during atypical development in sex-linked developmental disorders like autism spectrum disorder. Based on prior sex difference studies in other cognitive domains, this study examined whether females show increased integration of core and extended face regions with age for face viewing, while males would show increased segregation. METHODS This study used a cross-sectional design with typically developing children and adults (n = 133) and a functional MRI face localizer task. Psychophysiological interaction (PPI) analysis examined functional connectivity between canonical and extended face processing network regions with age, with greater segregation indexed by decreased core-extended region connectivity with age and greater integration indexed by increased core-extended region connectivity with age. RESULTS PPI analysis confirmed increased segregation for males-right fusiform face area (FFA) coupling to right inferior frontal gyrus (IFG) opercular when viewing faces and left amygdala when viewing objects decreased with age. Females showed increased integration with age (increased coupling of the right FFA to right IFG opercular region and right occipital face area [OFA] to right IFG orbital when viewing faces and objects, respectively) and increased segregation (decreased coupling with age of the right OFA with IFG opercular region when viewing faces). CONCLUSIONS Development of core and extended face processing network connectivity follows sexually dimorphic paths. These differential changes mostly occur across childhood and adolescence, with males experiencing segregation and females both segregation and integration changes in connectivity.
Collapse
Affiliation(s)
- Duncan Nowling
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - Kathleen I. Crum
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Jane Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
14
|
Alho J, Samuelsson JG, Khan S, Mamashli F, Bharadwaj H, Losh A, McGuiggan NM, Graham S, Nayal Z, Perrachione TK, Joseph RM, Stoodley CJ, Hämäläinen MS, Kenet T. Both stronger and weaker cerebro-cerebellar functional connectivity patterns during processing of spoken sentences in autism spectrum disorder. Hum Brain Mapp 2023; 44:5810-5827. [PMID: 37688547 PMCID: PMC10619366 DOI: 10.1002/hbm.26478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Cerebellar differences have long been documented in autism spectrum disorder (ASD), yet the extent to which such differences might impact language processing in ASD remains unknown. To investigate this, we recorded brain activity with magnetoencephalography (MEG) while ASD and age-matched typically developing (TD) children passively processed spoken meaningful English and meaningless Jabberwocky sentences. Using a novel source localization approach that allows higher resolution MEG source localization of cerebellar activity, we found that, unlike TD children, ASD children showed no difference between evoked responses to meaningful versus meaningless sentences in right cerebellar lobule VI. ASD children also had atypically weak functional connectivity in the meaningful versus meaningless speech condition between right cerebellar lobule VI and several left-hemisphere sensorimotor and language regions in later time windows. In contrast, ASD children had atypically strong functional connectivity for in the meaningful versus meaningless speech condition between right cerebellar lobule VI and primary auditory cortical areas in an earlier time window. The atypical functional connectivity patterns in ASD correlated with ASD severity and the ability to inhibit involuntary attention. These findings align with a model where cerebro-cerebellar speech processing mechanisms in ASD are impacted by aberrant stimulus-driven attention, which could result from atypical temporal information and predictions of auditory sensory events by right cerebellar lobule VI.
Collapse
Affiliation(s)
- Jussi Alho
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - John G. Samuelsson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sheraz Khan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fahimeh Mamashli
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Hari Bharadwaj
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Ainsley Losh
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nicole M. McGuiggan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven Graham
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Zein Nayal
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tyler K. Perrachione
- Department of Speech, Language, and Hearing SciencesBoston UniversityBostonMassachusettsUSA
| | - Robert M. Joseph
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Catherine J. Stoodley
- Department of PsychologyCollege of Arts and Sciences, American UniversityWashingtonDCUSA
| | - Matti S. Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tal Kenet
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
15
|
Javaheripour N, Wagner G, de la Cruz F, Walter M, Szycik GR, Tietze FA. Altered brain network organization in adults with Asperger's syndrome: decreased connectome transitivity and assortativity with increased global efficiency. Front Psychiatry 2023; 14:1223147. [PMID: 37701094 PMCID: PMC10494541 DOI: 10.3389/fpsyt.2023.1223147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/26/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder that persists into adulthood with both social and cognitive disturbances. Asperger's syndrome (AS) was a distinguished subcategory of autism in the DSM-IV-TR defined by specific symptoms including difficulties in social interactions, inflexible thinking patterns, and repetitive behaviour without any delay in language or cognitive development. Studying the functional brain organization of individuals with these specific symptoms may help to better understand Autism spectrum symptoms. Methods The aim of this study is therefore to investigate functional connectivity as well as functional network organization characteristics using graph-theory measures of the whole brain in male adults with AS compared to healthy controls (HC) (AS: n = 15, age range 21-55 (mean ± sd: 39.5 ± 11.6), HC: n = 15, age range 22-57 [mean ± sd: 33.5 ± 8.5]). Results No significant differences were found when comparing the region-by-region connectivity at the whole-brain level between the AS group and HC. However, measures of "transitivity," which reflect local information processing and functional segregation, and "assortativity," indicating network resilience, were reduced in the AS group compared to HC. On the other hand, global efficiency, which represents the overall effectiveness and speed of information transfer across the entire brain network, was increased in the AS group. Discussion Our findings suggest that individuals with AS may have alterations in the organization and functioning of brain networks, which could contribute to the distinctive cognitive and behavioural features associated with this condition. We suggest further research to explore the association between these altered functional patterns in brain networks and specific behavioral traits observed in individuals with AS, which could provide valuable insights into the underlying mechanisms of its symptomatology.
Collapse
Affiliation(s)
- Nooshin Javaheripour
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena, Germany
| | - Feliberto de la Cruz
- Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Mental Health (DZPG), Jena, Germany
| | - Gregor R. Szycik
- Department of Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Fabian-Alexander Tietze
- Department of Psychiatry and Psychotherapy, Jüdisches Krankenhaus Berlin—Berlin Jewish Hospital, Academic Teaching Hospital of the Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Isakoglou C, Haak KV, Wolfers T, Floris DL, Llera A, Oldehinkel M, Forde NJ, Oakley BFM, Tillmann J, Holt RJ, Moessnang C, Loth E, Bourgeron T, Baron-Cohen S, Charman T, Banaschewski T, Murphy DGM, Buitelaar JK, Marquand AF, Beckmann CF. Fine-grained topographic organization within somatosensory cortex during resting-state and emotional face-matching task and its association with ASD traits. Transl Psychiatry 2023; 13:270. [PMID: 37500630 PMCID: PMC10374902 DOI: 10.1038/s41398-023-02559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Sensory atypicalities are particularly common in autism spectrum disorders (ASD). Nevertheless, our knowledge about the divergent functioning of the underlying somatosensory region and its association with ASD phenotype features is limited. We applied a data-driven approach to map the fine-grained variations in functional connectivity of the primary somatosensory cortex (S1) to the rest of the brain in 240 autistic and 164 neurotypical individuals from the EU-AIMS LEAP dataset, aged between 7 and 30. We estimated the S1 connection topography ('connectopy') at rest and during the emotional face-matching (Hariri) task, an established measure of emotion reactivity, and accessed its association with a set of clinical and behavioral variables. We first demonstrated that the S1 connectopy is organized along a dorsoventral axis, mapping onto the S1 somatotopic organization. We then found that its spatial characteristics were linked to the individuals' adaptive functioning skills, as measured by the Vineland Adaptive Behavior Scales, across the whole sample. Higher functional differentiation characterized the S1 connectopies of individuals with higher daily life adaptive skills. Notably, we detected significant differences between rest and the Hariri task in the S1 connectopies, as well as their projection maps onto the rest of the brain suggesting a task-modulating effect on S1 due to emotion processing. All in all, variation of adaptive skills appears to be reflected in the brain's mesoscale neural circuitry, as shown by the S1 connectivity profile, which is also differentially modulated during rest and emotional processing.
Collapse
Affiliation(s)
- Christina Isakoglou
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands.
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Koen V Haak
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Dorothea L Floris
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Alberto Llera
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Natalie J Forde
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bethany F M Oakley
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Julian Tillmann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Rosemary J Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Applied Psychology, SRH University, Heidelberg, Germany
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, Paris, France
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Wang S, Li X. A revisit of the amygdala theory of autism: Twenty years after. Neuropsychologia 2023; 183:108519. [PMID: 36803966 PMCID: PMC10824605 DOI: 10.1016/j.neuropsychologia.2023.108519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The human amygdala has long been implicated to play a key role in autism spectrum disorder (ASD). Yet it remains unclear to what extent the amygdala accounts for the social dysfunctions in ASD. Here, we review studies that investigate the relationship between amygdala function and ASD. We focus on studies that employ the same task and stimuli to directly compare people with ASD and patients with focal amygdala lesions, and we also discuss functional data associated with these studies. We show that the amygdala can only account for a limited number of deficits in ASD (primarily face perception tasks but not social attention tasks), a network view is, therefore, more appropriate. We next discuss atypical brain connectivity in ASD, factors that can explain such atypical brain connectivity, and novel tools to analyze brain connectivity. Lastly, we discuss new opportunities from multimodal neuroimaging with data fusion and human single-neuron recordings that can enable us to better understand the neural underpinnings of social dysfunctions in ASD. Together, the influential amygdala theory of autism should be extended with emerging data-driven scientific discoveries such as machine learning-based surrogate models to a broader framework that considers brain connectivity at the global scale.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
18
|
Lower-limb Nonparametric Functional Muscle Network: Test-retest Reliability Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527765. [PMID: 36798422 PMCID: PMC9934625 DOI: 10.1101/2023.02.08.527765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Objective Functional muscle network analysis has attracted a great deal of interest in recent years, promising high sensitivity to changes of intermuscular synchronicity, studied mostly for healthy subjects and recently for patients living with neurological conditions (e.g., those caused by stroke). Despite the promising results, the between- and within-session reliability of the functional muscle network measures are yet to be established. Here, for the first time, we question and evaluate the test-retest reliability of non-parametric lower-limb functional muscle networks for controlled and lightly-controlled tasks, i.e., sit-to-stand, and over-the-ground walking, respectively, in healthy subjects. Method Fifteen subjects (eight females) were included over two sessions on two different days. The muscle activity was recorded using 14 surface electromyography (sEMG) sensors. The intraclass correlation coefficient (ICC) of the within-session and between-session trials was quantified for the various network metrics, including degree and weighted clustering coefficient. In order to compare with common classical sEMG measures, the reliabilities of the root mean square (RMS) of sEMG and the median frequency (MDF) of sEMG were also calculated. Results The ICC analysis revealed superior between-session reliability for muscle networks, with statistically significant differences when compared to classic measures. Conclusion and Significance This paper proposed that the topographical metrics generated from functional muscle network can be reliably used for multi-session observations securing high reliability for quantifying the distribution of synergistic intermuscular synchronicities of both controlled and lightly controlled lower limb tasks. In addition, the low number of sessions required by the topographical network metrics to reach reliable measurements indicates the potential as biomarkers during rehabilitation.
Collapse
|
19
|
Liu C, Liu J, Gong H, Liu T, Li X, Fan X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr Neuropharmacol 2023; 21:2266-2282. [PMID: 36545727 PMCID: PMC10556385 DOI: 10.2174/1570159x21666221220155455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a cluster of heterogeneous neurodevelopmental conditions with atypical social communication and repetitive sensory-motor behaviors. The formation of new neurons from neural precursors in the hippocampus has been unequivocally demonstrated in the dentate gyrus of rodents and non-human primates. Accumulating evidence sheds light on how the deficits in the hippocampal neurogenesis may underlie some of the abnormal behavioral phenotypes in ASD. In this review, we describe the current evidence concerning pre-clinical and clinical studies supporting the significant role of hippocampal neurogenesis in ASD pathogenesis, discuss the possibility of improving hippocampal neurogenesis as a new strategy for treating ASD, and highlight the prospect of emerging pro-neurogenic therapies for ASD.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
20
|
Sigar P, Uddin LQ, Roy D. Altered global modular organization of intrinsic functional connectivity in autism arises from atypical node-level processing. Autism Res 2023; 16:66-83. [PMID: 36333956 DOI: 10.1002/aur.2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by restricted interests and repetitive behaviors as well as social-communication deficits. These traits are associated with atypicality of functional brain networks. Modular organization in the brain plays a crucial role in network stability and adaptability for neurodevelopment. Previous neuroimaging research demonstrates discrepancies in studies of functional brain modular organization in ASD. These discrepancies result from the examination of mixed age groups. Furthermore, recent findings suggest that while much attention has been given to deriving atlases and measuring the connections between nodes, within node information may also be crucial in determining altered modular organization in ASD compared with typical development (TD). However, altered modular organization originating from systematic nodal changes are yet to be explored in younger children with ASD. Here, we used graph-theoretical measures to fill this knowledge gap. To this end, we utilized multicenter resting-state fMRI data collected from 5 to 10-year-old children-34 ASD and 40 TD obtained from the Autism Brain Image Data Exchange (ABIDE) I and II. We demonstrate that alterations in topological roles and modular cohesiveness are the two key properties of brain regions anchored in default mode, sensorimotor, and salience networks, and primarily relate to social and sensory deficits in children with ASD. These results demonstrate that atypical global network organization in children with ASD arises from nodal role changes, and contribute to the growing body of literature suggesting that there is interesting information within nodes providing critical markers of functional brain networks in autistic children.
Collapse
Affiliation(s)
- Priyanka Sigar
- Cognitive Brain Dynamics Lab, National Brain Research Center, Manesar, India.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Center, Manesar, India.,School of AIDE, Centre for Brain Science and Applications, Karwar, India
| |
Collapse
|
21
|
Faridi F, Seyedebrahimi A, Khosrowabadi R. Brain Structural Covariance Network in Asperger Syndrome Differs From Those in Autism Spectrum Disorder and Healthy Controls. Basic Clin Neurosci 2022; 13:815-838. [PMID: 37323949 PMCID: PMC10262285 DOI: 10.32598/bcn.2021.2262.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 11/02/2023] Open
Abstract
Introduction Autism is a heterogeneous neurodevelopmental disorder associated with social, cognitive and behavioral impairments. These impairments are often reported along with alteration of the brain structure such as abnormal changes in the grey matter (GM) density. However, it is not yet clear whether these changes could be used to differentiate various subtypes of autism spectrum disorder (ASD). Method We compared the regional changes of GM density in ASD, Asperger's Syndrome (AS) individuals and a group of healthy controls (HC). In addition to regional changes itself, the amount of GM density changes in one region as compared to other brain regions was also calculated. We hypothesized that this structural covariance network could differentiate the AS individuals from the ASD and HC groups. Therefore, statistical analysis was performed on the MRI data of 70 male subjects including 26 ASD (age=14-50, IQ=92-132), 16 AS (age=7-58, IQ=93-133) and 28 HC (age=9-39, IQ=95-144). Result The one-way ANOVA on the GM density of 116 anatomically separated regions showed significant differences among the groups. The pattern of structural covariance network indicated that covariation of GM density between the brain regions is altered in ASD. Conclusion This changed structural covariance could be considered as a reason for less efficient segregation and integration of information in the brain that could lead to cognitive dysfunctions in autism. We hope these findings could improve our understanding about the pathobiology of autism and may pave the way towards a more effective intervention paradigm.
Collapse
Affiliation(s)
- Farnaz Faridi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Afrooz Seyedebrahimi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
22
|
Talesh Jafadideh A, Mohammadzadeh Asl B. Topological analysis of brain dynamics in autism based on graph and persistent homology. Comput Biol Med 2022; 150:106202. [PMID: 37859293 DOI: 10.1016/j.compbiomed.2022.106202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder with a rapidly growing prevalence. In recent years, the dynamic functional connectivity (DFC) technique has been used to reveal the transient connectivity behavior of ASDs' brains by clustering connectivity matrices in different states. However, the states of DFC have not been yet studied from a topological point of view. In this paper, this study was performed using global metrics of the graph and persistent homology (PH) and resting-state functional magnetic resonance imaging (fMRI) data. The PH has been recently developed in topological data analysis and deals with persistent structures of data. The structural connectivity (SC) and static FC (SFC) were also studied to know which one of the SC, SFC, and DFC could provide more discriminative topological features when comparing ASDs with typical controls (TCs). Significant discriminative features were only found in states of DFC. Moreover, the best classification performance was offered by persistent homology-based metrics and in two out of four states. In these two states, some networks of ASDs compared to TCs were more segregated and isolated (showing the disruption of network integration in ASDs). The results of this study demonstrated that topological analysis of DFC states could offer discriminative features which were not discriminative in SFC and SC. Also, PH metrics can provide a promising perspective for studying ASD and finding candidate biomarkers.
Collapse
|
23
|
Cai Y, Zhao J, Wang L, Xie Y, Fan X. Altered topological properties of white matter structural network in adults with autism spectrum disorder. Asian J Psychiatr 2022; 75:103211. [PMID: 35907341 DOI: 10.1016/j.ajp.2022.103211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex developmental disability and is currently viewed as a disorder of brain connectivity in which white matter abnormalities. However, the majority of the research to date has focused on children with ASD. Understanding the topological organization of the white matter structural network in adults may help uncover the nature of ASD pathology in adulthood. METHOD This study investigated the topological properties of white matter structural network using diffusion tensor imaging and graph theory analysis in a sample of 32 adults with ASD compared to 35 matched typically developing (TD) controls. Group differences in global and nodal topological metrics were compared. The relationships between the altered network metrics and the severity of clinical symptoms were calculated. RESULTS Compared to TD controls, ASD patients exhibited decreased small-worldness and increased global efficiency. In addition, the reduced nodal efficiency and increased nodal degree were found in the frontal (e.g., the inferior frontal gyrus) and parietal (e.g., postcentral gyrus) regions. Furthermore, the altered topological metrics (e.g., increased global efficiency and reduced nodal efficiency) were correlated with the severity of ASD symptoms. CONCLUSION These results indicated that the complicatedly topological organization of the white matter structural network was abnormal and may play an essential role in the underlying pathological mechanism of ASD in adults.
Collapse
Affiliation(s)
- Yun Cai
- Department of Developmental Neuropsychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Yuanjun Xie
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710030, China.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
24
|
Maliske L, Kanske P. The Social Connectome - Moving Toward Complexity in the Study of Brain Networks and Their Interactions in Social Cognitive and Affective Neuroscience. Front Psychiatry 2022; 13:845492. [PMID: 35449570 PMCID: PMC9016142 DOI: 10.3389/fpsyt.2022.845492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past 150 years of neuroscientific research, the field has undergone a tremendous evolution. Starting out with lesion-based inference of brain function, functional neuroimaging, introduced in the late 1980s, and increasingly fine-grained and sophisticated methods and analyses now allow us to study the live neural correlates of complex behaviors in individuals and multiple agents simultaneously. Classically, brain-behavior coupling has been studied as an association of a specific area in the brain and a certain behavioral outcome. This has been a crucial first step in understanding brain organization. Social cognitive processes, as well as their neural correlates, have typically been regarded and studied as isolated functions and blobs of neural activation. However, as our understanding of the social brain as an inherently dynamic organ grows, research in the field of social neuroscience is slowly undergoing the necessary evolution from studying individual elements to how these elements interact and their embedding within the overall brain architecture. In this article, we review recent studies that investigate the neural representation of social cognition as interacting, complex, and flexible networks. We discuss studies that identify individual brain networks associated with social affect and cognition, interaction of these networks, and their relevance for disorders of social affect and cognition. This perspective on social cognitive neuroscience can highlight how a more fine-grained understanding of complex network (re-)configurations could improve our understanding of social cognitive deficits in mental disorders such as autism spectrum disorder and schizophrenia, thereby providing new impulses for methods of interventions.
Collapse
Affiliation(s)
- Lara Maliske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
25
|
Tseng A, Camchong J, Francis SM, Mueller BA, Lim KO, Conelea CA, Jacob S. Differential extrinsic brain network connectivity and social cognitive task-specific demands in Autism Spectrum Disorder (ASD). J Psychiatr Res 2022; 148:230-239. [PMID: 35149435 DOI: 10.1016/j.jpsychires.2022.01.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Few studies have used task-based functional connectivity (FC) magnetic resonance imaging to examine emotion-processing during the critical neurodevelopmental period of adolescence in Autism Spectrum Disorders (ASDs). Moreover, task designs with pervasive confounds (e.g., lack of appropriate controls) persist because they activate neural circuits of interest reliably. As an alternative approach to "subtracting" activity from putative control conditions, we propose examining FC across an entire task run. By pivoting our analysis and interpretation of existing paradigms, we may better understand neural response to non-focal instances of socially-relevant stimuli that approximate real-world experiences more closely. Hence, using two well-established affective tasks (face-viewing, face-matching) with diverging social-cognitive demands, we investigated extrinsic FC from amygdala (AMG) and fusiform gyrus (FG) seeds in typically-developing (TD; N = 17) and ASD (N = 17) male adolescents (10-18 yo) and clinical correlations (Social Communication Questionnaire; SCQ) of group FC differences. Participant data (4TD, 6ASD) with excessive head-motion were excluded from final analysis. Direct between-group comparisons revealed significant differences between groups for neural response but not task performance (accuracy, reaction time). During face-viewing, we found greater FC from AMG and FG seeds for ASD participants (ASD > TD) in regions involved in the Default Mode and Fronto-Parietal Task Control Networks. During face-matching, we found greater FC from AMG and FG seeds for TD participants (TD > ASD), in regions associated with the Salience, Dorsal Attention, and Somatosensory Networks. SCQ scores correlated positively with regions with group differences on the face-viewing task and negatively with regions identified for the face-matching task. Task-dependent group differences in FC despite comparable behavioral performance suggest that high-functioning ASD may wield compensatory strategies; clinically-correlated FC patterns may associate with differential task-demands, ecological validity, and context-dependent processing. Employing this novel approach may further the development of targeted therapeutic interventions informed by individual differences in the highly heterogeneous ASD population.
Collapse
Affiliation(s)
- Angela Tseng
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Jazmin Camchong
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Sunday M Francis
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Bryon A Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kelvin O Lim
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Christine A Conelea
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Suma Jacob
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Zeev-Wolf M, Dor-Ziderman Y, Pratt M, Goldstein A, Feldman R. Investigating default mode network connectivity disruption in children of mothers with depression. Br J Psychiatry 2022; 220:130-139. [PMID: 35049492 DOI: 10.1192/bjp.2021.164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Exposure to maternal major depressive disorder (MDD) bears long-term negative consequences for children's well-being; to date, no research has examined how exposure at different stages of development differentially affects brain functioning. AIMS Utilising a unique cohort followed from birth to preadolescence, we examined the effects of early versus later maternal MDD on default mode network (DMN) connectivity. METHOD Maternal depression was assessed at birth and ages 6 months, 9 months, 6 years and 10 years, to form three groups: children of mothers with consistent depression from birth to 6 years of age, which resolved by 10 years of age; children of mothers without depression; and children of mothers who were diagnosed with MDD in late childhood. In preadolescence, we used magnetoencephalography and focused on theta rhythms, which characterise the developing brain. RESULTS Maternal MDD was associated with disrupted DMN connectivity in an exposure-specific manner. Early maternal MDD decreased child connectivity, presenting a profile typical of early trauma or chronic adversity. In contrast, later maternal MDD was linked with tighter connectivity, a pattern characteristic of adult depression. Aberrant DMN connectivity was predicted by intrusive mothering in infancy and lower mother-child reciprocity and child empathy in late childhood, highlighting the role of deficient caregiving and compromised socio-emotional competencies in DMN dysfunction. CONCLUSIONS The findings pinpoint the distinct effects of early versus later maternal MDD on the DMN, a core network sustaining self-related processes. Results emphasise that research on the influence of early adversity on the developing brain should consider the developmental stage in which the adversity occured.
Collapse
Affiliation(s)
- Maor Zeev-Wolf
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Israel; and Department of Education and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Israel
| | - Yair Dor-Ziderman
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Israel; and Edmond J. Safra Brain Research Center, University of Haifa, Israel
| | - Maayan Pratt
- Department of Education and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Israel; and Department of Psychology and Gonda Brain Science Center, Bar-Ilan University, Israel
| | - Abraham Goldstein
- Department of Psychology and Gonda Brain Science Center, Bar-Ilan University, Israel
| | - Ruth Feldman
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya, Israel; and Child Study Center, Yale University, Connecticut, USA
| |
Collapse
|
27
|
Lorenzini L, van Wingen G, Cerliani L. Atypically high influence of subcortical activity on primary sensory regions in autism. Neuroimage Clin 2022; 32:102839. [PMID: 34624634 PMCID: PMC8503568 DOI: 10.1016/j.nicl.2021.102839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
The age-dependent decrease of subcortico-cortical connectivity is attenuated in ASD. Primary sensory regions remain less segregated from subcortical activity in ASD. This could underlie an excessive amount of sensory input relayed to the cortex.
Background Hypersensitivity, stereotyped behaviors and attentional problems in autism spectrum disorder (ASD) are compatible with inefficient filtering of undesired or irrelevant sensory information at early stages of neural processing. This could stem from the persistent overconnectivity between primary sensory regions and deep brain nuclei in both children and adults with ASD – as reported by several previous studies – which could reflect a decreased or arrested maturation of brain connectivity. However, it has not yet been investigated whether this overconnectivity can be modelled as an excessive directional influence of subcortical brain activity on primary sensory cortical regions in ASD, with respect to age-matched typically developing (TD) individuals. Methods To this aim, we used dynamic causal modelling to estimate (1) the directional influence of subcortical activity on cortical processing and (2) the functional segregation of primary sensory cortical regions from subcortical activity in 166 participants with ASD and 193 TD participants from the Autism Brain Imaging Data Exchange (ABIDE). We then specifically tested the hypothesis that the age-related changes of these indicators of brain connectivity would differ between the two groups. Results We found that in TD participants age was significantly associated with decreased influence of subcortical activity on cortical processing, paralleled by an increased functional segregation of cortical sensory processing from subcortical activity. Instead these effects were highly reduced and mostly absent in ASD participants, suggesting a delayed or arrested development of the segregation between subcortical and cortical sensory processing in ASD. Conclusion This atypical configuration of subcortico-cortical connectivity in ASD can result in an excessive amount of unprocessed sensory input relayed to the cortex, which is likely to impact cognitive functioning in everyday situations where it is beneficial to limit the influence of basic sensory information on cognitive processing, such as activities requiring focused attention or social interactions.
Collapse
Affiliation(s)
- Luigi Lorenzini
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Dept. Radiology and Nuclear Medicine, Amsterdam UMC, VU University, Amsterdam Neuroscience, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| | - Guido van Wingen
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WT, University of Amsterdam, The Netherlands
| | - Leonardo Cerliani
- Dept. of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 5, 1105AZ Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018WT, University of Amsterdam, The Netherlands; Netherlands Institute for Neuroscience, Social Brain Lab, Meibergdreef 47, 1105BA Amsterdam, The Netherlands
| |
Collapse
|
28
|
Makris G, Agorastos A, Chrousos GP, Pervanidou P. Stress System Activation in Children and Adolescents With Autism Spectrum Disorder. Front Neurosci 2022; 15:756628. [PMID: 35095389 PMCID: PMC8793840 DOI: 10.3389/fnins.2021.756628] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The mission of the human stress system is the maintenance of homeostasis in the presence of real or perceived, acute or chronic stressors. The hypothalamic–pituitary–adrenal (HPA) axis and the autonomic nervous system (ANS) are the stress system-related neuroendocrine pathways. There is abundant evidence that children and adolescents with autism spectrum disorder (ASD) may exhibit atypical function within the HPA axis and the ANS both at the resting state and during the presence of social and/or non-social stressors. The aim of this review is to provide an up-to-date summary of the findings regarding stress system alterations in children and adolescents with ASD. We focus on the variations of stress hormones circadian rhythms, specifically cortisol and alpha-amylase (i.e., a surrogate index of epinephrine/norepinephrine secretion), and on the alterations of stress system responsivity to different stressors. Also, we present imaging and immunological findings that have been associated with stress system dysregulation in children and adolescents with ASD. Finally, we review the pivotal role of HPA axis-ANS coordination, the developmental trajectory of the stress system in ASD, and the possible role of early life stress in the dysregulation of the stress system demonstrated in children and adolescents with ASD. This synthesis will hopefully provide researchers with a foundation for an integrated approach to future research into stress system variations in children and adolescents with ASD.
Collapse
Affiliation(s)
- Gerasimos Makris
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Gerasimos Makris,
| | - Agorastos Agorastos
- Department of Psychiatry II, Division of Neurosciences, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Ma L, Yuan T, Li W, Guo L, Zhu D, Wang Z, Liu Z, Xue K, Wang Y, Liu J, Man W, Ye Z, Liu F, Wang J. Dynamic Functional Connectivity Alterations and Their Associated Gene Expression Pattern in Autism Spectrum Disorders. Front Neurosci 2022; 15:794151. [PMID: 35082596 PMCID: PMC8784878 DOI: 10.3389/fnins.2021.794151] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that are highly heritable and are associated with impaired dynamic functional connectivity (DFC). However, the molecular mechanisms behind DFC alterations remain largely unknown. Eighty-eight patients with ASDs and 87 demographically matched typical controls (TCs) from the Autism Brain Imaging Data Exchange II database were included in this study. A seed-based sliding window approach was then performed to investigate the DFC changes in each of the 29 seeds in 10 classic resting-state functional networks and the whole brain. Subsequently, the relationships between DFC alterations in patients with ASDs and their symptom severity were assessed. Finally, transcription-neuroimaging association analyses were conducted to explore the molecular mechanisms of DFC disruptions in patients with ASDs. Compared with TCs, patients with ASDs showed significantly increased DFC between the right dorsolateral prefrontal cortex (DLPFC) and left fusiform/lingual gyrus, between the DLPFC and the superior temporal gyrus, between the right frontal eye field (FEF) and left middle frontal gyrus, between the FEF and the right angular gyrus, and between the left intraparietal sulcus and the right middle temporal gyrus. Moreover, significant relationships between DFC alterations and symptom severity were observed. Furthermore, the genes associated with DFC changes in ASDs were identified by performing gene-wise across-sample spatial correlation analysis between gene expression extracted from six donors’ brain of the Allen Human Brain Atlas and case-control DFC difference. In enrichment analysis, these genes were enriched for processes associated with synaptic signaling and voltage-gated ion channels and calcium pathways; also, these genes were highly expressed in autistic disorder, chronic alcoholic intoxication and several disorders related to depression. These results not only demonstrated higher DFC in patients with ASDs but also provided novel insight into the molecular mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengfei Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixuan Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaoyi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiawei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Weiqi Man
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Zhaoxiang Ye,
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Feng Liu,
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Junping Wang,
| |
Collapse
|
30
|
Janouschek H, Chase HW, Sharkey RJ, Peterson ZJ, Camilleri JA, Abel T, Eickhoff SB, Nickl-Jockschat T. The functional neural architecture of dysfunctional reward processing in autism. Neuroimage Clin 2021; 31:102700. [PMID: 34161918 PMCID: PMC8239466 DOI: 10.1016/j.nicl.2021.102700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/30/2022]
Abstract
Functional imaging studies have found differential neural activation patterns during reward-paradigms in patients with autism spectrum disorder (ASD) compared to neurotypical controls. However, publications report conflicting results on the directionality and location of these aberrant activations. We here quantitatively summarized relevant fMRI papers in the field using the anatomical likelihood estimation (ALE) algorithm. Patients with ASD consistently showed hypoactivations in the striatum across studies, mainly in the right putamen and accumbens. These regions are functionally involved in the processing of rewards and are enrolled in extensive neural networks involving limbic, cortical, thalamic and mesencephalic regions. The striatal hypo-activations found in our ALE meta-analysis, which pooled over contrasts derived from the included studies on reward-processing in ASD, highlight the role of the striatum as a key neural correlate of impaired reward processing in autism. These changes were present for studies using social and non-social stimuli alike. The involvement of these regions in extensive networks associated with the processing of both positive and negative emotion alike might hint at broader impairments of emotion processing in the disorder.
Collapse
Affiliation(s)
- Hildegard Janouschek
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel J Sharkey
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Zeru J Peterson
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
31
|
Zhang J, Liu L, Li H, Feng X, Zhang M, Liu L, Meng X, Ding G. Large-scale network topology reveals brain functional abnormality in Chinese dyslexic children. Neuropsychologia 2021; 157:107886. [PMID: 33971213 DOI: 10.1016/j.neuropsychologia.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
It has been revealed that dyslexic children learning alphabetic languages are characterized by aberrant topological organization of brain networks. However, little is known about the functional organization and the reconfiguration pattern of brain networks in Chinese dyslexic children. Using graph theoretical analysis and functional magnetic resonance images (fMRI), we examined this issue specifically from the perspective of functional integration and segregation. We first compared large-scale topological organizations between dyslexic children and typically developing children during a Chinese phonological rhyming task, and found that dyslexic children showed increased local efficiency and clustering coefficient compared with typically developing children, which were negatively correlated with task performance. Furthermore, dyslexic children and typically developing children could be accurately distinguished at the individual-subject level based on the nodal local efficiency or clustering coefficient. Second, we studied the group difference of network reconfiguration and found that dyslexic children showed more difficulty when shifting from the resting state to the phonological task. Our results suggest an over-segregated brain functional organization and deficits in brain network reconfiguration in Chinese dyslexic children, which helps to advance our knowledge on the neural mechanisms underlying dyslexia.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Lanfang Liu
- Department of Psychology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hehui Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaoxia Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Manli Zhang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, PR China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, PR China; PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing, 100871, PR China.
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
32
|
Changes in the topological organization of the default mode network in autism spectrum disorder. Brain Imaging Behav 2021; 15:1058-1067. [PMID: 32737824 DOI: 10.1007/s11682-020-00312-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neuroimaging studies have demonstrated that autism spectrum disorder (ASD) is accompanied by abnormal functional and structural features in specific brain regions of the default mode network (DMN). However, little is known about the alterations of the topological organization and the functional connectivity (FC) of the DMN in ASD patients. Thirty-seven ASD patients and 38 healthy control (HC) participants underwent a resting-state functional magnetic resonance imaging scan. Twenty DMN subregions were specifically selected to construct the DMN architecture. We applied graph theory approaches to the topological configuration and compare the FC patterns of the DMN. We then examined the relationships between the neuroimaging measures of the DMN and clinical characteristics in patients with ASD. The current study revealed that both the ASD and HC participants showed a small-world regimen in the DMN; however there were no significant differences in global network measures. Compared with the HC group, the ASD group exhibited significantly decreased nodal centralities in the bilateral anterior medial prefrontal cortex and increased nodal centralities in the right lateral temporal cortex and the right retrosplenial cortex. Patients with ASD displayed significantly reduced and increased FC within the DMN. Our findings demonstrated that ASD patients showed a pattern of disrupted FC metrics and nodal network metrics in the DMN, which could be a potential biomarker for objective ASD diagnoses and for the level of autism spectrum traits. HIGHLIGHTS: We used graph theoretical approaches and functional connectivity (FC) to investigate the topological configuration and FC patterns of the DMN in ASD. The current study revealed that both ASD and HC participants exhibited small-world regimes in the DMN, however there were no significant differences in global network measures. The ASD group showed abnormal nodal centralities in the bilateral aMPFC, the right LTC and the Rsp of the DMN, and ASD was characterized by altered FC patterns, including decreased and increased FC within the DMN.
Collapse
|
33
|
Wang K, Li K, Niu X. Altered Functional Connectivity in a Triple-Network Model in Autism With Co-occurring Attention Deficit Hyperactivity Disorder. Front Psychiatry 2021; 12:736755. [PMID: 34925086 PMCID: PMC8674431 DOI: 10.3389/fpsyt.2021.736755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study aimed to explore alterations in functional connectivity (FC) within and between default mode network (DMN), central executive network, and salience network in autism spectrum disorder (ASD) with co-occurring attention deficit hyperactivity disorder (ADHD). Method: A total of 135 individuals' date of the Autism Brain Imaging Data Exchange II was used to compare the ASD+ADHD group with the ASD group in relation to the abnormal within-network and between-network connectivity of the ASD group relative to the TD group; consequently, the correlation analysis between abnormal FC and behavior was performed. Results: The ASD+ADHD group exhibited decreased within-network connectivity in the precuneus of the ventral DMN compared with the ASD group. Among the three groups, the ASD+ADHD group showed lower connectivity, whereas the ASD group had higher connectivity than the TD group, although the effect of the separate post hoc test was not significant. Meanwhile, the ASD+ADHD group showed increased between-network connectivity between the ventral DMN and dorsal DMN and between the ventral DMN and left executive control network, compared with the ASD and TD groups. Conclusion: Dysfunction of DMN in the "triple-network model" is the core evidence for ASD with co-occurring ADHD.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pediatrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ke Li
- Department of Child Healthcare, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Pediatrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Lau WKW, Leung MK, Zhang R. Hypofunctional connectivity between the posterior cingulate cortex and ventromedial prefrontal cortex in autism: Evidence from coordinate-based imaging meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109986. [PMID: 32473190 DOI: 10.1016/j.pnpbp.2020.109986] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 05/26/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Underconnectivity in the posterior cingulate cortex (PCC) may be associated with a weakened ability to interpret social signals in autism spectrum disorder (ASD) and result in cognitive inflexibility - a hallmark feature of ASD. However, previous neuroimaging studies using resting-state functional magnetic resonance imaging in ASD reported inconsistent findings on functional connectivity of the PCC. This study investigated the aberrant resting-state functional connectivity of the PCC in ASD using multilevel kernel density analysis. METHODS Online databases (MEDLINE/PubMed) were searched for PCC-based functional connectivity in ASD. Ten studies (501 subjects; 161 reported foci) met the inclusion criteria of this meta-analysis. RESULTS We found one consistent and strong abnormal functional connectivity of ASD during the resting state, which was the hypoconnectivity between the PCC and ventromedial prefrontal cortex (VMPFC). Importantly, the Jackknife sensitivity analysis revealed that the VMPFC cluster was stably hypoconnected with the PCC in ASD (maximum spatial overlap rate: 100%). CONCLUSIONS The reduced PCC-VMPFC functional coupling may provide an early insight into the effects of ASD on multiple dimensions of functioning, including higher-order cognitive and complex social functions.
Collapse
Affiliation(s)
- Way K W Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, China; Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, China; Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, China.
| | - Mei-Kei Leung
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, China
| | - Ruibin Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
35
|
Linke AC, Mash LE, Fong CH, Kinnear MK, Kohli JS, Wilkinson M, Tung R, Jao Keehn RJ, Carper RA, Fishman I, Müller RA. Dynamic time warping outperforms Pearson correlation in detecting atypical functional connectivity in autism spectrum disorders. Neuroimage 2020; 223:117383. [PMID: 32949710 PMCID: PMC9851773 DOI: 10.1016/j.neuroimage.2020.117383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/12/2020] [Indexed: 01/21/2023] Open
Abstract
Resting state fMRI (rsfMRI) is frequently used to study brain function, including in clinical populations. Similarity of blood-oxygen-level-dependent (BOLD) fluctuations during rsfMRI between brain regions is thought to reflect intrinsic functional connectivity (FC), potentially due to history of coactivation. To quantify similarity, studies have almost exclusively relied on Pearson correlation, which assumes linearity and can therefore underestimate FC if the hemodynamic response function differs regionally or there is BOLD signal lag between timeseries. Here we show in three cohorts of children, adolescents and adults, with and without autism spectrum disorders (ASDs), that measuring the similarity of BOLD signal fluctuations using non-linear dynamic time warping (DTW) is more robust to global signal regression (GSR), has higher test-retest reliability and is more sensitive to task-related changes in FC. Additionally, when comparing FC between individuals with ASDs and typical controls, more group differences are detected using DTW. DTW estimates are also more related to ASD symptom severity and executive function, while Pearson correlation estimates of FC are more strongly associated with respiration during rsfMRI. Together these findings suggest that non-linear methods such as DTW improve estimation of resting state FC, particularly when studying clinical populations whose hemodynamics or neurovascular coupling may be altered compared to typical controls.
Collapse
Affiliation(s)
- A C Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States.
| | - L E Mash
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - C H Fong
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - M K Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - J S Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - M Wilkinson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - R Tung
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - R J Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States
| | - R A Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - I Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - R-A Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, 6363 Alvarado Ct., Suite 200, San Diego, CA 92120, United States; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| |
Collapse
|
36
|
Chan MMY, Han YMY. Differential mirror neuron system (MNS) activation during action observation with and without social-emotional components in autism: a meta-analysis of neuroimaging studies. Mol Autism 2020; 11:72. [PMID: 32993782 PMCID: PMC7523366 DOI: 10.1186/s13229-020-00374-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
Background Impaired imitation has been found to be an important factor contributing to social communication deficits in individuals with autism spectrum disorder (ASD). It has been hypothesized that the neural correlate of imitation, the mirror neuron system (MNS), is dysfunctional in ASD, resulting in imitation impairment as one of the key behavioral manifestations in ASD. Previous MNS studies produced inconsistent results, leaving the debate of whether “broken” mirror neurons in ASD are unresolved. Methods This meta-analysis aimed to explore the differences in MNS activation patterns between typically developing (TD) and ASD individuals when they observe biological motions with or without social-emotional components. Effect size signed differential mapping (ES-SDM) was adopted to synthesize the available fMRI data. Results ES-SDM analysis revealed hyperactivation in the right inferior frontal gyrus and left supplementary motor area in ASD during observation of biological motions. Subgroup analysis of experiments involving the observation of stimuli with or without emotional component revealed hyperactivation in the left inferior parietal lobule and left supplementary motor during action observation without emotional components, whereas hyperactivation of the right inferior frontal gyrus was found during action observation with emotional components in ASD. Subgroup analyses of age showed hyperactivation of the bilateral inferior frontal gyrus in ASD adolescents, while hyperactivation in the right inferior frontal gyrus was noted in ASD adults. Meta-regression within ASD individuals indicated that the right cerebellum crus I activation increased with age, while the left inferior temporal gyrus activation decreased with age. Limitations This meta-analysis is limited in its generalization of the findings to individuals with ASD by the restricted age range, heterogeneous study sample, and the large within-group variation in MNS activation patterns during object observation. Furthermore, we only included action observation studies which might limit the generalization of our results to the imitation deficits in ASD. In addition, the relatively small sample size for individual studies might also potentially overestimate the effect sizes. Conclusion The MNS is impaired in ASD. The abnormal activation patterns were found to be modulated by the nature of stimuli and age, which might explain the contradictory results from earlier studies on the “broken mirror neuron” debate.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
37
|
Thomason ME. Development of Brain Networks In Utero: Relevance for Common Neural Disorders. Biol Psychiatry 2020; 88:40-50. [PMID: 32305217 PMCID: PMC7808399 DOI: 10.1016/j.biopsych.2020.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/05/2020] [Accepted: 02/05/2020] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging, histological, and gene analysis approaches in living and nonliving human fetuses and in prematurely born neonates have provided insight into the staged processes of prenatal brain development. Increased understanding of micro- and macroscale brain network development before birth has spurred interest in understanding the relevance of prenatal brain development to common neurological diseases. Questions abound as to the sensitivity of the intrauterine brain to environmental programming, to windows of plasticity, and to the prenatal origin of disorders of childhood that involve disruptions in large-scale network connectivity. Much of the available literature on human prenatal neural development comes from cross-sectional or case studies that are not able to resolve the longitudinal consequences of individual variation in brain development before birth. This review will 1) detail specific methodologies for studying the human prenatal brain, 2) summarize large-scale human prenatal neural network development, integrating findings from across a variety of experimental approaches, 3) explore the plasticity of the early developing brain as well as potential sex differences in prenatal susceptibility, and 4) evaluate opportunities to link specific prenatal brain developmental processes to the forms of aberrant neural connectivity that underlie common neurological disorders of childhood.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, Department of Population Health, and Neuroscience Institute, New York University Langone Health, New York, New York.
| |
Collapse
|
38
|
Lin HY, Ni HC, Tseng WYI, Gau SSF. Characterizing intrinsic functional connectivity in relation to impaired self-regulation in intellectually able male youth with autism spectrum disorder. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 24:1201-1216. [DOI: 10.1177/1362361319888104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While a considerable number of youth with autism spectrum disorder exhibit impaired self-regulation (dysregulation), little is known about the neural correlates of dysregulation in autism spectrum disorder. In a sample of intellectually able boys with autism spectrum disorder (further categorized as those with and without dysregulation) and typically developing boys (aged 7–17 years), we conducted a multivariate connectome-wide association study to examine the intrinsic functional connectivity with resting-state functional magnetic resonance imaging. Dysregulation was defined by the sum of Attention, Aggression, and Anxiety/Depression subscales on the Child Behavior Checklist. We identified that both categorical and dimensional neural correlates of dysregulation in youth with autism spectrum disorder involved atypical connectivity among the components of multiple brain networks, especially between those subserving sensorimotor processing and salience encoding, beyond higher-level cognitive control circuitries. Interaction within the attention network might serve as autism spectrum disorder–specific neural correlates underpinning dysregulation. Our results highlight that the inter-individual variability in dysregulation might contribute to the inconsistency in the neuroimaging literature of autism spectrum disorder. Collectively, the present findings provide evidence to suggest that dysregulation might be considered as both categorical and dimensional moderators to parse heterogeneity of autism spectrum disorder.Lay AbstractImpaired self-regulation (i.e., dysregulation in affective, behavioral, and cognitive control), is commonly present in young people with autism spectrum disorder (ASD). However, little is known about what is happening in people’s brains when self-regulation is impaired in young people with ASD. We used a technique called functional MRI (which measures brain activity by detecting changes associated with blood flow) at a resting state (when participants are not asked to do anything) to research this in intellectually able young people with ASD. We found that brains with more connections, especially between regions involved in sensorimotor processing and regions involved in the processes that enable peoples to focus their attention on the most pertinent features from the sensory environment (salience processing), were related to more impaired self-regulation in young people with and without ASD. We also found that impaired self-regulation was related to increased communication within the brain system involved in voluntary orienting attention to a sensory cue (the dorsal attention network) in young people with ASD. These results highlight how different people have different degrees of dysregulation, which has been largely overlooked in the earlier brain imaging reports on ASD. This might contribute to understanding some of the inconsistencies in the existing published literature on this topic.
Collapse
Affiliation(s)
- Hsiang-Yuan Lin
- National Taiwan University Hospital
- National Taiwan University
| | - Hsing-Chang Ni
- National Taiwan University
- Chang Gung Memorial Hospital at Linkou
| | | | | |
Collapse
|
39
|
Guo X, Simas T, Lai M, Lombardo MV, Chakrabarti B, Ruigrok ANV, Bullmore ET, Baron‐Cohen S, Chen H, Suckling J. Enhancement of indirect functional connections with shortest path length in the adult autistic brain. Hum Brain Mapp 2019; 40:5354-5369. [PMID: 31464062 PMCID: PMC6864892 DOI: 10.1002/hbm.24777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/23/2019] [Accepted: 08/18/2019] [Indexed: 12/30/2022] Open
Abstract
Autism is a neurodevelopmental condition characterized by atypical brain functional organization. Here we investigated the intrinsic indirect (semi-metric) connectivity of the functional connectome associated with autism. Resting-state functional magnetic resonance imaging scans were acquired from 65 neurotypical adults (33 males/32 females) and 61 autistic adults (30 males/31 females). From functional connectivity networks, semi-metric percentages (SMPs) were calculated to assess the proportion of indirect shortest functional pathways at global, hemisphere, network, and node levels. Group comparisons were then conducted to ascertain differences between autism and neurotypical control groups. Finally, the strength and length of edges were examined to explore the patterns of semi-metric connections associated with autism. Compared with neurotypical controls, autistic adults displayed significantly higher SMP at all spatial scales, similar to prior observations in adolescents. Differences were primarily in weaker, longer-distance edges in the majority between networks. However, no significant diagnosis-by-sex interaction effects were observed on global SMP. These findings suggest increased indirect functional connectivity in the autistic brain is persistent from adolescence to adulthood and is indicative of reduced functional network integration.
Collapse
Affiliation(s)
- Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - Tiago Simas
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Meng‐Chuan Lai
- Centre for Addiction and Mental Health and the Hospital for Sick Children, Department of PsychiatryUniversity of TorontoTorontoCanada
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Department of PsychiatryNational Taiwan University Hospital and College of MedicineTaipeiTaiwan
| | - Michael V. Lombardo
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Italian Institute of TechnologyRoveretoItaly
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - Amber N. V. Ruigrok
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | - Simon Baron‐Cohen
- Autism Research Centre, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation; School of Life Science and Technology, Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
| | - John Suckling
- Brain Mapping Unit, Department of PsychiatryUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| | | |
Collapse
|
40
|
Ibrahim K, Eilbott JA, Ventola P, He G, Pelphrey KA, McCarthy G, Sukhodolsky DG. Reduced Amygdala-Prefrontal Functional Connectivity in Children With Autism Spectrum Disorder and Co-occurring Disruptive Behavior. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:1031-1041. [PMID: 30979647 PMCID: PMC7173634 DOI: 10.1016/j.bpsc.2019.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Disruptive behaviors are prevalent in children with autism spectrum disorder (ASD) and often cause substantial impairments. However, the underlying neural mechanisms of disruptive behaviors remain poorly understood in ASD. In children without ASD, disruptive behavior is associated with amygdala hyperactivity and reduced connectivity with the ventrolateral prefrontal cortex (vlPFC). This study examined amygdala reactivity and connectivity in children with ASD with and without co-occurring disruptive behavior disorders. We also investigated differential contributions of externalizing behaviors and callous-unemotional traits to variance in amygdala connectivity and reactivity. METHODS This cross-sectional study involved behavioral assessments and neuroimaging in three groups of children 8 to 16 years of age: 18 children had ASD and disruptive behavior, 20 children had ASD without disruptive behavior, and 19 children were typically developing control participants matched for age, gender, and IQ. During functional magnetic resonance imaging, participants completed an emotion perception task of fearful versus calm faces. Task-specific changes in amygdala reactivity and connectivity were examined using whole-brain, psychophysiological interaction, and multiple regression analyses. RESULTS Children with ASD and disruptive behavior showed reduced amygdala-vlPFC connectivity compared with children with ASD without disruptive behavior. Externalizing behaviors and callous-unemotional traits were associated with amygdala reactivity to fearful faces in children with ASD after controlling for suppressor effects. CONCLUSIONS Reduced amygdala-vlPFC connectivity during fear processing may differentiate children with ASD and disruptive behavior from children with ASD without disruptive behavior. The presence of callous-unemotional traits may have implications for identifying differential patterns of amygdala activity associated with increased risk of aggression in ASD. These findings suggest a neural mechanism of emotion dysregulation associated with disruptive behavior in children with ASD.
Collapse
Affiliation(s)
- Karim Ibrahim
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut.
| | - Jeffrey A Eilbott
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Pamela Ventola
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - George He
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gregory McCarthy
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Denis G Sukhodolsky
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
41
|
Raatikainen V, Korhonen V, Borchardt V, Huotari N, Helakari H, Kananen J, Raitamaa L, Joskitt L, Loukusa S, Hurtig T, Ebeling H, Uddin LQ, Kiviniemi V. Dynamic lag analysis reveals atypical brain information flow in autism spectrum disorder. Autism Res 2019; 13:244-258. [PMID: 31637863 PMCID: PMC7027814 DOI: 10.1002/aur.2218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
This study investigated whole‐brain dynamic lag pattern variations between neurotypical (NT) individuals and individuals with autism spectrum disorder (ASD) by applying a novel technique called dynamic lag analysis (DLA). The use of 3D magnetic resonance encephalography data with repetition time = 100 msec enables highly accurate analysis of the spread of activity between brain networks. Sixteen resting‐state networks (RSNs) with the highest spatial correlation between NT individuals (n = 20) and individuals with ASD (n = 20) were analyzed. The dynamic lag pattern variation between each RSN pair was investigated using DLA, which measures time lag variation between each RSN pair combination and statistically defines how these lag patterns are altered between ASD and NT groups. DLA analyses indicated that 10.8% of the 120 RSN pairs had statistically significant (P‐value <0.003) dynamic lag pattern differences that survived correction with surrogate data thresholding. Alterations in lag patterns were concentrated in salience, executive, visual, and default‐mode networks, supporting earlier findings of impaired brain connectivity in these regions in ASD. 92.3% and 84.6% of the significant RSN pairs revealed shorter mean and median temporal lags in ASD versus NT, respectively. Taken together, these results suggest that altered lag patterns indicating atypical spread of activity between large‐scale functional brain networks may contribute to the ASD phenotype. Autism Res 2020, 13: 244–258. © 2019 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary Autism spectrum disorder (ASD) is characterized by atypical neurodevelopment. Using an ultra‐fast neuroimaging procedure, we investigated communication across brain regions in adults with ASD compared with neurotypical (NT) individuals. We found that ASD individuals had altered information flow patterns across brain regions. Atypical patterns were concentrated in salience, executive, visual, and default‐mode network areas of the brain that have previously been implicated in the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Ville Raatikainen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Viola Borchardt
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Niko Huotari
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Heta Helakari
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Janne Kananen
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Lauri Raitamaa
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Leena Joskitt
- Clinic of Child Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Soile Loukusa
- Research Unit of Logopedics, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Tuula Hurtig
- Clinic of Child Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Hanna Ebeling
- Clinic of Child Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, Florida
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Medical Research Center (MRC), Oulu University Hospital, Oulu, Finland.,Research Unit of Medical Imaging, Physics, and Technology, The Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
42
|
Bos DJ, Silver BM, Barnes ED, Ajodan EL, Silverman MR, Clark-Whitney E, Tarpey T, Jones RM. Adolescent-Specific Motivation Deficits in Autism Versus Typical Development. J Autism Dev Disord 2019; 50:364-372. [PMID: 31625010 DOI: 10.1007/s10803-019-04258-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Differences in motivation during adolescence relative to childhood and adulthood in autism was tested in a cross-sectional study. 156 Typically developing individuals and 79 individuals with autism ages 10-30 years of age completed a go/nogo task with social and non-social cues. To assess age effects, linear and quadratic models were used. Consistent with prior studies, typically developing adolescents and young adults demonstrated more false alarms for positive relative to neutral social cues. In autism, there were no changes in attention across age for social or non-social cues. Findings suggest reduced orienting to motivating cues during late adolescence and early adulthood in autism. The findings provide a unique perspective to explain the challenges for adolescents with autism transitioning to adulthood.
Collapse
Affiliation(s)
- Dienke J Bos
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Benjamin M Silver
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Emily D Barnes
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Eliana L Ajodan
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Melanie R Silverman
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elysha Clark-Whitney
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Thaddeus Tarpey
- Division of Biostatistics, Department of Population Health, NYU School of Medicine, 180 Madison Avenue, New York, NY, 10016, USA
| | - Rebecca M Jones
- The Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
- The Center for Autism and the Developing Brain, Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
43
|
Li Y, Zhu Y, Nguchu BA, Wang Y, Wang H, Qiu B, Wang X. Dynamic Functional Connectivity Reveals Abnormal Variability and Hyper‐connected Pattern in Autism Spectrum Disorder. Autism Res 2019; 13:230-243. [DOI: 10.1002/aur.2212] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Li
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| | - Yuying Zhu
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
- School of Information Engineering, Southwest University of Science and Technology Mianyang China
| | | | - Yanming Wang
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| | - Huijuan Wang
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| | - Xiaoxiao Wang
- Center for Biomedical Engineering, University of Science and Technology of China Hefei China
| |
Collapse
|
44
|
Dubourg L, Vrticka P, Pouillard V, Eliez S, Schneider M. Divergent default mode network connectivity during social perception in 22q11.2 deletion syndrome. Psychiatry Res Neuroimaging 2019; 291:9-17. [PMID: 31344628 DOI: 10.1016/j.pscychresns.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 02/05/2023]
Abstract
AIM The 22q11.2 deletion (22q11DS) syndrome is a neurogenetic condition marked by social dysfunction. A major network involved in social cognition is the default mode network (DMN). To date, no study has investigated DMN functional connectivity during socio-cognitive paradigms in 22q11DS. METHOD We used the psychophysiological analysis (PPI) to investigate functional connectivity of the DMN during social perception in 22 participants with 22q11DS and 22 healthy controls. Association between DMN connectivity and prodromal symptoms was also examined. RESULTS 22q11DS patients exhibited stronger connectivity between the inferior parietal lobule (IPL) and the posterior cingulate cortex (PCC)/precuneus as well as lower connectivity between the precuneus and middle/superior frontal regions compared to controls. Association between IPL-PCC/precuneus connectivity and negative symptoms was also found in individuals with 22q11DS. CONCLUSION Our results point to (1) divergent DMN connectivity in patients with 22q11DS compared to controls; (2) association between DMN connectivity and negative symptom severity in patients. Results support the role of the DMN in social deficits of the 22q11DS population.
Collapse
Affiliation(s)
- Lydia Dubourg
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, School of Medicine, University of Geneva, Geneva, Switzerland.
| | - Pascal Vrticka
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and brain Sciences, Leipzig, Germany
| | - Virginie Pouillard
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, School of Medicine, University of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Development, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
45
|
Emotional face processing in autism spectrum disorder: Effects in gamma connectivity. Biol Psychol 2019; 149:107774. [PMID: 31574296 DOI: 10.1016/j.biopsycho.2019.107774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023]
Abstract
Impairments in social functioning are characteristic of autism spectrum disorder (ASD). Differences in functional networks during face processing in ASD compared to controls have been reported; however, the spatial-temporal dynamics of networks underlying affective processing are still not well understood. The current magnetoencephalography study examined whole-brain functional connectivity to implicit happy and angry faces in 104 adults with and without ASD. A network of reduced gamma band (30-55 Hz) phase synchrony occurring 80-308 ms following angry face presentation was found in adults with ASD compared to controls. The network involved widespread connections primarily anchored in frontal regions, including bilateral orbitofrontal areas, bilateral inferior frontal gyri, and left middle frontal gyrus extending to occipital, temporal, parietal, and subcortical regions. This finding suggests disrupted long-range neuronal communication to angry faces. Additionally, reduced gamma band-specific connectivity may reflect altered E/I balance in brain regions critical for emotional face processing in ASD.
Collapse
|
46
|
Hogeveen J, Krug MK, Geddert RM, Ragland JD, Solomon M. Compensatory Hippocampal Recruitment Supports Preserved Episodic Memory in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:97-109. [PMID: 31676207 DOI: 10.1016/j.bpsc.2019.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND The degree to which individuals with autism spectrum disorder (ASD) evidence impairments in episodic memory relative to their typically developing (TD) counterparts remains unclear. According to a prominent view, ASD is associated with deficits in encoding associations between items and recollecting precise context details. Here, we evaluated behavioral and neural evidence for this impaired relational binding hypothesis using a task involving relational encoding and recollection during functional magnetic resonance imaging. METHODS Adolescents and young adults (nASD = 47, nTD = 60) performed the Relational and Item-Specific Encoding task during functional magnetic resonance imaging, including item and associative recognition testing. We modeled functional recruitment within the medial temporal lobes (MTLs), and connectivity between MTL and the posterior medial (PM) network thought to underlie relational memory. The impaired relational binding model would predict a behavioral deficit driven by aberrant recruitment and connectivity of MTL and the PM network. RESULTS The ASD and TD groups showed indistinguishable item and associative recognition performance. During relational encoding, the ASD group demonstrated increased hippocampal recruitment, and decreased connectivity between MTL and PM regions relative to the TD group. Within ASD, hippocampal recruitment and MTL-PM connectivity were inversely correlated. CONCLUSIONS The lack of a behavioral deficit in ASD does not support the impaired relational binding hypothesis. Instead, the current data suggest that increased recruitment of the hippocampus compensates for decreased MTL-PM connectivity to support preserved episodic memory in ASD. These findings suggest a compensatory neurodevelopmental mechanism that may support preserved cognitive domains in ASD: local hyperrecruitment may offset connectivity aberrations in individuals with ASD relative to TD subjects.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, New Mexico.
| | - Marie K Krug
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Raphael M Geddert
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - J Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; Imaging Research Center, University of California, Davis, Davis, California
| | - Marjorie Solomon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; Imaging Research Center, University of California, Davis, Davis, California
| |
Collapse
|
47
|
Gao Y, Linke A, Jao Keehn RJ, Punyamurthula S, Jahedi A, Gates K, Fishman I, Müller RA. The language network in autism: Atypical functional connectivity with default mode and visual regions. Autism Res 2019; 12:1344-1355. [PMID: 31317655 DOI: 10.1002/aur.2171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/08/2022]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders associated with atypical brain connectivity. Although language abilities vary widely, they are impaired or atypical in most children with ASDs. Underlying brain mechanisms, however, are not fully understood. The present study examined intrinsic functional connectivity (iFC) of the extended language network in a cohort of 52 children and adolescents with ASDs (ages 8-18 years), using resting-state functional magnetic resonance imaging. We found that, in comparison to typically developing peers (n = 50), children with ASDs showed increased connectivity between some language regions. In addition, seed-to-whole brain analyses revealed increased connectivity of language regions with posterior cingulate cortex (PCC) and visual regions in the ASD group. Post hoc effective connectivity analyses revealed a mediation effect of PCC on the iFC between bilateral inferior frontal and visual regions in an ASD subgroup. This finding qualifies and expands on previous reports of recruitment of visual areas in language processing in ASDs. In addition, increased iFC between PCC and visual regions was linked to lower language scores in this ASD subgroup, suggesting that increased connectivity with visual cortices, mediated by default mode regions, may be detrimental to language abilities. Autism Res 2019, 12: 1344-1355. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: We examined the functional connectivity between regions of the language network in children with autism spectrum disorders (ASDs) compared to typically developing peers. We found connectivity to be intact between core language in the ASD group, but also showed abnormally increased connectivity between regions of an extended language network. Additionally, connectivity was increased with regions associated with brain networks responsible for self-reflection and visual processing.
Collapse
Affiliation(s)
- Yangfeifei Gao
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Annika Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ruth Joanne Jao Keehn
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Sanjana Punyamurthula
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Afrooz Jahedi
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,Computational Science Research Center, San Diego State University, San Diego, California
| | - Kathleen Gates
- Department of Psychology, University of North Carolina, Chapel Hill, North Carolina
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.,San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| |
Collapse
|
48
|
King JB, Prigge MBD, King CK, Morgan J, Weathersby F, Fox JC, Dean DC, Freeman A, Villaruz JAM, Kane KL, Bigler ED, Alexander AL, Lange N, Zielinski B, Lainhart JE, Anderson JS. Generalizability and reproducibility of functional connectivity in autism. Mol Autism 2019; 10:27. [PMID: 31285817 PMCID: PMC6591952 DOI: 10.1186/s13229-019-0273-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Autism is hypothesized to represent a disorder of brain connectivity, yet patterns of atypical functional connectivity show marked heterogeneity across individuals. Methods We used a large multi-site dataset comprised of a heterogeneous population of individuals with autism and typically developing individuals to compare a number of resting-state functional connectivity features of autism. These features were also tested in a single site sample that utilized a high-temporal resolution, long-duration resting-state acquisition technique. Results No one method of analysis provided reproducible results across research sites, combined samples, and the high-resolution dataset. Distinct categories of functional connectivity features that differed in autism such as homotopic, default network, salience network, long-range connections, and corticostriatal connectivity, did not align with differences in clinical and behavioral traits in individuals with autism. One method, lag-based functional connectivity, was not correlated to other methods in describing patterns of resting-state functional connectivity and their relationship to autism traits. Conclusion Overall, functional connectivity features predictive of autism demonstrated limited generalizability across sites, with consistent results only for large samples. Different types of functional connectivity features do not consistently predict different symptoms of autism. Rather, specific features that predict autism symptoms are distributed across feature types. Electronic supplementary material The online version of this article (10.1186/s13229-019-0273-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jace B King
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,2Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112 USA
| | - Molly B D Prigge
- 3Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA.,4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Carolyn K King
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,3Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA
| | - Jubel Morgan
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,3Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA.,4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Fiona Weathersby
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,5Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - J Chancellor Fox
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA
| | - Douglas C Dean
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Abigail Freeman
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA.,6Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719 USA
| | | | - Karen L Kane
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Erin D Bigler
- 7Psychology Department and Neuroscience Center, Brigham Young University, Provo, UT 84604 USA
| | - Andrew L Alexander
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA.,6Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719 USA.,8Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Nicholas Lange
- 9McLean Hospital and Department of Psychiatry, Harvard University, Cambridge, MA 02478 USA
| | - Brandon Zielinski
- 3Department of Pediatrics, University of Utah, Salt Lake City, UT 84108 USA.,10Department of Neurology, University of Utah, Salt Lake City, UT 84132 USA
| | - Janet E Lainhart
- 4Waisman Center, University of Wisconsin-Madison, Madison, WI 53705 USA.,6Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719 USA
| | - Jeffrey S Anderson
- 1Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84108 USA.,2Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112 USA.,5Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
49
|
Kilroy E, Cermak SA, Aziz-Zadeh L. A Review of Functional and Structural Neurobiology of the Action Observation Network in Autism Spectrum Disorder and Developmental Coordination Disorder. Brain Sci 2019; 9:E75. [PMID: 30925819 PMCID: PMC6523237 DOI: 10.3390/brainsci9040075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
Recent research has reported motor impairment similarities between children with developmental coordination disorder (DCD) and a subgroup of individuals with autism spectrum disorder (ASD). However, there is a debate as to whether DCD is a co-occurring diagnosis in individuals with ASD and motor impairments (ASDd), or if motor impairments in ASD are distinct from DCD. However, the etiology of motor impairments is not well understood in either disorder. Clarifying comorbidities in ASD is important to determine different etiopathological phenotyping clusters in ASD and to understand the variety of genetic and environmental factors that contribute to the disorder. Furthermore, this distinction has important therapeutic relevance. Here we explore the current neuroimaging findings in ASD and DCD and discusses possible neural mechanisms that underlie similarities and differences between the disorders.
Collapse
Affiliation(s)
- Emily Kilroy
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
- Brain and Creativity Institute, University Southern California, Los Angeles, CA 90089, USA.
| | - Sharon A Cermak
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
| | - Lisa Aziz-Zadeh
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
- Brain and Creativity Institute, University Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
50
|
Kilroy E, Aziz-Zadeh L, Cermak S. Ayres Theories of Autism and Sensory Integration Revisited: What Contemporary Neuroscience Has to Say. Brain Sci 2019; 9:brainsci9030068. [PMID: 30901886 PMCID: PMC6468444 DOI: 10.3390/brainsci9030068] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 11/17/2022] Open
Abstract
Abnormal sensory-based behaviors are a defining feature of autism spectrum disorders (ASD). Dr. A. Jean Ayres was the first occupational therapist to conceptualize Sensory Integration (SI) theories and therapies to address these deficits. Her work was based on neurological knowledge of the 1970’s. Since then, advancements in neuroimaging techniques make it possible to better understand the brain areas that may underlie sensory processing deficits in ASD. In this article, we explore the postulates proposed by Ayres (i.e., registration, modulation, motivation) through current neuroimaging literature. To this end, we review the neural underpinnings of sensory processing and integration in ASD by examining the literature on neurophysiological responses to sensory stimuli in individuals with ASD as well as structural and network organization using a variety of neuroimaging techniques. Many aspects of Ayres’ hypotheses about the nature of the disorder were found to be highly consistent with current literature on sensory processing in children with ASD but there are some discrepancies across various methodological techniques and ASD development. With additional characterization, neurophysiological profiles of sensory processing in ASD may serve as valuable biomarkers for diagnosis and monitoring of therapeutic interventions, such as SI therapy.
Collapse
Affiliation(s)
- Emily Kilroy
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
- Brain and Creativity Institute, University Southern California, Los Angeles, CA 90089, USA.
| | - Lisa Aziz-Zadeh
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
- Brain and Creativity Institute, University Southern California, Los Angeles, CA 90089, USA.
| | - Sharon Cermak
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|