1
|
Shivam P, Ball D, Cooley A, Osi I, Rayford KJ, Gonzalez SB, Edwards AD, McIntosh AR, Devaughn J, Pugh-Brown JP, Misra S, Kirabo A, Ramesh A, Lindsey ML, Sakwe AM, Gaye A, Hinton A, Martin PM, Nde PN. Regulatory roles of PIWI-interacting RNAs in cardiovascular disease. Am J Physiol Heart Circ Physiol 2025; 328:H991-H1004. [PMID: 40048207 DOI: 10.1152/ajpheart.00833.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
Cardiovascular disease remains the number one cause of death worldwide. Across the spectrum of cardiovascular pathologies, all are accompanied by changes in gene expression profiles spanning a variety of cellular components of the myocardium. Alterations in gene expression are regulated by small noncoding RNAs (sncRNAs), with P-element-induced WImpy testis (PIWI)-interacting RNAs (piRNAs) being the most abundant of the sncRNAs in the human genome. Composed of 21-35 nucleotides in length with a protective methyl group at the 3' end, piRNAs complex with highly conserved RNA-binding proteins termed PIWI proteins to recruit enzymes used for histone, DNA, RNA, and protein modifications. Thus, specific piRNA expression patterns can be exploited for early clinical diagnosis of cardiovascular disease and the development of novel RNA therapeutics that may improve cardiac health outcomes. This review summarizes the latest progress made on understanding how piRNAs regulate cardiovascular health and disease progression, including a discussion of their potential in the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
- Pushkar Shivam
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Destiny Ball
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Ayorinde Cooley
- School of Medicine, Meharry Medical College, Nashville, Tennessee, United States
| | - Inmar Osi
- School of Medicine, Meharry Medical College, Nashville, Tennessee, United States
| | - Kayla J Rayford
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Said B Gonzalez
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Alayjha D Edwards
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Antonisha R McIntosh
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Jessica Devaughn
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Jada P Pugh-Brown
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Smita Misra
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, Tennessee, United States
| | - Merry L Lindsey
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville VA Medical Center, Nashville, Tennessee, United States
| | - Amos M Sakwe
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Antentor Hinton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Pamela M Martin
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| | - Pius N Nde
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Landim-Vieira M, Nieto Morales PF, ElSafty S, Kahmini AR, Ranek MJ, Solís C. The role of mechanosignaling in the control of myocardial mass. Am J Physiol Heart Circ Physiol 2025; 328:H622-H638. [PMID: 39739566 DOI: 10.1152/ajpheart.00277.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Regulation of myocardial mass is key for maintaining cardiovascular health. This review highlights the complex and regulatory relationship between mechanosignaling and myocardial mass, influenced by many internal and external factors including hemodynamic and microgravity, respectively. The heart is a dynamic organ constantly adapting to changes in workload (preload and afterload) and mechanical stress exerted on the myocardium, influencing both physiological adaptations and pathological remodeling. Mechanosignaling pathways, such as the mitogen-activated protein kinases (MAPKs) and the phosphoinositide 3-kinases and serine/threonine kinase (PI3K/Akt) pathways, mediate downstream effects on gene expression and play key roles in transducing mechanical cues into biochemical signals, thereby modulating cellular processes, including control of myocardial mass. Dysregulation of these processes can lead to pathological cardiac remodeling, such as hypertrophic cardiomyopathy. Furthermore, recent studies have highlighted the importance of protein quality control mechanisms, such as the ubiquitin-proteasome system, in settings of extreme physiological conditions that alter the heart workload such as pregnancy and microgravity. Overall, this review provides a thorough insight into how mechanical signals are converted into chemical signals to regulate myocardial mass in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Paula F Nieto Morales
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Summer ElSafty
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Christopher Solís
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
3
|
Johnson E, Albakri JS, Allemailem KS, Sultan A, Alwanian WM, Alrumaihi F, Almansour NM, Aldakheel FM, Khalil FMA, Abduallah AM, Smith O. Mitochondrial dysfunction and calcium homeostasis in heart failure: Exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations. Curr Probl Cardiol 2025; 50:102968. [PMID: 39653095 DOI: 10.1016/j.cpcardiol.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Heart failure (HF) is a multifaceted clinical syndrome characterized by the heart's inability to pump sufficient blood to meet the body's metabolic demands. It arises from various etiologies, including myocardial injury, hypertension, and valvular heart disease. A critical aspect of HF pathophysiology involves mitochondrial dysfunction, particularly concerning calcium (Ca2+) homeostasis and oxidative stress. This review highlights the pivotal role of excess mitochondrial Ca2+ in exacerbating oxidative stress, contributing significantly to HF progression. Novel insights are provided regarding the mechanisms by which mitochondrial Ca2+ overload leads to increased production of reactive oxygen species (ROS) and impaired cellular function. Despite this understanding, key gaps in research remain, particularly in elucidating the complex interplay between mitochondrial dynamics and oxidative stress across different HF phenotypes. Furthermore, therapeutic strategies targeting mitochondrial dysfunction are still in their infancy, with limited applications in clinical practice. By summarizing recent findings and identifying these critical research gaps, this review aims to pave the way for innovative therapeutic approaches that improve the management of heart failure, ultimately enhancing patient outcomes through targeted interventions.
Collapse
Affiliation(s)
- Emily Johnson
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulaziz Sultan
- Family Medicine Senior Registrar, Ministry of Health, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Applied College, Unit of health specialties, basic sciences and their applications, Mohayil Asir Abha, 61421, Saudi Arabia
| | - Alduwish Manal Abduallah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkarj 11942, Saudi Arabia
| | - Oliver Smith
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Fan D, Feng H, Song M, Tan P. Gene expression profiles, potential targets and treatments of cardiac remodeling. Mol Cell Biochem 2025; 480:1555-1567. [PMID: 39367915 DOI: 10.1007/s11010-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Hypertensive and ischemic heart diseases have high morbidity all over the world, and they primarily contribute to heart failure associated with high mortality. Cardiac remodeling, as a basic pathological process in heart diseases, is mainly comprised of cardiac hypertrophy and fibrosis, as well as cell death which occurs especially in the ischemic cardiomyopathy. Myocardial remodeling has been widely investigated by a variety of animal models, including pressure overload, angiotensin II stimulation, and myocardial infarction. Pressure overload can cause compensatory cardiac hypertrophy at the early stage, followed by decompensatory hypertrophy and heart failure at the end. Recently, RNA sequencing and differentially expressed gene (DEG) analyses have been extensively employed to elucidate the molecular mechanisms of cardiac remodeling and related heart failure, which also provide potential targets for high-throughput drug screenings. In this review, we summarize recent advancements in gene expression profiling, related gene functions, and signaling pathways pertinent to myocardial remodeling induced by pressure overload at distinct stages, ischemia-reperfusion, myocardial infarction, and diabetes. We also discuss the effects of sex differences and inflammation on DEGs and their transcriptional regulatory mechanisms in cardiac remodeling. Additionally, we summarize emerging therapeutic agents and strategies aimed at modulating gene expression profiles during myocardial remodeling.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China.
| | - Han Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Mengyu Song
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Penglin Tan
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| |
Collapse
|
5
|
Wu XY, Peng S, Li XT, Chen SW, Wei Y, Ye YT, Zhou CZ, Zhong ZK, Gao LZ, Jin CY, Kong DP, Liu SW, Zhou GQ. PFKP inhibition protects against pathological cardiac hypertrophy by regulating protein synthesis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167542. [PMID: 39419453 DOI: 10.1016/j.bbadis.2024.167542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Metabolic reprogramming precedes most alterations during pathological cardiac hypertrophy and heart failure (HF). Recent studies have revealed that Phosphofructokinase, platelet (PFKP) has a wealth of metabolic and non-metabolic functions. In this study, we explored the role of PFKP in cardiac hypertrophic growth and HF. The expression level of PFKP was elevated both in pathological cardiac remodeling mouse model challenged by transverse aortic constriction (TAC) surgery and in the neonatal rat cardiomyocytes (NRCMs) stimulated by phenylephrine (PE). In global PFKP knockout (PFKP-KO) mice, cardiac hypertrophy was ameliorated under TAC surgery, while overexpression of PFKP by intravenous injection of adeno-associated virus 9 (AAV9) under the cardiac troponin T (cTnT) promoter worsened myocardial hypertrophy and fibrosis. In NRCMs, small interfering RNA (SiRNA) knockdown or adenovirus (Adv) overexpression of PFKP was employed and the intervention of PFKP showed a similar phenotype. Mechanistically, immunoprecipitation combined with liquid chromatography-tandem mass spectrometry (IP-MS/MS) analysis was used to identify the interacting proteins of PFKP. Eukaryotic translation initiation factor 2 subunit beta (EIF2S2) was identified as the downstream target of PFKP. In the PE-stimulated NRCM hypertrophy model and mouse TAC model, knocking down EIF2S2 after PFKP overexpression reduced the synthesis of new proteins and alleviated the hypertrophy phenotype. Our findings illuminate that PFKP participates in pathological cardiac hypertrophy partly by regulating protein synthesis through EIF2S2, which provides a new clue for the involvement of metabolic intermediates in signal transduction.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Shi Peng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Xin-Tao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Song-Wen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yu-Tong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Chang-Zuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Zi-Kan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Long-Zhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Chen-Yang Jin
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - De-Ping Kong
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Shao-Wen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.
| | - Gen-Qing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.
| |
Collapse
|
6
|
Van Wauwe J, Mahy A, Craps S, Ekhteraei-Tousi S, Vrancaert P, Kemps H, Dheedene W, Doñate Puertas R, Trenson S, Roderick HL, Beerens M, Luttun A. PRDM16 determines specification of ventricular cardiomyocytes by suppressing alternative cell fates. Life Sci Alliance 2024; 7:e202402719. [PMID: 39304345 PMCID: PMC11415600 DOI: 10.26508/lsa.202402719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
PRDM16 is a transcription factor with histone methyltransferase activity expressed at the earliest stages of cardiac development. Pathogenic mutations in humans lead to cardiomyopathy, conduction abnormalities, and heart failure. PRDM16 is specifically expressed in ventricular but not atrial cardiomyocytes, and its expression declines postnatally. Because in other tissues PRDM16 is best known for its role in binary cell fate decisions, we hypothesized a similar decision-making function in cardiomyocytes. Here, we demonstrated that cardiomyocyte-specific deletion of Prdm16 during cardiac development results in contractile dysfunction and abnormal electrophysiology of the postnatal heart, resulting in premature death. By combined RNA+ATAC single-cell sequencing, we found that PRDM16 favors ventricular working cardiomyocyte identity, by opposing the activity of master regulators of ventricular conduction and atrial fate. Myocardial loss of PRDM16 during development resulted in hyperplasia of the (distal) ventricular conduction system. Hence, PRDM16 plays an indispensable role during cardiac development by driving ventricular working cardiomyocyte identity.
Collapse
Affiliation(s)
- Jore Van Wauwe
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Craps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Vrancaert
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hannelore Kemps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Trenson
- Cardiology Lab, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- Institute for Clinical Chemistry and Laboratory Medicine, Medizinische Klinik und Poliklinik Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Kuai Z, Ma Y, Gao W, Zhang X, Wang X, Ye Y, Zhang X, Yuan J. Potential diagnostic value of circulating miRNAs in HFrEF and bioinformatics analysis. Heliyon 2024; 10:e37929. [PMID: 39386873 PMCID: PMC11462209 DOI: 10.1016/j.heliyon.2024.e37929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background Few studies have compared the performances of those reported miRNAs as biomarkers for heart failure with reduced EF (HFrEF) in a population at high risk. The purpose of this study is to investigate comprehensively the performance of those miRNAs as biomarkers for HFrEF. Methods By using bioinformatics methods, we also examined these miRNAs' target genes and possible signal transduction pathways. We collected serum samples from patients with HFrEF at Zhongshan Hospital. Receiver operating characteristic (ROC) curves were used to evaluate the accuracy of those miRNAs as biomarkers for HFrEF. miRWALK2.0, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to predict the target genes and pathways of selected miRNAs. Results The study included 48 participants, of whom 30 had HFrEF and 18 had hypertension with normal left ventricular ejection fraction (LVEF). MiR-378, miR-195-5p were significantly decreased meanwhile ten miRNAs were remarkably elevated (miR-21-3p, miR-21-5p, miR-106-5p, miR-23a-3p, miR-208a-3p, miR-1-3p, miR-126-5p, miR-133a-3p, miR-133b, miR-223-3p) in the serum of the HFrEF group. Conclusion The combination of miR 133a-3p, miR 378, miR 1-3p, miR 106b-5p, and miR 133b has excellent diagnostic performance for HFrEF, and there is a throng of mechanisms and pathways by which regulation of these miRNAs may affect the risk of HFrEF.
Collapse
Affiliation(s)
- Zheng Kuai
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanji Ma
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Gao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoxue Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangli Ye
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Zhang
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yuan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Ahola S, Pazurek LA, Mayer F, Lampe P, Hermans S, Becker L, Amarie OV, Fuchs H, Gailus-Durner V, de Angelis MH, Riedel D, Nolte H, Langer T. Opa1 processing is dispensable in mouse development but is protective in mitochondrial cardiomyopathy. SCIENCE ADVANCES 2024; 10:eadp0443. [PMID: 39093974 PMCID: PMC11296347 DOI: 10.1126/sciadv.adp0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Mitochondrial fusion and fission accompany adaptive responses to stress and altered metabolic demands. Inner membrane fusion and cristae morphogenesis depends on optic atrophy 1 (Opa1), which is expressed in different isoforms and is cleaved from a membrane-bound, long to a soluble, short form. Here, we have analyzed the physiological role of Opa1 isoforms and Opa1 processing by generating mouse lines expressing only one cleavable Opa1 isoform or a non-cleavable variant thereof. Our results show that expression of a single cleavable or non-cleavable Opa1 isoform preserves embryonic development and the health of adult mice. Opa1 processing is dispensable under metabolic and thermal stress but prolongs life span and protects against mitochondrial cardiomyopathy in OXPHOS-deficient Cox10-/- mice. Mechanistically, loss of Opa1 processing disturbs the balance between mitochondrial biogenesis and mitophagy, suppressing cardiac hypertrophic growth in Cox10-/- hearts. Our results highlight the critical regulatory role of Opa1 processing, mitochondrial dynamics, and metabolism for cardiac hypertrophy.
Collapse
Affiliation(s)
- Sofia Ahola
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Fiona Mayer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Philipp Lampe
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Steffen Hermans
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg
| | - Dietmar Riedel
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Dababneh S, Hamledari H, Maaref Y, Jayousi F, Hosseini DB, Khan A, Jannati S, Jabbari K, Arslanova A, Butt M, Roston TM, Sanatani S, Tibbits GF. Advances in Hypertrophic Cardiomyopathy Disease Modelling Using hiPSC-Derived Cardiomyocytes. Can J Cardiol 2024; 40:766-776. [PMID: 37952715 DOI: 10.1016/j.cjca.2023.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The advent of human induced pluripotent stem cells (hiPSCs) and their capacity to be differentiated into beating human cardiomyocytes (CMs) in vitro has revolutionized human disease modelling, genotype-phenotype predictions, and therapeutic testing. Hypertrophic cardiomyopathy (HCM) is a common inherited cardiomyopathy and the leading known cause of sudden cardiac arrest in young adults and athletes. On a molecular level, HCM is often driven by single pathogenic genetic variants, usually in sarcomeric proteins, that can alter the mechanical, electrical, signalling, and transcriptional properties of the cell. A deeper knowledge of these alterations is critical to better understanding HCM manifestation, progression, and treatment. Leveraging hiPSC-CMs to investigate the molecular mechanisms driving HCM presents a unique opportunity to dissect the consequences of genetic variants in a sophisticated and controlled manner. In this review, we summarize the molecular underpinnings of HCM and the role of hiPSC-CM studies in advancing our understanding, and we highlight the advances in hiPSC-CM-based modelling of HCM, including maturation, contractility, multiomics, and genome editing, with the notable exception of electrophysiology, which has been previously covered.
Collapse
Affiliation(s)
- Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Homa Hamledari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yasaman Maaref
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Farah Jayousi
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Dina B Hosseini
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aasim Khan
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shayan Jannati
- Faculty of Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kosar Jabbari
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shubhayan Sanatani
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
10
|
Beslika E, Leite-Moreira A, De Windt LJ, da Costa Martins PA. Large animal models of pressure overload-induced cardiac left ventricular hypertrophy to study remodelling of the human heart with aortic stenosis. Cardiovasc Res 2024; 120:461-475. [PMID: 38428029 PMCID: PMC11060489 DOI: 10.1093/cvr/cvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 03/03/2024] Open
Abstract
Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.
Collapse
Affiliation(s)
- Evangelia Beslika
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Leon J De Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| | - Paula A da Costa Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| |
Collapse
|
11
|
Kamenshchyk A, Belenichev I, Oksenych V, Kamyshnyi O. Combined Pharmacological Modulation of Translational and Transcriptional Activity Signaling Pathways as a Promising Therapeutic Approach in Children with Myocardial Changes. Biomolecules 2024; 14:477. [PMID: 38672493 PMCID: PMC11047929 DOI: 10.3390/biom14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial hypertrophy is the most common condition that accompanies heart development in children. Transcriptional gene expression regulating pathways play a critical role both in cardiac embryogenesis and in the pathogenesis of congenital hypertrophic cardiomyopathy, neonatal posthypoxic myocardial hypertrophy, and congenital heart diseases. This paper describes the state of cardiac gene expression and potential pharmacological modulators at different transcriptional levels. An experimental model of perinatal cardiac hypoxia showed the downregulated expression of genes responsible for cardiac muscle integrity and overexpressed genes associated with energy metabolism and apoptosis, which may provide a basis for a therapeutic approach. Current evidence suggests that RNA drugs, theaflavin, neuraminidase, proton pumps, and histone deacetylase inhibitors are promising pharmacological agents in progressive cardiac hypertrophy. The different points of application of the above drugs make combined use possible, potentiating the effects of inhibition in specific signaling pathways. The special role of N-acetyl cysteine in both the inhibition of several signaling pathways and the reduction of oxidative stress was emphasized.
Collapse
Affiliation(s)
- Andrii Kamenshchyk
- Department of Hospital Pediatrics, Zaporizhzhya State Medical and Pharmaceutical University, 69035 Zaporizhzhya, Ukraine
| | - Igor Belenichev
- Department of Pharmacology, Zaporizhzhya State Medical and Pharmaceutical University, 69035 Zaporizhzhya, Ukraine;
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
12
|
Han Y, Wennersten SA, Pandi BP, Ng DCM, Lau E, Lam MPY. A Ratiometric Catalog of Protein Isoform Shifts in the Cardiac Fetal Gene Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588716. [PMID: 38645170 PMCID: PMC11030362 DOI: 10.1101/2024.04.09.588716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The fetal genetic program orchestrates cardiac development and the re-expression of fetal genes is thought to underlie cardiac disease and adaptation. Here, a proteomics ratio test using mass spectrometry is applied to find protein isoforms with statistically significant usage differences in the fetal vs. postnatal mouse heart. Changes in isoform usage ratios are pervasive at the protein level, with 104 significant events observed, including 88 paralog-derived isoform switching events and 16 splicing-derived isoform switching events between fetal and postnatal hearts. The ratiometric proteomic comparisons rediscovered hallmark fetal gene signatures including a postnatal switch from fetal β (MYH7) toward ɑ (MYH6) myosin heavy chains and from slow skeletal muscle (TNNI1) toward cardiac (TNNI3) troponin I. Altered usages in metabolic proteins are prominent, including a platelet to muscle phosphofructokinase (PFKP - PFKM), enolase 1 to 3 (ENO1 - ENO3), and alternative splicing of pyruvate kinase M2 toward M1 (PKM2 - PKM1) isoforms in glycolysis. The data also revealed a parallel change in mitochondrial proteins in cardiac development, suggesting the shift toward aerobic respiration involves also a remodeling of the mitochondrial protein isoform proportion. Finally, a number of glycolytic protein isoforms revert toward their fetal forms in adult hearts under pathological cardiac hypertrophy, suggesting their functional roles in adaptive or maladaptive response, but this reversal is partial. In summary, this work presents a catalog of ratiometric protein markers of the fetal genetic program of the mouse heart, including previously unreported splice isoform markers.
Collapse
Affiliation(s)
- Yu Han
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sara A Wennersten
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Boomathi P Pandi
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominic C M Ng
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maggie P Y Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
13
|
ElBeck Z, Hossain MB, Siga H, Oskolkov N, Karlsson F, Lindgren J, Walentinsson A, Koppenhöfer D, Jarvis R, Bürli R, Jamier T, Franssen E, Firth M, Degasperi A, Bendtsen C, Menzies RI, Streckfuss-Bömeke K, Kohlhaas M, Nickel AG, Lund LH, Maack C, Végvári Á, Betsholtz C. Epigenetic modulators link mitochondrial redox homeostasis to cardiac function in a sex-dependent manner. Nat Commun 2024; 15:2358. [PMID: 38509128 PMCID: PMC10954618 DOI: 10.1038/s41467-024-46384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
While excessive production of reactive oxygen species (ROS) is a characteristic hallmark of numerous diseases, clinical approaches that ameliorate oxidative stress have been unsuccessful. Here, utilizing multi-omics, we demonstrate that in cardiomyocytes, mitochondrial isocitrate dehydrogenase (IDH2) constitutes a major antioxidative defense mechanism. Paradoxically reduced expression of IDH2 associated with ventricular eccentric hypertrophy is counterbalanced by an increase in the enzyme activity. We unveil redox-dependent sex dimorphism, and extensive mutual regulation of the antioxidative activities of IDH2 and NRF2 by a feedforward network that involves 2-oxoglutarate and L-2-hydroxyglutarate and mediated in part through unconventional hydroxy-methylation of cytosine residues present in introns. Consequently, conditional targeting of ROS in a murine model of heart failure improves cardiac function in sex- and phenotype-dependent manners. Together, these insights may explain why previous attempts to treat heart failure with antioxidants have been unsuccessful and open new approaches to personalizing and, thereby, improving such treatment.
Collapse
Affiliation(s)
- Zaher ElBeck
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, 141 57, Huddinge, Sweden.
- Departmenty of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | - Mohammad Bakhtiar Hossain
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Humam Siga
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, 141 57, Huddinge, Sweden
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Fredrik Karlsson
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Julia Lindgren
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Walentinsson
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Dominique Koppenhöfer
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, 141 57, Huddinge, Sweden
| | - Rebecca Jarvis
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Roland Bürli
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Tanguy Jamier
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elske Franssen
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Degasperi
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Claus Bendtsen
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Alexander G Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Lars H Lund
- Department of Medicine Karolinska Institutet, and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christer Betsholtz
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, 141 57, Huddinge, Sweden
- Departmenty of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Shi X, Dang X, Huang Z, Lu Y, Tong H, Liang F, Zhuang F, Li Y, Cai Z, Huo H, Jiang Z, Pan C, Wang X, Gu C, He B. SUMOylation of TEAD1 Modulates the Mechanism of Pathological Cardiac Hypertrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305677. [PMID: 38225750 PMCID: PMC10966521 DOI: 10.1002/advs.202305677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Pathological cardiac hypertrophy is the leading cause of heart failure and has an extremely complicated pathogenesis. TEA domain transcription factor 1 (TEAD1) is recognized as an important transcription factor that plays a key regulatory role in cardiovascular disease. This study aimed to explore the role of TEAD1 in cardiac hypertrophy and to clarify the regulatory role of small ubiquitin-like modifier (SUMO)-mediated modifications. First, the expression level of TEAD1 in patients with heart failure, mice, and cardiomyocytes is investigated. It is discovered that TEAD1 is modified by SUMO1 during cardiac hypertrophy and that the process of deSUMOylation is regulated by SUMO-specific protease 1 (SENP1). Lysine 173 is an essential site for TEAD1 SUMOylation, which affects the protein stability, nuclear localization, and DNA-binding ability of TEAD1 and enhances the interaction between TEAD1 and its transcriptional co-activator yes-associated protein 1 in the Hippo pathway. Finally, adeno-associated virus serotype 9 is used to construct TEAD1 wild-type and KR mutant mice and demonstrated that the deSUMOylation of TEAD1 markedly exacerbated cardiomyocyte enlargement in vitro and in a mouse model of cardiac hypertrophy. The results provide novel evidence that the SUMOylation of TEAD1 is a promising therapeutic strategy for hypertrophy-related heart failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Xuening Dang
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Zhenyu Huang
- Department of Central LaboratoryShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Yanqiao Lu
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Huan Tong
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Feng Liang
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Fei Zhuang
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Yi Li
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Zhaohua Cai
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Huanhuan Huo
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Zhaolei Jiang
- Department of Cardiothoracic SurgeryXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200030China
| | - Changqing Pan
- General Surgery DepartmentShanghai Chest HospitalSchool of Medicine Shanghai Jiao Tong UniversityShanghai200030China
| | - Xia Wang
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Chang Gu
- Department of Cardiothoracic SurgeryXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200030China
- Department of Thoracic SurgeryShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| | - Ben He
- Department of CardiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030China
| |
Collapse
|
15
|
Johnson BB, Cosson MV, Tsansizi LI, Holmes TL, Gilmore T, Hampton K, Song OR, Vo NTN, Nasir A, Chabronova A, Denning C, Peffers MJ, Merry CLR, Whitelock J, Troeberg L, Rushworth SA, Bernardo AS, Smith JGW. Perlecan (HSPG2) promotes structural, contractile, and metabolic development of human cardiomyocytes. Cell Rep 2024; 43:113668. [PMID: 38198277 DOI: 10.1016/j.celrep.2023.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.
Collapse
Affiliation(s)
- Benjamin B Johnson
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Marie-Victoire Cosson
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Lorenza I Tsansizi
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK
| | - Terri L Holmes
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Katherine Hampton
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ok-Ryul Song
- The Francis Crick Institute, London NW1 1AT, UK; High-Throughput Screening Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Nguyen T N Vo
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aishah Nasir
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alzbeta Chabronova
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Chris Denning
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Catherine L R Merry
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - John Whitelock
- School of Medicine, Regenerating and Modelling Tissues, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Linda Troeberg
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andreia S Bernardo
- The Francis Crick Institute, London NW1 1AT, UK; NHLI, Imperial College London, London, UK.
| | - James G W Smith
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
16
|
Rouault P, Guimbal S, Cornuault L, Bourguignon C, Foussard N, Alzieu P, Choveau F, Benoist D, Chapouly C, Gadeau AP, Couffinhal T, Renault MA. Thrombosis in the Coronary Microvasculature Impairs Cardiac Relaxation and Induces Diastolic Dysfunction. Arterioscler Thromb Vasc Biol 2024; 44:e1-e18. [PMID: 38031839 DOI: 10.1161/atvbaha.123.320040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction is proposed to be caused by endothelial dysfunction in cardiac microvessels. Our goal was to identify molecular and cellular mechanisms underlying the development of cardiac microvessel disease and diastolic dysfunction in the setting of type 2 diabetes. METHODS We used Leprdb/db (leptin receptor-deficient) female mice as a model of type 2 diabetes and heart failure with preserved ejection fraction and identified Hhipl1 (hedgehog interacting protein-like 1), which encodes for a decoy receptor for HH (hedgehog) ligands as a gene upregulated in the cardiac vascular fraction of diseased mice. RESULTS We then used Dhh (desert HH)-deficient mice to investigate the functional consequences of impaired HH signaling in the adult heart. We found that Dhh-deficient mice displayed increased end-diastolic pressure while left ventricular ejection fraction was comparable to that of control mice. This phenotype was associated with a reduced exercise tolerance in the treadmill test, suggesting that Dhh-deficient mice do present heart failure. At molecular and cellular levels, impaired cardiac relaxation in DhhECKO mice was associated with a significantly decreased PLN (phospholamban) phosphorylation on Thr17 (threonine 17) and an alteration of sarcomeric shortening ex vivo. Besides, as expected, Dhh-deficient mice exhibited phenotypic changes in their cardiac microvessels including a prominent prothrombotic phenotype. Importantly, aspirin therapy prevented the occurrence of both diastolic dysfunction and exercise intolerance in these mice. To confirm the critical role of thrombosis in the pathophysiology of diastolic dysfunction, we verified Leprdb/db also displays increased cardiac microvessel thrombosis. Moreover, consistently, with Dhh-deficient mice, we found that aspirin treatment decreased end-diastolic pressure and improved exercise tolerance in Leprdb/db mice. CONCLUSIONS Altogether, these results demonstrate that microvessel thrombosis may participate in the pathophysiology of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Paul Rouault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Sarah Guimbal
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Lauriane Cornuault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Célia Bourguignon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Ninon Foussard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Philippe Alzieu
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Frank Choveau
- INSERM U1045, CRCTB (Centre de recherche cardio-thoracique de Bordeaux), IHU Liryc (Institut Hospitalo Universitaire des maladies du rythme cardiaque), University of Bordeaux, France (F.C., D.B.)
| | - David Benoist
- INSERM U1045, CRCTB (Centre de recherche cardio-thoracique de Bordeaux), IHU Liryc (Institut Hospitalo Universitaire des maladies du rythme cardiaque), University of Bordeaux, France (F.C., D.B.)
| | - Candice Chapouly
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Alain-Pierre Gadeau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Thierry Couffinhal
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Marie-Ange Renault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| |
Collapse
|
17
|
Guo L, Wang L, Qin G, Zhang J, Peng J, Li L, Chen X, Wang D, Qiu J, Wang E. M-type pyruvate kinase 2 (PKM2) tetramerization alleviates the progression of right ventricle failure by regulating oxidative stress and mitochondrial dynamics. J Transl Med 2023; 21:888. [PMID: 38062516 PMCID: PMC10702013 DOI: 10.1186/s12967-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Right ventricle failure (RVF) is a progressive heart disease that has yet to be fully understood at the molecular level. Elevated M-type pyruvate kinase 2 (PKM2) tetramerization alleviates heart failure, but detailed molecular mechanisms remain unclear. OBJECTIVE We observed changes in PKM2 tetramerization levels during the progression of right heart failure and in vitro cardiomyocyte hypertrophy and explored the causal relationship between altered PKM2 tetramerization and the imbalance of redox homeostasis in cardiomyocytes, as well as its underlying mechanisms. Ultimately, our goal was to propose rational intervention strategies for the treatment of RVF. METHOD We established RVF in Sprague Dawley (SD) rats by intraperitoneal injection of monocrotaline (MCT). The pulmonary artery pressure and right heart function of rats were assessed using transthoracic echocardiography combined with right heart catheterization. TEPP-46 was used both in vivo and in vitro to promote PKM2 tetramerization. RESULTS We observed that oxidative stress and mitochondrial disorganization were associated with increased apoptosis in the right ventricular tissue of RVF rats. Quantitative proteomics revealed that PKM2 was upregulated during RVF and negatively correlated with the cardiac function. Facilitating PKM2 tetramerization promoted mitochondrial network formation and alleviated oxidative stress and apoptosis during cardiomyocyte hypertrophy. Moreover, enhancing PKM2 tetramer formation improved cardiac mitochondrial morphology, mitigated oxidative stress and alleviated heart failure. CONCLUSION Disruption of PKM2 tetramerization contributed to RVF by inducing mitochondrial fragmentation, accumulating ROS, and finally promoted the progression of cardiomyocyte apoptosis. Facilitating PKM2 tetramerization holds potential as a promising therapeutic approach for RVF.
Collapse
Affiliation(s)
- Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Qin
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Peng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dandan Wang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Jian Qiu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
| |
Collapse
|
18
|
Claridge B, Rai A, Lees JG, Fang H, Lim SY, Greening DW. Cardiomyocyte intercellular signalling increases oxidative stress and reprograms the global- and phospho-proteome of cardiac fibroblasts. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e125. [PMID: 38938901 PMCID: PMC11080892 DOI: 10.1002/jex2.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 06/29/2024]
Abstract
Pathological reprogramming of cardiomyocyte and fibroblast proteome landscapes drive the initiation and progression of cardiac fibrosis. Although the secretome of dysfunctional cardiomyocytes is emerging as an important driver of pathological fibroblast reprogramming, our understanding of the downstream molecular players remains limited. Here, we show that cardiac fibroblast activation (αSMA+) and oxidative stress mediated by the secretome of TGFβ-stimulated cardiomyocytes is associated with a profound reprogramming of their proteome and phosphoproteome landscape. Within the fibroblast global proteome there was a striking dysregulation of proteins implicated in extracellular matrix, protein localisation/metabolism, KEAP1-NFE2L2 pathway, lysosomes, carbohydrate metabolism, and transcriptional regulation. Kinase substrate enrichment analysis of phosphopeptides revealed potential role of kinases (CK2, CDK2, PKC, GSK3B) during this remodelling. We verified upregulated activity of casein kinase 2 (CK2) in secretome-treated fibroblasts, and pharmacological CK2 inhibitor TBB (4,5,6,7-Tetrabromobenzotriazole) significantly abrogated fibroblast activation and oxidative stress. Our data provides molecular insights into cardiomyocyte to cardiac fibroblast crosstalk, and the potential role of CK2 in regulating cardiac fibroblast activation and oxidative stress.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Alin Rai
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jarmon G. Lees
- O'Brien Institute DepartmentSt Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Surgery and MedicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Haoyun Fang
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Shiang Y. Lim
- O'Brien Institute DepartmentSt Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Surgery and MedicineUniversity of MelbourneMelbourneVictoriaAustralia
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - David W. Greening
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
19
|
Venegas-Zamora L, Fiedler M, Perez W, Altamirano F. Bridging the Translational Gap in Heart Failure Research: Using Human iPSC-derived Cardiomyocytes to Accelerate Therapeutic Insights. Methodist Debakey Cardiovasc J 2023; 19:5-15. [PMID: 38028973 PMCID: PMC10655754 DOI: 10.14797/mdcvj.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Heart failure (HF) remains a leading cause of death worldwide, with increasing prevalence and burden. Despite extensive research, a cure for HF remains elusive. Traditionally, the study of HF's pathogenesis and therapies has relied heavily on animal experimentation. However, these models have limitations in recapitulating the full spectrum of human HF, resulting in challenges for clinical translation. To address this translational gap, research employing human cells, especially cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs), offers a promising solution. These cells facilitate the study of human genetic and molecular mechanisms driving cardiomyocyte dysfunction and pave the way for research tailored to individual patients. Further, engineered heart tissues combine hiPSC-CMs, other cell types, and scaffold-based approaches to improve cardiomyocyte maturation. Their tridimensional architecture, complemented with mechanical, chemical, and electrical cues, offers a more physiologically relevant environment. This review explores the advantages and limitations of conventional and innovative methods used to study HF pathogenesis, with a primary focus on ischemic HF due to its relative ease of modeling and clinical relevance. We emphasize the importance of a collaborative approach that integrates insights obtained in animal and hiPSC-CMs-based models, along with rigorous clinical research, to dissect the mechanistic underpinnings of human HF. Such an approach could improve our understanding of this disease and lead to more effective treatments.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Houston Methodist Research Institute, Houston, Texas, US
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Matthew Fiedler
- Houston Methodist Research Institute, Houston, Texas, US
- Weill Cornell Graduate School of Medical Sciences, New York, New York, US
| | - William Perez
- Houston Methodist Research Institute, Houston, Texas, US
| | - Francisco Altamirano
- Houston Methodist Research Institute, Houston, Texas, US
- Weill Cornell Medical College, New York, New York, US
| |
Collapse
|
20
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
21
|
Zhang D, Liu J, Xiao H, Li J, Cao L, Li G. Deciphering transcriptional dynamics of cardiac hypertrophy and failure in a chamber-specific manner. BIOMOLECULES & BIOMEDICINE 2023; 23:984-996. [PMID: 37334749 PMCID: PMC10655874 DOI: 10.17305/bb.2023.8997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Pressure overload-induced pathological cardiac hypertrophy (CH) is a complexed and adaptive remodeling of the heart, predominantly involving an increase in cardiomyocyte size and thickening of ventricular walls. Over time, these changes can lead to heart failure (HF). However, the individual and shared biological mechanisms of both processes remain poorly understood. This study aimed to identify key genes and signaling pathways associated with CH and HF following aortic arch constriction (TAC) at four weeks and six weeks, respectively, and to investigate potential underlying molecular mechanisms in this dynamic transition from CH to HF at the whole cardiac transcriptome level. Initially, a total of 363, 482, and 264 differentially expressed genes (DEGs) for CH, and 317, 305, and 416 DEGs for HF were identified in the left atrium (LA), left ventricle (LV), and right ventricle (RV), respectively. These identified DEGs could serve as biomarkers for the two conditions in different heart chambers. Additionaly, two communal DEGs, elastin (ELN) and hemoglobin beta chain-beta S variant (HBB-BS), were found in all chambers, with 35 communal DEGs in the LA and LV and 15 communal DEGs in the LV and RV in both CH and HF. Functional enrichment analysis of these genes emphasized the crucial roles of the extracellular matrix and sarcolemma in CH and HF. Lastly, three groups of hub genes, including the lysyl oxidase (LOX) family, fibroblast growth factors (FGF) family, and NADH-ubiquinone oxidoreductase (NDUF) family, were determined to be essential genes of dynamic changes from CH to HF.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jianming Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Haiying Xiao
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ling Cao
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, and Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Sayles NM, Napierala JS, Anrather J, Diedhiou N, Li J, Napierala M, Puccio H, Manfredi G. Comparative multi-omic analyses of cardiac mitochondrial stress in three mouse models of frataxin deficiency. Dis Model Mech 2023; 16:dmm050114. [PMID: 37691621 PMCID: PMC10581388 DOI: 10.1242/dmm.050114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Cardiomyopathy is often fatal in Friedreich ataxia (FA). However, FA hearts maintain adequate function until advanced disease stages, suggesting initial adaptation to the loss of frataxin (FXN). Conditional cardiac knockout mouse models of FXN show transcriptional and metabolic profiles of the mitochondrial integrated stress response (ISRmt), which could play an adaptive role. However, the ISRmt has not been investigated in models with disease-relevant, partial decrease in FXN. We characterized the heart transcriptomes and metabolomes of three mouse models with varying degrees of FXN depletion: YG8-800, KIKO-700 and FXNG127V. Few metabolites were changed in YG8-800 mice, which did not provide a signature of cardiomyopathy or ISRmt; several metabolites were altered in FXNG127V and KIKO-700 hearts. Transcriptional changes were found in all models, but differentially expressed genes consistent with cardiomyopathy and ISRmt were only identified in FXNG127V hearts. However, these changes were surprisingly mild even at advanced age (18 months), despite a severe decrease in FXN levels to 1% of those of wild type. These findings indicate that the mouse heart has low reliance on FXN, highlighting the difficulty in modeling genetically relevant FA cardiomyopathy.
Collapse
Affiliation(s)
- Nicole M. Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
- Neuroscience Graduate Program, Will Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY 10065, USA
| | - Jill S. Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Nadège Diedhiou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/Université de Strasbourg UMR7104, Inserm U1258, B. P. 163, 67404 Illkirch, France
| | - Jixue Li
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/Université de Strasbourg UMR7104, Inserm U1258, B. P. 163, 67404 Illkirch, France
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| |
Collapse
|
23
|
Fletcher EK, Ngwenyama N, Nguyen N, Turner SE, Covic L, Alcaide P, Kuliopulos A. Suppression of Heart Failure With PAR1 Pepducin Technology in a Pressure Overload Model in Mice. Circ Heart Fail 2023; 16:e010621. [PMID: 37477012 PMCID: PMC10592519 DOI: 10.1161/circheartfailure.123.010621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND PAR1 (protease-activated receptor-1) contributes to acute thrombosis, but it is not clear whether the receptor is involved in deleterious inflammatory and profibrotic processes in heart failure. Here, we employ the pepducin technology to determine the effects of targeting PAR1 in a mouse heart failure with reduced ejection fraction model. METHODS After undergoing transverse aortic constriction pressure overload or sham surgery, C57BL/6J mice were randomized to daily sc PZ-128 pepducin or vehicle, and cardiac function, inflammation, fibrosis, and molecular analyses conducted at 7 weeks RESULTS: After 7 weeks of transverse aortic constriction, vehicle mice had marked increases in macrophage/monocyte infiltration and fibrosis of the left ventricle as compared with Sham mice. PZ-128 treatment significantly suppressed the inflammatory cell infiltration and cardiac fibrosis. Despite no effect on myocyte cell hypertrophy, PZ-128 afforded a significant reduction in overall left ventricle weight and completely protected against the transverse aortic constriction-induced impairments in left ventricle ejection fraction. PZ-128 significantly suppressed transverse aortic constriction-induced increases in an array of genes involved in myocardial stress, fibrosis, and inflammation. CONCLUSIONS The PZ-128 pepducin is highly effective in protecting against cardiac inflammation, fibrosis, and loss of left ventricle function in a mouse model.
Collapse
Affiliation(s)
- Elizabeth K Fletcher
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA (N. Ngwenyama, P.A.)
| | - Nga Nguyen
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| | - Susan E Turner
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| | - Lidija Covic
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA (N. Ngwenyama, P.A.)
| | - Athan Kuliopulos
- Center for Hemostasis and Thrombosis Research, Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center (E.K.F., N. Nguyen, S.E.T., L.C., A.K.)
| |
Collapse
|
24
|
Tavakol DN, Nash TR, Kim Y, He S, Fleischer S, Graney PL, Brown JA, Liberman M, Tamargo M, Harken A, Ferrando AA, Amundson S, Garty G, Azizi E, Leong KW, Brenner DJ, Vunjak-Novakovic G. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 2023; 301:122267. [PMID: 37633022 PMCID: PMC10528250 DOI: 10.1016/j.biomaterials.2023.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023]
Abstract
Cosmic radiation is the most serious risk that will be encountered during the planned missions to the Moon and Mars. There is a compelling need to understand the effects, safety thresholds, and mechanisms of radiation damage in human tissues, in order to develop measures for radiation protection during extended space travel. As animal models fail to recapitulate the molecular changes in astronauts, engineered human tissues and "organs-on-chips" are valuable tools for studying effects of radiation in vitro. We have developed a bioengineered tissue platform for studying radiation damage in individualized settings. To demonstrate its utility, we determined the effects of radiation using engineered models of two human tissues known to be radiosensitive: engineered cardiac tissues (eCT, a target of chronic radiation damage) and engineered bone marrow (eBM, a target of acute radiation damage). We report the effects of high-dose neutrons, a proxy for simulated galactic cosmic rays, on the expression of key genes implicated in tissue responses to ionizing radiation, phenotypic and functional changes in both tissues, and proof-of-principle application of radioprotective agents. We further determined the extent of inflammatory, oxidative stress, and matrix remodeling gene expression changes, and found that these changes were associated with an early hypertrophic phenotype in eCT and myeloid skewing in eBM. We propose that individualized models of human tissues have potential to provide insights into the effects and mechanisms of radiation during deep-space missions and allow testing of radioprotective measures.
Collapse
Affiliation(s)
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Jessie A Brown
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Martin Liberman
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Andrew Harken
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Sally Amundson
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
25
|
Dehghani K, Stanek A, Bagherabadi A, Atashi F, Beygi M, Hooshmand A, Hamedi P, Farhang M, Bagheri S, Zolghadri S. CCND1 Overexpression in Idiopathic Dilated Cardiomyopathy: A Promising Biomarker? Genes (Basel) 2023; 14:1243. [PMID: 37372424 DOI: 10.3390/genes14061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiomyopathy, a disorder of electrical or heart muscle function, represents a type of cardiac muscle failure and culminates in severe heart conditions. The prevalence of dilated cardiomyopathy (DCM) is higher than that of other types (hypertrophic cardiomyopathy and restrictive cardiomyopathy) and causes many deaths. Idiopathic dilated cardiomyopathy (IDCM) is a type of DCM with an unknown underlying cause. This study aims to analyze the gene network of IDCM patients to identify disease biomarkers. Data were first extracted from the Gene Expression Omnibus (GEO) dataset and normalized based on the RMA algorithm (Bioconductor package), and differentially expressed genes were identified. The gene network was mapped on the STRING website, and the data were transferred to Cytoscape software to determine the top 100 genes. In the following, several genes, including VEGFA, IGF1, APP, STAT1, CCND1, MYH10, and MYH11, were selected for clinical studies. Peripheral blood samples were taken from 14 identified IDCM patients and 14 controls. The RT-PCR results revealed no significant differences in the expression of the genes APP, MYH10, and MYH11 between the two groups. By contrast, the STAT1, IGF1, CCND1, and VEGFA genes were overexpressed in patients more than in controls. The highest expression was found for VEGFA, followed by CCND1 (p < 0.001). Overexpression of these genes may contribute to disease progression in patients with IDCM. However, more patients and genes need to be analyzed in order to achieve more robust results.
Collapse
Affiliation(s)
- Khatereh Dehghani
- Department of Cardiology, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Fatemeh Atashi
- Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Amirreza Hooshmand
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Pezhman Hamedi
- Research Center, Department of Medical Laboratory Sciences, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Mohsen Farhang
- Molecular Study and Diagnostic Center, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| |
Collapse
|
26
|
Manilall A, Mokotedi L, Gunter S, Le Roux R, Fourie S, Flanagan CA, Millen AME. Tumor Necrosis Factor-α Mediates Inflammation-induced Early-Stage Left Ventricular Systolic Dysfunction. J Cardiovasc Pharmacol 2023; 81:411-422. [PMID: 37078863 DOI: 10.1097/fjc.0000000000001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
ABSTRACT Elevated systemic inflammation contributes to pathogenesis of heart failure with preserved ejection fraction (HFpEF), but molecular mechanisms are poorly understood. Although left ventricular (LV) diastolic dysfunction is the main cause of HFpEF, subclinical systolic dysfunction also contributes. We have previously shown that rats with collagen-induced arthritis (CIA) have systemic inflammation, LV diastolic dysfunction, and that increased circulating TNF-α contributes to inflammation-induced HFpEF pathogenesis, but does not mediate LV diastolic dysfunction in CIA rats. Contribution of systemic inflammation to dysfunction of the active process of LV diastolic and systolic function are unknown. In the present study, we used the CIA rat model to investigate the effects of systemic inflammation and TNF-α blockade on systolic function, and mRNA expression of genes involved in active diastolic relaxation and of myosin heavy chain (MyHC) isoforms. Collagen inoculation and TNF-α blockade did not affect LV mRNA expression of genes that mediate active LV diastolic function. Collagen-induced inflammation impaired LV global longitudinal strain ( P = 0.03) and velocity ( P = 0.04). This impairment of systolic function was prevented by TNF-α blockade. Collagen inoculation decreased mRNA expression of α-MyHC ( Myh6, P = 0.03) and increased expression of β-MyHC ( Myh7, P = 0.0002), a marker, which is upregulated in failing hearts. TNF-α blockade prevented this MyHC isoform-switch. These results show that increased circulating TNF-α changes the relative expression of MyHC isoforms, favoring β-MyHC, which may underlie changes in contractile function that impair systolic function. Our results indicate that TNF-α initiates early-stage LV systolic, rather than LV diastolic dysfunction.
Collapse
Affiliation(s)
- Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | | | |
Collapse
|
27
|
Jones IC, Dass CR. Roles of pigment epithelium-derived factor in cardiomyocytes: implications for use as a cardioprotective therapeutic. J Pharm Pharmacol 2023:7146108. [PMID: 37104852 DOI: 10.1093/jpp/rgad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES Cardiovascular diseases are the leading cause of death worldwide, with patients having limited options for treatment. Pigment epithelium-derived factor (PEDF) is an endogenous multifunctional protein with several mechanisms of action. Recently, PEDF has emerged as a potential cardioprotective agent in response to myocardial infarction. However, PEDF is also associated with pro-apoptotic effects, complicating its role in cardioprotection. This review summarises and compares knowledge of PEDF's activity in cardiomyocytes with other cell types and draws links between them. Following this, the review offers a novel perspective of PEDF's therapeutic potential and recommends future directions to understand the clinical potential of PEDF better. KEY FINDINGS PEDF's mechanisms as a pro-apoptotic and pro-survival protein are not well understood, despite PEDF's implication in several physiological and pathological activities. However, recent evidence suggests that PEDF may have significant cardioprotective properties mediated by key regulators dependent on cell type and context. CONCLUSIONS While PEDF's cardioprotective activity shares some key regulators with its apoptotic activity, cellular context and molecular features likely allow manipulation of PEDF's cellular activity, highlighting the importance of further investigation into its activities and its potential to be applied as a therapeutic to mitigate damage from a range of cardiac pathologies.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
28
|
Sarhan N, Essam Abou Warda A, Alsahali S, Alanazi AS. Impact of Vitamin D Supplementation on the Clinical Outcomes and Epigenetic Markers in Patients with Acute Coronary Syndrome. Pharmaceuticals (Basel) 2023; 16:262. [PMID: 37259407 PMCID: PMC9967129 DOI: 10.3390/ph16020262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/29/2024] Open
Abstract
Vitamin D has recently been found to influence the renin-angiotensin system (RAS); it can reduce the effects of renin-angiotensin system inhibitors (RASI) by decreasing plasma renin. This study examines the effect of vitamin D supplements on cardiac fibrosis markers, echocardiographic parameters, and epigenetic markers in patients with established acute coronary syndrome (ACS). It also looks at the incidence of vitamin D receptor (VDR) gene polymorphisms Apa I (rs7975232), Bsm I (rs1544410), Taq I (rs731236), and Fok I (rs2228570) and its association with the development of secondary major acute cardiovascular events (MACE) and heart failure (HF). A randomized controlled trial in which patients were divided into two groups was performed. Group 1 comprised of 125 ACS patients who received ACS standard therapy alone, while Group 2 consisted of 125 ACS patients who received ACS standard therapy plus vitamin D according to their vitamin D levels. Patients were monitored for 24 months to find subsequent MACE and HF. Vitamin D therapy for ACS patients resulted in a substantial decline in end systolic and end diastolic volumes (p = 0.0075 and 0.002, respectively), procollagen type III N-terminal peptide (PIIINP) and soluble ST2 levels (p = 0.007 and 0.001, respectively), as well as in ejection fraction and vitamin D level (p = 0.0001 and 0.008, respectively). In addition, vitamin D treatment was linked to a significant decline in the levels of noncoding RNA, such as mir361, lncRNA MEG3, and lncRNA Chaer (p = 2.9 × 10-4, 2.2 × 10-6, and 1.2 × 10-5, respectively). Furthermore, patients who suffered MACE had significantly higher levels of the Bsm I CC and Fok I GG genotypes (p = 4.8 × 10-4 and 0.003, respectively), while patients with HF had significantly higher levels of the Taq I AA genotype (p = 4.2 × 10-7). Supplementing ACS patients with vitamin D has been demonstrated to limit cardiac fibrosis and echocardiographic parameters, as well as epigenetic markers. Additionally, MACE and HF among ACS patients may be related to genetic variations among VDR gene polymorphisms.
Collapse
Affiliation(s)
- Neven Sarhan
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University, Cairo 11828, Egypt
| | - Ahmed Essam Abou Warda
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Saud Alsahali
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Qassim 6688, Saudi Arabia
| | - Abdalla Salah Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
29
|
Liu X, Yin K, Chen L, Chen W, Li W, Zhang T, Sun Y, Yuan M, Wang H, Song Y, Wang S, Hu S, Zhou Z. Lineage-specific regulatory changes in hypertrophic cardiomyopathy unraveled by single-nucleus RNA-seq and spatial transcriptomics. Cell Discov 2023; 9:6. [PMID: 36646705 PMCID: PMC9842679 DOI: 10.1038/s41421-022-00490-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/29/2022] [Indexed: 01/18/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder characterized by cardiomyocyte hypertrophy and cardiac fibrosis. Pathological cardiac remodeling in the myocardium of HCM patients may progress to heart failure. An in-depth elucidation of the lineage-specific changes in pathological cardiac remodeling of HCM is pivotal for the development of therapies to mitigate the progression. Here, we performed single-nucleus RNA-seq of the cardiac tissues from HCM patients or healthy donors and conducted spatial transcriptomic assays on tissue sections from patients. Unbiased clustering of 55,122 nuclei from HCM and healthy conditions revealed 9 cell lineages and 28 clusters. Lineage-specific changes in gene expression, subpopulation composition, and intercellular communication in HCM were discovered through comparative analyses. According to the results of pseudotime ordering, differential expression analysis, and differential regulatory network analysis, potential key genes during the transition towards a failing state of cardiomyocytes such as FGF12, IL31RA, and CREB5 were identified. Transcriptomic dynamics underlying cardiac fibroblast activation were also uncovered, and potential key genes involved in cardiac fibrosis were obtained such as AEBP1, RUNX1, MEOX1, LEF1, and NRXN3. Using the spatial transcriptomic data, spatial activity patterns of the candidate genes, pathways, and subpopulations were confirmed on patient tissue sections. Moreover, we showed experimental evidence that in vitro knockdown of AEBP1 could promote the activation of human cardiac fibroblasts, and overexpression of AEBP1 could attenuate the TGFβ-induced activation. Our study provided a comprehensive analysis of the lineage-specific regulatory changes in HCM, which laid the foundation for targeted drug development in HCM.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Kunlun Yin
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Taojun Zhang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Yang Sun
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
- Department of Pathology, Fuwai Hospital, Beijing, China
| | - Meng Yuan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
| | - Hongyue Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China
- Department of Pathology, Fuwai Hospital, Beijing, China
| | - Yunhu Song
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China
| | - Shuiyun Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, Beijing, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, the Chinese Academy of Medical Sciences, Beijing, China.
- Center of Laboratory Medicine, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Beijing, China.
| |
Collapse
|
30
|
Garcia-Padilla C, Lozano-Velasco E, Garcia-Lopez V, Aranega A, Franco D, Garcia-Martinez V, Lopez-Sanchez C. Comparative Analysis of Non-Coding RNA Transcriptomics in Heart Failure. Biomedicines 2022; 10:3076. [PMID: 36551832 PMCID: PMC9775550 DOI: 10.3390/biomedicines10123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Heart failure constitutes a clinical complex syndrome with different symptomatic characteristics depending on age, sex, race and ethnicity, among others, which has become a major public health issue with an increasing prevalence. One of the most interesting tools seeking to improve prevention, diagnosis, treatment and prognosis of this pathology has focused on finding new molecular biomarkers since heart failure relies on deficient cardiac homeostasis, which is regulated by a strict gene expression. Therefore, currently, analyses of non-coding RNA transcriptomics have been oriented towards human samples. The present review develops a comparative study emphasizing the relevance of microRNAs, long non-coding RNAs and circular RNAs as potential biomarkers in heart failure. Significantly, further studies in this field of research are fundamental to supporting their widespread clinical use. In this sense, the various methodologies used by the authors should be standardized, including larger cohorts, homogeneity of the samples and uniformity of the bioinformatic pipelines used to reach stratification and statistical significance of the results. These basic adjustments could provide promising steps to designing novel strategies for clinical management of patients with heart failure.
Collapse
Affiliation(s)
- Carlos Garcia-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Virginio Garcia-Lopez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Virginio Garcia-Martinez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen Lopez-Sanchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
31
|
De Chiara L, Conte C, Semeraro R, Diaz-Bulnes P, Angelotti ML, Mazzinghi B, Molli A, Antonelli G, Landini S, Melica ME, Peired AJ, Maggi L, Donati M, La Regina G, Allinovi M, Ravaglia F, Guasti D, Bani D, Cirillo L, Becherucci F, Guzzi F, Magi A, Annunziato F, Lasagni L, Anders HJ, Lazzeri E, Romagnani P. Tubular cell polyploidy protects from lethal acute kidney injury but promotes consequent chronic kidney disease. Nat Commun 2022; 13:5805. [PMID: 36195583 PMCID: PMC9532438 DOI: 10.1038/s41467-022-33110-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Acute kidney injury (AKI) is frequent, often fatal and, for lack of specific therapies, can leave survivors with chronic kidney disease (CKD). We characterize the distribution of tubular cells (TC) undergoing polyploidy along AKI by DNA content analysis and single cell RNA-sequencing. Furthermore, we study the functional roles of polyploidization using transgenic models and drug interventions. We identify YAP1-driven TC polyploidization outside the site of injury as a rapid way to sustain residual kidney function early during AKI. This survival mechanism comes at the cost of senescence of polyploid TC promoting interstitial fibrosis and CKD in AKI survivors. However, targeting TC polyploidization after the early AKI phase can prevent AKI-CKD transition without influencing AKI lethality. Senolytic treatment prevents CKD by blocking repeated TC polyploidization cycles. These results revise the current pathophysiological concept of how the kidney responds to acute injury and identify a novel druggable target to improve prognosis in AKI survivors. Acute kidney injury is frequent, often fatal and can leave survivors with chronic kidney disease. Here the authors show that tubular cell polyploidy reduces early fatality sustaining residual function but promotes chronic kidney disease, which can be prevented by blocking YAP1
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Carolina Conte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy
| | - Paula Diaz-Bulnes
- Translational immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011, Oviedo, Asturias, España
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Alice Molli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Giulia Antonelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy
| | - Marta Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Gilda La Regina
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, 50134, Italy
| | - Fiammetta Ravaglia
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, 59100, Italy
| | - Daniele Guasti
- Department of Experimental & Clinical Medicine, Imaging Platform, University of Florence, Florence, 50139, Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Imaging Platform, University of Florence, Florence, 50139, Italy
| | - Luigi Cirillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Francesco Guzzi
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, 59100, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, 50139, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy.,Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), Careggi University Hospital, Florence, 50134, Italy
| | - Laura Lasagni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, LMU Hospital, Munich, 80336, Germany
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy. .,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy.
| |
Collapse
|
32
|
Zhang J, Cheng YJ, Luo CJ, Yu J. Inhibitory effect of (pro)renin receptor decoy inhibitor PRO20 on endoplasmic reticulum stress during cardiac remodeling. Front Pharmacol 2022; 13:940365. [PMID: 36034809 PMCID: PMC9411812 DOI: 10.3389/fphar.2022.940365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Ectopic activation of renin-angiotensin-system contributes to cardiovascular and renal diseases. (Pro)renin receptor (PRR) binds to renin and prorenin, participating in the progression of nephrology. However, whether PRR could be considered as a therapeutic target for cardiac remodeling and heart failure remains unknown. Materials and methods: Transverse aortic constriction (TAC) surgery was performed to establish a mouse model of chronic pressure overload-induced cardiac remodeling. Neonatal rat cardiomyocytes (CMs) and cardiac fibroblasts (CFs) were isolated and stimulated by Angiotensin II (Ang II). PRR decoy inhibitor PRO20 was synthesized and used to evaluate its effect on cardiac remodeling. Results: Soluble PRR and PRR were significantly upregulated in TAC-induced cardiac remodeling and Ang II-treated CMs and CFs. Results of In vivo experiments showed that suppression of PRR by PRO20 significantly retarded cardiac remodeling and heart failure indicated by morphological and echocardiographic analyses. In vitro experiments, PRO20 inhibited CM hypertrophy, and also alleviated CF activation, proliferation and extracellular matrix synthesis. Mechanically, PRO20 enhanced intracellular cAMP levels, but not affected cGMP levels in CMs and CFs. Moreover, treatment of PRO20 in CFs markedly attenuated the production of reactive oxygen species and phosphorylation of IRE1 and PERK, two well-identified markers of endoplasmic reticulum (ER) stress. Accordingly, administration of PRO20 reversed ER stressor thapsigargin-induced CM hypertrophy and CF activation/migration. Conclusion: Taken together, these findings suggest that inhibition of PRR by PRO20 attenuates cardiac remodeling through increasing cAMP levels and reducing ER stress in both CMs and CFs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Yun-Jiu Cheng
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang-Jun Luo
- Department of Cardiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Jia Yu
- Department of General Practice School, Guangxi Medical University, Nanning, China
- *Correspondence: Jia Yu,
| |
Collapse
|
33
|
Barefield DY, Yamakawa S, Tahtah I, Sell JJ, Broman M, Laforest B, Harris S, Alvarez AA, Araujo KN, Puckelwartz MJ, Wasserstrom JA, Fishman GI, McNally EM. Partial and complete loss of myosin binding protein H-like cause cardiac conduction defects. J Mol Cell Cardiol 2022; 169:28-40. [PMID: 35533732 PMCID: PMC9329245 DOI: 10.1016/j.yjmcc.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
A premature truncation of MYBPHL in humans and a loss of Mybphl in mice is associated with dilated cardiomyopathy, atrial and ventricular arrhythmias, and atrial enlargement. MYBPHL encodes myosin binding protein H-like (MyBP-HL). Prior work in mice indirectly identified Mybphl expression in the atria and in small puncta throughout the ventricle. Because of its genetic association with human and mouse cardiac conduction system disease, we evaluated the anatomical localization of MyBP-HL and the consequences of loss of MyBP-HL on conduction system function. Immunofluorescence microscopy of normal adult mouse ventricles identified MyBP-HL-positive ventricular cardiomyocytes that co-localized with the ventricular conduction system marker contactin-2 near the atrioventricular node and in a subset of Purkinje fibers. Mybphl heterozygous ventricles had a marked reduction of MyBP-HL-positive cells compared to controls. Lightsheet microscopy of normal perinatal day 5 mouse hearts showed enrichment of MyBP-HL-positive cells within and immediately adjacent to the contactin-2-positive ventricular conduction system, but this association was not apparent in Mybphl heterozygous hearts. Surface telemetry of Mybphl-null mice revealed atrioventricular block and atrial bigeminy, while intracardiac pacing revealed a shorter atrial relative refractory period and atrial tachycardia. Calcium transient analysis of isolated Mybphl-null atrial cardiomyocytes demonstrated an increased heterogeneity of calcium release and faster rates of calcium release compared to wild type controls. Super-resolution microscopy of Mybphl heterozygous and homozygous null atrial cardiomyocytes showed ryanodine receptor disorganization compared to wild type controls. Abnormal calcium release, shorter atrial refractory period, and atrial dilation seen in Mybphl null, but not wild type control hearts, agree with the observed atrial arrhythmias, bigeminy, and atrial tachycardia, whereas the proximity of MyBP-HL-positive cells with the ventricular conduction system provides insight into how a predominantly atrial expressed gene contributes to ventricular arrhythmias and ventricular dysfunction.
Collapse
Affiliation(s)
- David Y. Barefield
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL;,Correspondence to: David Y. Barefield, PhD, Department of Cell and Molecular Physiology Loyola University Chicago, 2160 S. 1st Ave. Maywood, IL 60153,
| | - Sean Yamakawa
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jordan J. Sell
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Broman
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Brigitte Laforest
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL
| | - Sloane Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alejandro A. Alvarez
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Kelly N. Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Megan J. Puckelwartz
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - J. Andrew Wasserstrom
- Department of Medicine and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Glenn I. Fishman
- Division of Cardiology, NYU Grossman School of Medicine, New York, New York
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL;,Correspondence to: Elizabeth McNally, MD, PhD, Center for Genetic Medicine, Northwestern University, 303 E. Superior St. Chicago, IL 60611,
| |
Collapse
|
34
|
McLendon JM, Zhang X, Matasic DS, Kumar M, Koval OM, Grumbach IM, Sadayappan S, London B, Boudreau RL. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc 2022; 11:e025687. [PMID: 35730644 PMCID: PMC9333371 DOI: 10.1161/jaha.122.025687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult‐onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte‐specific knockout mice (Sorbs2‐cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult‐onset cardiomyopathies and in heart failure models. We generated Sorbs2‐cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2‐cKO mice begin to show atrial enlargement and P‐wave anomalies, without dysregulation of action potential–associated ion channel and gap junction protein expressions. After 6 months, Sorbs2‐cKO mice exhibit impaired contractility in dobutamine‐treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2‐cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2‐cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross‐link sites.
Collapse
Affiliation(s)
- Jared M McLendon
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Xiaoming Zhang
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Daniel S Matasic
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Department of Molecular Physiology and Biophysics University of Iowa Carver College of Medicine Iowa City IA
| | - Mohit Kumar
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Olha M Koval
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Isabella M Grumbach
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Sakthivel Sadayappan
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Barry London
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Ryan L Boudreau
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| |
Collapse
|
35
|
郑 冬, 陈 琳, 韦 其, 朱 梓, 刘 子, 金 琳, 杨 观, 谢 曦. [Fucoxanthin regulates Nrf2/Keap1 signaling to alleviate myocardial hypertrophy in diabetic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:752-759. [PMID: 35673921 PMCID: PMC9178635 DOI: 10.12122/j.issn.1673-4254.2022.05.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effect of fucoxanthin (FX) against diabetic cardiomyopathy and explore the underlying mechanism. METHODS Rat models of diabetes mellitus (DM) induced by intraperitoneal injection of streptozotocin (60 mg/kg) were randomized into DM model group, fucoxanthin treatment (DM+FX) group and metformin treatment (DM+ Met) group, and normal rats with normal feeding served as the control group. In the two treatment groups, fucoxanthin and metformin were administered after modeling by gavage at the daily dose of 200 mg/kg and 230 mg/kg, respectively for 12 weeks, and the rats in the DM model group were given saline only. HE staining was used to examine the area of cardiac myocyte hypertrophy in each group. The expression levels of fibrotic proteins TGF-β1 and FN proteins in rat hearts were detected with Western blotting. In the cell experiment, the effect of 1 μmol/L FX on H9C2 cell hypertrophy induced by exposure to high glucose (HG, 45 mmol/L) was evaluated using FITC-labeled phalloidin. The mRNA expression levels of the hypertrophic factors ANP, BNP and β-MHC in H9C2 cells were detected using qRT-PCR. The protein expressions of Nrf2, Keap1, HO-1 and SOD1 proteins in rat heart tissues and H9C2 cells were determined using Western blotting. The DCFH-DA probe was used to detect the intracellular production of reactive oxygen species (ROS). RESULTS In the diabetic rats, fucoxanthin treatment obviously alleviated cardiomyocyte hypertrophy and myocardial fibrosis, increased the protein expressions of Nrf2 and HO-1, and decreased the protein expressions of Keap1 in the heart tissue (P < 0.05). In H9C2 cells with HG exposure, fucoxanthin significantly inhibited the enlargement of cell surface area, lowered the mRNA expression levels of ANP, BNP and β-MHC (P < 0.05), promoted Nrf2 translocation from the cytoplasm to the nucleus, and up-regulated the protein expressions its downstream targets SOD1 and HO-1 (P < 0.05) to enhance cellular antioxidant capacity and reduce intracellular ROS production. CONCLUSION Fucoxanthin possesses strong inhibitory activities against diabetic cardiomyocyte hypertrophy and myocardial fibrosis and is capable of up-regulating Nrf2 signaling to promote the expression of its downstream antioxidant proteins SOD1 and HO-1 to reduce the level of ROS.
Collapse
Affiliation(s)
- 冬晓 郑
- />海南大学药学院,海南 海口 570228School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - 琳琳 陈
- />海南大学药学院,海南 海口 570228School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - 其慧 韦
- />海南大学药学院,海南 海口 570228School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - 梓然 朱
- />海南大学药学院,海南 海口 570228School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - 子略 刘
- />海南大学药学院,海南 海口 570228School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - 琳 金
- />海南大学药学院,海南 海口 570228School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - 观玉 杨
- />海南大学药学院,海南 海口 570228School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - 曦 谢
- />海南大学药学院,海南 海口 570228School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
36
|
Wehrens M, de Leeuw AE, Wright-Clark M, Eding JEC, Boogerd CJ, Molenaar B, van der Kraak PH, Kuster DWD, van der Velden J, Michels M, Vink A, van Rooij E. Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy. Cell Rep 2022; 39:110809. [PMID: 35545053 DOI: 10.1016/j.celrep.2022.110809] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is characterized by unexplained segmental hypertrophy that is usually most pronounced in the septum. While sarcomeric gene mutations are often the genetic basis for HCM, the mechanistic origin for the heterogeneous remodeling remains largely unknown. A better understanding of the gene networks driving the cardiomyocyte (CM) hypertrophy is required to improve therapeutic strategies. Patients suffering from HCM often receive a septal myectomy surgery to relieve outflow tract obstruction due to hypertrophy. Using single-cell RNA sequencing (scRNA-seq) on septal myectomy samples from patients with HCM, we identify functional links between genes, transcription factors, and cell size relevant for HCM. The data show the utility of using scRNA-seq on the human hypertrophic heart, highlight CM heterogeneity, and provide a wealth of insights into molecular events involved in HCM that can eventually contribute to the development of enhanced therapies.
Collapse
Affiliation(s)
- Martijn Wehrens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Anne E de Leeuw
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Maya Wright-Clark
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joep E C Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Bas Molenaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands
| | - Petra H van der Kraak
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Michelle Michels
- Department of Cardiology, Erasmus MC, Rotterdam, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
37
|
Bartoli F, Evans EL, Blythe NM, Stewart L, Chuntharpursat-Bon E, Debant M, Musialowski KE, Lichtenstein L, Parsonage G, Futers TS, Turner NA, Beech DJ. Global PIEZO1 Gain-of-Function Mutation Causes Cardiac Hypertrophy and Fibrosis in Mice. Cells 2022; 11:cells11071199. [PMID: 35406763 PMCID: PMC8997529 DOI: 10.3390/cells11071199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
PIEZO1 is a subunit of mechanically-activated, nonselective cation channels. Gain-of-function PIEZO1 mutations are associated with dehydrated hereditary stomatocytosis (DHS), a type of anaemia, due to abnormal red blood cell function. Here, we hypothesised additional effects on the heart. Consistent with this hypothesis, mice engineered to contain the M2241R mutation in PIEZO1 to mimic a DHS mutation had increased cardiac mass and interventricular septum thickness at 8–12 weeks of age, without altered cardiac contractility. Myocyte size was greater and there was increased expression of genes associated with cardiac hypertrophy (Anp, Acta1 and β-MHC). There was also cardiac fibrosis, increased expression of Col3a1 (a gene associated with fibrosis) and increased responses of isolated cardiac fibroblasts to PIEZO1 agonism. The data suggest detrimental effects of excess PIEZO1 activity on the heart, mediated in part by amplified PIEZO1 function in cardiac fibroblasts.
Collapse
Affiliation(s)
- Fiona Bartoli
- Correspondence: (F.B.); (D.J.B.); Tel.: +44-113-343-9509 (F.B.); +44-113-343-4323 (D.J.B.)
| | | | | | | | | | | | | | | | | | | | | | - David J. Beech
- Correspondence: (F.B.); (D.J.B.); Tel.: +44-113-343-9509 (F.B.); +44-113-343-4323 (D.J.B.)
| |
Collapse
|
38
|
Froese N, Cordero J, Abouissa A, Trogisch FA, Grein S, Szaroszyk M, Wang Y, Gigina A, Korf-Klingebiel M, Bosnjak B, Davenport CF, Wiehlmann L, Geffers R, Riechert E, Jürgensen L, Boileau E, Lin Y, Dieterich C, Förster R, Bauersachs J, Ola R, Dobreva G, Völkers M, Heineke J. Analysis of myocardial cellular gene expression during pressure overload reveals matrix based functional intercellular communication. iScience 2022; 25:103965. [PMID: 35281736 PMCID: PMC8908217 DOI: 10.1016/j.isci.2022.103965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
To identify cellular mechanisms responsible for pressure overload triggered heart failure, we isolated cardiomyocytes, endothelial cells, and fibroblasts as most abundant cell types from mouse hearts in the subacute and chronic stages after transverse aortic constriction (TAC) and performed RNA-sequencing. We detected highly cell-type specific transcriptional responses with characteristic time courses and active intercellular communication. Cardiomyocytes after TAC exerted an early and sustained upregulation of inflammatory and matrix genes and a concomitant suppression of metabolic and ion channel genes. Fibroblasts, in contrast, showed transient early upregulation of inflammatory and matrix genes and downregulation of angiogenesis genes, but sustained induction of cell cycle and ion channel genes during TAC. Endothelial cells transiently induced cell cycle and extracellular matrix genes early after TAC, but exerted a long-lasting upregulation of inflammatory genes. As we found that matrix production by multiple cell types triggers pathological cellular responses, it might serve as a future therapeutic target. TAC induces matrix and growth, but reduces contraction genes in cardiomyocytes TAC induces genes related to matrix, inflammation, and cell cycle in endothelial cells TAC induces matrix and inflammation, but reduces angiogenesis genes in fibroblasts Matrix proteins trigger growth, proliferation, and migration in cardiac cells
Collapse
Affiliation(s)
- Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Julio Cordero
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Aya Abouissa
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Ludolf-Krehl-Str. 7-11, 68167 Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Ludolf-Krehl-Str. 7-11, 68167 Mannheim, Germany
| | - Steve Grein
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Ludolf-Krehl-Str. 7-11, 68167 Mannheim, Germany
| | - Malgorzata Szaroszyk
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Yong Wang
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Anna Gigina
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | - Colin F Davenport
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Lutz Wiehlmann
- Research Core Unit Genomics, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Eva Riechert
- Department of Internal Medicine III, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lonny Jürgensen
- Department of Internal Medicine III, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Etienne Boileau
- Department of Internal Medicine III, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.,Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, 69120 Heidelberg, Germany
| | - Yanzhu Lin
- Department of Experimental Pharmacology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Christoph Dieterich
- Department of Internal Medicine III, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.,Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, 69120 Heidelberg, Germany
| | | | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - Roxana Ola
- Department of Experimental Pharmacology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Mirko Völkers
- Department of Internal Medicine III, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Joerg Heineke
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Ludolf-Krehl-Str. 7-11, 68167 Mannheim, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Shi X, Zhang L, Li Y, Xue J, Liang F, Ni HW, Wang X, Cai Z, Shen LH, Huang T, He B. Integrative Analysis of Bulk and Single-Cell RNA Sequencing Data Reveals Cell Types Involved in Heart Failure. Front Bioeng Biotechnol 2022; 9:779225. [PMID: 35071201 PMCID: PMC8766768 DOI: 10.3389/fbioe.2021.779225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to the high mortality rates of heart failure (HF), a more detailed description of the HF becomes extremely urgent. Since the pathogenesis of HF remain elusive, a thorough identification of the genetic factors will provide novel insights into the molecular basis of this cardiac dysfunction. In our research, we performed publicly available transcriptome profiling datasets, including non-failure (NF), dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) hearts tissues. Through principal component analysis (PCA), gene differential expression analysis, gene set enrichment analysis (GSEA), and gene Set Variation Analysis (GSVA), we figured out the candidate genes noticeably altered in HF, the specific biomarkers of endothelial cell (EC) and cardiac fibrosis, then validated the differences of the inflammation-related cell adhesion molecules (CAMs), extracellular matrix (ECM) genes, and immune responses. Taken together, our results suggested the EC and fibroblast could be activated in response to HF. DCM and ICM had both commonality and specificity in the pathogenesis of HF. Higher inflammation in ICM might related to autocrine CCL3/CCL4-CCR5 interaction induced chemokine signaling activation. Furthermore, the activities of neutrophil and macrophage were higher in ICM than DCM. These findings identified features of the landscape of previously underestimated cellular, transcriptomic heterogeneity between ICM and DCM.
Collapse
Affiliation(s)
- Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhang
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science, East China Normal University, Ministry of Education, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jieyuan Xue
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wen Ni
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ling-Hong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Koopmans T, van Beijnum H, Roovers EF, Tomasso A, Malhotra D, Boeter J, Psathaki OE, Versteeg D, van Rooij E, Bartscherer K. Ischemic tolerance and cardiac repair in the spiny mouse (Acomys). NPJ Regen Med 2021; 6:78. [PMID: 34789755 PMCID: PMC8599451 DOI: 10.1038/s41536-021-00188-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemic heart disease and by extension myocardial infarction is the primary cause of death worldwide, warranting regenerative therapies to restore heart function. Current models of natural heart regeneration are restricted in that they are not of adult mammalian origin, precluding the study of class-specific traits that have emerged throughout evolution, and reducing translatability of research findings to humans. Here, we present the spiny mouse (Acomys spp.), a murid rodent that exhibits bona fide regeneration of the back skin and ear pinna, as a model to study heart repair. By comparing them to ordinary mice (Mus musculus), we show that the acute injury response in spiny mice is similar, but with an associated tolerance to infarction through superior survivability, improved ventricular conduction, and near-absence of pathological remodeling. Critically, spiny mice display increased vascularization, altered scar organization, and a more immature phenotype of cardiomyocytes, with a corresponding improvement in heart function. These findings present new avenues for mammalian heart research by leveraging unique tissue properties of the spiny mouse.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
| | - Henriette van Beijnum
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Elke F Roovers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Antonio Tomasso
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Divyanshu Malhotra
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Jochem Boeter
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Olympia E Psathaki
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Danielle Versteeg
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kerstin Bartscherer
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany.
| |
Collapse
|
41
|
Filomena MC, Yamamoto DL, Carullo P, Medvedev R, Ghisleni A, Piroddi N, Scellini B, Crispino R, D'Autilia F, Zhang J, Felicetta A, Nemska S, Serio S, Tesi C, Catalucci D, Linke WA, Polishchuk R, Poggesi C, Gautel M, Bang ML. Myopalladin knockout mice develop cardiac dilation and show a maladaptive response to mechanical pressure overload. eLife 2021; 10:e58313. [PMID: 34558411 PMCID: PMC8547954 DOI: 10.7554/elife.58313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. MYPN gene mutations are causative for dilated (DCM), hypertrophic, and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis. Cardiac analyses of MYPN knockout (MKO) mice showed the development of mild cardiac dilation and systolic dysfunction, associated with decreased myofibrillar isometric tension generation and increased resting tension at longer sarcomere lengths. MKO mice exhibited a normal hypertrophic response to transaortic constriction (TAC), but rapidly developed severe cardiac dilation and systolic dysfunction, associated with fibrosis, increased fetal gene expression, higher intercalated disc fold amplitude, decreased calsequestrin-2 protein levels, and increased desmoplakin and SORBS2 protein levels. Cardiomyocyte analyses showed delayed Ca2+ release and reuptake in unstressed MKO mice as well as reduced Ca2+ spark amplitude post-TAC, suggesting that altered Ca2+ handling may contribute to the development of DCM in MKO mice.
Collapse
Affiliation(s)
- Maria Carmela Filomena
- Institute of Genetic and Biomedical Research (IRGB) - National Research Council (CNR), Milan unitMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Daniel L Yamamoto
- Institute of Genetic and Biomedical Research (IRGB) - National Research Council (CNR), Milan unitMilanItaly
| | - Pierluigi Carullo
- Institute of Genetic and Biomedical Research (IRGB) - National Research Council (CNR), Milan unitMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Roman Medvedev
- IRCCS Humanitas Research HospitalMilanItaly
- Department of Cardiac Surgery, University of VeronaVeronaItaly
| | - Andrea Ghisleni
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research ExcellenceLondonUnited Kingdom
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of FlorenceFlorenceItaly
| | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of FlorenceFlorenceItaly
| | - Roberta Crispino
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Jianlin Zhang
- Department of Medicine, University of California, San DiegoLa JollaUnited States
| | - Arianna Felicetta
- IRCCS Humanitas Research HospitalMilanItaly
- Humanitas UniversityPieve EmanueleItaly
| | | | | | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of FlorenceFlorenceItaly
| | | | - Wolfgang A Linke
- Institute of Physiology II, University of MuensterMuensterGermany
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of FlorenceFlorenceItaly
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King's College London BHF Centre of Research ExcellenceLondonUnited Kingdom
| | - Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB) - National Research Council (CNR), Milan unitMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
42
|
Vakrou S, Liu Y, Zhu L, Greenland GV, Simsek B, Hebl VB, Guan Y, Woldemichael K, Talbot CC, Aon MA, Fukunaga R, Abraham MR. Differences in molecular phenotype in mouse and human hypertrophic cardiomyopathy. Sci Rep 2021; 11:13163. [PMID: 34162896 PMCID: PMC8222321 DOI: 10.1038/s41598-021-89451-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity. We investigated the molecular basis of the cardiac phenotype in two mouse models at established disease stage (mouse-HCM), and human myectomy tissue (human-HCM). We analyzed the transcriptome in 2 mouse models with non-obstructive HCM (R403Q-MyHC, R92W-TnT)/littermate-control hearts at 24 weeks of age, and in myectomy tissue of patients with obstructive HCM/control hearts (GSE36961, GSE36946). Additionally, we examined myocyte redox, cardiac mitochondrial DNA copy number (mtDNA-CN), mt-respiration, mt-ROS generation/scavenging and mt-Ca2+ handling in mice. We identified distinct allele-specific gene expression in mouse-HCM, and marked differences between mouse-HCM and human-HCM. Only two genes (CASQ1, GPT1) were similarly dysregulated in both mutant mice and human-HCM. No signaling pathway or transcription factor was predicted to be similarly dysregulated (by Ingenuity Pathway Analysis) in both mutant mice and human-HCM. Losartan was a predicted therapy only in TnT-mutant mice. KEGG pathway analysis revealed enrichment for several metabolic pathways, but only pyruvate metabolism was enriched in both mutant mice and human-HCM. Both mutant mouse myocytes demonstrated evidence of an oxidized redox environment. Mitochondrial complex I RCR was lower in both mutant mice compared to controls. MyHC-mutant mice had similar mtDNA-CN and mt-Ca2+ handling, but TnT-mutant mice exhibited lower mtDNA-CN and impaired mt-Ca2+ handling, compared to littermate-controls. Molecular profiling reveals differences in gene expression, transcriptional regulation, intracellular signaling and mt-number/function in 2 mouse models at established disease stage. Further studies are needed to confirm differences in gene expression between mouse and human-HCM, and to examine whether cardiac phenotype, genotype and/or species differences underlie the divergence in molecular profiles.
Collapse
Affiliation(s)
- Styliani Vakrou
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Yamin Liu
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, 521A Physiology, Baltimore, MD, 21205, USA
| | - Gabriela V Greenland
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bahadir Simsek
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Virginia B Hebl
- Intermountain Medical Center, Intermountain Heart Institute, Murray, UT, USA
| | - Yufan Guan
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirubel Woldemichael
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Conover C Talbot
- Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, 521A Physiology, Baltimore, MD, 21205, USA.
| | - M Roselle Abraham
- Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Division of Cardiology, Hypertrophic Cardiomyopathy Center of Excellence, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
43
|
Li D, Lin H, Li L. Multiple Feature Selection Strategies Identified Novel Cardiac Gene Expression Signature for Heart Failure. Front Physiol 2020; 11:604241. [PMID: 33304275 PMCID: PMC7693561 DOI: 10.3389/fphys.2020.604241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/02/2023] Open
Abstract
Heart failure (HF) is a serious condition in which the support of blood pumped by the heart is insufficient to meet the demands of body at a normal cardiac filling pressure. Approximately 26 million patients worldwide are suffering from heart failure and about 17–45% of patients with heart failure die within 1-year, and the majority die within 5-years admitted to a hospital. The molecular mechanisms underlying the progression of heart failure have been poorly studied. We compared the gene expression profiles between patients with heart failure (n = 177) and without heart failure (n = 136) using multiple feature selection strategies and identified 38 HF signature genes. The support vector machine (SVM) classifier based on these 38 genes evaluated with leave-one-out cross validation (LOOCV) achieved great performance with sensitivity of 0.983 and specificity of 0.963. The network analysis suggested that the hub gene SMOC2 may play important roles in HF. Other genes, such as FCN3, HMGN2, and SERPINA3, also showed great promises. Our results can facilitate the early detection of heart failure and can reveal its molecular mechanisms.
Collapse
Affiliation(s)
- Dan Li
- Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Hong Lin
- Internal Medicine-Cardiovascular Department, Harbin Chest Hospital, Harbin, China
| | - Luyifei Li
- Department of Cardiovascular Medicine, First Hospital Affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|