1
|
Meier CS, Pagni M, Richard S, Mühlethaler K, Hauser PM. Selective expression of Pneumocystis antigens in different patients during a suspected outbreak of Pneumocystis pneumonia. mBio 2025:e0069225. [PMID: 40243367 DOI: 10.1128/mbio.00692-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The fungus Pneumocystis jirovecii causes severe pneumonia in immunocompromised individuals. It harbors a system of surface antigenic variation involving six families of major surface glycoproteins (Msg). We determined the repertoires of P. jirovecii msg genes of the most abundant family-I present in 15 Swiss patients with Pneumocystis pneumonia (PCP) enrolled randomly. The highly repetitive msg-I genes were sequenced using generic PCRs followed by circular consensus sequencing with long reads. In contrast to the other 12 patients, three renal transplant recipients (RTRs) harbored the same repertoire of msg-I genes. Multilocus genotyping showed that these RTRs were infected by the same P. jirovecii genotype that differed from those present in the other 12 patients. These observations suggested that these RTRs were involved in an outbreak of PCP due to interhuman transmission or a common source of the fungus. Although they harbored the same repertoire of msg-I genes, the sets of msg-I genes that were expressed differed between the three patients. This suggested that selective expression of P. jirovecii surface antigens might have played a role in the pathogenesis of PCP by allowing escape from the immune response specific to each patient. Although expected for a family of genes, this is the first time that selective expression of antigens is observed in Pneumocystis. The previously described adaptation of P. jirovecii to infect solid organ transplant (SOT) recipients through resistance to the immunosuppressant mycophenolate probably also favored the suspected outbreak. Moreover, our study supports the idea that various P. jirovecii genotypes can adapt to infect SOT recipients.IMPORTANCEThe fungus Pneumocystis causes severe pneumonia in patients with weakened immune systems. It possesses a genetic system to vary the antigens at the surface of its cells that are presented to the immune system of the patient. We report for the first time that this system may have been implicated in the infections of renal transplant recipients involved in a suspected outbreak. Our observations suggest that the antigens presented might be selected to avoid the elimination of the fungus by the immune response specific to each patient. The resistance of the fungus to the immunosuppressant mycophenolate administered to these patients to prevent organ rejection probably also played a role in the infections during the suspected outbreak.
Collapse
Affiliation(s)
- Caroline S Meier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Hiramoto K, Akiyama M, Kaneko Y. Risk factors for adverse drug reactions to sulfamethoxazole-trimethoprim prophylaxis in patients with rheumatic and musculoskeletal diseases. Mod Rheumatol 2024; 35:94-101. [PMID: 39099100 DOI: 10.1093/mr/roae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVES Risk factors for adverse drug reactions (ADRs) associated with prophylactic sulfamethoxazole-trimethoprim (SMX/TMP) in patients with rheumatic and musculoskeletal diseases undergoing immunosuppressive therapy remain unclear; we aimed to identify the risk factors associated with ADRs. METHODS Consecutive patients with rheumatic and musculoskeletal diseases, who were admitted to Keio University Hospital and received prophylactic administration of SMX/TMP, were included. Data regarding ADRs to SMX/TMP were collected to identify the associated risk factors using multivariable analysis. RESULTS Of 438 patients included in the analysis, 82 (18.7%) experienced ADRs. Patients in the ADR group were significantly older, had chronic kidney disease, and exhibited lower lymphocyte and platelet counts, lower albumin levels, lower estimated glomerular filtration rates, higher aspartate aminotransferase levels, and higher ferritin levels than those in the non-ADR group. Regarding the underlying rheumatic and musculoskeletal diseases, adult-onset Still's disease (ASD) was associated with a significantly higher incidence of ADRs (67%) than other diseases. Multivariable analysis identified the presence of ASD and low lymphocyte counts as independent risk factors for allergic ADRs and older age and use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers for nonallergic ADRs. CONCLUSIONS Risk factors for ADRs associated with prophylactic SMX/TMP treatment in patients with rheumatic and musculoskeletal diseases were identified.
Collapse
Affiliation(s)
- Kazuoto Hiramoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Rashid M, Hayat MH, Zahra N, Khan MS, Suleman, Nadeem M, Rehman TU, Ehsan M, Malik MI, Obaid MK, Bakhsh A, Darghouth MA, Ren Q. Systematic review on buparvaquone resistance associated with non-synonymous mutation in drug binding genes site of Theileria annulate. Vet Parasitol 2024; 332:110321. [PMID: 39418760 DOI: 10.1016/j.vetpar.2024.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Theileria annulata (T. annulata) is intra-erythrocytic protozoan parasite which is more prevalent in tropical and sub-tropical countries. It has a significant economic impact on the productivity of the dairy industry, and buparvaquone is used to treat infected animals in the prevalent regions of the world. Systematically, buparvaquone targets the cyto-b gene to break the electron transport chain (ETC) and Theileria annulata peptidyl-prolyl isomerase 1 (TaPIN1) gene to destabilize transcription factor JUN (c-JUN) to inhibit proliferation of infected cells, which ultimately leads to the death of T. annulata. The reported studies on drug resistance is due to inappropriate drug application, evolutionary characteristics of the cytochrome b (cyto-b) gene and oncogenic signaling pathways gene (TaPIN1) make the parasite resistant against buparvaquone. Hence, this systematic review was designed to find out non-synonymous mutation in genes (cyto-b and TaPIN1) responsible for drug resistance reported from Tunisia, Turkey, Egypt, Sudan, Iran, Pakistan, China and Germany with reference to the T. annulata Ankara strain of cyto-b (accession no. XM_949625.1) and TaPIN1 (accession no. TA18945) wild type genes. Non-synonymous point mutations were found in cyto-b (Q01 at 130-148 and Q02 at 253-262 regions) and TaPIN1 (A53P and A53T) genes. These point mutations are responsible for developing buparvaquone resistance against T. annulata infection. These genes can be used as biomarkers for the identification of drug resistance in any endemic area. To avoid the complication of drug resistance, development of genetically resistant cattle breeds, potent vaccines and anti-theilerial drugs (Trifloxystrobin and anti-cancerous) are currently required to control proliferating economically important T. annulata parasites.
Collapse
Affiliation(s)
- Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | | | - Naveed Zahra
- Department of Livestock Management, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | | | - Suleman
- Department of Zoology, University of Swabi, Pakistan; Department of Zoology, Government Post Graduate College, Dargai 23060, Malakand, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Nadeem
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Tauseef Ur Rehman
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Ehsan
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Irfan Malik
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Muhammad Kashif Obaid
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, China.
| | - Amir Bakhsh
- Livestock and Dairy Development Department, Government of Punjab, Punjab, Pakistan.
| | - Mohamed Aziz Darghouth
- Ecole Nationale de Médecine Vétérinaire", Laboratory of Parasitology, Sidi Thabet, Ariana 2020, Tunisia.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu 730046, China.
| |
Collapse
|
4
|
Schweitzer L, Miko BA, Pereira MR. Infectious Disease Prophylaxis During and After Immunosuppressive Therapy. Kidney Int Rep 2024; 9:2337-2352. [PMID: 39156157 PMCID: PMC11328545 DOI: 10.1016/j.ekir.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 08/20/2024] Open
Abstract
Immune-mediated renal diseases are a diverse group of disorders caused by antibody, complement, or cell-mediated autosensitization. Although these diseases predispose to infection on their own, a growing array of traditional and newer, more targeted immunosuppressant medications are used to treat these diseases. By understanding their mechanisms of action and the infections associated with suppression of each arm of the immune system, nephrologists can better anticipate these risks and effectively prevent and recognize opportunistic infections. Focusing specifically on nonkidney transplant recipients, this review discusses the infections that can be associated with each of the commonly used immunosuppressants by nephrologists and suggest interventions to prevent infectious complications in patients with immune-mediated renal disease.
Collapse
Affiliation(s)
- Lorne Schweitzer
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Benjamin A. Miko
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Marcus R. Pereira
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Prosty C, Katergi K, Sorin M, Rjeily MB, Butler-Laporte G, McDonald EG, Lee TC. Comparative efficacy and safety of Pneumocystis jirovecii pneumonia prophylaxis regimens for people living with HIV: a systematic review and network meta-analysis of randomized controlled trials. Clin Microbiol Infect 2024; 30:866-876. [PMID: 38583518 DOI: 10.1016/j.cmi.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia (PCP) is a common opportunistic infection among people living with HIV (PWH), particularly among new and untreated cases. Several regimens are available for the prophylaxis of PCP, including trimethoprim-sulfamethoxazole (TMP-SMX), dapsone-based regimens (DBRs), aerosolized pentamidine (AP), and atovaquone. OBJECTIVES To compare the efficacy and safety of PCP prophylaxis regimens in PWH by network meta-analysis. METHODS DATA SOURCES: Embase, MEDLINE, and CENTRAL from inception to June 21, 2023. STUDY ELIGIBILITY CRITERIA Comparative randomized controlled trials (RCTs). PARTICIPANTS PWH. INTERVENTIONS Regimens for PCP prophylaxis either compared head-to-head or versus no treatment/placebo. ASSESSMENT OF RISK OF BIAS Cochrane risk-of-bias tool for RCTs 2. METHODS OF DATA SYNTHESIS Title or abstract and full-text screening and data extraction were performed in duplicate by two independent reviewers. Data on PCP incidence, all-cause mortality, and discontinuation due to toxicity were pooled and ranked by network meta-analysis. Subgroup analyses of primary versus secondary prophylaxis, by year, and by dosage were performed. RESULTS A total of 26 RCTs, comprising 55 treatment arms involving 7516 PWH were included. For the prevention of PCP, TMP-SMX was ranked the most favourable agent and was superior to DBRs (risk ratio [RR] = 0.54; 95% CI, 0.36-0.83) and AP (RR = 0.53; 95% CI, 0.36-0.77). TMP-SMX was also the only agent with a mortality benefit compared with no treatment/placebo (RR = 0.79; 95% CI, 0.64-0.98). However, TMP-SMX was also ranked as the most toxic agent with a greater risk of discontinuation than DBRs (RR = 1.25; 95% CI, 1.01-1.54) and AP (7.20; 95% CI, 5.37-9.66). No significant differences in PCP prevention or mortality were detected among the other regimens. The findings remained consistent within subgroups. CONCLUSIONS TMP-SMX is the most effective agent for PCP prophylaxis in PWH and the only agent to confer a mortality benefit; consequently, it should continue to be recommended as the first-line agent. Further studies are necessary to determine the optimal dosing of TMP-SMX to maximize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Connor Prosty
- Faculty of Medicine, McGill University, Montréal, QC, Canada.
| | - Khaled Katergi
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Mark Sorin
- Faculty of Medicine, McGill University, Montréal, QC, Canada
| | | | - Guillaume Butler-Laporte
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, QC, Montréal, Canada
| | - Emily G McDonald
- Division of General Internal Medicine, Department of Medicine, McGill University Health Centre, Montréal, QC, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada; Department of Medicine, Clinical Practice Assessment Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Todd C Lee
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, QC, Montréal, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, QC, Canada; Department of Medicine, Clinical Practice Assessment Unit, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
6
|
McMullan B, Kim HY, Alastruey-Izquierdo A, Tacconelli E, Dao A, Oladele R, Tanti D, Govender NP, Shin JH, Heim J, Ford NP, Huttner B, Galas M, Nahrgang SA, Gigante V, Sati H, Alffenaar JW, Morrissey CO, Beardsley J. Features and global impact of invasive fungal infections caused by Pneumocystis jirovecii: A systematic review to inform the World Health Organization fungal priority pathogens list. Med Mycol 2024; 62:myae038. [PMID: 38935910 PMCID: PMC11210620 DOI: 10.1093/mmy/myae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 06/29/2024] Open
Abstract
This systematic review evaluates the current global impact of invasive infections caused by Pneumocystis jirovecii (principally pneumonia: PJP), and was carried out to inform the World Health Organization Fungal Priority Pathogens List. PubMed and Web of Science were used to find studies reporting mortality, inpatient care, complications/sequelae, antifungal susceptibility/resistance, preventability, annual incidence, global distribution, and emergence in the past 10 years, published from January 2011 to February 2021. Reported mortality is highly variable, depending on the patient population: In studies of persons with HIV, mortality was reported at 5%-30%, while in studies of persons without HIV, mortality ranged from 4% to 76%. Risk factors for disease principally include immunosuppression from HIV, but other types of immunosuppression are increasingly recognised, including solid organ and haematopoietic stem cell transplantation, autoimmune and inflammatory disease, and chemotherapy for cancer. Although prophylaxis is available and generally effective, burdensome side effects may lead to discontinuation. After a period of decline associated with improvement in access to HIV treatment, new risk groups of immunosuppressed patients with PJP are increasingly identified, including solid organ transplant patients.
Collapse
Affiliation(s)
- Brendan McMullan
- Faculty of Medicine and Health, UNSW, Sydney, New South Wales, Australia
- Department of Immunology and Infectious Diseases, Sydney Children’s Hospital, Sydney, New South Wales, Australia
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Western Sydney LHD, North Parramatta, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Evelina Tacconelli
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, North Parramatta, New South Wales, Australia
| | - Rita Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Daniel Tanti
- Department of Immunology and Infectious Diseases, Sydney Children’s Hospital, Sydney, New South Wales, Australia
- Discipline of Paediatrics, Faculty of Medicine and Health, University of NSW, Sydney, Australia
| | - Nelesh P Govender
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infection and Immunity, St George’s University of London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jong-Hee Shin
- Department of Laboratory Medicine, Chonnam National University School of Medicine, Gwangju, South Korea
| | - Jutta Heim
- Scientific Advisory Committee, Helmholtz Centre for Infection Research, Germany
| | - Nathan Paul Ford
- Department of HIV, Viral Hepatitis and STIs, World Health Organization, Geneva, Switzerland
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Marcelo Galas
- Antimicrobial Resistance Special Program, Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization, Washingdom, District of Columbia, USA
| | - Saskia Andrea Nahrgang
- Antimicrobial Resistance Programme, World Health Organization European Office, Copenhagen, Denmark
| | | | | | - Jan Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Western Sydney LHD, North Parramatta, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash University, Clayton, Victoria, Australia
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, North Parramatta, New South Wales, Australia
| |
Collapse
|
7
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
8
|
McDonald EG, Afshar A, Assiri B, Boyles T, Hsu JM, Khuong N, Prosty C, So M, Sohani ZN, Butler-Laporte G, Lee TC. Pneumocystis jirovecii pneumonia in people living with HIV: a review. Clin Microbiol Rev 2024; 37:e0010122. [PMID: 38235979 PMCID: PMC10938896 DOI: 10.1128/cmr.00101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Pneumocystis jirovecii is a ubiquitous opportunistic fungus that can cause life-threatening pneumonia. People with HIV (PWH) who have low CD4 counts are one of the populations at the greatest risk of Pneumocystis jirovecii pneumonia (PCP). While guidelines have approached the diagnosis, prophylaxis, and management of PCP, the numerous studies of PCP in PWH are dominated by the 1980s and 1990s. As such, most studies have included younger male populations, despite PCP affecting both sexes and a broad age range. Many studies have been small and observational in nature, with an overall lack of randomized controlled trials. In many jurisdictions, and especially in low- and middle-income countries, the diagnosis can be challenging due to lack of access to advanced and/or invasive diagnostics. Worldwide, most patients will be treated with 21 days of high-dose trimethoprim sulfamethoxazole, although both the dose and the duration are primarily based on historical practice. Whether treatment with a lower dose is as effective and less toxic is gaining interest based on observational studies. Similarly, a 21-day tapering regimen of prednisone is used for patients with more severe disease, yet other doses, other steroids, or shorter durations of treatment with corticosteroids have not been evaluated. Now with the widespread availability of antiretroviral therapy, improved and less invasive PCP diagnostic techniques, and interest in novel treatment strategies, this review consolidates the scientific body of literature on the diagnosis and management of PCP in PWH, as well as identifies areas in need of more study and thoughtfully designed clinical trials.
Collapse
Affiliation(s)
- Emily G. McDonald
- Division of General Internal Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Canadian Medication Appropriateness and Deprescribing Network, Montreal, Quebec, Canada
| | - Avideh Afshar
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Bander Assiri
- Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tom Boyles
- Right to Care, NPC, Centurion, South Africa
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jimmy M. Hsu
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ninh Khuong
- Canadian Medication Appropriateness and Deprescribing Network, Montreal, Quebec, Canada
| | - Connor Prosty
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Miranda So
- Sinai Health System-University Health Network Antimicrobial Stewardship Program, University of Toronto, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Zahra N. Sohani
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Guillaume Butler-Laporte
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Todd C. Lee
- Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Elalouf A, Elalouf H, Rosenfeld A. Modulatory immune responses in fungal infection associated with organ transplant - advancements, management, and challenges. Front Immunol 2023; 14:1292625. [PMID: 38143753 PMCID: PMC10748506 DOI: 10.3389/fimmu.2023.1292625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Organ transplantation stands as a pivotal achievement in modern medicine, offering hope to individuals with end-stage organ diseases. Advancements in immunology led to improved organ transplant survival through the development of immunosuppressants, but this heightened susceptibility to fungal infections with nonspecific symptoms in recipients. This review aims to establish an intricate balance between immune responses and fungal infections in organ transplant recipients. It explores the fundamental immune mechanisms, recent advances in immune response dynamics, and strategies for immune modulation, encompassing responses to fungal infections, immunomodulatory approaches, diagnostics, treatment challenges, and management. Early diagnosis of fungal infections in transplant patients is emphasized with the understanding that innate immune responses could potentially reduce immunosuppression and promise efficient and safe immuno-modulating treatments. Advances in fungal research and genetic influences on immune-fungal interactions are underscored, as well as the potential of single-cell technologies integrated with machine learning for biomarker discovery. This review provides a snapshot of the complex interplay between immune responses and fungal infections in organ transplantation and underscores key research directions.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, Israel
| | - Hadas Elalouf
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| | - Ariel Rosenfeld
- Information Science Department, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Nevez G, Hoffmann C, Le Gal S. Comment on " Pneumocystis jirovecii Pneumonia in a HIV-Infected Patient with a CD4 Count Greater Than 400 Cells/ μL and Atovaquone Prophylaxis". Case Rep Infect Dis 2023; 2023:9793264. [PMID: 37908307 PMCID: PMC10615577 DOI: 10.1155/2023/9793264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/29/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Gilles Nevez
- Université de Brest, Université d'Angers, IRF, Brest, France
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France
| | - Claire Hoffmann
- Université de Brest, Université d'Angers, IRF, Brest, France
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France
| | - Solène Le Gal
- Université de Brest, Université d'Angers, IRF, Brest, France
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France
| |
Collapse
|
11
|
Bonnet PL, Hoffmann CV, Le Nan N, Bellamy L, Hoarau G, Flori P, Demar M, Argy N, Morio F, Le Gal S, Nevez G. Atovaquone exposure and Pneumocystis jirovecii cytochrome b mutations: French data and review of the literature. Med Mycol 2023; 61:myad095. [PMID: 37656874 DOI: 10.1093/mmy/myad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Pneumocystis jirovecii is a transmissible fungus responsible for severe pneumonia (Pneumocystis pneumonia [PCP]) in immunocompromised patients. Missense mutations due to atovaquone selective pressure have been identified on cytochrome b (CYB) gene of P. jirovecii. It was recently shown that atovaquone prophylaxis can lead to the selection of specific P. jirovecii CYB mutants potentially resistant to atovaquone among organ transplant recipients. In this context, our objectives were to provide data on P. jirovecii CYB mutants and the putative selective pressure exerted by atovaquone on P. jirovecii organisms in France. A total of 123 patients (124 P. jirovecii specimens) from four metropolitan hospitals and two overseas hospitals were retrospectively enrolled. Fourteen patients had prior exposure to atovaquone, whereas 109 patients did not at the time of P. jirovecii detection. A 638 base-pair fragment of the CYB gene of P. jirovecii was amplified and sequenced. A total of 10 single nucleotide polymorphisms (SNPs) were identified. Both missense mutations C431T (Ala144Val) and C823T (Leu275Phe), located at the Qo active site of the enzyme, were significantly associated with prior atovaquone exposure, these mutations being conversely incidental in the absence of prior atovaquone exposure (P < 0.001). Considering that the aforementioned hospitals may be representative of the national territory, these findings suggest that the overall presence of P. jirovecii CYB mutants remains low in France.
Collapse
Affiliation(s)
- Pierre L Bonnet
- Laboratory of Parasitology and Mycology, Brest University Hospital, 29609 Brest, France
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| | - Claire V Hoffmann
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| | - Nathan Le Nan
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| | - Lorenn Bellamy
- Clinical Data Center, Brest University Hospital, 29609 Brest, France
| | - Gautier Hoarau
- Ophthalmology Department, OPHTARA Network, Bicêtre Paris Saclay University Hospital, AP-HP, 94276 Le Kremlin-Bicêtre, France
| | - Pierre Flori
- Laboratory of Infectious Agents, Parasitology Section, GIMAP, Faculty of Medicine, 42055 Saint-Etienne, France
| | - Magalie Demar
- University Hospital Laboratory of Parasitology-Mycology, Cayenne Hospital Center, 97306 Cayenne, French Guiana
| | - Nicolas Argy
- IRD, MERIT, University of Paris Cité, 75006 Paris, France
| | - Florent Morio
- Laboratory of Parasitology and Medical Mycology, Nantes University Hospital, 44000 Nantes, France
| | - Solène Le Gal
- Laboratory of Parasitology and Mycology, Brest University Hospital, 29609 Brest, France
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| | - Gilles Nevez
- Laboratory of Parasitology and Mycology, Brest University Hospital, 29609 Brest, France
- Fungal Respiratory Infections Research Unit (FRI), University of Angers, University of Western Brittany, 29238 Brest, France
| |
Collapse
|
12
|
Trubin PA, Azar MM. Current Concepts in the Diagnosis and Management of Pneumocystis Pneumonia in Solid Organ Transplantation. Infect Dis Clin North Am 2023:S0891-5520(23)00026-0. [PMID: 37142510 DOI: 10.1016/j.idc.2023.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pneumocystis infection manifests predominantly as an interstitial pneumonia in immunocompromised patients. Diagnostic testing in the appropriate clinical context can be highly sensitive and specific and involves radiographic imaging, fungal biomarkers, nucleic acid amplification, histopathology, and lung fluid or tissue sampling. Trimethoprim-sulfamethoxazole remains the first-choice agent for treatment and prophylaxis. Investigation continues to promote a deeper understanding of the pathogen's ecology, epidemiology, host susceptibility, and optimal treatment and prevention strategies in solid organ transplant recipients.
Collapse
Affiliation(s)
- Paul A Trubin
- Department of Medicine, Section of Infectious Diseases, Yale School of Medicine, 135 College Street, New Haven, CT 06510, USA.
| | - Marwan M Azar
- Department of Medicine, Section of Infectious Diseases; Department of Laboratory Medicine; Yale School of Medicine, 135 College Street, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Ibrahim A, Chattaraj A, Iqbal Q, Anjum A, Rehman MEU, Aijaz Z, Nasir F, Ansar S, Zangeneh TT, Iftikhar A. Pneumocystis jiroveci
Pneumonia: A Review of Management in Human Immunodeficiency Virus (HIV) and Non-HIV Immunocompromised Patients. Avicenna J Med 2023; 13:23-34. [PMID: 36969352 PMCID: PMC10038753 DOI: 10.1055/s-0043-1764375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Pneumocystis jirovecii
pneumonia is an opportunistic fungal infection that was mainly associated with pneumonia in patients with advanced human immunodeficiency virus (HIV) disease. There has been a decline in
Pneumocystis jirovecii
pneumonia incidence in HIV since the introduction of antiretroviral medications. However, its incidence is increasing in non-HIV immunocompromised patients including those with solid organ transplantation, hematopoietic stem cell transplantation, solid organ tumors, autoimmune deficiencies, and primary immunodeficiency disorders. We aim to review and summarize the etiology, epidemiology, clinical presentation, diagnosis, and management of
Pneumocystis jirovecii
pneumonia in HIV, and non-HIV patients. HIV patients usually have mild-to-severe symptoms, while non-HIV patients present with a rapidly progressing disease. Induced sputum or bronchoalveolar lavage fluid can be used to make a definitive diagnosis of
Pneumocystis jirovecii
pneumonia. Trimethoprim-sulfamethoxazole is considered to be the first-line drug for treatment and has proven to be highly effective for
Pneumocystis jirovecii
pneumonia prophylaxis in both HIV and non-HIV patients. Pentamidine, atovaquone, clindamycin, and primaquine are used as second-line agents. While several diagnostic tests, treatments, and prophylactic regimes are available at our disposal, there is need for more research to prevent and manage this disease more effectively.
Collapse
Affiliation(s)
- Atif Ibrahim
- North Mississippi Medical Center, Tupelo, Mississippi, United States
| | - Asmi Chattaraj
- University of Pittsburgh Medical Center, McKeesport, Pennsylvania, United States
| | - Qamar Iqbal
- TidalHealth, Salisbury, Maryland, United States
| | - Ali Anjum
- King Edward Medical University, Lahore, Pakistan
| | | | | | | | - Sadia Ansar
- Rawal Institute of Health Sciences, Islamabad, Pakistan
| | - Tirdad T. Zangeneh
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Ahmad Iftikhar
- Department of Internal Medicine, University of Arizona, Tucson, Arizona, United States
- Address for correspondence Ahmad Iftikhar, MD Department of Medicine, University of Arizona1525N. Campbell Avenue, PO Box 245212, Tucson, AZ 85724
| |
Collapse
|
14
|
Hacılarlıoglu S, Bilgic HB, Bakırcı S, Tait A, Weir W, Shiels B, Karagenc T. Selection of genotypes harbouring mutations in the cytochrome b gene of Theileria annulata is associated with resistance to buparvaquone. PLoS One 2023; 18:e0279925. [PMID: 36598898 DOI: 10.1371/journal.pone.0279925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
Buparvaquone remains the only effective therapeutic agent for the treatment of tropical theileriosis caused by Theileria annulata. However, an increase in the rate of buparvaquone treatment failures has been observed in recent years, raising the possibility that resistance to this drug is associated with the selection of T. annulata genotypes bearing mutation(s) in the cytochrome b gene (Cyto b). The aim of the present study was: (1) to demonstrate whether there is an association between mutations in the T. annulata Cyto b gene and selection of parasite-infected cells resistant to buparvaquone and (2) to determine the frequency of these mutations in parasites derived from infected cattle in the Aydın region of Türkiye. Susceptibility to buparvaquone was assessed by comparing the proliferative index of schizont-infected cells obtained from cattle with theileriosis before and/or after treatment with various doses of buparvaquone, using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colourimetric assay. The DNA sequence of the parasite Cyto b gene from cell lines identified as resistant or susceptible was determined. A total of six nonsynonymous and six synonymous mutations were identified. Two of the nonsynonymous mutations resulted in the substitutions V135A and P253S which are located at the putative buparvaquone binding regions of cytochrome b. Allele-specific PCR (AS-PCR) analyses detected the V135A and P253S mutations at a frequency of 3.90% and 3.57% respectively in a regional study population and revealed an increase in the frequency of both mutations over the years. The A53P mutation of TaPIN1 of T. annulata, previously suggested as being involved in buparvaquone resistance, was not detected in any of the clonal cell lines examined in the present study. The observed data strongly suggested that the genetic mutations resulting in V135A and P253S detected at the putative binding sites of buparvaquone in cytochrome b play a significant role in conferring, and promoting selection of, T. annulata genotypes resistant to buparvaquone, whereas the role of mutations in TaPIN1 is more equivocal.
Collapse
Affiliation(s)
- Selin Hacılarlıoglu
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı, Aydın, Türkiye
| | - Huseyin Bilgin Bilgic
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı, Aydın, Türkiye
| | - Serkan Bakırcı
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı, Aydın, Türkiye
| | - Andrew Tait
- School of Biodiversity, One Health and Veterinary Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health and Veterinary Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tulin Karagenc
- Faculty of Veterinary Medicine, Department of Parasitology, Aydın Adnan Menderes University, Isıklı, Aydın, Türkiye
| |
Collapse
|
15
|
Asai N, Motojima S, Ohkuni Y, Matsunuma R, Nakashita T, Kaneko N, Mikamo H. Pathophysiological mechanism of non-HIV Pneumocystis jirovecii pneumonia. Respir Investig 2022; 60:522-530. [PMID: 35501264 DOI: 10.1016/j.resinv.2022.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
While Pneumocystis jirovecii pneumonia (PCP) can occur in immunocompromised patients with HIV infection, the prognosis of non-HIV PCP is still poor, showing a high mortality rate of 30%-75%. The pathophysiological mechanism of non-HIV PCP is quite different from that of HIV-PCP. Aging, underlying disease, dysbiotic gut microbiome, and Th1 predominance, leads to macrophagic polarization shifting from M2 to M1. These cause dysregulation in the host immunity against P. jirovecii, resulting in severe lung injury and a high mortality rate among non-HIV PCP patients. This review describes poor prognostic factors, an issue of predictive values used for general pneumonia practice, and new aspects, including the dysbiosis of the gut microbiome and macrophagic polarization in the treatment of non-HIV PCP.
Collapse
Affiliation(s)
- Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan; Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shinji Motojima
- Department of Rheumatology & Allergy, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Yoshihiro Ohkuni
- Department of Pulmonology, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Ryo Matsunuma
- Department of Pulmonology, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Tamao Nakashita
- Department of Rheumatology & Allergy, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Norihiro Kaneko
- Department of Pulmonology, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, Aichi, Japan.
| |
Collapse
|
16
|
Quinone binding sites of cyt bc complexes analysed by X-ray crystallography and cryogenic electron microscopy. Biochem Soc Trans 2022; 50:877-893. [PMID: 35356963 PMCID: PMC9162462 DOI: 10.1042/bst20190963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
Cytochrome (cyt) bc1, bcc and b6f complexes, collectively referred to as cyt bc complexes, are homologous isoprenoid quinol oxidising enzymes present in diverse phylogenetic lineages. Cyt bc1 and bcc complexes are constituents of the electron transport chain (ETC) of cellular respiration, and cyt b6f complex is a component of the photosynthetic ETC. Cyt bc complexes share in general the same Mitchellian Q cycle mechanism, with which they accomplish proton translocation and thus contribute to the generation of proton motive force which drives ATP synthesis. They therefore require a quinol oxidation (Qo) and a quinone reduction (Qi) site. Yet, cyt bc complexes evolved to adapt to specific electrochemical properties of different quinone species and exhibit structural diversity. This review summarises structural information on native quinones and quinone-like inhibitors bound in cyt bc complexes resolved by X-ray crystallography and cryo-EM structures. Although the Qi site architecture of cyt bc1 complex and cyt bcc complex differs considerably, quinone molecules were resolved at the respective Qi sites in very similar distance to haem bH. In contrast, more diverse positions of native quinone molecules were resolved at Qo sites, suggesting multiple quinone binding positions or captured snapshots of trajectories toward the catalytic site. A wide spectrum of inhibitors resolved at Qo or Qi site covers fungicides, antimalarial and antituberculosis medications and drug candidates. The impact of these structures for characterising the Q cycle mechanism, as well as their relevance for the development of medications and agrochemicals are discussed.
Collapse
|
17
|
Highly conserved gsc1 gene of Pneumocystis jirovecii in patients with or without prior exposure to Echinocandins. Antimicrob Agents Chemother 2021; 66:e0156321. [PMID: 34723629 DOI: 10.1128/aac.01563-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Echinocandins are noncompetitive inhibitors of the GSC1 subunit of the enzymatic complex involved in synthesis of 1,3-beta-D-glucan, a cell wall component of most fungi, including Pneumocystis spp. Echinocandins are widely used for treating systemic candidiasis and rarely used for treating Pneumocystis pneumonia. Consequently, data on P. jirovecii gsc1 gene diversity are still scarce, compared to the homologous fks1 gene of Candida spp. In this study, we analyzed P. jirovecii gsc1 gene diversity and the putative selection pressure of echinocandins on P. jirovecii. Gsc1 gene sequences of P. jirovecii specimens from two patient groups were compared. One group of 27 patients had prior exposure to echinocandins whereas the second group of 24 patients did not, at the time of P. jirovecii infection diagnoses. Two portions of P. jirovecii gsc1 gene, HS1 and HS2, homologous to hot spots described in Candida spp., were sequenced. Three SNPs at positions 2204, 2243, and 2303 close to the HS1 region and another SNP at position 4540 more distant from the HS2 region were identified. These SNPs represent synonymous mutations. Three gsc1 HS1 alleles, A, B, and C, and two gsc1 HS2 alleles, a and b, and four haplotypes, Ca, Cb, Aa, and Ba, were defined, without significant difference in haplotype distribution in both patient groups (p = 0.57). Considering the identical diversity of P. jirovecii gsc1 gene and the detection of synonymous mutations in both patient groups, no selection pressure of echinocandins among P. jirovecii microorganisms can be pointed out so far.
Collapse
|
18
|
Hoffmann CV, Nevez G, Moal MC, Quinio D, Le Nan N, Papon N, Bouchara JP, Le Meur Y, Le Gal S. Selection of Pneumocystis jirovecii Inosine 5'-Monophosphate Dehydrogenase Mutants in Solid Organ Transplant Recipients: Implication of Mycophenolic Acid. J Fungi (Basel) 2021; 7:jof7100849. [PMID: 34682270 PMCID: PMC8537117 DOI: 10.3390/jof7100849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mycophenolic acid (MPA) targets the inosine 5'-monophosphate dehydrogenase (IMPDH) of human lymphocytes. It is widely used as an immunosuppressant to prevent rejection in solid organ transplant (SOT) recipients who, incidentally, are at risk for Pneumocystis pneumonia (PCP). We hypothesized that MPA exerts selective pressure on P. jirovecii microorganisms considering its in vitro antifungal activity on other fungi. Thus, we analysed impdh gene in P. jirovecii isolates from SOT recipients. P. jirovecii specimens from 26 patients diagnosed with PCP from 2010 to 2020 were retrospectively examined: 10 SOT recipients treated with MPA and 16 non-SOT patients without prior exposure to MPA. The P. jirovecii impdh gene was amplified and sequenced. Nucleotide sequences were aligned with the reference sequences retrieved from available P. jirovecii whole genomes. The deduced IMPDH protein sequences were aligned with available IMPDH proteins from Pneumocystis spp. and other fungal species known to be in vitro sensitive or resistant to MPA. A total of nine SNPs was identified. One SNP (G1020A) that results in an Ala261Thr substitution was identified in all SOT recipients and in none of the non-SOT patients. Considering that IMPDHs of other fungi, resistant to MPA, harbour Thr (or Ser) at the analogous position, the Ala261Thr mutation observed in MPA-treated patients was considered to represent the signature of P. jirovecii exposure to MPA. These results suggest that MPA may be involved in the selection of specific P. jirovecii strains that circulate in the SOT recipient population.
Collapse
Affiliation(s)
- Claire V. Hoffmann
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
- Correspondence: (G.N.); (S.L.G.); Tel.: +33-(0)-2-98-14-51-02 (G.N. & S.L.G.); Fax: +33-(0)-2-98-14-51-49 (G.N. & S.L.G.)
| | - Marie-Christine Moal
- Département de Néphrologie, CHU de Brest, 29609 Brest, France; (M.-C.M.); (Y.L.M.)
| | - Dorothée Quinio
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Nathan Le Nan
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université de Brest, Université d’Angers, 49035 Angers, France; (N.P.); (J.-P.B.)
| | - Jean-Philippe Bouchara
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université de Brest, Université d’Angers, 49035 Angers, France; (N.P.); (J.-P.B.)
| | - Yannick Le Meur
- Département de Néphrologie, CHU de Brest, 29609 Brest, France; (M.-C.M.); (Y.L.M.)
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, Labex IGO, 20609 Brest, France
| | - Solène Le Gal
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, 29609 Brest, France; (C.V.H.); (D.Q.)
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP), Université d’Angers, Université de Brest, 29238 Brest, France;
- Correspondence: (G.N.); (S.L.G.); Tel.: +33-(0)-2-98-14-51-02 (G.N. & S.L.G.); Fax: +33-(0)-2-98-14-51-49 (G.N. & S.L.G.)
| |
Collapse
|
19
|
Weyant RB, Kabbani D, Doucette K, Lau C, Cervera C. Pneumocystis jirovecii: a review with a focus on prevention and treatment. Expert Opin Pharmacother 2021; 22:1579-1592. [PMID: 33870843 DOI: 10.1080/14656566.2021.1915989] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Pneumocystis jirovecii (PJ) is an opportunistic fungal pathogen that can cause severe pneumonia in immunocompromised hosts. Risk factors for Pneumocystis jirovecii pneumonia (PJP) include HIV, organ transplant, malignancy, certain inflammatory or rheumatologic conditions, and associated therapies and conditions that result in cell-mediated immune deficiency. Clinical signs of PJP are nonspecific and definitive diagnosis requires direct detection of the organism in lower respiratory secretions or tissue. First-line therapy for prophylaxis and treatment remains trimethoprim-sulfamethoxazole (TMP-SMX), though intolerance or allergy, and rarely treatment failure, may necessitate alternate therapeutics, such as dapsone, pentamidine, atovaquone, clindamycin, primaquine and most recently, echinocandins as adjunctive therapy. In people living with HIV (PLWH), adjunctive corticosteroid use in treatment has shown a mortality benefit.Areas covered: This review article covers the epidemiology, pathophysiology, diagnosis, microbiology, prophylaxis indications, prophylactic therapies, and treatments.Expert opinion: TMP-SMX has been first-line therapy for treating and preventing pneumocystis for decades. However, its adverse effects are not uncommon, particularly during treatment. Second-line therapies may be better tolerated, but often sacrifice efficacy. Echinocandins show some promise for new combination therapies; however, further studies are needed to define optimal antimicrobial therapy for PJP as well as the role of corticosteroids in those without HIV.
Collapse
Affiliation(s)
- R Benson Weyant
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dima Kabbani
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Doucette
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Cecilia Lau
- Department of Pharmacy, Alberta Health Services, Edmonton, Alberta, Canada
| | - Carlos Cervera
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Gingerich AD, Norris KA, Mousa JJ. Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments. Pathogens 2021; 10:pathogens10020236. [PMID: 33669726 PMCID: PMC7921922 DOI: 10.3390/pathogens10020236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
For individuals who are immunocompromised, the opportunistic fungal pathogen Pneumocystis jirovecii is capable of causing life-threatening pneumonia as the causative agent of Pneumocystis pneumonia (PCP). PCP remains an acquired immunodeficiency disease (AIDS)-defining illness in the era of antiretroviral therapy. In addition, a rise in non-human immunodeficiency virus (HIV)-associated PCP has been observed due to increased usage of immunosuppressive and immunomodulating therapies. With the persistence of HIV-related PCP cases and associated morbidity and mortality, as well as difficult to diagnose non-HIV-related PCP cases, an improvement over current treatment and prevention standards is warranted. Current therapeutic strategies have primarily focused on the administration of trimethoprim-sulfamethoxazole, which is effective at disease prevention. However, current treatments are inadequate for treatment of PCP and prevention of PCP-related death, as evidenced by consistently high mortality rates for those hospitalized with PCP. There are no vaccines in clinical trials for the prevention of PCP, and significant obstacles exist that have slowed development, including host range specificity, and the inability to culture Pneumocystis spp. in vitro. In this review, we overview the immune response to Pneumocystis spp., and discuss current progress on novel vaccines and therapies currently in the preclinical and clinical pipeline.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Karen A. Norris
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
21
|
Niederman MS, Nair GB, Matt U, Herold S, Pennington K, Crothers K, Cummings M, Schluger NW. Update in Lung Infections and Tuberculosis 2018. Am J Respir Crit Care Med 2020; 200:414-422. [PMID: 31042415 DOI: 10.1164/rccm.201903-0606up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael S Niederman
- 1Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Girish Balachandran Nair
- 2Division of Pulmonary and Critical Care Medicine, Beaumont Health, William Beaumont School of Medicine, Oakland University, Royal Oak, Michigan
| | - Ulrich Matt
- 3Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Susanne Herold
- 3Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Kelly Pennington
- 4Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kristina Crothers
- 5Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, Seattle, Washington.,6University of Washington, Seattle, Washington; and
| | | | - Neil W Schluger
- 7Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
22
|
Le Gal S, Hoarau G, Bertolotti A, Negri S, Le Nan N, Bouchara JP, Papon N, Blanchet D, Demar M, Nevez G. Pneumocystis jirovecii Diversity in Réunion, an Overseas French Island in Indian Ocean. Front Microbiol 2020; 11:127. [PMID: 32117149 PMCID: PMC7019000 DOI: 10.3389/fmicb.2020.00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Data on Pneumocystis jirovecii characteristics from the overseas French territories are still scarce whereas numerous data on P. jirovecii genotypes are available for metropolitan France. The main objective of the present study was to identify P. jirovecii multilocus genotypes in patients living in Réunion and to compare them with those identified using the same method in metropolitan France and in French Guiana. Archival P. jirovecii specimens from immunosuppressed patients, 16 living in Réunion (a French island of the Indian ocean), six living in French Guiana (a South-American French territory), and 24 living in Brest (Brittany, metropolitan France) were examined at the large subunit rRNA (mtLSUrRNA) genes, cytochrome b (CYB), and superoxide dismutase (SOD) genes using PCR assays and direct sequencing. A total of 23 multi-locus genotypes (MLG) were identified combining mtLSUrRNA, CYB, and SOD alleles, i.e., six in Reunionese patients, three in Guianese patients, and 15 in Brest patients. Only one MLG (mtLSU1-CYB1-SOD2) was shared by Reunionese and Guianese patients (one patient from each region) whereas none of the 22 remaining MLG were shared by the 3 patient groups. A total of eight MLG were newly identified, three in Réunion and five in Brest. These results that were obtained through a retrospective investigation of a relatively low number of P. jirovecii specimens, provides original and first data on genetic diversity of P. jirovecii in Réunion island. The results suggest that P. jirovecii organisms from Réunion present specific characteristics compared to other P. jirovecii organisms from metropolitan France and French Guiana.
Collapse
Affiliation(s)
- Solène Le Gal
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France.,Laboratory of Mycology and Parasitology, CHRU de Brest, Brest, France
| | - Gautier Hoarau
- Department of Microbiology, CHU La Réunion, Saint Pierre, France
| | | | - Steven Negri
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France
| | - Nathan Le Nan
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France
| | - Nicolas Papon
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France
| | - Denis Blanchet
- Laboratory of Mycology and Parasitology, Andrée Rosemon Hospital, Cayenne, French Guiana.,Equipe EA3593 - Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, Cayenne, French Guiana
| | - Magalie Demar
- Laboratory of Mycology and Parasitology, Andrée Rosemon Hospital, Cayenne, French Guiana.,Equipe EA3593 - Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, Cayenne, French Guiana
| | - Gilles Nevez
- Groupe d'Étude des Interactions Hôte-Pathogène (GEIHP) EA 3142, Université d'Angers-Université de Brest, Angers, France.,Laboratory of Mycology and Parasitology, CHRU de Brest, Brest, France
| |
Collapse
|
23
|
Le Gal S, Toubas D, Totet A, Dalle F, Abou Bacar A, Le Meur Y, Nevez G, Accoceberry I, Bailly E, Bellanger AP, Bonhomme J, Cateau E, Candolfi E, Damiani C, Dannaoui E, Dardé ML, Debourgogne A, Delhaes L, Desoubeaux G, Favennec L, Flori P, Gabriel F, Iriart X, Lachaud L, Leterrier M, Le Pape P, Machouard M, Marty P, Maubon D, Millon L, Pomares C, Pons D, Rodier MH. Pneumocystis Infection Outbreaks in Organ Transplantation Units in France: A Nation-Wide Survey. Clin Infect Dis 2019; 70:2216-2220. [DOI: 10.1093/cid/ciz901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
The burden of nosocomial Pneumocystis infections in transplantation units in France was evaluated through a retrospective survey. Over 12 years, 16 outbreaks occurred, including 13 among renal transplant recipients (RTRs). We performed Pneumocystis jirovecii genotyping in 5 outbreaks, which suggested that specific strains may have been selected by RTRs.
Collapse
Affiliation(s)
- Solène Le Gal
- Groupe d’études des Interactions Hôte-Pathogène (EA 3142), Université de Brest, Université d’Angers, France
- Laboratory of Parasitology and Mycology, Brest University Hospital Brest, France Brest, France
| | - Dominique Toubas
- Laboratory of Parasitology and Mycology, Reims University Hospital Brest, France Reims, France
| | - Anne Totet
- Laboratory of Parasitology and Mycology, Amiens University Hospital Brest, France Amiens, France
| | - Frederic Dalle
- Laboratory of Parasitology and Mycology, Dijon University Hospital Brest, France Dijon, France
| | - Ahmed Abou Bacar
- Institut de Parasitologie et de Pathologie Tropicale de Strasbourg, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg Strasbourg, France
| | - Yann Le Meur
- Department of Nephrology and Renal Transplantation Unit, Brest University Hospital, Brest, France
| | - Gilles Nevez
- Groupe d’études des Interactions Hôte-Pathogène (EA 3142), Université de Brest, Université d’Angers, France
- Laboratory of Parasitology and Mycology, Brest University Hospital Brest, France Brest, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
White PL, Price JS, Backx M. Pneumocystis jirovecii Pneumonia: Epidemiology, Clinical Manifestation and Diagnosis. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00349-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Fishman JA, Gans H. Pneumocystis jiroveci in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13587. [PMID: 31077616 DOI: 10.1111/ctr.13587] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 01/21/2023]
Abstract
These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation review the diagnosis, prevention, and management of Pneumocystis jiroveci fungal infection transplant recipients. Pneumonia (PJP) may develop via airborne transmission or reactivation of prior infection. Nosocomial clusters of infection have been described among transplant recipients. PJP should not occur during prophylaxis with trimethoprim-sulfamethoxazole (TMP-SMX). Without prophylaxis, PJP risk is greatest in the first 6 months after organ transplantation but may develop later. Risk factors include low lymphocyte counts, cytomegalovirus infection (CMV), hypogammaglobulinemia, treated graft rejection or corticosteroids, and advancing patient age (>65). Presentation typically includes fever, dyspnea with hypoxemia, and cough. Chest radiographic patterns generally reveal diffuse interstitial processes best seen by CT scans. Patients generally have PO2 < 60 mm Hg, elevated serum lactic dehydrogenase (LDH), and elevated serum (1 → 3) β-d-glucan assay. Specific diagnosis uses respiratory specimens with direct immunofluorescent staining; invasive procedures may be required. Quantitative PCR is a useful adjunct to diagnosis. TMP-SMX is the drug of choice for therapy; drug allergy should be documented before resorting to alternative therapies. Adjunctive corticosteroids may be useful early. Routine PJP prophylaxis is recommended for at least 6-12 months post-transplant, preferably with TMP-SMX.
Collapse
Affiliation(s)
- Jay A Fishman
- Medicine, Transplant Infectious Diseases and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hayley Gans
- Medicine, Pediatric Infectious Diseases Program for Immunocompromised Hosts, Stanford University, Stanford, California
| | | |
Collapse
|
26
|
White PL, Price JS, Backx M. Therapy and Management of Pneumocystis jirovecii Infection. J Fungi (Basel) 2018; 4:E127. [PMID: 30469526 PMCID: PMC6313306 DOI: 10.3390/jof4040127] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
The rates of Pneumocystis pneumonia (PcP) are increasing in the HIV-negative susceptible population. Guidance for the prophylaxis and treatment of PcP in HIV, haematology, and solid-organ transplant (SOT) recipients is available, although for many other populations (e.g., auto-immune disorders) there remains an urgent need for recommendations. The main drug for both prophylaxis and treatment of PcP is trimethoprim/sulfamethoxazole, but resistance to this therapy is emerging, placing further emphasis on the need to make a mycological diagnosis using molecular based methods. Outbreaks in SOT recipients, particularly renal transplants, are increasingly described, and likely caused by human-to-human spread, highlighting the need for efficient infection control policies and sensitive diagnostic assays. Widespread prophylaxis is the best measure to gain control of outbreak situations. This review will summarize diagnostic options, cover prophylactic and therapeutic management in the main at risk populations, while also covering aspects of managing resistant disease, outbreak situations, and paediatric PcP.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| | - Jessica S Price
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| | - Matthijs Backx
- Public Health Wales Microbiology Cardiff, UHW, Heath Park, Cardiff CF14 4XW, UK.
| |
Collapse
|
27
|
Carvalho R, Vaz A, Pereira FL, Dorella F, Aguiar E, Chatel JM, Bermudez L, Langella P, Fernandes G, Figueiredo H, Goes-Neto A, Azevedo V. Gut microbiome modulation during treatment of mucositis with the dairy bacterium Lactococcus lactis and recombinant strain secreting human antimicrobial PAP. Sci Rep 2018; 8:15072. [PMID: 30305667 PMCID: PMC6180057 DOI: 10.1038/s41598-018-33469-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022] Open
Abstract
Mucositis is an inflammatory condition of the gut, caused by an adverse effect of chemotherapy drugs, such as 5-fluorouracil (5-FU). In an attempt to develop alternative treatments for the disease, several research groups have proposed the use of probiotics, in particular, Lactic Acid Bacteria (LAB). In this context, the use of recombinant LAB, for delivering anti-inflammatory compounds has also been explored. In previous work, we demonstrated that either Lactococcus lactis NZ9000 or a recombinant strain expressing an antimicrobial peptide involved in human gut homeostasis, the Pancreatitis-associated Protein (PAP), could ameliorate 5-FU-induced mucositis in mice. However, the impact of these strains on the gut microbiota still needs to be elucidated. Therefore, in the present study, we aimed to characterize the effects of both Lactococci strains in the gut microbiome of mice through a 16 S rRNA gene sequencing metagenomic approach. Our data show 5-FU caused a significant decrease in protective bacteria and increase of several bacteria associated with pro-inflammatory traits. The Lactococci strains were shown to reduce several potential opportunistic microbes, while PAP delivery was able to suppress the growth of Enterobacteriaceae during inflammation. We conclude the strain secreting antimicrobial PAP was more effective in the control of 5-FU-dysbiosis.
Collapse
Affiliation(s)
- Rodrigo Carvalho
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil.
| | - Aline Vaz
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | | | - Fernanda Dorella
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Eric Aguiar
- Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luis Bermudez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Gabriel Fernandes
- Fiocruz - Centro de Pesquisa Renê Rachou, Belo Horizonte, MG, Brazil
| | | | | | - Vasco Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| |
Collapse
|