1
|
Nevard K, Kaur R, Harvey-Samuel T. Germline transformation of the West Nile virus and avian malaria vector Culex quinquefasciatus Say using the piggyBac transposon system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104309. [PMID: 40174678 DOI: 10.1016/j.ibmb.2025.104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/27/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Culex quinquefasciatus Say is a mosquito which acts as a vector for numerous diseases including West Nile virus, lymphatic filariasis and avian malaria, over a broad geographical range. As the effectiveness of insecticidal mosquito control methods declines, the need has grown to develop genetic control methods to curb the spread of disease. The piggyBac transposon system - the most widely used genetic transformation tool in insects, including mosquitoes - generates quasi-random insertions of donor DNA into the host genome. However, despite the broad reported species range of piggyBac, previous attempts to use this tool to transform Culex quinquefasciatus mosquitoes have failed. Here we report the first successful transformation of Culex quinquefasciatus with the piggyBac transposon system. Using commercially synthesised piggyBac mRNA as a transposase source, we were able to generate three independent insertions of a ZsGreen fluorescent marker gene, with transformation efficiencies of up to 5 %. Through this work, we have expanded the genetic toolkit available for the genetic manipulation of Culex mosquitoes and thus removed a barrier to developing novel genetic control methods in this important disease vector.
Collapse
Affiliation(s)
- Katherine Nevard
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Rajdeep Kaur
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Tim Harvey-Samuel
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK; Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
2
|
Kuczynski Lange S, Connelly CR, Tai Z, Foley N, De Leon Rivera J, Lozano S, Nett RJ. A scoping review to determine if adverse human health effects are associated with use of pyrethroids for mosquito control. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:277-288. [PMID: 39928406 DOI: 10.1093/jme/tjaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 02/11/2025]
Abstract
Mosquito control using pyrethrins and synthetic pyrethroids (PSP) is important for preventing vector-borne diseases. Although the benefits associated with PSP use are well-documented, public concern exists regarding potential human adverse health effects. The aim of this scoping review was to describe adverse human health effects associated with PSP use for community adult mosquito control. A literature search using the databases MEDLINE, EMBASE, Agricultural and Environmental Science Collection, CAB Abstracts, and Scopus obtained 6,154 original peer-reviewed articles published during 1 January 2000 to 22 May 2024. Articles were independently reviewed for inclusion using predetermined exclusion and inclusion criteria. Data were extracted from 10 included articles. Study designs included cohort (n = 5), cross-sectional (n = 2), and risk assessment (n = 4). One article included 2 study designs. Of the cohort studies, one was prospective and the remainder were retrospective. A causal relationship between PSP application for adult mosquito control and adverse human health impacts was not identified. No increases in acute health manifestations were reported. The 4 risk assessments estimated that PSP exposures were not above the regulatory level of concern; a meta-analysis determined the likelihood of PSP exposures exceeding the regulatory level of concern was <0.0001. The limited evidence indicated that PSP applied appropriately for control of nuisance mosquitoes or mosquitoes that transmit arboviruses do not pose acute or chronic human health risks. Continued investigation into potential human health impacts of PSP would help inform guidelines for adult mosquito control and help inform public health decision making.
Collapse
Affiliation(s)
- Suzanne Kuczynski Lange
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - C Roxanne Connelly
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Zoe Tai
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicole Foley
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Juan De Leon Rivera
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Saul Lozano
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Randall J Nett
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
3
|
Kasbergen LMR, de Bruin E, Chandler F, Sigfrid L, Chan XHS, Hookham L, Wei J, Chen S, GeurtsvanKessel CH, Scherbeijn S, Charrel RN, Ayhan N, Lee JL, Corman VM, Reusken C, Loens K, Popescu CP, Lupse M, Briciu V, Văsieşiu AM, Pipero P, Harxhi A, Puca E, Ponosheci Biçaku A, Travar M, Ostojić M, Baljic R, Arapović J, Ledina D, Cekinović Grbeša Đ, Čabraja I, Kurolt IC, Halichidis S, Birlutiu V, Dumitru IM, Moroti R, Barac A, Stevanovic G, Pyrpasopoulou A, Koulouras V, Betica Radić L, Papanikolaou MN, Roilides E, Markotić A, Galal U, Denis E, Goodwin L, Turtle L, Florescu SA, Ramadani H, Goossens H, Ieven M, Drosten C, Horby PW, Sikkema RS, Koopmans MPG. Multi-antigen serology and a diagnostic algorithm for the detection of arbovirus infections as novel tools for arbovirus preparedness in southeast Europe (MERMAIDS-ARBO): a prospective observational study. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00654-6. [PMID: 39987930 DOI: 10.1016/s1473-3099(24)00654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND Arboviruses are increasingly affecting Europe, partly due to the effects of climate change. This increase in range and impact emphasises the need to improve preparedness for emerging arboviral infections that often co-circulate and might have overlapping clinical syndromes. We aimed to strengthen surveillance networks for four clinically relevant arboviruses in southeast Europe. METHODS This study reports an in-depth analysis of the MERMAIDS-ARBO prospective observational study in adults (ie, aged ≥18 years) hospitalised with an arbovirus-compatible disease syndrome in 21 hospitals in seven countries in southeast Europe over four arbovirus seasons (May 1-Oct 31, 2016-19) to obtain arbovirus prevalence outcomes. The main objectives of the MERMAIDS-ARBO study, describing the clinical management and outcomes of four arboviruses endemic to southeast Europe, including Crimean-Congo haemorrhagic fever virus (CCHFV), tick-borne encephalitis virus (TBEV), Toscana virus, and West Nile virus (WNV), are reported elsewhere. In this analysis, given the challenges associated with arbovirus diagnostics, we developed a diagnostic algorithm accounting for serology outcomes and sample timing to study arbovirus prevalence in southeast Europe. Serum samples were collected on days 0, 7, 28, and 60 after hospital admission and tested for anti-CCHFV IgG and IgM antibodies with ELISAs (confirmed with an indirect immunofluorescence test) and for IgG and IgM antibodies specific to TBEV, Toscana virus, and WNV with custom-printed protein microarrays (confirmed with virus neutralisation tests). All acute-phase samples were tested by PCR for all four viruses. Descriptive analyses were performed for virus-reactive cases by geography and year, and possible factors (eg, age, sex, and insect bites) associated with virus reactivity were assessed. FINDINGS Of 2896 individuals screened, 913 were eligible for inclusion, of whom 863 (514 men, 332 women, and 17 unknown) had samples sent to the study reference laboratories and were included in molecular and serological analyses. Some individuals had insufficient clinical data to be included in the clinical analysis, but met the eligibility criteria for and were included here. Serum sampling was incomplete (eg, samples missing from one or more timepoints or no data on time since symptom onset) for 602 (70%) patients, and the timing of collection was often heterogeneous after symptom onset up to 40 days (average median delay of 5-6 days across all timepoints), affecting the ability to diagnose arbovirus infection by serology. By use of an interpretation table incorporating timing and completeness of sampling, one (<1%) participant had a confirmed recent infection with CCHFV, ten (1%) with TBEV, 40 (5%) with Toscana virus, and 52 (6%) with WNV. Most acute confirmed infections of Toscana virus were found in Albania (25 [63%] of 40), whereas WNV was primarily identified in Romania (36 [69%] of 52). Albania also had the highest overall Toscana virus seropositivity (168 [60%] of 282), mainly explained by patients confirmed to be exposed or previously exposed (104 [62%] of 168). Patients without antibodies to WNV or Toscana virus were significantly younger than patients with antibodies (mean difference -8·48 years [95% CI -12·31 to -4·64] for WNV, and -6·97 years [-9·59 to -4·35] for Toscana virus). We found higher odds of Toscana virus reactivity in men (odds ratio 1·56 [95% CI 1·15 to 2·11]; p=0·0055), WNV reactivity with mosquito bites versus no mosquito bites (2·47 [1·54 to 3·97]; p=0·0002), and TBEV reactivity with tick bites versus no tick bites (2·21 [1·19 to 4·11]; p=0·018). INTERPRETATION This study shows that despite incomplete and heterogeneous data, differential diagnosis of suspected arbovirus infections is possible, and the diagnostic interpretation algorithm we propose could potentially be used to strengthen routine diagnostics in clinical settings in areas at risk for arboviral diseases. Our data highlight potential hotspots for arbovirus surveillance and risk factors associated with these particular arbovirus infections. FUNDING European Commission and Versatile Emerging infectious disease Observatory. TRANSLATIONS For the Greek, Albanian, Romanian, Bosnian, Serbian, and Croatian translation of the summary see Supplementary Materials section.
Collapse
Affiliation(s)
- Louella M R Kasbergen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Erwin de Bruin
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Felicity Chandler
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Louise Sigfrid
- ERGO, Pandemic Sciences Institute, University of Oxford, Oxford, UK; Policy and Practice Research Group, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Xin Hui S Chan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lauren Hookham
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jia Wei
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Siyu Chen
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; High Meadows Environmental Institute, Princeton University, Princeton, NJ, US
| | | | - Sandra Scherbeijn
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Remi N Charrel
- Unite des Virus Emergents, Aix-Marseille Université, Universita di Corsica, IRD 190, Inserm 1207, IRBA, Marseille, France
| | - Nazli Ayhan
- Unite des Virus Emergents, Aix-Marseille Université, Universita di Corsica, IRD 190, Inserm 1207, IRBA, Marseille, France; Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - James L Lee
- ERGO, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Infection Research (DZIF), Berlin, Germany
| | - Chantal Reusken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, RIVML, Bilthoven, Netherlands
| | - Katherine Loens
- Department of Medical Microbiology, University of Antwerp UIA, Antwerp, Belgium
| | - Corneliu Petru Popescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Mihaela Lupse
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; The Teaching Hospital for Infectious Diseases, Cluj-Napoca, Romania
| | - Violeta Briciu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; The Teaching Hospital for Infectious Diseases, Cluj-Napoca, Romania
| | - Anca Meda Văsieşiu
- Department of Infectious Diseases, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Pellumb Pipero
- Department of Infectious Diseases, Mother Teresa University Hospital Center, Tirana, Albania
| | - Arjan Harxhi
- Faculty of Medicine, Medical University of Tirana, Tirana, Albania
| | - Edmond Puca
- Department of Infectious Diseases, Mother Teresa University Hospital Center, Tirana, Albania
| | | | - Maja Travar
- Department of Microbiology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Maja Ostojić
- School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Rusmir Baljic
- Unit for Infectious Disease, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jurica Arapović
- School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina; Department of Infectious Diseases, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - Dragan Ledina
- Department of Infectious Diseases, University Hospital Split, Split, Croatia
| | | | - Ivica Čabraja
- Department of Infectious Diseases, Dr Josip Benčević General Hospital, Slavonski Brod, Croatia
| | | | - Stela Halichidis
- Clinical Infectious Diseases Hospital, Constanța, Romania; Faculty of Medicine, Ovidius University, Constanța, Romania
| | - Victoria Birlutiu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Sibiu, Romania; County Clinical Emergency Hospital, Sibiu, Romania
| | - Irina M Dumitru
- Ovidius University of Constanța, Clinical Hospital of Infectious Diseases, Academy of Romanian Scientists, Bucharest, Romania
| | - Ruxandra Moroti
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; National Institute for Infectious Diseases Matei Bals, Bucharest, Romania
| | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Stevanovic
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Vasilios Koulouras
- Intensive Care Unit, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece
| | | | | | - Emmanuel Roilides
- Infectious Diseases Unit, Hippokration General Hospital, Thessaloniki, Greece
| | - Alemka Markotić
- Dr Fran Mihaljević University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, UK
| | - Emmanuelle Denis
- ERGO, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Lynsey Goodwin
- NIHR Health Protection Research Unit for Emerging Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit for Emerging Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Hamdi Ramadani
- Clinic of Infectious Diseases, University Clinical Center of Kosovo, Prishtina, Kosovo; Department of Infectious Diseases, University Clinical Centre, Pristina, Kosovo
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Margareta Ieven
- Department of Medical Microbiology, University of Antwerp UIA, Antwerp, Belgium; Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Peter W Horby
- ERGO, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Reina S Sikkema
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
4
|
Tai Z, Connelly CR, Lange SK, Foley N, De Leon Rivera J, Lozano S, Nett RJ. A scoping review to determine if adverse human health effects are associated with use of organophosphates for mosquito control. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:8-18. [PMID: 39425905 PMCID: PMC11808927 DOI: 10.1093/jme/tjae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Organophosphate insecticides are widely used for adult mosquito control. Although proven effective in reducing mosquito populations and limiting arbovirus transmission, public concern exists regarding potential human health effects associated with organophosphate exposure. The aim of this scoping review was to describe any reported human health conditions associated with organophosphates during their use for adult mosquito control in the United States and Canada. Original peer-reviewed articles published in English language journals from 1 January 2000 to 22 May 2024, were obtained by searching from the databases MEDLINE, EMBASE, Agricultural & Environmental Science Collection, CAB Abstracts, and Scopus. The search identified 6,154 screened articles. Following an independent review, 10 studies were identified that described human health conditions associated with organophosphate exposure during adult mosquito control applications. Of the 10 included studies, only two articles were published within the last 11 years (2013 to 22 May 2024). Three types of study design were represented in the included studies: cohort (n = 5), case study (n = 1), and risk assessment (n = 4). The included studies could not determine causality between exposure to adulticides and development of illness or adverse impacts. Exposure to organophosphates did not contribute to an observed increase in metabolic toxicity, hospitalization rates, or self-reported symptoms and exposure. The available and limited evidence indicates that organophosphates can be used safely to control nuisance mosquitoes or mosquitoes that transmit arboviruses. Continued research regarding the human health effects associated with organophosphate applications for adult mosquito control could help evaluate the basis of the public's concerns and inform public health decision-making.
Collapse
Affiliation(s)
- Zoe Tai
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - C. Roxanne Connelly
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Suzanne Kuczynski Lange
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - Nicole Foley
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Juan De Leon Rivera
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Saul Lozano
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Randall J. Nett
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| |
Collapse
|
5
|
Bayles BR, George MF, Christofferson RC. Long-term trends and spatial patterns of West Nile Virus emergence in California, 2004-2021. Zoonoses Public Health 2024; 71:258-266. [PMID: 38110854 DOI: 10.1111/zph.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
AIMS West Nile Virus (WNV) has remained a persistent source of vector-borne disease risk in California since first being identified in the state in 2003. The geographic distribution of WNV activity is relatively widespread, but varies considerably across different regions within the state. Spatial variation in human WNV infection depends upon social-ecological factors that influence mosquito populations and virus transmission dynamics. Measuring changes in spatial patterns over time is necessary for uncovering the underlying regional drivers of disease risk. METHODS AND RESULTS In this study, we utilized statewide surveillance data to quantify temporal changes and spatial patterns of WNV activity in California. We obtained annual WNV mosquito surveillance data from 2004 through 2021 from the California Arbovirus Surveillance Program. Geographic coordinates for mosquito pools were analysed using a suite of spatial statistics to identify and classify patterns in WNV activity over time. CONCLUSIONS We detected clear patterns of non-random WNV risk during the study period, including emerging hot spots in the Central Valley and non-random periods of oscillating WNV risk in Southern and Northern California subregions. Our findings offer new insights into 18 years of spatio-temporal variation in WNV activity across California, which may be used for targeted surveillance efforts and public health interventions.
Collapse
Affiliation(s)
- Brett R Bayles
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
- Department of Natural Sciences and Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michaela F George
- Department of Global Public Health, Dominican University of California, San Rafael, California, USA
| | | |
Collapse
|
6
|
Lu HZ, Xie YZ, Gao C, Wang Y, Liu TT, Wu XZ, Dai F, Wang DQ, Deng SQ. Diabetes mellitus as a risk factor for severe dengue fever and West Nile fever: A meta-analysis. PLoS Negl Trop Dis 2024; 18:e0012217. [PMID: 38820529 PMCID: PMC11168630 DOI: 10.1371/journal.pntd.0012217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/12/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Dengue fever (DF) and West Nile fever (WNF) have become endemic worldwide in the last two decades. Studies suggest that individuals with diabetes mellitus (DM) are at a higher risk of developing severe complications from these diseases. Identifying the factors associated with a severe clinical presentation is crucial, as prompt treatment is essential to prevent complications and fatalities. This article aims to summarize and assess the published evidence regarding the link between DM and the risk of severe clinical manifestations in cases of DF and WNF. METHODOLOGY/PRINCIPAL FINDINGS A systematic search was conducted using the PubMed and Web of Science databases. 27 studies (19 on DF, 8 on WNF) involving 342,873 laboratory-confirmed patients were included in the analysis. The analysis showed that a diagnosis of DM was associated with an increased risk for severe clinical presentations of both DF (OR 3.39; 95% CI: 2.46, 4.68) and WNF (OR 2.89; 95% CI: 1.89, 4.41). DM also significantly increased the risk of death from both diseases (DF: OR 1.95; 95% CI: 1.09, 3.52; WNF: OR 1.74; 95% CI: 1.40, 2.17). CONCLUSIONS/SIGNIFICANCE This study provides strong evidence supporting the association between DM and an increased risk of severe clinical manifestations in cases of DF and WNF. Diabetic individuals in DF or WNF endemic areas should be closely monitored when presenting with febrile symptoms due to their higher susceptibility to severe disease. Early detection and appropriate management strategies are crucial in reducing the morbidity and mortality rates associated with DF and WNF in diabetic patients. Tailored care and targeted public health interventions are needed to address this at-risk population. Further research is required to understand the underlying mechanisms and develop effective preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Hong-Zheng Lu
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui China
| | - Yu-Zhuang Xie
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Gao
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Ting-Ting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xing-Zhe Wu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Duo-Quan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Underwood EC, Vera IM, Allen D, Alvior J, O’Driscoll M, Silbert S, Kim K, Barr KL. Seroprevalence of West Nile Virus in Tampa Bay Florida Patients Admitted to Hospital during 2020-2021 for Respiratory Symptoms. Viruses 2024; 16:719. [PMID: 38793601 PMCID: PMC11125834 DOI: 10.3390/v16050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
West Nile virus (WNV) is an arbovirus spread primarily by Culex mosquitoes, with humans being a dead-end host. WNV was introduced to Florida in 2001, with 467 confirmed cases since. It is estimated that 80 percent of cases are asymptomatic, with mild cases presenting as a non-specific flu-like illness. Currently, detection of WNV in humans occurs primarily in healthcare settings via RT-PCR or CSF IgM when patients present with severe manifestations of disease including fever, meningitis, encephalitis, or acute flaccid paralysis. Given the short window of detectable viremia and requirement for CSF sampling, most WNV infections never receive an official diagnosis. This study utilized enzyme-linked immunosorbent assay (ELISA) to detect WNV IgG antibodies in 250 patient serum and plasma samples collected at Tampa General Hospital during 2020 and 2021. Plaque reduction neutralization tests were used to confirm ELISA results. Out of the 250 patients included in this study, 18.8% of them were IgG positive, consistent with previous WNV exposure. There was no relationship between WNV exposure and age or sex.
Collapse
Affiliation(s)
- Emma C. Underwood
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (E.C.U.)
| | - Iset M. Vera
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Dylan Allen
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Joshua Alvior
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | - Kami Kim
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (E.C.U.)
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Tampa General Hospital, Tampa, FL 33606, USA
| | - Kelli L. Barr
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA; (E.C.U.)
| |
Collapse
|
8
|
Hcini N, Lambert V, Picone O, Carod JF, Carles G, Pomar L, Epelboin L, Nacher M. Arboviruses and pregnancy: are the threats visible or hidden? Trop Dis Travel Med Vaccines 2024; 10:4. [PMID: 38355934 PMCID: PMC10868105 DOI: 10.1186/s40794-023-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 02/16/2024] Open
Abstract
Mosquito-borne arboviral diseases are a global concern and can have severe consequences on maternal, neonatal, and child health. Their impact on pregnancy tends to be neglected in developing countries. Despite hundreds of millions of infections, 90% pregnancies being exposed, scientific data on pregnant women is poor and sometimes non-existent. Recently and since the 2016 Zika virus outbreak, there has been a newfound interest in these diseases. Through various neuropathogenic, visceral, placental, and teratogenic mechanisms, these arbovirus infections can lead to fetal losses, obstetrical complications, and a wide range of congenital abnormalities, resulting in long-term neurological and sensory impairments. Climate change, growing urbanization, worldwide interconnectivity, and ease of mobility allow arboviruses to spread to other territories and impact populations that had never been in contact with these emerging agents before. Pregnant travelers are also at risk of infection with potential subsequent complications. Beyond that, these pathologies show the inequalities of access to care on a global scale in a context of demographic growth and increasing urbanization. It is essential to promote research, diagnostic tools, treatments, and vaccine development to address this emerging threat.Background The vulnerability of pregnant women and fetuses to emergent and re-emergent pathogens has been notably illustrated by the outbreaks of Zika virus. Our comprehension of the complete scope and consequences of these infections during pregnancy remains limited, particularly among those involved in perinatal healthcare, such as obstetricians and midwives. This review aims to provide the latest information and recommendations regarding the various risks, management, and prevention for pregnant women exposed to arboviral infections.
Collapse
Affiliation(s)
- Najeh Hcini
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana.
- CIC Inserm 1424 and DFR Santé Université Guyane, Cayenne, French Guiana, France.
| | - Véronique Lambert
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Olivier Picone
- Department of Obstetrics and Gynecology, Hôpital Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Assistance Publique : Hôpitaux de Paris, Université Paris Diderot, CEDEX, Colombes, France
| | - Jean-Francois Carod
- Department of Biology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Gabriel Carles
- Department of Obstetrics and Gynecology, West French Guiana Hospital Center, Saint-Laurent-du-Maroni, French Guiana
| | - Léo Pomar
- Materno-Fetal and Obstetrics Research Unit, Department "Woman-Mother-Child", Lausanne University Hospital, Lausanne, Switzerland
| | - Loïc Epelboin
- Department of Infectious and Tropical Diseases, Cayenne General Hospital, Cayenne, French Guiana, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles Guyane, Inserm CIC1424, Centre Hospitalier de Cayenne, 97300, Cayenne, French Guiana
| |
Collapse
|
9
|
Bektore B, Dogan B, Ozkul A, Gozalan A. West Nile virus seropositivity in Alanya, a coastal city in the Mediterranean region of Turkey. Ann Saudi Med 2024; 44:48-54. [PMID: 38311862 PMCID: PMC10839453 DOI: 10.5144/0256-4947.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/03/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND West Nile virus (WNV)-related illness is a global health problem. Understanding the seropositivity rates and identifying the risk factors related to WNV in various animal species including humans is crucial for the implementation of effective prevention strategies. OBJECTIVES Assess the rate of seropositivity and the risk factors associated with WNV seropositivity. DESIGN Descriptive, cross-sectional. SETTING Microbiology and virology departments in a veterinary college. PATIENTS AND METHODS In a sample of healthy human participants in Alanya, located close to regions where WNV activity has been detected, anti-WNV IgG antibody detection was performed using enzyme-linked immunosorbent assays. The positive results were confirmed by virus neutralization tests (VNTs). The sample was compared with a second group of age- and gender-matched healthy subjects selected from a previous cross-sectional study. MAIN OUTCOME MEASURES Determination of the seropositivity and risk factors that were associated with WNV in healthy humans. SAMPLE SIZE 87 in current study; 356 in previous study. RESULTS The first group of 87, which had a high risk of encountering vector mosquitoes, had a positivity rate of 8% (7/87), whereas positivity in the second group was 4.5% (16/356; P=.181). In the entire sample, the anti-WNV IgG antibody was positive in 23 out of 443 (5.2%) samples by the ELISA test. Among these 23 samples, ten were confirmed as positive using VNTs. Therefore, the WNV IgG seropositivity was 2.3% (10/442). Confirmed IgG seropositivity rates were higher among male (3.8%) than female participants (0.9%; P=.054) and among adults aged ≥45 years (4%) than those aged 18-44 years (0.8%; P=.048). CONCLUSION This study highlights the presence of WNV infection in the research region. More comprehensive and multidisciplinary studies are required to increase our knowledge about this zoonotic infection including risk factors in line with the One Health approach. LIMITATIONS Small sample size.
Collapse
Affiliation(s)
- Bayhan Bektore
- From the Department of Medical Microbiology, Ministry of Health Alanya Alaadin Keykubat University, Alanya Education and Research Hospital, Antalya, Alanya, Turkey
| | - Bora Dogan
- From the Department of Medical Microbiology, Urla State Hospital, Izmir, Turkey
| | - Akyut Ozkul
- From the Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Gozalan
- From the Department of Medical Microbiology, Ministry of Health Alanya Alaadin Keykubat University, Alanya Education and Research Hospital, Antalya, Alanya, Turkey
| |
Collapse
|
10
|
Bakal JA, Rivera R, Charlton C, Plitt S, Power C. Evolving etiologies, comorbidities, survival, and costs of care in adult encephalitis. J Neurovirol 2023; 29:605-613. [PMID: 37581843 DOI: 10.1007/s13365-023-01165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Encephalitis is a central nervous system disorder, often caused by infectious agents or aberrant immune responses. We investigated causes, comorbidities, costs, and outcomes of encephalitis in a population-based cohort. ICD-10 codes corresponding to encephalitis were used to identify health services records for all adults from 2004 to 2019. Data were cross-validated for identified diagnoses based on laboratory confirmation using univariate and multivariate statistical analyses. We identified persons with a diagnosis of encephalitis and abnormal cerebrospinal fluid (CSF) results (n = 581) in whom viral genome was detected (n = 315) in a population of 3.2 million adults from 2004 to 2019. Viral genome-positive CSF samples included HSV-1 (n = 133), VZV (n = 116), HSV-2 (n = 34), enterovirus (n = 4), EBV (n = 5), and CMV (n = 3) with the remaining viruses included JCV (n = 12) and HHV-6 (n = 1). The mean Charlson Comorbidity Index (2.0) and mortality rate (37.6%) were significantly higher in the CSF viral genome-negative encephalitis group although the mean costs of care were significantly higher for the CSF viral genome-positive group. Cumulative incidence rates showed increased CSF VZV detection in persons with encephalitis, which predominated in persons over 65 years with a higher mean Charlson index. We detected HSV-2 and VZV more frequently in CSF from encephalitis cases with greater material-social deprivation. The mean costs of care were significantly greater for HSV-1 encephalitis group. Encephalitis remains an important cause of neurological disability and death with a viral etiology in 54.2% of affected adults accompanied by substantial costs of care and mortality. Virus-associated encephalitis is evolving with increased VZV detection, especially in older persons.
Collapse
Affiliation(s)
- J A Bakal
- Provincial Research Data Services-Alberta Health Services, Edmonton, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - R Rivera
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - C Charlton
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Edmonton, AB, Canada
| | - S Plitt
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB, Canada
| | - C Power
- Division of Neurology, Department of Medicine, Medical Research Centre, University of Alberta, 6-11 Heritage, Edmonton, AB, Canada.
- Department of Microbiology, Immunology & Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
11
|
Spiteri AG, van Vreden C, Ashhurst TM, Niewold P, King NJC. Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS. Front Immunol 2023; 14:1203561. [PMID: 37545511 PMCID: PMC10403146 DOI: 10.3389/fimmu.2023.1203561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Caryn van Vreden
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Thomas M. Ashhurst
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
| | - Paula Niewold
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Nicholas J. C. King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Gould CV, Staples JE, Huang CYH, Brault AC, Nett RJ. Combating West Nile Virus Disease - Time to Revisit Vaccination. N Engl J Med 2023; 388:1633-1636. [PMID: 37125778 PMCID: PMC11627013 DOI: 10.1056/nejmp2301816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Carolyn V Gould
- From the Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - J Erin Staples
- From the Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Claire Y-H Huang
- From the Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Aaron C Brault
- From the Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| | - Randall J Nett
- From the Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO
| |
Collapse
|
13
|
Waller C, Tiemensma M, Currie BJ, Williams DT, Baird RW, Krause VL. Japanese Encephalitis in Australia - A Sentinel Case. N Engl J Med 2022; 387:661-662. [PMID: 36070717 DOI: 10.1056/nejmc2207004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claire Waller
- Northern Territory Department of Health, Darwin, NT, Australia
| | | | - Bart J Currie
- Menzies School of Health Research at Charles Darwin University, Darwin, NT, Australia
| | - David T Williams
- Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Robert W Baird
- Northern Territory Department of Health, Darwin, NT, Australia
| | - Vicki L Krause
- Northern Territory Department of Health, Darwin, NT, Australia
| |
Collapse
|
14
|
Spiteri AG, Ni D, Ling ZL, Macia L, Campbell IL, Hofer MJ, King NJC. PLX5622 Reduces Disease Severity in Lethal CNS Infection by Off-Target Inhibition of Peripheral Inflammatory Monocyte Production. Front Immunol 2022; 13:851556. [PMID: 35401512 PMCID: PMC8990748 DOI: 10.3389/fimmu.2022.851556] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
PLX5622 is a CSF-1R inhibitor and microglia-depleting reagent, widely used to investigate the biology of this central nervous system (CNS)-resident myeloid population, but the indirect or off-target effects of this agent remain largely unexplored. In a murine model of severe neuroinflammation induced by West Nile virus encephalitis (WNE), we showed PLX5622 efficiently depleted both microglia and a sub-population of border-associated macrophages in the CNS. However, PLX5622 also significantly depleted mature Ly6Chi monocytes in the bone marrow (BM), inhibiting their proliferation and lethal recruitment into the infected brain, reducing neuroinflammation and clinical disease scores. Notably, in addition, BM dendritic cell subsets, plasmacytoid DC and classical DC, were depleted differentially in infected and uninfected mice. Confirming its protective effect in WNE, cessation of PLX5622 treatment exacerbated disease scores and was associated with robust repopulation of microglia, rebound BM monopoiesis and markedly increased inflammatory monocyte infiltration into the CNS. Monoclonal anti-CSF-1R antibody blockade late in WNE also impeded BM monocyte proliferation and recruitment to the brain, suggesting that the protective effect of PLX5622 is via the inhibition of CSF-1R, rather than other kinase targets. Importantly, BrdU incorporation in PLX5622-treated mice, suggest remaining microglia proliferate independently of CSF-1 in WNE. Our study uncovers significantly broader effects of PLX5622 on the myeloid lineage beyond microglia depletion, advising caution in the interpretation of PLX5622 data as microglia-specific. However, this work also strikingly demonstrates the unexpected therapeutic potential of this molecule in CNS viral infection, as well as other monocyte-mediated diseases.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Zheng Lung Ling
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review provides an overview of arthropod-borne virus (arbovirus) infections that are important causes of human neurological infections world-wide. As many of the individual viruses in a specific genus or family cause overlapping clinical syndromes, this review discusses important viruses in groups to highlight some of the similarities and differences in groups of neuroinvasive arbovirus infections. RECENT FINDINGS Arboviruses that cause neurological infections in humans continue to emerge and distribute to new regions. The geographic range of the vectors, the hosts and subsequent arbovirus infections in humans continues to expand and evolve. As emerging arboviruses move into new geographic regions, it is important to examine the associated epidemiological and clinical impacts of these infections as they enter new populations. SUMMARY Arboviruses from the Flaviviridae, Togaviridae and Bunyaviridae families continue to emerge and spread into new regions. The arboviruses within these virus families cause characteristic neuroinvasive diseases in human populations. A complete understanding of the epidemiological and clinical features of the neuroinvasive arboviruses is important such that these pathogens can be recognized and diagnosed in humans as they emerge. Ongoing research to develop rapid, accurate diagnostics, therapeutic options and vaccines for these pathogens is needed to address future outbreaks of disease in human populations.
Collapse
|
16
|
Barrett ADT. Is It Time to Reevaluate the Priority for a West Nile Vaccine? Clin Infect Dis 2021; 73:448-449. [PMID: 32526009 DOI: 10.1093/cid/ciaa744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alan D T Barrett
- Department of Pathology and Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
17
|
Danforth ME, Fischer M, Snyder RE, Lindsey NP, Martin SW, Kramer VL. Characterizing Areas with Increased Burden of West Nile Virus Disease in California, 2009-2018. Vector Borne Zoonotic Dis 2021; 21:620-627. [PMID: 34077676 PMCID: PMC8380797 DOI: 10.1089/vbz.2021.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that can cause severe neurological disease in humans, for which there is no treatment or vaccine. From 2009 to 2018, California has reported more human disease cases than any other state in the United States. We sought to identify smaller geographic areas within the 10 California counties with the highest number of WNV cases that accounted for disproportionately large numbers of human cases from 2009 to 2018. Eleven areas, consisting of groups of high-burden ZIP codes, were identified in nine counties within southern California and California's Central Valley. Despite containing only 2% of California's area and 17% of the state's population, these high-burden ZIP codes accounted for 44% of WNV cases reported and had a mean annual incidence that was 2.4 times the annual state incidence. Focusing mosquito control and public education efforts in these areas would lower WNV disease burden.
Collapse
Affiliation(s)
- Mary E. Danforth
- California Department of Public Health, Sacramento, California, USA
| | - Marc Fischer
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Robert E. Snyder
- California Department of Public Health, Sacramento, California, USA
| | - Nicole P. Lindsey
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Stacey W. Martin
- Arboviral Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Vicki L. Kramer
- California Department of Public Health, Sacramento, California, USA
| |
Collapse
|