1
|
da Silva Bomfim N, de Souza Ferreira R, Silva E Oliveira J, de Cássia Gonçalves Alfenas R. Green banana biomass anti-obesogenic, anti-hyperlipidemic, antidiabetic, and intestinal function potential effects: a systematic review. Nutr Rev 2025; 83:e290-e303. [PMID: 38630587 DOI: 10.1093/nutrit/nuae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
CONTEXT Apparently, the consumption of resistant-starch food sources, such as green banana biomass, stimulates the proliferation of short-chain fatty acid intestinal bacteria producers, which can contribute to intestinal health and reduce the risk of chronic diseases. However, the available scientific evidence is scarce and no study has systematically evaluated such evidence. OBJECTIVE The aim of this study was to analyze the potential effects of green banana biomass on anthropometry, body composition, and biochemical and intestinal variables in humans and animals. DATA SOURCES The Cochrane Library, Embase, Medline/PubMed, Scopus, and Web of Science electronic databases were searched in January 2024 for eligible articles. Studies that tested the effects of cooked peeled or unpeeled green banana on anthropometric, biochemical, and/or intestinal variables were included. DATA EXTRACTION This systematic review was conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The classification and assessment of the quality of studies were based on the relevant criteria related to the design of these studies and the quality criteria checklist of the Academy of Nutrition and Dietetics manual. Twelve studies published between 2001 and 2021 were included in the review. DATA ANALYSIS The results of human studies indicate that the ingestion of green banana biomass controlled intestinal dysfunction (50-300 g/day for 5-14 days or 30 g/day for 8 wk) in children, and showed potential anti-obesogenic, anti-hyperlipidemic, and antidiabetic (40 g/day for 24 wk) effects in adults. In rats, biomass consumption led to potential anti-obesogenic (25 g/day for 8 wk), anti-hyperlipidemic, and antidiabetic (∼8-30 g/day for 12 wk) effects. CONCLUSION Consumption of green banana biomass seems to exert beneficial effects on intestinal function and potential effects on obesity, dyslipidemia, and diabetes. These effects may be related to increased fecal short-chain fatty acid concentrations as a result of type 3 resistant starch present in biomass. SYSTEMATIC REVIEW REGISTRATION Open Science Framework (OSF) (https://doi.org/10.17605/OSF.IO/TKCWV).
Collapse
Affiliation(s)
- Natália da Silva Bomfim
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Renata de Souza Ferreira
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais-Campus Barbacena, Barbacena, Minas Gerais, Brazil
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Julia Silva E Oliveira
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Maghini DG, Oduaran OH, Olubayo LAI, Cook JA, Smyth N, Mathema T, Belger CW, Agongo G, Boua PR, Choma SSR, Gómez-Olivé FX, Kisiangani I, Mashaba GR, Micklesfield L, Mohamed SF, Nonterah EA, Norris S, Sorgho H, Tollman S, Wafawanaka F, Tluway F, Ramsay M, Wirbel J, Bhatt AS, Hazelhurst S. Expanding the human gut microbiome atlas of Africa. Nature 2025; 638:718-728. [PMID: 39880958 PMCID: PMC11839480 DOI: 10.1038/s41586-024-08485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Population studies provide insights into the interplay between the gut microbiome and geographical, lifestyle, genetic and environmental factors. However, low- and middle-income countries, in which approximately 84% of the world's population lives1, are not equitably represented in large-scale gut microbiome research2-4. Here we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,801 women from Burkina Faso, Ghana, Kenya and South Africa. By engaging with communities that range from rural and horticultural to post-industrial and urban informal settlements, we capture a far greater breadth of the world's population diversity. Using shotgun metagenomic sequencing, we identify taxa with geographic and lifestyle associations, including Treponema and Cryptobacteroides species loss and Bifidobacterium species gain in urban populations. We uncover 1,005 bacterial metagenome-assembled genomes, and we identify antibiotic susceptibility as a factor that might drive Treponema succinifaciens absence in urban populations. Finally, we find an HIV infection signature defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals so far, and paired with extensive clinical biomarkers and demographic data, provides extensive opportunity for microbiome-related discovery.
Collapse
Affiliation(s)
- Dylan G Maghini
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Luicer A Ingasia Olubayo
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jane A Cook
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Theophilous Mathema
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Carl W Belger
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
- Navrongo Health Research Centre, Ghana Health Science, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Solomon S R Choma
- DIMAMO Population Health Research Centre, University of Limpopo, Polokwane, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | | | - Given R Mashaba
- DIMAMO Population Health Research Centre, University of Limpopo, Polokwane, South Africa
| | - Lisa Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shane Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, UK
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | - Furahini Tluway
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakob Wirbel
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA.
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa.
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
Otto-Dobos LD, Strehle LD, Loman BR, Seng MM, Sardesai SD, Williams NO, Gatti-Mays ME, Stover DG, Sudheendra PK, Wesolowski R, Andridge RR, Bailey MT, Pyter LM. Baseline gut microbiome alpha diversity predicts chemotherapy-induced gastrointestinal symptoms in patients with breast cancer. NPJ Breast Cancer 2024; 10:99. [PMID: 39548124 PMCID: PMC11568184 DOI: 10.1038/s41523-024-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Chemotherapy frequently causes debilitating gastrointestinal symptoms, which are inadequately managed by current treatments. Recent research indicates the gut microbiome plays a role in the pathogenesis of these symptoms. The current study aimed to identify pre-chemotherapy microbiome markers that predict gastrointestinal symptom severity after breast cancer chemotherapy. Fecal samples, blood, and gastrointestinal symptom scores were collected from 59 breast cancer patients before, during, and after chemotherapy. Lower pre-chemotherapy microbiome alpha diversity and abundance of specific microbes (e.g., Faecalibacterium) predicted greater chemotherapy-induced gastrointestinal symptoms. Notably, tumor and diet characteristics were associated with lower pre-chemotherapy alpha diversity. Lower baseline alpha diversity also predicted higher chemotherapy-induced microbiome disruption, which was positively associated with diarrhea symptoms. The results indicate certain cancer patients have lower microbiome diversity before chemotherapy, which is predictive of greater chemotherapy-induced gastrointestinal symptoms and a less resilient microbiome. These patients may be strong candidates for pre-chemotherapy microbiome-directed preventative interventions (e.g., diet change).
Collapse
Affiliation(s)
- Lauren D Otto-Dobos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Lindsay D Strehle
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Brett R Loman
- Center for Microbial Pathogenesis and Oral and Gastrointestinal Microbiology Research Affinity Group, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Melina M Seng
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sagar D Sardesai
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicole O Williams
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Margaret E Gatti-Mays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Daniel G Stover
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Preeti K Sudheendra
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Michael T Bailey
- Center for Microbial Pathogenesis and Oral and Gastrointestinal Microbiology Research Affinity Group, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Somers SE, Davidson GL, Mbandlwa P, McKeon CM, Stanton C, Ross RP, Quinn JL. Manipulating a host-native microbial strain compensates for low microbial diversity by increasing weight gain in a wild bird population. Proc Natl Acad Sci U S A 2024; 121:e2402352121. [PMID: 39401350 PMCID: PMC11513901 DOI: 10.1073/pnas.2402352121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/25/2024] [Indexed: 10/30/2024] Open
Abstract
Empirical studies from laboratory systems and humans show that the gut microbiota is linked to host health. Similar evidence for effects on traits linked to fitness in nature is rare, not least because experimentally manipulating the gut microbiota is challenging. We isolated, characterized, and cultured a bacterial strain, Lactobacillus kimchicus APC4233, directly from a wild bird (the great tit Parus major) and provided it as a self-administered dietary supplement. We assessed the impact of the treatment on the host microbiota community, on weight, and tested whether the treatment affected a previous result linking microbiota alpha diversity to weight in nestlings. The treatment dramatically increased L. kimchicus abundance in the gut microbiota and increased alpha diversity. This effect was strongest in the youngest birds, validating earlier findings pointing to a brief developmental window when the gut microbiota are most sensitive. In time-lagged models, nestling weight was higher in the treatment birds suggesting L. kimchicus may have probiotic potential. There was also a positive time-lagged relationship between diversity and weight in control birds but not in the treatment birds, suggesting L. kimchicus helped birds compensate for low alpha diversity. We discuss why ecological context is likely key when predicting impacts of the microbiome. The manipulation of the gut microbiota with a host native strain in this wild population provides direct evidence for the role of the microbiota in the ecology and evolution of natural populations.
Collapse
Affiliation(s)
- Shane E. Somers
- School of Biological, Earth and Environmental Sciences, Distillery Fields, University College Cork, CorkT23 TK30, Ireland
- APC Microbiome Ireland, University College Cork, CorkT12 YT20, Ireland
| | - Gabrielle L. Davidson
- School of Biological Sciences, University of East Anglia, NorwichNR4 7TU, United Kingdom
| | - Philiswa Mbandlwa
- APC Microbiome Ireland, University College Cork, CorkT12 YT20, Ireland
- Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, CorkP61 CK84, Ireland
| | - Caroline M. McKeon
- Environment and Marine Sciences, Agri-Food and Biosciences Institute, Northern IrelandBT9 5PX, United Kingdom
- Zoology Department, School of Natural Sciences, Trinity College Dublin, DublinD02 PN40, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, CorkT12 YT20, Ireland
- Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, CorkP61 CK84, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, CorkT12 YT20, Ireland
- Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, CorkP61 CK84, Ireland
| | - John L. Quinn
- School of Biological, Earth and Environmental Sciences, Distillery Fields, University College Cork, CorkT23 TK30, Ireland
- Environmental Research Institute, University College Cork, CorkT23 XE10, Ireland
| |
Collapse
|
5
|
Tesfaw G, Siraj DS, Abdissa A, Jakobsen RR, Johansen ØH, Zangenberg M, Hanevik K, Mekonnen Z, Langeland N, Bjørang O, Safdar N, Mapes AC, Kates A, Krych L, Castro-Mejía JL, Nielsen DS. Gut microbiota patterns associated with duration of diarrhea in children under five years of age in Ethiopia. Nat Commun 2024; 15:7532. [PMID: 39223134 PMCID: PMC11369280 DOI: 10.1038/s41467-024-51464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Diarrhea claims >500,000 lives annually among children under five years of age in low- and middle-income countries. Mortality due to acute diarrhea (<7 days' duration) is decreasing, but prolonged (7-13 days) and persistent (≥14 days of duration) diarrhea remains a massive challenge. Here, we use a case-control study to decipher if fecal gut microbiota compositional differences between Ethiopian children with acute (n=554) or prolonged/persistent (n=95) diarrhea and frequency-matched non-diarrheal controls (n=663) are linked to diarrheal etiology. We show that diarrhea cases are associated with lower bacterial diversity and enriched in Escherichia spp., Campylobacter spp., and Streptococcus spp. Further, diarrhea cases are depleted in gut commensals such as Prevotella copri, Faecalibacterium prausnitzii, and Dialister succinatiphilus, with depletion being most pronounced in prolonged/persistent cases, suggesting that prolonged duration of diarrhea is accompanied by depletion of gut commensals and that re-establishing these via e.g., microbiota-directed food supplements offer a potential treatment strategy.
Collapse
Affiliation(s)
- Getnet Tesfaw
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia.
| | - Dawd S Siraj
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Alemseged Abdissa
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Øystein H Johansen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
- Microbiology Laboratory, Southern Health and Social Care Trust, Portadown, Northern Ireland
| | - Mike Zangenberg
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ola Bjørang
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Abigail C Mapes
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Ashley Kates
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Yang N, Ma T, Xie Y, Li Q, Li Y, Zheng L, Li Y, Xiao Q, Sun Z, Zuo K, Kwok LY, Lu N, Liu W, Zhang H. Lactiplantibacillus plantarum P9 for chronic diarrhea in young adults: a large double-blind, randomized, placebo-controlled trial. Nat Commun 2024; 15:6823. [PMID: 39122704 PMCID: PMC11315937 DOI: 10.1038/s41467-024-51094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Current treatments for chronic diarrhea have limited efficacy and several side effects. Probiotics have the potential to alleviate symptoms of diarrhea. This randomized, double-blind, placebo-controlled trial evaluates the effects of administering the probiotic Lactiplantibacillus plantarum P9 (P9) strain in young adults with chronic diarrhea (Clinical Trial Registration Number: ChiCTR2000038410). The intervention period lasts for 28 days, followed by a 14-day post-intervention period. Participants are randomized into the P9 (n = 93) and placebo (n = 96) groups, with 170 individuals completing the double-blind intervention phase (n = 85 per group). The primary endpoint is the diarrhea symptom severity score. Both intention-to-treat (n = 189) and per-protocol (n = 170) analyses reveal a modest yet statistically significant reduction in diarrhea severity compared to the placebo group (20.0%, P = 0.050; 21.4%, P = 0.048, respectively). In conclusion, the results of this study support the use of probiotics in managing chronic diarrhea in young adults. However, the lack of blood parameter assessment and the short intervention period represent limitations of this study.
Collapse
Affiliation(s)
- Ni Yang
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Teng Ma
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiong Li
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yingmeng Li
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Longjin Zheng
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Yalin Li
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Qiuping Xiao
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Zhihong Sun
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Kexuan Zuo
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Wenjun Liu
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China.
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China.
| | - Heping Zhang
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
7
|
Ren J, Ren Y, Mu Y, Zhang L, Chen B, Li S, Fang Q, Zhang Z, Zhang K, Li S, Liu W, Cui Y, Li X. Microbial imbalance in Chinese children with diarrhea or constipation. Sci Rep 2024; 14:13516. [PMID: 38866797 PMCID: PMC11169388 DOI: 10.1038/s41598-024-60683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/26/2024] [Indexed: 06/14/2024] Open
Abstract
Diarrhea and constipation are common health concerns in children. Numerous studies have identified strong association between gut microbiota and digestive-related diseases. But little is known about the gut microbiota that simultaneously affects both diarrhea and constipation or their potential regulatory mechanisms. Stool samples from 618 children (66 diarrhea, 138 constipation, 414 healthy controls) aged 0-3 years were collected to investigate gut microbiota changes using 16S rRNA sequencing. Compared with healthy, children with diarrhea exhibited a significant decrease in microbial diversity, while those with constipation showed a marked increase (p < 0.05). Significantly, our results firstly Ruminococcus increased in constipation (p = 0.03) and decreased in diarrhea (p < 0.01) compared to healthy controls. Pathway analysis revealed that Ruminococcus highly involved in the regulation of five common pathways (membrane transport, nervous system, energy metabolism, signal transduction and endocrine system pathways) between diarrhea and constipation, suggesting a potential shared regulatory mechanism. Our finding firstly reveals one core microorganisms that may affect the steady balance of the gut in children with diarrhea or constipation, providing an important reference for potential diagnosis and treatment of constipation and diarrhea.
Collapse
Affiliation(s)
- Jing Ren
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Yi Ren
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Yu Mu
- Dr. Cuiyutao Healthcare Co., Ltd., Beijing, China
| | - Lanying Zhang
- Coyote Diagnostics Lab (Beijing) Co., Ltd., Beijing, China
| | - Binghan Chen
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Sisi Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Qinyi Fang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Zhiming Zhang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Kejian Zhang
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Sabrina Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Yutao Cui
- Dr. Cuiyutao Healthcare Co., Ltd., Beijing, China.
| | - Xu Li
- Coyote Bioscience (Beijing) Co., Ltd., Beijing, China.
| |
Collapse
|
8
|
Chibuye M, Mende DR, Spijker R, Simuyandi M, Luchen CC, Bosomprah S, Chilengi R, Schultsz C, Harris VC. Systematic review of associations between gut microbiome composition and stunting in under-five children. NPJ Biofilms Microbiomes 2024; 10:46. [PMID: 38782939 PMCID: PMC11116508 DOI: 10.1038/s41522-024-00517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Childhood stunting is associated with impaired cognitive development and increased risk of infections, morbidity, and mortality. The composition of the enteric microbiota may contribute to the pathogenesis of stunting. We systematically reviewed and synthesized data from studies using high-throughput genomic sequencing methods to characterize the gut microbiome in stunted versus non-stunted children under 5 years in LMICs. We included 14 studies from Asia, Africa, and South America. Most studies did not report any significant differences in the alpha diversity, while a significantly higher beta diversity was observed in stunted children in four out of seven studies that reported beta diversity. At the phylum level, inconsistent associations with stunting were observed for Bacillota, Pseudomonadota, and Bacteroidota phyla. No single genus was associated with stunted children across all 14 studies, and some associations were incongruent by specific genera. Nonetheless, stunting was associated with an abundance of pathobionts that could drive inflammation, such as Escherichia/Shigella and Campylobacter, and a reduction of butyrate producers, including Faecalibacterium, Megasphera, Blautia, and increased Ruminoccoccus. An abundance of taxa thought to originate in the oropharynx was also reported in duodenal and fecal samples of stunted children, while metabolic pathways, including purine and pyrimidine biosynthesis, vitamin B biosynthesis, and carbohydrate and amino acid degradation pathways, predicted linear growth. Current studies show that stunted children can have distinct microbial patterns compared to non-stunted children, which could contribute to the pathogenesis of stunting.
Collapse
Affiliation(s)
- Mwelwa Chibuye
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Daniel R Mende
- Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Rene Spijker
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Michelo Simuyandi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Chaluma C Luchen
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Samuel Bosomprah
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Roma Chilengi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- The Zambia National Public Health Institute (ZNPHI), Lusaka, Zambia
| | - Constance Schultsz
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Vanessa C Harris
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Institute of Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Rhoades NS, Cinco IR, Hendrickson SM, Prongay K, Haertel AJ, Flores GE, Slifka MK, Messaoudi I. Infant diarrheal disease in rhesus macaques impedes microbiome maturation and is linked to uncultured Campylobacter species. Commun Biol 2024; 7:37. [PMID: 38182754 PMCID: PMC10770169 DOI: 10.1038/s42003-023-05695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Diarrheal diseases remain one of the leading causes of death for children under 5 globally, disproportionately impacting those living in low- and middle-income countries (LMIC). Campylobacter spp., a zoonotic pathogen, is one of the leading causes of food-borne infection in humans. Yet to be cultured Campylobacter spp. contribute to the total burden in diarrheal disease in children living in LMIC thus hampering interventions. We performed microbiome profiling and metagenomic genome assembly on samples collected from over 100 infant rhesus macaques longitudinally and during cases of clinical diarrhea within the first year of life. Acute diarrhea was associated with long-lasting taxonomic and functional shifts of the infant gut microbiome indicative of microbiome immaturity. We constructed 36 Campylobacter metagenomic assembled genomes (MAGs), many of which fell within 4 yet to be cultured species. Finally, we compared the uncultured Campylobacter MAGs assembled from infant macaques with publicly available human metagenomes to show that these uncultured species are also found in human fecal samples from LMIC. These data highlight the importance of unculturable Campylobacter spp. as an important target for reducing disease burden in LMIC children.
Collapse
Affiliation(s)
- Nicholas S Rhoades
- Department of Molecular biology and Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Isaac R Cinco
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Sara M Hendrickson
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Kamm Prongay
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Andrew J Haertel
- Division of Animal Resources and Research Support, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Gilberto E Flores
- Department of Biology, California State University, Northridge, Northridge, CA, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Zhou H, Yu B, Sun J, Chen H, Liu Z, Ge L, Chen D. Gut microbiota absence and transplantation affect diarrhea: an investigation in the germ-free piglet model. Anim Biotechnol 2023; 34:3971-3977. [PMID: 37906091 DOI: 10.1080/10495398.2023.2248200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This experiment was conducted to explore the effects of gut microbiota on neonatal diarrhea in a germ-free (GF) pig model. Twelve hysterectomy-derived GF piglets were housed in six sterile isolators. Among them, six piglets were treated as the GF group, and the other six piglets were orally introduced with healthy sow fecal suspension and regarded as the fecal microbiota transplantation (FMT) group. Another six piglets from natural birth were considered as the conventional (CV) group. The GF and FMT piglets were hand-fed with sterile milk powder for 21 days, and the CV piglets were suckled for the same days. Then, all piglets were fed with sterile feed for another 21 days. Results exhibited that the GF group's fecal score and moisture level were higher than those in the CV and FMT groups (p < 0.05). Meanwhile, the abundances of colonic AQP1 and AQP8 in the GF group were the greatest among these treatments (p < 0.05). However, FMT piglets had a lower fecal score in d 22-28 and d 29-35 than that in the CV piglets (p < 0.05). Collectively, the absence of gut microbiota may cause diarrhea in the piglet model, and transplantation of maternal fecal microbiota may reverse it.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Chengdu, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Rongchang, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Mallier C, Creuzet E, Lambert C, Delmas J, Mirand A, Rochette E, Valot S, Moniot M, Dalle F, Henquell C, Merlin E, Poirier P, Verdan M, Nourrisson C. Summer diarrhea in children: a monocentric French epidemiological observational study. Sci Rep 2023; 13:15078. [PMID: 37700075 PMCID: PMC10497495 DOI: 10.1038/s41598-023-42098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Pediatric diarrhea is a major public health problem worldwide. In France, continuous surveillance shows a winter epidemic peak and a more modest summer recrudescence. Few studies describe the infectious agents responsible for pediatric summer diarrhea in France. The objectives were to estimate the prevalence of infectious diarrhea and describe the pathogens responsible for summer diarrhea in children; and to describe common factors that can be used as guidance on the etiology of these diarrheas. A cross-sectional, single-center, epidemiological observational study was conducted in the pediatric emergency department of a French hospital between June and September in 2019 and 2020. Multiplex gastrointestinal pathogen panels were used for diagnostics. A multiple correspondence analysis was used to determine profiles of patients. A total of 95 children were included, of whom 82.1% (78/95) were under five years old. The prevalence of infectious summer diarrhea was 81.1% (77/95, 95%CI 71.7-88.4%). A total of 126 infectious agents were detected (50.0% bacteria, 38.1% viruses, 11.9% parasites). The main enteric pathogens were enteropathogen Escherichia coli (24/126), rotavirus (17/126) and Salmonella (16/126). A co-detection was found in 51.9% (40/77) of cases. Four patient profiles, considering the severity and the pathogen involved, were highlighted.
Collapse
Affiliation(s)
- Camille Mallier
- Service de Pédiatrie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Elisa Creuzet
- Service de Parasitologie-Mycologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Céline Lambert
- DRCI, Unité de Biostatistiques, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Julien Delmas
- Service de Bactériologie, 3IHP, INSERM, CHU Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Audrey Mirand
- Service de Virologie, CNR des Entérovirus et Parechovirus, 3IHP, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
- LMGE UMR CNRS 6023, Equipe EPIE - Epidémiologie et Physiopathologie des Infections à Entérovirus, Faculté de Médecine, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Emmanuelle Rochette
- Service de Pédiatrie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
- Unité CRECHE (INSERM CIC1405), Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Stéphane Valot
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, 21000, Dijon, France
- Laboratoire associé du Centre National de Référence "Cryptosporidioses, microsporidies et autres protozooses digestives", 21000, Dijon, France
| | - Maxime Moniot
- Service de Parasitologie-Mycologie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
- Laboratoire associé du Centre National de Référence "Cryptosporidioses, microsporidies et autres protozooses digestives", 63000, Clermont-Ferrand, France
| | - Frédéric Dalle
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, 21000, Dijon, France
- Laboratoire associé du Centre National de Référence "Cryptosporidioses, microsporidies et autres protozooses digestives", 21000, Dijon, France
- AgroSup Dijon, Equipe Vin, Aliment, Microbiologie, Stress, UMR PAM L'Université de Bourgogne Franche-Comté (UBFC), 21000, Dijon, France
| | - Cécile Henquell
- Service de Virologie, CNR des Entérovirus et Parechovirus, 3IHP, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
- LMGE UMR CNRS 6023, Equipe EPIE - Epidémiologie et Physiopathologie des Infections à Entérovirus, Faculté de Médecine, Université Clermont Auvergne, 63001, Clermont-Ferrand, France
| | - Etienne Merlin
- Service de Pédiatrie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
- Unité CRECHE (INSERM CIC1405), Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Philippe Poirier
- Service de Bactériologie, 3IHP, INSERM, CHU Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Laboratoire associé du Centre National de Référence "Cryptosporidioses, microsporidies et autres protozooses digestives", 63000, Clermont-Ferrand, France
- Service de Parasitologie-Mycologie, 3IHP, INSERM, CHU Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Matthieu Verdan
- Service de Pédiatrie, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Céline Nourrisson
- Service de Bactériologie, 3IHP, INSERM, CHU Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
- Laboratoire associé du Centre National de Référence "Cryptosporidioses, microsporidies et autres protozooses digestives", 63000, Clermont-Ferrand, France.
- Service de Parasitologie-Mycologie, 3IHP, INSERM, CHU Clermont-Ferrand, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
| |
Collapse
|
12
|
Du Z, Li J, Li W, Fu H, Ding J, Ren G, Zhou L, Pi X, Ye X. Effects of prebiotics on the gut microbiota in vitro associated with functional diarrhea in children. Front Microbiol 2023; 14:1233840. [PMID: 37720150 PMCID: PMC10502507 DOI: 10.3389/fmicb.2023.1233840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Purpose Diarrhea is among the top five causes of morbidity and mortality in children. Dysbiosis of the gut microbiota is considered the most important risk factor for diarrhea. Prebiotics have shown efficacy in treating diarrhea by regulating the balance of the gut microbiota in vivo. Methods In this study, we used an in vitro fermentation system to prevent the interference of host-gut microbe interactions during in vivo examination and investigated the effect of fructo-oligosaccharides (FOS) on gut microbiota composition and metabolism in 39 pediatric patients with functional diarrhea. Results 16S rRNA sequencing revealed that FOS significantly improved α- and β-diversity in volunteers with pediatric diarrhea (p < 0.05). This improvement manifested as a significant increase (LDA > 2, p < 0.05) in probiotic bacteria (e.g., Bifidobacterium) and a significant inhibition (LDA > 2, p < 0.05) of harmful bacteria (e.g., Escherichia-Shigella). Notably, the analysis of bacterial metabolites after FOS treatment showed that the decrease in isobutyric acid, isovaleric acid, NH3, and H2S levels was positively correlated with the relative abundance of Lachnoclostridium. This decrease also showed the greatest negative correlation with the abundance of Streptococcus. Random forest analysis and ROC curve validation demonstrated that gut microbiota composition and metabolites were distinct between the FOS treatment and control groups (area under the curve [AUC] > 0.8). Functional prediction using PICRUSt 2 revealed that the FOS-induced alteration of gut microbiota was most likely mediated by effects on starch and sucrose metabolism. Conclusion This study is the first to evince that FOS can modulate gut microbial disorders in children with functional diarrhea. Our findings provide a framework for the application of FOS to alleviate functional diarrhea in children and reduce the use of antibiotics for managing functional diarrhea-induced disturbances in the gut microbiota.
Collapse
Affiliation(s)
- Zhi Du
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiabin Li
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Li
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jieying Ding
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guofei Ren
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China
| | - Linying Zhou
- People's Hospital of Longquan City, Longquan, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaoli Ye
- Department of Medical Administration, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Jones HJ, Bourke CD, Swann JR, Robertson RC. Malnourished Microbes: Host-Microbiome Interactions in Child Undernutrition. Annu Rev Nutr 2023; 43:327-353. [PMID: 37207356 DOI: 10.1146/annurev-nutr-061121-091234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Childhood undernutrition is a major global health burden that is only partially resolved by nutritional interventions. Both chronic and acute forms of child undernutrition are characterized by derangements in multiple biological systems including metabolism, immunity, and endocrine systems. A growing body of evidence supports a role of the gut microbiome in mediating these pathways influencing early life growth. Observational studies report alterations in the gut microbiome of undernourished children, while preclinical studies suggest that this can trigger intestinal enteropathy, alter host metabolism, and disrupt immune-mediated resistance against enteropathogens, each of which contribute to poor early life growth. Here, we compile evidence from preclinical and clinical studies and describe the emerging pathophysiological pathways by which the early life gut microbiome influences host metabolism, immunity, intestinal function, endocrine regulation, and other pathways contributing to child undernutrition. We discuss emerging microbiome-directed therapies and consider future research directions to identify and target microbiome-sensitive pathways in child undernutrition.
Collapse
Affiliation(s)
- Helen J Jones
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
| | - Claire D Bourke
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
| | - Jonathan R Swann
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruairi C Robertson
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom;
- Microenvironment and Immunity Unit, INSERM U1224, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
14
|
Kulecka M, Zeber-Lubecka N, Bałabas A, Czarnowski P, Bagińska K, Głowienka M, Kluska A, Piątkowska M, Dąbrowska M, Waker E, Mikula M, Ostrowski J. Diarrheal-associated gut dysbiosis in cancer and inflammatory bowel disease patients is exacerbated by Clostridioides difficile infection. Front Cell Infect Microbiol 2023; 13:1190910. [PMID: 37577378 PMCID: PMC10413277 DOI: 10.3389/fcimb.2023.1190910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Low diversity gut dysbiosis can take different forms depending on the disease context. In this study, we used shotgun metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) to compared the metagenomic and metabolomic profiles of Clostridioides (Clostridium) difficile diarrheal cancer and inflammatory bowel disease (IBD) patients and defined the additive effect of C. difficile infection (CDI) on intestinal dysbiosis. Results The study cohort consisted of 138 case-mix cancer patients, 43 IBD patients, and 45 healthy control individuals. Thirty-three patients were also infected with C. difficile. In the control group, three well-known enterotypes were identified, while the other groups presented with an additional Escherichia-driven enterotype. Bacterial diversity was significantly lower in all groups than in healthy controls, while the highest level of bacterial species richness was observed in cancer patients. Fifty-six bacterial species had abundance levels that differentiated diarrheal patient groups from the control group. Of these species, 52 and 4 (Bacteroides fragilis, Escherichia coli, Klebsiella pneumoniae, and Ruminococcus gnavus) were under-represented and over-represented, respectively, in all diarrheal patient groups. The relative abundances of propionate and butyrate were significantly lower in fecal samples from IBD and CDI patients than in control samples. Isobutyrate, propanate, and butyrate concentrations were lower in cancer, IBD, and CDI samples, respectively. Glycine and valine amino acids were over- represented in diarrheal patients. Conclusion Our data indicate that different external and internal factors drive comparable profiles of low diversity dysbiosis. While diarrheal-related low diversity dysbiosis may be a consequence of systemic cancer therapy, a similar phenotype is observed in cases of moderate to severe IBD, and in both cases, dysbiosis is exacerbated by incidence of CDI.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Katarzyna Bagińska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Głowienka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Edyta Waker
- Department of Clinical Microbiology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
15
|
Robertson RC, Edens TJ, Carr L, Mutasa K, Gough EK, Evans C, Geum HM, Baharmand I, Gill SK, Ntozini R, Smith LE, Chasekwa B, Majo FD, Tavengwa NV, Mutasa B, Francis F, Tome J, Stoltzfus RJ, Humphrey JH, Prendergast AJ, Manges AR. The gut microbiome and early-life growth in a population with high prevalence of stunting. Nat Commun 2023; 14:654. [PMID: 36788215 PMCID: PMC9929340 DOI: 10.1038/s41467-023-36135-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Stunting affects one-in-five children globally and is associated with greater infectious morbidity, mortality and neurodevelopmental deficits. Recent evidence suggests that the early-life gut microbiome affects child growth through immune, metabolic and endocrine pathways. Using whole metagenomic sequencing, we map the assembly of the gut microbiome in 335 children from rural Zimbabwe from 1-18 months of age who were enrolled in the Sanitation, Hygiene, Infant Nutrition Efficacy Trial (SHINE; NCT01824940), a randomized trial of improved water, sanitation and hygiene (WASH) and infant and young child feeding (IYCF). Here, we show that the early-life gut microbiome undergoes programmed assembly that is unresponsive to the randomized interventions intended to improve linear growth. However, maternal HIV infection is associated with over-diversification and over-maturity of the early-life gut microbiome in their uninfected children, in addition to reduced abundance of Bifidobacterium species. Using machine learning models (XGBoost), we show that taxonomic microbiome features are poorly predictive of child growth, however functional metagenomic features, particularly B-vitamin and nucleotide biosynthesis pathways, moderately predict both attained linear and ponderal growth and growth velocity. New approaches targeting the gut microbiome in early childhood may complement efforts to combat child undernutrition.
Collapse
Affiliation(s)
- Ruairi C Robertson
- Blizard Institute, Queen Mary University of London, London, UK
- Microenvironment & Immunity Unit, INSERM U1224, Institut Pasteur, 75015, Paris, France
| | | | - Lynnea Carr
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ethan K Gough
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ceri Evans
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Hyun Min Geum
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Iman Baharmand
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep K Gill
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Laura E Smith
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY, USA
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Batsirai Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joice Tome
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Jean H Humphrey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Centre for Disease Control, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Quaye EK, Adjei RL, Isawumi A, Allen DJ, Caporaso JG, Quaye O. Altered Faecal Microbiota Composition and Structure of Ghanaian Children with Acute Gastroenteritis. Int J Mol Sci 2023; 24:3607. [PMID: 36835017 PMCID: PMC9962333 DOI: 10.3390/ijms24043607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Acute gastroenteritis (AGE) is a disease of global public health importance. Recent studies show that children with AGE have an altered gut microbiota relative to non-AGE controls. Yet, how the gut microbiota differs in Ghanaian children with and without AGE remains unclear. Here, we explore the 16S rRNA gene-based faecal microbiota profiles of Ghanaian children five years of age and younger, comprising 57 AGE cases and 50 healthy controls. We found that AGE cases were associated with lower microbial diversity and altered microbial sequence profiles relative to the controls. The faecal microbiota of AGE cases was enriched for disease-associated bacterial genera, including Enterococcus, Streptococcus, and Staphylococcus. In contrast, the faecal microbiota of controls was enriched for potentially beneficial genera, including Faecalibacterium, Prevotella, Ruminococcus, and Bacteroides. Lastly, distinct microbial correlation network characteristics were observed between AGE cases and controls, thereby supporting broad differences in faecal microbiota structure. Altogether, we show that the faecal microbiota of Ghanaian children with AGE differ from controls and are enriched for bacterial genera increasingly associated with diseases.
Collapse
Affiliation(s)
- Emmanuel Kofi Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Raymond Lovelace Adjei
- Council for Scientific and Industrial Research (CSIR)-Animal Research Institute, Accra P.O. Box AH 20, Ghana
| | - Abiola Isawumi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - David J. Allen
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Vaccine Centre, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - J. Gregory Caporaso
- Centre for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra P.O. Box LG 54, Ghana
| |
Collapse
|
17
|
Wang S, Cui J, Jiang S, Zheng C, Zhao J, Zhang H, Zhai Q. Early life gut microbiota: Consequences for health and opportunities for prevention. Crit Rev Food Sci Nutr 2022; 64:5793-5817. [PMID: 36537331 DOI: 10.1080/10408398.2022.2158451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gut microbiota influences many aspects of the host, including immune system maturation, nutrient absorption and metabolism, and protection from pathogens. Increasing evidences from cohort and animal studies indicate that changes in the gut microbiota early in life increases the risk of developing specific diseases early and later in life. Therefore, it is becoming increasingly important to identify specific disease prevention or therapeutic solutions targeting the gut microbiota, especially during infancy, which is the window of the human gut microbiota establishment process. In this review, we provide an overview of current knowledge concerning the relationship between disturbances in the gut microbiota early in life and health consequences later in life (e.g., necrotizing enterocolitis, celiac disease, asthma, allergies, autism spectrum disorders, overweight/obesity, diabetes and growth retardation), with a focus on changes in the gut microbiota prior to disease onset. In addition, we summarize and discuss potential microbiota-based interventions early in life (e.g., diet adjustments, probiotics, prebiotics, fecal microbiota transplantation, environmental changes) to promote health or prevent the development of specific diseases. This knowledge should aid the understanding of early life microbiology and inform the development of prediction and prevention measures for short- and long-term health disorders based on the gut microbiota.
Collapse
Affiliation(s)
- Shumin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shilong Jiang
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Chengdong Zheng
- Nutrition and Metabolism Research Division, Innovation Center, Heilongjiang Feihe Dairy Co., Ltd, Beijing, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, Beijing, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Ndungo E, Holm JB, Gama S, Buchwald AG, Tennant SM, Laufer MK, Pasetti MF, Rasko DA. Dynamics of the Gut Microbiome in Shigella-Infected Children during the First Two Years of Life. mSystems 2022; 7:e0044222. [PMID: 36121169 PMCID: PMC9600951 DOI: 10.1128/msystems.00442-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 02/02/2023] Open
Abstract
Shigella continues to be a major contributor to diarrheal illness and dysentery in children younger than 5 years of age in low- and middle-income countries. Strategies for the prevention of shigellosis have focused on enhancing adaptive immunity. The interaction between Shigella and intrinsic host factors, such as the microbiome, remains unknown. We hypothesized that Shigella infection would impact the developing microbial community in infancy and, conversely, that changes in the gastrointestinal microbiome may predispose infections. To test this hypothesis, we characterized the gastrointestinal microbiota in a longitudinal birth cohort from Malawi that was monitored for Shigella infection using 16S rRNA amplicon sequencing. Children with at least one Shigella quantitative polymerase chain reaction (qPCR) positive sample during the first 2 years of life (cases) were compared to uninfected controls that were matched for sex and age. Overall, the microbial species diversity, as measured by the Shannon diversity index, increased over time, regardless of case status. At early time points, the microbial community was dominated by Bifidobacterium longum and Escherichia/Shigella. A greater abundance of Prevotella 9 and Bifidobacterium kashiwanohense was observed at 2 years of age. While no single species was associated with susceptibility to Shigella infection, significant increases in Lachnospiraceae NK4A136 and Fusicatenibacter saccharivorans were observed following Shigella infection. Both taxa are in the family Lachnospiraceae, which are known short-chain fatty acid producers that may improve gut health. Our findings identified temporal changes in the gastrointestinal microbiota associated with Shigella infection in Malawian children and highlight the need to further elucidate the microbial communities associated with disease susceptibility and resolution. IMPORTANCE Shigella causes more than 180 million cases of diarrhea globally, mostly in children living in poor regions. Infection can lead to severe health impairments that reduce quality of life. There is increasing evidence that disruptions in the gut microbiome early in life can influence susceptibility to illnesses. A delayed or impaired reconstitution of the microbiota following infection can further impact overall health. Aiming to improve our understanding of the interaction between Shigella and the developing infant microbiome, we investigated changes in the gut microbiome of Shigella-infected and uninfected children over the course of their first 2 years of life. We identified species that may be involved in recovery from Shigella infection and in driving the microbiota back to homeostasis. These findings support future studies into the elucidation of the interaction between the microbiota and enteric pathogens in young children and into the identification of potential targets for prevention or treatment.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Syze Gama
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Mosca A, Abreu Y Abreu AT, Gwee KA, Ianiro G, Tack J, Nguyen TVH, Hill C. The clinical evidence for postbiotics as microbial therapeutics. Gut Microbes 2022; 14:2117508. [PMID: 36184735 PMCID: PMC9542959 DOI: 10.1080/19490976.2022.2117508] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An optimally operating microbiome supports protective, metabolic, and immune functions, but disruptions produce metabolites and toxins which can be involved in many conditions. Probiotics have the potential to manage these. However, their use in vulnerable people is linked to possible safety concerns and maintaining their viability is difficult. Interest in postbiotics is therefore increasing. Postbiotics contain inactivated microbial cells or cell components, thus are more stable and exert similar health benefits to probiotics. To review the evidence for the clinical benefits of postbiotics in highly prevalent conditions and consider future potential areas of benefit. There is growing evidence revealing the diverse clinical benefits of postbiotics in many prevalent conditions. Postbiotics could offer a novel therapeutic approach and may be a safer alternative to probiotics. Establishing interaction mechanisms between postbiotics and commensal microorganisms will improve the understanding of potential clinical benefits and may lead to targeted postbiotic therapy.
Collapse
Affiliation(s)
- Alexis Mosca
- Pediatric Gastroenterology and Nutrition Department, APHP Robert Debré, Paris, France
| | - Ana Teresa Abreu Y Abreu
- Gastroenterologist and Neuro-gastroenterologist, Angeles del Pedregal Hospital, Mexico City, Mexico
| | - Kok Ann Gwee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and Gleneagles Hospital, Singapore
| | - Gianluca Ianiro
- Gastroenterology Unit, Fondazione Policlinico Universitario”A. Gemelli” IRCCS, Rome, Italy
| | - Jan Tack
- Department of Gastroenterology, University Hospitals Leuven, Belgium
| | | | - Colin Hill
- APC Microbiome Institute, University College Cork, Ireland,CONTACT Prof. Colin HILL APC Microbiome Institute, University College Cork, Ireland
| |
Collapse
|
20
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
21
|
McCormick BJJ, Richard SA, Murray-Kolb LE, Kang G, Lima AAM, Mduma E, Kosek MN, Rogawski McQuade ET, Houpt ER, Bessong P, Shrestha S, Bhutta Z, Ahmed T, Caulfield LE. Full breastfeeding protection against common enteric bacteria and viruses: results from the MAL-ED cohort study. Am J Clin Nutr 2022; 115:759-769. [PMID: 34849524 PMCID: PMC8895209 DOI: 10.1093/ajcn/nqab391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Breastfeeding is known to reduce the risk of enteropathogen infections, but protection from specific enteropathogens is not well characterized. OBJECTIVE The aim was to estimate the association between full breastfeeding (days fed breast milk exclusively or with nonnutritive liquids) and enteropathogen detection. METHODS A total of 2145 newborns were enrolled at 8 sites, of whom 1712 had breastfeeding and key enteropathogen data through 6 mo. We focused on 11 enteropathogens: adenovirus 40/41, norovirus, sapovirus, astrovirus, and rotavirus, enterotoxigenic Escherichia coli (ETEC), Campylobacter spp., and typical enteropathogenic E. coli as well as entero-aggregative E. coli, Shigella and Cryptosporidium. Logistic regression was used to estimate the risk of enteropathogen detection in stools and survival analysis was used to estimate the timing of first detection of an enteropathogen. RESULTS Infants with 10% more days of full breastfeeding within the preceding 30 d of a stool sample were less likely to have the 3 E. coli and Campylobacter spp. detected in their stool (mean odds: 0.92-0.99) but equally likely (0.99-1.02) to have the viral pathogens detected in their stool. A 10% longer period of full breastfeeding from birth was associated with later first detection of the 3 E. coli, Campylobacter, adenovirus, astrovirus, and rotavirus (mean HRs of 0.52-0.75). The hazards declined and point estimates were not statistically significant at 3 mo. CONCLUSIONS In this large multicenter cohort study, full breastfeeding was associated with lower likelihood of detecting 4 important enteric pathogens in the first 6 mo of life. These results also show that full breastfeeding is related to delays in the first detection of some bacterial and viral pathogens in the stool. As several of these pathogens are risk factors for poor growth during childhood, this work underscores the importance of exclusive or full breastfeeding during the first 6 mo of life to optimize early health.
Collapse
Affiliation(s)
| | - Stephanie A Richard
- Fogarty International Center/National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Eric R Houpt
- University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | - Laura E Caulfield
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
22
|
Dynamic of the human gut microbiome under infectious diarrhea. Curr Opin Microbiol 2022; 66:79-85. [PMID: 35121284 DOI: 10.1016/j.mib.2022.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
Despite the widespread implementation of sanitation, immunization and appropriate treatment, infectious diarrheal diseases still inflict a great health burden to children living in low resource settings. Conventional microbiology research in diarrhea have focused on the pathogen's biology and pathogenesis, but initial enteric infections could trigger subsequent perturbations in the gut microbiome, leading to short-term or long-term health effects. Conversely, such pre-existing perturbations could render children more vulnerable to enteropathogen colonization and diarrhea. Recent advances in DNA sequencing and bioinformatic analyses have been integrated in well-designed clinical and epidemiological studies, which allow us to track how the gut microbiome changes from disease onset to recovery. Here, we aim to summarize the current understanding on the diarrheal gut microbiome, stratified into different disease stages. Furthermore, we discuss how such perturbations could have impacts beyond an acute diarrhea episode, specifically on the child's nutritional status and the facilitation of antimicrobial resistance.
Collapse
|
23
|
Diarrheal disease and gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:149-177. [DOI: 10.1016/bs.pmbts.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Colston JM, Taniuchi M, Ahmed T, Ferdousi T, Kabir F, Mduma E, Nshama R, Iqbal NT, Haque R, Ahmed T, Ali Bhutta Z, Kosek MN, Platts-Mills JA. Intestinal Colonization With Bifidobacterium longum Subspecies Is Associated With Length at Birth, Exclusive Breastfeeding, and Decreased Risk of Enteric Virus Infections, but Not With Histo-Blood Group Antigens, Oral Vaccine Response or Later Growth in Three Birth Cohorts. Front Pediatr 2022; 10:804798. [PMID: 35252058 PMCID: PMC8888871 DOI: 10.3389/fped.2022.804798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
Bifidobacterium longum subspecies detected in infant stool have been associated with numerous subsequent health outcomes and are potential early markers of deviation from healthy developmental trajectories. This analysis derived indicators of carriage and early colonization with B. infantis and B. longum and quantified their associations with a panel of early-life exposures and outcomes. In a sub-study nested within a multi-site birth cohort, extant stool samples from infants in Bangladesh, Pakistan and Tanzania were tested for presence and quantity of two Bifidobacterium longum subspecies. The results were matched to indicators of nutritional status, enteropathogen infection, histo-blood group antigens, vaccine response and feeding status and regression models were fitted to test for associations while adjusting for covariates. B. infantis was associated with lower quantity of and decreased odds of colonization with B. longum, and vice versa. Length at birth was associated with a 0.36 increase in log10 B. infantis and a 0.28 decrease in B. longum quantity at 1 month of age. B. infantis colonization was associated with fewer viral infections and small reductions in the risk of rotavirus and sapovirus infections, but not reduced overall diarrheal disease risk. No associations with vaccine responses, HBGAs or later nutritional status were identified. Suboptimal intrauterine growth and a shorter duration of exclusive breastfeeding may predispose infants to early intestinal colonization with the B. longum subspecies at the expense of B. infantis, thus denying them potential benefits of reduced enteric virus episodes.
Collapse
Affiliation(s)
- Josh M Colston
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Tahmina Ahmed
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Tania Ferdousi
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Furqan Kabir
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Estomih Mduma
- Haydom Global Health Research Centre, Haydom, Tanzania
| | | | - Najeeha Talat Iqbal
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Zulfiqar Ali Bhutta
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States.,Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
25
|
Huang Y, Ma Q, He J, Liang X, Mai Q, Luo H, Hu J, Song Y. Abdominal massage alleviates functional diarrhea in immature rats via modulation of intestinal microbiota and tight junction protein. Front Pediatr 2022; 10:922799. [PMID: 35935373 PMCID: PMC9354804 DOI: 10.3389/fped.2022.922799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Functional diarrhea (FD) is a common type of chronic diarrhea in children. Recurrent diarrhea can negatively impact children's quality of life and raise healthcare costs significantly. However, conventional treatments are ineffective and limited. Moreover, children with chronic conditions have poor medication compliance. Therefore, non-pharmacological and complementary treatments are urgently needed. In China, abdominal massage is widely used to treat diarrhea in children. Numerous clinical studies have verified its usefulness in treating gastrointestinal disorders as well. Nevertheless, its intrinsic mechanisms are still unclear, and the impact of massage direction on treatment effects has received less attention. In our study, we found that FD was not associated with pathogen infection. A dysbiosis of the intestinal microbiota and disruption of the intestinal barrier are most likely to cause FD. Moreover, this study also substantiates that abdominal massage can mitigate functional diarrhea by altering the intestinal microbiota structure and decreasing the number of bacteria that damage intestinal mucosal barriers. The reduction of Ruminococcus_torques_group and Clostridium_innocuum_group at the genus level potentially mediated the beneficial effects of abdominal massage on alleviating diarrhea. Furthermore, massaging from two different directions, clockwise (CW) and counter-clockwise (CCW) massage, would not significantly influence the effect of the massage on intestinal microbiota or tight junction proteins. In summary, abdominal massage is an effective complementary therapy for children suffering from functional diarrhea.
Collapse
Affiliation(s)
- Yanyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Ma
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxin He
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingshan Liang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingxin Mai
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huifang Luo
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Hu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Song
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Oster M, Reyer H, Keiler J, Ball E, Mulvenna C, Ponsuksili S, Wimmers K. Comfrey (Symphytum spp.) as a feed supplement in pig nutrition contributes to regional resource cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148988. [PMID: 34273829 PMCID: PMC8463835 DOI: 10.1016/j.scitotenv.2021.148988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 05/11/2023]
Abstract
In smallholder agriculture, the fast-growing and perennial accumulator plant comfrey (Symphytum spp.) was used to supply pigs with protein and minerals. Comfrey leaves show similar values in dry matter as soybean or blue lupine in crude protein content, but much higher levels of calcium and phosphorus. However, in terms of increased efficiency in animal husbandry, comfrey has been displaced by mainly soybean and cereals. Due to its profile of macro- and micronutrients the use of comfrey could have the potential to re-establish local resource cycles and help remediate over-fertilized soils. The aim of the study was to evaluate whether a modern pig breed accepts a continuous feed supplement of dried comfrey leaves. After an initial adaptation period post-weaning, German Landrace piglets were subjected to either a standard control diet or a diet supplemented with 15% dried comfrey leaves for 4 weeks. Body weight was reduced in comfrey-supplemented piglets compared to controls, which might be attributed to reduced palatability in the experimental setting. Nevertheless, comfrey-supplemented piglets exhibited adequate bone mineralization and intestinal integrity. The microbiome profile in feces and digesta revealed higher diversity in comfrey-supplemented piglets compared to controls, with pronounced effects on the abundances of Treponema and Prevotella. This may be due to described bio-positive components of the comfrey plant, as data suggest that the use of comfrey leaves may promote intestinal health. Digestive tract phosphorus levels were reduced in piglets receiving comfrey supplementation, which may ultimately affect phosphorus levels in manure. Results indicate that comfrey leaves could serve as a feed component in integrated agricultural systems to establish regional nutrient cycles. The trial provides a basis for further work on comfrey as a regionally grown protein source and effective replacement for rock mineral supplements.
Collapse
Affiliation(s)
- Michael Oster
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Jonas Keiler
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Elizabeth Ball
- Agri-Food and Biosciences Institute, Large Park, Hillsborough Co. Down BT26 6DR, UK
| | - Christina Mulvenna
- Agri-Food and Biosciences Institute, Large Park, Hillsborough Co. Down BT26 6DR, UK
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany.
| |
Collapse
|
27
|
Bungau SG, Behl T, Singh A, Sehgal A, Singh S, Chigurupati S, Vijayabalan S, Das S, Palanimuthu VR. Targeting Probiotics in Rheumatoid Arthritis. Nutrients 2021; 13:3376. [PMID: 34684377 PMCID: PMC8539185 DOI: 10.3390/nu13103376] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
Collapse
Affiliation(s)
- Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral Scool of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (A.S.); (A.S.); (S.S.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Suprava Das
- Deprtment of Pharmacology, Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Vasanth Raj Palanimuthu
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, Tamilnadu, India;
| |
Collapse
|
28
|
Rhoades NS, Hendrickson SM, Prongay K, Haertel A, Gill L, Edwards RA, Garzel L, Slifka MK, Messaoudi I. Growth faltering regardless of chronic diarrhea is associated with mucosal immune dysfunction and microbial dysbiosis in the gut lumen. Mucosal Immunol 2021; 14:1113-1126. [PMID: 34158595 PMCID: PMC8379072 DOI: 10.1038/s41385-021-00418-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 02/04/2023]
Abstract
Despite the impact of childhood diarrhea on morbidity and mortality, our understanding of its sequelae has been significantly hampered by the lack of studies that examine samples across the entire intestinal tract. Infant rhesus macaques are naturally susceptible to human enteric pathogens and recapitulate the hallmarks of diarrheal disease such as intestinal inflammation and growth faltering. Here, we examined intestinal biopsies, lamina propria leukocytes, luminal contents, and fecal samples from healthy infants and those experiencing growth faltering with distant acute or chronic active diarrhea. We show that growth faltering in the presence or absence of active diarrhea is associated with a heightened systemic and mucosal pro-inflammatory state centered in the colon. Moreover, polyclonal stimulation of colonic lamina propria leukocytes resulted in a dampened cytokine response, indicative of immune exhaustion. We also detected a functional and taxonomic shift in the luminal microbiome across multiple gut sites including the migration of Streptococcus and Prevotella species between the small and large intestine, suggesting a decompartmentalization of gut microbial communities. Our studies provide valuable insight into the outcomes of diarrheal diseases and growth faltering not attainable in humans and lays the groundwork to test interventions in a controlled and reproducible setting.
Collapse
Affiliation(s)
- Nicholas S Rhoades
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Sara M Hendrickson
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Kamm Prongay
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Andrew Haertel
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA
| | - Leanne Gill
- California National Primate Research Center, Davis, Davis, CA, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Laura Garzel
- California National Primate Research Center, Davis, Davis, CA, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, OR, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
29
|
Herrera G, Vega L, Patarroyo MA, Ramírez JD, Muñoz M. Gut microbiota composition in health-care facility-and community-onset diarrheic patients with Clostridioides difficile infection. Sci Rep 2021; 11:10849. [PMID: 34035404 PMCID: PMC8149855 DOI: 10.1038/s41598-021-90380-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
The role of gut microbiota in the establishment and development of Clostridioides difficile infection (CDI) has been widely discussed. Studies showed the impact of CDI on bacterial communities and the importance of some genera and species in recovering from and preventing infection. However, most studies have overlooked important components of the intestinal ecosystem, such as eukaryotes and archaea. We investigated the bacterial, archaea, and eukaryotic intestinal microbiota of patients with health-care-facility- or community-onset (HCFO and CO, respectively) diarrhea who were positive or negative for CDI. The CDI-positive groups (CO/+, HCFO/+) showed an increase in microorganisms belonging to Bacteroidetes, Firmicutes, Proteobacteria, Ascomycota, and Opalinata compared with the CDI-negative groups (CO/-, HCFO/-). Patients with intrahospital-acquired diarrhea (HCFO/+, HCFO/-) showed a marked decrease in bacteria beneficial to the intestine, and there was evidence of increased Archaea and Candida and Malassezia species compared with the CO groups (CO/+, CO/-). Characteristic microbiota biomarkers were established for each group. Finally, correlations between bacteria and eukaryotes indicated interactions among the different kingdoms making up the intestinal ecosystem. We showed the impact of CDI on microbiota and how it varies with where the infection is acquired, being intrahospital-acquired diarrhea one of the most influential factors in the modulation of bacterial, archaea, and eukaryotic populations. We also highlight interactions between the different kingdoms of the intestinal ecosystem, which need to be evaluated to improve our understanding of CDI pathophysiology.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
30
|
Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, Nissapatorn V, Pereira ML, Wilairatana P, Rahmatullah M. Probiotics and Amelioration of Rheumatoid Arthritis: Significant Roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 2021; 9:1070. [PMID: 34065638 PMCID: PMC8157104 DOI: 10.3390/microorganisms9051070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder that can lead to disability conditions with swollen joints, pain, stiffness, cartilage degradation, and osteoporosis. Genetic, epigenetic, sex-specific factors, smoking, air pollution, food, oral hygiene, periodontitis, Prevotella, and imbalance in the gastrointestinal microbiota are possible sources of the initiation or progression of rheumatoid arthritis, although the detailed mechanisms still need to be elucidated. Probiotics containing Lactobacillus spp. are commonly used as alleviating agents or food supplements to manage diarrhea, dysentery, develop immunity, and maintain general health. The mechanism of action of Lactobacillus spp. against rheumatoid arthritis is still not clearly known to date. In this narrative review, we recapitulate the findings of recent studies to understand the overall pathogenesis of rheumatoid arthritis and the roles of probiotics, particularly L. casei or L. acidophilus, in the management of rheumatoid arthritis in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alok K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhaka 1207, Bangladesh;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Maria L. Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| |
Collapse
|
31
|
Wu Y, Zhou X, Zhang X, Niu H, Lyu L, Liang C, Chen S, Gong P, Pan J, Li Y, Jiang S, Han X, Zhang L. Breast milk flora plays an important role in infantile eczema: cohort study in Northeast China. J Appl Microbiol 2021; 131:2981-2993. [PMID: 33735474 DOI: 10.1111/jam.15076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/17/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
AIMS Infantile eczema, usually coupled with a range of hypersensitive phenotypes, has come into notice with its rising prevalence and unclear pathogenesis. Recent studies show close ties between eczema and an infant's intestinal flora. To gain a further understanding of the interactions between microbiota and eczema, we studied the breast milk flora as a new factor and present the links among breast milk flora, infant intestinal flora and infantile eczema through a cohort study in Northeast China. METHODS AND RESULTS Fifty-two families were recruited with either an eczema or healthy infant younger than 6 months. Analysis and predictions using amplicon sequencing of microbiota found that Bifidobacterium and Bacteroidetes were enriched in healthy and eczema infant stools, respectively, consistent with previous reports. For breast milk flora, more 'positive' bacteria such as Akkermansia were enriched in breast milk from healthy infants' mothers. Further, higher bacterial delivery efficiencies were found in pairs of breast milk flora and infants' stool flora of families with eczema infants compared with families with healthy infants. Bacteroidetes, a widely known indicator of eczema, was found delivered more in eczema pairs. Further metagenomic predictions revealed that the breast milk microbiota participated significantly less in metabolism and immune system pathways, particularly in antigen processing and presentation and in Th17 cell-related pathways. CONCLUSIONS In conclusion, as with other components of breast milk, the breast milk microbiota closely associates with infants' health via mother-infant bacterial delivery and metabolic functions. SIGNIFICANCE AND IMPACT OF THE STUDY Our research aimed to fill the gap between the eczema and breast milk flora and describe the connections among breast milk and intestinal flora and eczema.
Collapse
Affiliation(s)
- Y Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - X Zhou
- Department of Adolescent Medical Clinic, Qingdao Central Hospital, Qingdao, China
| | - X Zhang
- Child Healthcare Department, Harbin Children's Hospital, Harbin, China
| | - H Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - L Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - C Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - S Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - P Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - J Pan
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - Y Li
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - S Jiang
- Feihe Innovation Center, Heilongjiang Feihe Dairy Co Ltd, Beijing, China
| | - X Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - L Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
32
|
Boland K, Bedrani L, Turpin W, Kabakchiev B, Stempak J, Borowski K, Nguyen G, Steinhart AH, Smith MI, Croitoru K, Silverberg MS. Persistent Diarrhea in Patients With Crohn's Disease After Mucosal Healing Is Associated With Lower Diversity of the Intestinal Microbiome and Increased Dysbiosis. Clin Gastroenterol Hepatol 2021; 19:296-304.e3. [PMID: 32220613 PMCID: PMC7511440 DOI: 10.1016/j.cgh.2020.03.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In patients with inflammatory bowel diseases (IBDs), symptoms do not always associate with the severity of endoscopic inflammation and can persist after mucosal healing. We investigated whether symptoms in patients with successfully treated IBD are related to the composition of the intestinal microbiome. METHODS We analyzed 590 tissue biopsy specimens from 215 patients with IBD and 48 healthy individuals (controls). We obtained mucosal biopsy specimens from 2 colon sites (ascending and rectosigmoid) and from the terminal ileum along with clinical data. Bacterial DNA was extracted from the biopsy specimens and the V4 region of 16s ribosomal RNA sequenced by Miseq and processed using the QIIME v1.9 pipeline. RESULTS Mucosal biopsy specimens from patients with Crohn's disease (CD) who achieved mucosal healing (Mayo scores of 0-1 or segmental endoscopic severity CD scores of 0-5) had lower Chao1 diversity than biopsy specimens from patients with ulcerative colitis (UC) or unclassified IBD (IBD-U), or controls. After endoscopic evidence of improvement in patients with UC or IBD-U, diversity of the tissue-associated microbiota did not differ significantly from that of controls. Colon biopsy specimens from patients with CD had lower microbial diversity, before and after healing (segmental endoscopic severity CD scores, 0-2), than colon biopsy specimens from controls (P < .002). In patients with CD who achieved mucosal healing, residual clinical activity (CD activity index scores >150; P = .03) and persistent diarrhea were associated with reduced microbial diversity (P = .01). Continued diarrhea was associated with a trend toward dysbiosis, based on the microbial dysbiosis index (P = .059). In patients with UC or IBD-U with moderate to severe inflammation, increasing severity of diarrhea was associated with reduced microbial diversity (P = .03). CONCLUSIONS In an analysis of biopsy specimens from patients with IBD and controls, we found that despite endoscopic evidence of improvement or remission, α-diversity of the tissue-associated intestinal microbiome remained lower in patients with CD than in controls. This observation, along with the reduced Chao1 diversity and greater dysbiosis in intestinal microbiota of patients with residual symptoms of IBD, indicates that microbiome composition could be associated with persistent diarrhea.
Collapse
Affiliation(s)
- Karen Boland
- Division of Gastroenterology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Zane Cohen Centre for Digestive Diseases, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
| | - Larbi Bedrani
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Boyko Kabakchiev
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Joanne Stempak
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Krzysztof Borowski
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Geoffrey Nguyen
- Division of Gastroenterology, Mount Sinai Hospital,
University of Toronto, Canada
| | - A Hillary Steinhart
- Division of Gastroenterology, Mount Sinai Hospital,
University of Toronto, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Kenneth Croitoru
- Division of Gastroenterology, Mount Sinai Hospital,
University of Toronto, Canada,Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Mark S Silverberg
- Division of Gastroenterology, Mount Sinai Hospital,
University of Toronto, Canada,Zane Cohen Centre for Digestive Diseases,
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| |
Collapse
|
33
|
Qi M, Tan B, Wang J, Liao S, Deng Y, Ji P, Song T, Zha A, Yin Y. The microbiota-gut-brain axis: A novel nutritional therapeutic target for growth retardation. Crit Rev Food Sci Nutr 2021; 62:4867-4892. [PMID: 33523720 DOI: 10.1080/10408398.2021.1879004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth retardation (GR), which commonly occurs in childhood, is a major health concern globally. However, the specific mechanism remains unclear. It has been increasingly recognized that changes in the gut microbiota may lead to GR through affecting the microbiota-gut-brain axis. Microbiota interacts with multiple factors such as birth to affect the growth of individuals. Microbiota communicates with the nerve system through chemical signaling (direct entry into the circulation system or stimulation of enteroendocrine cells) and nervous signaling (interaction with enteric nerve system and vagus nerve), which modulates appetite and immune response. Besides, they may also influence the function of enteric glial cells or lymphocytes and levels of systemic inflammatory cytokines. Environmental stress may cause leaky gut through perturbing the hypothalamic-pituitary-adrenal axis to further result in GR. Nutritional therapies involving probiotics and pre-/postbiotics are being investigated for helping the patients to overcome GR. In this review, we summarize the role of microbiota in GR with human and animal models. Then, existing and potential regulatory mechanisms are reviewed, especially the effect of microbiota-gut-brain axis. Finally, we propose nutritional therapeutic strategies for GR by the intervention of microbiota-gut-brain axis, which may provide novel perspectives for the treatment of GR in humans and animals.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Ji
- Department of Nutrition, University of California, Davis, California, USA
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
34
|
Ma Y, Zhang Q, Liu W, Chen Z, Zou C, Fu L, Wang Y, Liu Y. Preventive Effect of Depolymerized Sulfated Galactans from Eucheuma serra on Enterotoxigenic Escherichia coli-Caused Diarrhea via Modulating Intestinal Flora in Mice. Mar Drugs 2021; 19:80. [PMID: 33535475 PMCID: PMC7912752 DOI: 10.3390/md19020080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
In this work, the preventive effect of depolymerized sulfated polysaccharides from Eucheuma serra (DESP) on bacterial diarrhea by regulating intestinal flora was investigated in vivo. Based on the enterotoxigenic Escherichia coli (ETEC)-infected mouse diarrhea model, DESP at doses ranging from 50 mg/kg to 200 mg/kg alleviated weight loss and decreased the diarrhea rate and diarrhea index. Serological tests showed that the levels of inflammation-related factors were effectively suppressed. Furthermore, the repaired intestinal mucosa was verified by morphology and pathological tissue section observations. Compared with the model group, the richness and diversity of the intestinal flora in the DESP group increased according to the 16S rRNA high-throughput sequencing of the gut microbiota. Specifically, Firmicutes and Actinobacteria increased, and Proteobacteria decreased after DESP administration. At the family level, DESP effectively improved the abundance of Lactobacillaceae, Bifidobacteriaceae, and Lachnospiraceae, while significantly inhibiting the growth of Enterobacteriaceae. Therefore, the antimicrobial diarrhea function of DESP may be related to the regulation of intestinal microbiota.
Collapse
Affiliation(s)
- Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Qian Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Zhaohua Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yanbo Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| |
Collapse
|
35
|
Stasiak-Różańska L, Berthold-Pluta A, Pluta AS, Dasiewicz K, Garbowska M. Effect of Simulated Gastrointestinal Tract Conditions on Survivability of Probiotic Bacteria Present in Commercial Preparations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1108. [PMID: 33513771 PMCID: PMC7908519 DOI: 10.3390/ijerph18031108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Probiotics are recommended, among others, in the diet of children who are under antibiotic therapy, or that suffer from food allergies or travel diarrhea, etc. In the case of toddlers taking probiotic preparations, it is highly recommended to first remove the special capsule, which normally protects probiotic strains against hard conditions in the gastrointestinal tract. Otherwise, the toddler may choke. This removal can impair probiotic survival and reduce its efficacy in a toddler's organism. The aim of this study was to evaluate the survivability of five strains of lactic acid bacteria from the commercial probiotics available on the Polish market under simulated conditions of the gastrointestinal tract. Five probiotics (each including one of these strains: Bifidobacterium BB-12, Lactobacillus (Lb.) rhamnosus GG, Lb. casei, Lb. acidophilus, Lb. plantarum) were protective capsule deprived, added in a food matrix (chicken-vegetable soup) and subjected under simulated conditions of the gastric and gastrointestinal passage. Strain survivability and possibility to growth were evaluated. Obtained results showed that, among all analyzed commercial probiotic strains, the Lb. plantarum was the most resistant to the applied conditions of the culture medium. They showed a noticeable growth under both in vitro gastric conditions at pH 4.0 and 5.0, as well as in vitro intestinal conditions at all tested concentrations of bile salts.
Collapse
Affiliation(s)
- Lidia Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska St. 166, 02-787 Warsaw, Poland; (A.B.-P.); (A.S.P.); (K.D.); (M.G.)
| | | | | | | | | |
Collapse
|
36
|
Qiweibaizhu Decoction Treats Diarrheal Juvenile Rats by Modulating the Gut Microbiota, Short-Chain Fatty Acids, and the Mucus Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8873294. [PMID: 33531924 PMCID: PMC7834800 DOI: 10.1155/2021/8873294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Background Qiweibaizhu decoction (QBD), a classic Chinese herbal formula, has been widely used for treating diarrhea in infants and children with spleen deficiency syndrome for centuries, but its mechanism of action remains unclear. The gut microbiota, short-chain fatty acids (SCFAs), and intestinal mucus are closely associated with diarrhea. Methods In this study, the composition of the gut microbiota in diarrheal rats was analyzed by 16S rDNA amplicon sequencing. The concentrations of colon SCFAs were determined using gas chromatography-mass spectrometry (GC-MS). The expression of mucin 2 (MUC2) in the colon was detected by immunofluorescence. Results Diarrhea significantly changed the diversity and structure of the gut microbiota and disrupted the mucus barrier in juvenile rats. QBD did not significantly change the diversity and structure of the intestinal flora, but it enhanced the increasing tendencies of Verrucomicrobia and Akkermansia and decreased the abundance of Turicibacter (P=0.037) and Flavonifractor (P=0.043). QBD tends to repair the mucus layer and promote MUC2 expression in juvenile rats with diarrhea. Moreover, S. boulardii significantly increased the abundance of Parasutterella (P=0.043). In addition, QBD treatment tends to increase the propionic acid concentration during diarrhea, but its levels of acetic acid, propionic acid, butyric acid, and total SCFAs were lower than those in the S. boulardii group. Conclusion S. boulardii significantly increased the abundance of Parasutterella, leading to increased production of acetic acid, propionic acid, and butyric acid, consequently leading to alleviation of diarrhea. In comparison, QBD affected diarrhea via regulation of the intestinal flora, especially by increasing the abundance of Verrucomicrobia and Akkermansia, resulting in mucus barrier repair, protection of the intestines, and treatment of diarrhea.
Collapse
|
37
|
Natural Infection with Giardia Is Associated with Altered Community Structure of the Human and Canine Gut Microbiome. mSphere 2020; 5:5/4/e00670-20. [PMID: 32759335 PMCID: PMC7407069 DOI: 10.1128/msphere.00670-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While enteric parasitic infections are among the most important infections in lower- and middle-income countries, their impact on gut microbiota is poorly understood. We reasoned that clinical symptoms associated with these infections may be influenced by alterations of the microbiome that occur during infection. To explore this notion, we took a two-pronged approach. First, we studied a cohort of dogs naturally infected with various enteric parasites and found a strong association between parasite infection and altered gut microbiota composition. Giardia, one of the most prevalent parasite infections globally, had a particularly large impact on the microbiome. Second, we took a database-driven strategy to integrate microbiome data with clinical data from large human field studies and found that Giardia infection is also associated with marked alteration of the gut microbiome of children, suggesting a possible explanation for why Giardia has been reported to be associated with protection from moderate to severe diarrhea. Enteric parasitic infections are among the most prevalent infections in lower- and middle-income countries (LMICs) and have a profound impact on global public health. While the microbiome is increasingly recognized as a key determinant of gut health and human development, the impact of naturally acquired parasite infections on microbial community structure in the gut, and the extent to which parasite-induced changes in the microbiome may contribute to gastrointestinal symptoms, is poorly understood. Enteric parasites are routinely identified in companion animals in the United States, presenting a unique opportunity to leverage this animal model to investigate the impact of naturally acquired parasite infections on the microbiome. Clinical, parasitological, and microbiome profiling of a cohort of 258 dogs revealed a significant correlation between parasite infection and composition of the bacterial community in the gut. Relative to other enteric parasites, Giardia was associated with a more pronounced perturbation of the microbiome. To compare our findings to large-scale epidemiological studies of enteric diseases in humans, a database mining approach was employed to integrate clinical and microbiome data. Substantial and consistent alterations to microbiome structure were observed in Giardia-infected children. Importantly, infection was associated with a reduction in the relative abundance of potential pathobionts, including Gammaproteobacteria, and an increase in Prevotella—a profile often associated with gut health. Taken together, these data show that widespread Giardia infection in young animals and humans is associated with significant remodeling of the gut microbiome and provide a possible explanation for the high prevalence of asymptomatic Giardia infections observed across host species. IMPORTANCE While enteric parasitic infections are among the most important infections in lower- and middle-income countries, their impact on gut microbiota is poorly understood. We reasoned that clinical symptoms associated with these infections may be influenced by alterations of the microbiome that occur during infection. To explore this notion, we took a two-pronged approach. First, we studied a cohort of dogs naturally infected with various enteric parasites and found a strong association between parasite infection and altered gut microbiota composition. Giardia, one of the most prevalent parasite infections globally, had a particularly large impact on the microbiome. Second, we took a database-driven strategy to integrate microbiome data with clinical data from large human field studies and found that Giardia infection is also associated with marked alteration of the gut microbiome of children, suggesting a possible explanation for why Giardia has been reported to be associated with protection from moderate to severe diarrhea.
Collapse
|