1
|
Du L, Pan B, Han X, Li D, Meng Y, Liu Z, Xiong X, Li M. Enhanced ecological risk of microplastic ingestion by fish due to fragmentation and deposition in heavily sediment-laden river. WATER RESEARCH 2025; 278:123306. [PMID: 40015218 DOI: 10.1016/j.watres.2025.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
The widespread occurrence of microplastics (MPs) in rivers has aroused increasing concerns. However, there remains a significant gap about its effect on fish with different species, especially in highly-sediment-laden rivers. Here, through a large-scale investigation of microplastics in the Yellow River, our research highlighted effects of heavily sediments on MPs contamination in fish gut. MPs were 100 % tested in water, sediment and fish gut samples, with MPs in the lower reach 2∼3 times larger than that of the upper reach. Most of the microplastics were small (<1 mm), fibrous and blue fragments, composed of polyethylene, polypropylene, and polyethylene terephthalate. Feeding habitat and environment significantly controlled MPs ingestion by fish (p < 0.05), of which filter feeders and species with broader dietary preferences exhibited higher ingestion abundance, omnivorous fish abundance up to 24.9 items/individual. Heavily sediment load accelerated the fragmentation and deposition of MPs (p < 0.05), leading to the generation of more and smaller MPs particles, increasing ecological risks to aquatic organisms. Downstream, smaller sediment size and higher organic matter content also facilitated microplastic accumulation. The prevalence of highly toxic polyvinyl chloride polymers was emerged as the major contributor to environmental risks. Our results suggested that the contribution and ecological risks of small microplastics are worth attention in the mid and lower reaches of the Yellow River.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Baozhu Pan
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xu Han
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Dianbao Li
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Yueting Meng
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Zhiqi Liu
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Ming Li
- Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
2
|
Zhao D, Yao J, Li Y, Jacobs DR, Gao T, Nie LH, Wu CO, Tokac U, Li S, Zhao H, Lloyd-Jones D, Hou L, Zhang K. Urban imperviousness and carotid intima-medial thickness: Evidence from the Coronary Artery Risk Development in Young Adults (CARDIA) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179376. [PMID: 40252492 DOI: 10.1016/j.scitotenv.2025.179376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Urbanization has increased impervious cover - surfaces that cannot absorb or filter water - which may raise cardiovascular disease (CVD) risks through reduced walkability, increased heat, and pollution. However, the relationship between imperviousness and subclinical CVD indicators, specifically carotid intima-media thickness (CIMT), remains unexplored, especially across diverse populations. This study aims to investigate whether impervious cover in residential communities is associated with CIMT, and whether these associations differ by race and sex. METHOD Linking urban impervious cover data from the National Land Cover Database (NLCD 2006) to individual carotid intima-media thickness (CIMT) information from the Coronary Artery Risk Development in Young Adults (CARDIA) study, this research employed linear regression models and examined whether the prevalence of impervious surface in immediate neighborhood and surrounding areas is associated with CIMT among middle-aged adults and whether the association varies across sex and race groups. RESULTS Overall, there's no significant association between impervious coverage and CIMT, but differences exist among subpopulations. For women, the proportions of impervious surfaces within varying buffers (distance range 50 m to 5000 m) are positively associated with CIMT (β range 0.599 to 1.072 mm/m, with p range < 0.001 to 0.044), which can fully be annulled by a set of social determinants of health. Black adults' CIMT is still positively associated with impervious coverage beyond a buffer of 1 km regardless of the adjustment (β range 0.999 to 1.119 mm/m, with p range 0.024 to 0.043), while no significant association exists for buffers of 750 m or less. By comparison, there are no significant associations for men or White adults. CONCLUSION Our findings suggest that impervious cover in urban areas may contribute to early CVD development among Black adults. The absence of associations within smaller buffers and among other demographic groups highlights the complexity of environmental pathways and cardiovascular health.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Sociology, University at Albany, State University of New York, Albany, NY, USA
| | - Jie Yao
- Department of Epidemiology and Biostatistics, College of Integrated Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Yuanfei Li
- Department of Sociology, University at Albany, State University of New York, Albany, NY, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Tao Gao
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Colin O Wu
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Umit Tokac
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shuang Li
- Department of Social Work and Sociology, John R. and Kathy R. Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Hui Zhao
- School of Nursing, James Madison University, Harrisonburg, VA, USA
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, College of Integrated Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Population and Community Health, College of Public Health, The University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA.
| |
Collapse
|
3
|
Trivedi K, Maurya A, Bhatti D, Saravaia H, Sharma A, Kushwaha S, Sutariya B. Sustainable utilization of industrial solid and hazardous wastes with coal for energy and environmental efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36372-w. [PMID: 40220164 DOI: 10.1007/s11356-025-36372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
The industrial circular economy focuses on minimizing waste and maximizes resource efficiency by designing durable, reusable, and recyclable products; reducing costs and environmental impact; and fostering sustainability. Here, the potential of industrial solid and hazardous wastes (ISHWs) mixture as co-firing material with Indonesian coal towards waste-to-energy has been assessed. The study systematically evaluates the blending of ISHWs with coal in various proportions (2, 5, 10 and 20%) to optimize combustion efficiency considering the environmental concerns. The impact of blending on crucial parameters such as fixed carbon content (33.73-35.46% compared to 26.07% for coal), bulk density (0.3-0.4 kg/L, which is similar to that of coal), ash content (9.21-10.38% compared to 9.1% for coal), moisture content (12.04-12.37% compared to 12.4% for coal), volatile matter (43.8-46.31% compared to 43.1% for coal), heavy metal content (35.62-51.81 mg/L against the permissible limit of 2500 mg/L), calorific value (4515.86-5158.78 kcal/kg compared to 5191.1 kcal/kg for coal) and activation energy (46-50 kJ/mol compared to 66-69 kJ/mol for coal) has been elucidated that may affect combustion performance. Various analytical techniques (scanning electron microscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction, Brunauer-Emmett-Teller, ion chromatography and inductively coupled plasma, etc.) are implied to derive the physio-chemical properties of ISHW mix, coal and blends of ISHWs in coal. Furthermore, heavy metal content and leaching properties were evaluated and found within acceptable limits. The cost-benefit analysis revealed that blending ISHWs with coal could save 10% to 96% of the current fossil fuel costs while ensuring environmental sustainability.
Collapse
Affiliation(s)
- Kalpesh Trivedi
- Department of Environmental Science and Engineering, Marwadi University, Rajkot, 360003, Gujarat, India
- Quality Assurance & Environment Department, Nirma Limited, Bhavnagar, 364313, Gujarat, India
| | - Ashish Maurya
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Darshana Bhatti
- Department of Chemical Engineering, VVP Engineering College, Gujarat Technological University, Rajkot, 360005, Gujarat, India
| | - Hitesh Saravaia
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Archana Sharma
- Department of Agriculture, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Shilpi Kushwaha
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
| | - Bhaumik Sutariya
- Membrane Science and Separation Technology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India.
| |
Collapse
|
4
|
Münzel T, Kuntic M, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. The links between soil and water pollution and cardiovascular disease. Atherosclerosis 2025; 403:119160. [PMID: 40074641 DOI: 10.1016/j.atherosclerosis.2025.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Soil and water pollution represent significant threats to global health, ecosystems, and biodiversity. Healthy soils underpin terrestrial ecosystems, supporting food production, biodiversity, water retention, and carbon sequestration. However, soil degradation jeopardizes the health of 3.2 billion people, while over 2 billion live in water-stressed regions. Pollution of soil, air, and water is a leading environmental cause of disease, contributing to over 9 million premature deaths annually. Soil contamination stems from heavy metals, synthetic chemicals, pesticides, and plastics, driven by industrial activity, agriculture, and waste mismanagement. These pollutants induce oxidative stress, inflammation, and hormonal disruption, significantly increasing risks for non-communicable diseases (NCDs) such as cardiovascular disease (CVD). Emerging contaminants like micro- and nanoplastics amplify health risks through cellular damage, oxidative stress, and cardiovascular dysfunction. Urbanization and climate change exacerbate soil degradation through deforestation, overfertilization, and pollution, further threatening ecosystem sustainability and human health. Mitigation efforts, such as reducing chemical exposure, adopting sustainable land-use practices, and advancing urban planning, have shown promise in lowering pollution-related health impacts. Public health initiatives, stricter pollution controls, and lifestyle interventions, including antioxidant-rich diets, can also mitigate risks. Pollution remains preventable, as demonstrated by high-income nations implementing cost-effective solutions. Policies like the European Commission's Zero-Pollution Vision aim to reduce pollution to safe levels by 2050, promoting sustainable ecosystems and public health. Addressing soil pollution is critical to combating the global burden of NCDs, particularly CVDs, and fostering a healthier environment for future generations.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany.
| | - Marin Kuntic
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Molecular Pharmacology, Albert Einstein College of Medicine, United States
| | - Mark J Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, USA; Centre Scientifique de Monaco, MC, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology at the Johannes Gutenberg University, Germany; German Cardiovascular Research Center (DZHK), Partner Site Rhine Main, Mainz, Germany
| |
Collapse
|
5
|
Thanigaivel S, Kamalesh R, Ragini YP, Saravanan A, Vickram AS, Abirami M, Thiruvengadam S. Microplastic pollution in marine environments: An in-depth analysis of advanced monitoring techniques, removal technologies, and future challenges. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106993. [PMID: 39914291 DOI: 10.1016/j.marenvres.2025.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/08/2025]
Abstract
Microplastics, recognized as toxic contaminants, have pervaded terrestrial, atmospheric, and marine environments, transitioning from emerging pollutants to pervasive threats. About 10 % of the plastic produced worldwide enters into the ocean which constitutes 85 % of marine litter. Microplastic distribution holds the highest concentration in the Atlantic Ocean whereas the Southern Ocean holds the lowest. Concerning microplastics, reports state that each year about 1.3 million metric tons of microplastics enter the ocean. The microparticles account for about 90 % of the floating ocean debris and over 75 % of these particles originate from land-based sources which include urban runoff, and mismanaged wastes. This review offers a thorough examination of the sources of microplastics and their environmental consequences and ecological impacts. The ubiquity of microplastics necessitates robust control measures, starting with their monitoring and detection in aquatic ecosystems to assess the effectiveness of mitigation strategies. Current removal methods, including physical, chemical, and bio-based techniques, are detailed, alongside advances in filtration, separation, and integrated hybrid approaches for microplastic control. The review concludes with perspectives on the limitations of existing methods and directions for future research in microplastic monitoring, detection, and removal.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Chengalpattu district, Kattankulathur, Tamil Nadu, 603203, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - Y P Ragini
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - M Abirami
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Thiruvengadam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
6
|
Feng G, Li S, Yang X, Hu Y, Zhang X, Chen D, Liu W, Yu G, Nie G, Huang L, Zhang X. Integrative multi-omic analyses reveal the molecular mechanisms of silicon nanoparticles in enhancing hyperaccumulator under Pb stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125677. [PMID: 39805468 DOI: 10.1016/j.envpol.2025.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood. In this study, the candidate Pb-hyperaccumulator Lolium multiflorum was selected to investigate the toxicity of Pb and the mitigation of Pb stress by SiNPs. The application of SiNPs was able to enhance Pb enrichment and maintain proper photosynthesis and root growth of L. multiflorum. Transcriptomic and metabolomic analyses indicated that Pb exposure interfered with nitrogen metabolism and alanine, aspartate and glutamate metabolism pathways in roots, which changed the root exudate composition. Besides, SiNPs altered both the accumulation of metabolites and correlated gene expression in roots, further affecting root exudates and stimulating the defense system, consequently increasing Pb tolerance. Our findings both demonstrated that co-application of L. multiflorum with SiNPs has potential for phytoremediation of Pb-polluted soil and revealed the contributions of SiNP amendment to mitigating Pb toxicity, and provided a new strategy for phytoremediation of farmland ecosystems.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shunfeng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiangyu Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Youshuang Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xianfang Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dongming Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wen Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Guohui Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Elías-Llumbet A, Lira S, Manterola M. Male aging in germ cells: What are we inheriting? Genet Mol Biol 2025; 47Suppl 1:e20240052. [PMID: 39969160 PMCID: PMC11837248 DOI: 10.1590/1678-4685-gmb-2024-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/04/2024] [Indexed: 02/20/2025] Open
Abstract
Aging is a significant risk factor for male fertility and can lead to severe developmental disorders in offspring. It disrupts testicular function and spermatogenesis, resulting in sperm abnormalities and DNA fragmentation. Male aging alters the genome and epigenome of germ cells due to persistent oxidative stress caused by the cumulative effects of environmental factors over a lifetime. At the molecular level, DNA damage occurs and is poorly repaired due to impaired DNA repair pathways, leading to unrepaired lesions and de novo mutations. Aging also creates distinct epigenetic landscapes that modify gene expression in germ cells, affect the DNA damage response, and generate de novo DNA and epigenetic mutations that are transmitted to the sperm and inherited by the offspring. This review discusses current knowledge on the age-associated effects on male germ cells and the genomic and epigenomic mechanisms contributing to altered male reproductive health and outcomes in progeny. We propose a male reproductive aging threshold, where cumulative exposure to risk factors leads to oxidative stress, impaired spermatogenesis, and altered reproductive outcomes. Finally, we discuss novel interventions to prevent premature testicular aging and emphasize the need for public health policies and counseling guidelines for men seeking paternity.
Collapse
Affiliation(s)
- Arturo Elías-Llumbet
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Groningen, Netherlands
- University of Chile, Faculty of Medicine, Institute of Biomedical Sciences, Human Genetics Program, Santiago, Chile
| | - Sebastián Lira
- Universidad Andres Bello, Research Center for Sustainability, Santiago, Santiago, Chile
| | - Marcia Manterola
- University of Chile, Faculty of Medicine, Institute of Biomedical Sciences, Human Genetics Program, Santiago, Chile
- University of Valparaíso, Center for Translational Studies in Stress and Mental Health (C-ESTRES), Valparaíso, Chile
| |
Collapse
|
8
|
Münzel T, Hahad O, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. Soil and water pollution and cardiovascular disease. Nat Rev Cardiol 2025; 22:71-89. [PMID: 39317838 DOI: 10.1038/s41569-024-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Omar Hahad
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, MA, USA
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
9
|
Sigala EG, Chrysohoou C, Barkas F, Liberopoulos E, Sfikakis PP, Faka A, Tsioufis C, Pitsavos C, Panagiotakos D. The interplay between sex, lifestyle factors and built environment on 20-year cardiovascular disease incidence; the ATTICA study (2002-2022). Front Cardiovasc Med 2025; 11:1467564. [PMID: 39850381 PMCID: PMC11755155 DOI: 10.3389/fcvm.2024.1467564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Background and aim This study aims to investigate the role of the built environment in terms of urban-rural disparities in cardiovascular disease (CVD) epidemiology, focusing on middle- and long-term CVD risk assessment. Moreover, this study seeks to explore sex-specific differences in urban and rural settings. Methods The ATTICA Study is a prospective study conducted from 2002 onwards. At baseline, a random sample of 3,042 CVD-free adults (49.8% men) were randomly drawn from the population of the Attica region, in Greece, with 78% dwelling in urban and 22% in rural municipalities. Follow-up examinations were performed in 2006, 2012, and 2022. Of the total participants, 1,988 had complete data for CVD assessment in the 20-year follow-up. Results The 10-year and 20-year CVD incidence was 11.8%, 28.0% in rural municipalities and 16.8%, 38.7% in urban municipalities, respectively (ps < 0.05). Unadjusted data analyses revealed significant differences in clinical, laboratory, and lifestyle-related CVD risk factors between urban and rural residents (ps < 0.05). Additionally, sex-based discrepancies in clinical, anthropometric, circulating, and lifestyle risk factors were observed in stratified analyses of urban and rural settings. Multivariate analyses, including generalized structural equation modeling (GSEM), revealed that the impact of the urban built environment on the long-term (20-year) CVD risk is mediated by lifestyle-related risk factors. Conclusion Urban inhabitants exhibit a higher long-term CVD incidence compared to their rural counterparts, which was partially explained by their lifestyle behaviors. Targeted strategic city planning efforts promoting healthier lifestyle-related behaviors at the micro-environment level could potentially mitigate built-environment impacts on CVD health.
Collapse
Affiliation(s)
- Evangelia G. Sigala
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Christina Chrysohoou
- First Cardiology Clinic, Medical School, Hippokration Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Fotios Barkas
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P. Sfikakis
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Faka
- Department of Geography, School of Environmental Sciences and Economics, Harokopio University, Athens, Greece
| | - Costas Tsioufis
- First Cardiology Clinic, Medical School, Hippokration Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Pitsavos
- First Cardiology Clinic, Medical School, Hippokration Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| |
Collapse
|
10
|
Xue R, Gu J, Yang M, Wei G, Yang C, Zhang L. Effective nitrate removal with high N 2 selectivity by active-site-rich particle electrode of bentonite-based Cu-Fe LDH composite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123214. [PMID: 39504665 DOI: 10.1016/j.jenvman.2024.123214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
A novel bentonite-based Cu-Fe layered double hydroxide (LDH) composite particle electrode (CuFe-LDH/BT) was fabricated and used as the catalyst to remove nitrate-nitrogen (NO3--N) in three-dimensional electrochemical (3D/E) system. The results showed that the prepared CuFe-LDH/BT exhibited the highest catalytic activity when the molar ratio of copper to iron was 3:1, the dosage of bentonite (BT) was 1 g, liquid-phase synthesis pH was 10, and liquid-phase synthesis temperature was 40 °C. The prepared composite particle electrode was characterized by X-Ray Diffraction (XRD), Scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET), Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The characterization results indicated that LDH structure was successfully formed in CuFe-LDH/BT, and CuFe-LDH/BT had obvious layered structure, high specific surface area and excellent conductivity. Under the reaction conditions of CuFe-LDH/BT dosage of 3 g/L, current density of 8 mA/cm2 and initial pH of NO3--N solution of 7, in the range of NO3--N concentration of 50∼200 mg/L, the maximum removal efficiency of NO3--N could reach 100% at reaction time of 240 min, and the maximum N2 selectivity was 83.41%. The recycling test showed that CuFe-LDH/BT maintained high activity after 3 reuses. The possible reaction mechanism of NO3--N removal in the 3D/E system catalyzed by CuFe-LDH/BT was explored. In summary, the 3D/E system catalyzed by CuFe-LDH/BT can achieve the effective removal of NO3--N in water body.
Collapse
Affiliation(s)
- Ruihua Xue
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Junchi Gu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Mengli Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Guangtao Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Changli Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Linye Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
11
|
Sun X, Liu F, Zhao Y, Liu F, Wang J, Zhu S, He Q, Bai Y, Zhang J. Research on Environmental Risk Monitoring and Advance Warning Technologies of Power Transmission and Distribution Projects Construction Phase. SENSORS (BASEL, SWITZERLAND) 2024; 24:7695. [PMID: 39686232 DOI: 10.3390/s24237695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
The threat power transmission and distribution projects pose to the ecological environment has been widely discussed by researchers. The scarcity of early environmental monitoring and supervision technologies, particularly the lack of effective real-time monitoring mechanisms and feedback systems, has hindered the timely quantitative identification of potential early-stage environmental risks. This study aims to comprehensively review the literature and analyze the research context and shortcomings of the advance warning technologies of power transmission and distribution projects construction period using the integrated space-sky-ground system approach. The key contributions of this research include (1) listing ten environmental risks and categorizing the environmental risks associated with the construction cycle of power transmission and distribution projects; (2) categorizing the monitoring data into one-dimensional, two-dimensional, and three-dimensional frameworks; and (3) constructing the potential environmental risk knowledge system by employing the knowledge graph technology and visualizing it. This review study provides a panoramic view of knowledge in a certain field and reveals the issues that have not been fully explored in the research field of monitoring technologies for potential environmental damage caused by power transmission and transformation projects.
Collapse
Affiliation(s)
- Xiaohu Sun
- State Grid Economic and Technological Research Institute Ltd., Beijing 102200, China
| | - Fei Liu
- School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Yu Zhao
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Fang Liu
- School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Jian Wang
- School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Shu Zhu
- State Grid Economic and Technological Research Institute Ltd., Beijing 102200, China
| | - Qiang He
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Yu Bai
- School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Jiyong Zhang
- State Grid Economic and Technological Research Institute Ltd., Beijing 102200, China
| |
Collapse
|
12
|
Daher B. Food for Thought: Nourishing Cardiovascular Health Amidst the Exposome. Methodist Debakey Cardiovasc J 2024; 20:27-36. [PMID: 39525383 PMCID: PMC11546215 DOI: 10.14797/mdcvj.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024] Open
Abstract
The cumulative exposures of an individual during their lifetime, known as the exposome, encompass environmental exposures and lifestyle factors that significantly impact cardiovascular health. The exposome concept aims to provide a comprehensive framework for understanding how various exposures combine to influence disease risk and health outcomes over a lifetime. Diet is a well-studied aspect of the exposome, recognized as a critical contributor to cardiovascular health and influencing various other health metrics and behaviors. Furthermore, understanding agricultural food systems and their interrelationships with dietary choice and impacts on environmental and human health requires a systems approach. Through a review of the literature, this publication will (1) elucidate the interconnections between the exposome and cardiovascular diseases through the lens of agricultural systems and environmental health; (2) examine the effect of diet on cardiovascular health; (3) examine the influence of socioeconomic and cultural factors on the agricultural food system and dietary choices; and (4) highlight the importance of adopting a systems approach that integrates dietary interventions with sustainable agricultural practices, emphasizing the need for holistic strategies to address the root causes of cardiovascular health issues through balanced human and environmental health interventions.
Collapse
Affiliation(s)
- Bassel Daher
- Texas A&M Energy Institute, Texas A&M University, College Station, Texas, US
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, US
- Bush School of Government and Public Service, College Station, Texas, US
| |
Collapse
|
13
|
Salahshoori I, Yazdanbakhsh A, Namayandeh Jorabchi M, Kazemabadi FZ, Khonakdar HA, Mohammadi AH. Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103304. [PMID: 39357211 DOI: 10.1016/j.cis.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Zare Kazemabadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
14
|
Shaghaleh H, Alhaj Hamoud Y, Sun Q. Effective and green in-situ remediation strategies based on TEMPO-nanocellulose/lignin/MIL-100(Fe) hydrogel nanocomposite adsorbent for lead and copper in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124623. [PMID: 39069244 DOI: 10.1016/j.envpol.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Hydrogel adsorbents are promising tools for reducing heavy metals' bioavailability in contaminated soil. However, their practical feasibility remains limited by the low stability, inefficient removal efficiency, and potential secondary pollution. Optimizing the adsorption operation and the functional properties of hydrogel adsorbents could eliminate this method's drawbacks. Herein, three innovative in-situ remediation strategies for Pb/Cu-contaminated soil were adopted based on the concept of novel TEMPO-cellulose (TO-NFCs)/lignin/acrylamide@MIL-100(Fe) nanocomposite hydrogel adsorbent (NCLMH). Characteristic analyses revealed ideal Pb/Cu adsorption mechanisms by swelling, complexation, electrical attraction, and ion exchange via carboxyl/hydroxyl/carbonyl groups and unsaturated Fe(III) sites on ANCMH besides FeOOH formation. The highest maximum theoretical adsorption capacities of Pb(II) and Cu(II) on ANCMH were 416.39 and 133.98 mg/g, under pH 6.5, governed by pseudo-second-order/Freundlich models. Greenhouse pot experiments with contaminated soils amended with two-depth layers of 0.5% NCLMHs (SA@NCLMH) displayed a decline in Pb and Cu bioavailability up to 85.9% and 74.5% within 45 d. Soil column studies simulating continuous water soil flushing coupled with NCLMH layers, instead of conventional extractant fluids, and connected to NCLMH-sand column as purification unit (CF@NCLMH) achieved higher removal rates for Pb, and Cu of 89.5% and 77.2% within 24 h. Alternatively, conducting multiple-pulse soil flushing mode (MF@NCLMH) gained the highest Pb and Cu removal of 96.5% and 85.4%, as the water flushing-stop flux events allowed adequate water movement/residence period, promoting Pb/Cu desorption-adsorption from soil to NCLMH. Also, the NCLMH-sand column conducting and easy separation of the stable/reusable NCLMHs prevented the potential secondary pollution. Interestingly, the three remediated soils reached the corresponding regulation of the permissible limits for Pb and Cu residential scenarios in medium-to-heavily agricultural polluted soils, alleviating the Pb/Cu bioaccumulation and phytotoxicity symptoms in cultivated wheat, especially after MF@NCLMH treatment. This study introduces promising alternative remediation strategies with high sustainability and feasibility in acidic-to-neutral heavy metal-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hiba Shaghaleh
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yousef Alhaj Hamoud
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qin Sun
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
15
|
Ihsan FR, Bloomfield JG, Monrouxe LV. Triple planetary crisis: why healthcare professionals should care. Front Med (Lausanne) 2024; 11:1465662. [PMID: 39359929 PMCID: PMC11445030 DOI: 10.3389/fmed.2024.1465662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Humanity currently faces an ecological crisis with devastating consequences to all living species. While climate change is estimated to lead to 250,000 extra deaths per year between 2030 and 2050, pollution is known to cause 9 million premature deaths: a figure much greater than the deaths caused by AIDS, tuberculosis and malaria combined. The healthcare sector is both burdened by, and contributes to, the impact of climate change and environmental degradation. Amidst glaring evidence of the interdependence of human health and the eco system, there is an urgent call for healthcare professionals to concern themselves with the triple planetary threat humanity currently faces. Without immediate mitigative measures, the future seems uncertain. Some healthcare systems at local, national and global levels have taken numerous initiatives to address, mitigate and adapt to these changes, however, these are not sufficient. A lack of awareness among healthcare professionals of the ecological crisis, its interconnectedness, and the role of healthcare in it, plays a significant role in the lack responsibility of healthcare professionals in this space. Therefore, this paper presents a discussion of the current landscape of the triple threat of climate change, loss of biodiversity, and pollution, while emphasising the contribution of healthcare professionals to it. Furthermore, interrelated concepts such as planetary health and eco-anxiety are briefly discussed. This perspective paper also presents several key prospective research areas that may lay the foundation for motivating healthcare professionals to play an active role in preventing and mitigating the ecological crises humanity currently faces.
Collapse
Affiliation(s)
- Fathima Rizka Ihsan
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Jacqueline G. Bloomfield
- Faculty of Medicine and Health, Sydney Nursing School, The University of Sydney, Camperdown, NSW, Australia
| | - Lynn V. Monrouxe
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
16
|
Aminzai MT, Yabalak E, Kalderis D, Gizir AM. Environmental remediation of emerging contaminants using subcritical water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121800. [PMID: 38996600 DOI: 10.1016/j.jenvman.2024.121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The continuous rise of emerging contaminants (ECs) in the environment has been a growing concern due to their potentially harmful effects on humans, animals, plants, and aquatic life, even at low concentrations. ECs include human and veterinary pharmaceuticals, hormones, personal care products, pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organic dyes, heavy metals (HMs), and others. The world's growing population contributes to the release of many kinds of chemicals into the environment, which is estimated to be more than 200 billion metric tons annually and results in over 9 million deaths. The removal of these contaminants using conventional physical, chemical, and biological treatments has proven to be ineffective, highlighting the need for simple, effective, inexpesive, practical, and eco-friendly alternatives. Thus, this article discusses the utilization of subcritical water oxidation (SBWO) and subcritical water extraction (SBWE) techniques to remove ECS from the environment. Subcritical water (water below the critical temperature of 374.15 °C and critical pressure of 22.1 Mpa) has emerged as one of the most promising methods for remediation of ECs from the environment due to its non-toxic properties, simplicity and efficiency of application. Furthermore, the impact of temperature, pressure, treatment time, and utilization of chelating agents, organic modifiers, and oxidizing agents in the static and dynamic modes was investigated to establish the best conditions for high ECs removal efficiencies.
Collapse
Affiliation(s)
| | - Erdal Yabalak
- Department of Nanotechnology and Advanced Materials, Mersin University, TR-33343, Mersin, Turkey; Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey.
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronics Engineering, Hellenic Mediterranean University, Chania, 73100, Greece.
| | - A Murat Gizir
- Department of Chemistry, Mersin University, 33342, Mersin, Turkey
| |
Collapse
|
17
|
Münzel T, Daiber A, Nitschmann S. [Microplastics and nanoplastics-A new cardiovascular risk factor]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:850-852. [PMID: 39028462 DOI: 10.1007/s00108-024-01738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Thomas Münzel
- Universitätsmedizin Mainz, Zentrum für Kardiologie, Kardiologie I, Johannes-Gutenberg-Universität, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| | - Andreas Daiber
- Universitätsmedizin Mainz, Zentrum für Kardiologie, Kardiologie I, Johannes-Gutenberg-Universität, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | | |
Collapse
|
18
|
Guan Y, Zhang N, Chu C, Xiao Y, Niu R, Shao C. Health impact assessment of the surface water pollution in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173040. [PMID: 38729374 DOI: 10.1016/j.scitotenv.2024.173040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
China suffers from severe surface water pollution. Health impact assessment could provide a novel and quantifiable metric for the health burden attributed to surface water pollution. This study establishes a health impact assessment method for surface water pollution based on classic frameworks, integrating the multi-pollutant city water quality index (CWQI), informative epidemiological findings, and benchmark public health information. A relative risk level assignment approach is proposed based on the CWQI, innovatively addressing the challenge in surface water-human exposure risk assessment. A case study assesses the surface water pollution-related health impact in 336 Chinese cities. The results show (1) between 2015 and 2022, total health impact decreased from 3980.42 thousand disability-adjusted life years (DALYs) (95 % Confidence Interval: 3242.67-4339.29) to 3260.10 thousand DALYs (95 % CI: 2475.88-3641.35), measured by total cancer. (2) The annual average health impacts of oesophageal, stomach, colorectal, gallbladder, and pancreatic cancers added up to 2621.20 thousand DALYs (95 % CI: 2095.58-3091.10), revealing the significant health impact of surface water pollution on digestive cancer. (3) In 2022, health impacts in the Beijing-Tianjin-Hebei and surroundings, the Yangtze River Delta, and the middle reaches of the Yangtze River added up to 1893.06 thousand DALYs (95 % CI: 1471.82-2097.88), showing a regional aggregating trend. (4) Surface water pollution control has been the primary driving factor to health impact improvement, contributing -3.49 % to the health impact change from 2015 to 2022. It is the first city-level health impact map for China's surface water pollution. The methods and findings will support the water management policymaking in China and other countries suffering from water pollution.
Collapse
Affiliation(s)
- Yang Guan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Nannan Zhang
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chengjun Chu
- Center of Environmental Status and Plan Assessment, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Yang Xiao
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China; The Center for Beautiful China, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Ren Niu
- Institute of Strategic Planning, Chinese Academy of Environmental Planning, Beijing 100041, China
| | - Chaofeng Shao
- Department of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Bochynska S, Duszewska A, Maciejewska-Jeske M, Wrona M, Szeliga A, Budzik M, Szczesnowicz A, Bala G, Trzcinski M, Meczekalski B, Smolarczyk R. The impact of water pollution on the health of older people. Maturitas 2024; 185:107981. [PMID: 38555759 DOI: 10.1016/j.maturitas.2024.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Water pollution exerts a negative impact on the health of both women and men, inducing hormonal changes, accelerating aging, and consequently leading to the premature onset of age-related health problems. Water pollutants can in general be classified as chemical (both organic and inorganic), physical, and biological agents. Certain chemical pollutants have been found to disrupt hormonal balance by blocking, mimicking, or disrupting functions within the intricate homeostasis of the human body. Moreover, certain water pollutants, including specific pesticides and industrial chemicals, have been associated with neurological and psychiatric disorders, such as mood swings, depression, cognitive decline, and anxiety, impacting both women and men. Water pollution is also associated with physical ailments, such as diarrhea, skin diseases, malnutrition, and cancer. Exposure to specific pollutants may promote premature menopause and vasomotor symptoms, elevate the risk of cardiovascular disease, and reduce bone density. In men, exposure to water pollution has been shown to reduce LH, FSH, and testosterone serum levels. The oxidative stress induced by pollutants prompts apoptosis of Sertoli and germ cells, inhibiting spermatogenesis and altering the normal morphology and concentration of sperm. Environmental estrogens further contribute to reduced sperm counts, reproductive system disruptions, and the feminization of male traits. Studies affirm that men generally exhibit a lower susceptibility than women to hormonal changes and health issues attributed to water pollutants. This discrepancy may be attributed to the varied water-related activities which have traditionally been undertaken by women, as well as differences in immune responses between genders. The implementation of effective measures to control water pollution and interventions aimed at safeguarding and enhancing the well-being of the aging population is imperative. The improvement of drinking water quality has emerged as a potential public health effort with the capacity to curtail the onset of cognitive impairment and dementia in an aging population.
Collapse
Affiliation(s)
- Stefania Bochynska
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Duszewska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw, University of Life Science, Warsaw, Poland
| | | | - Marcin Wrona
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Budzik
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Aleksandra Szczesnowicz
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Mateusz Trzcinski
- Department of Diagnosis and Treatment of Infertility, Poznan University of Medical Sciences, Poznan, Poland
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| |
Collapse
|
20
|
Anjum A, Gupta D, Singh B, Garg R, Pani B, Kashif M, Jain S. Clay-polymer nanocomposites for effective water treatment: opportunities, challenges, and future prospects. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:666. [PMID: 38935201 DOI: 10.1007/s10661-024-12823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The metal intoxication and its associated adverse effects to humans have led to the research for development of water treatment technologies from pollution hazards. Therefore, development of cheaper water remediation technologies is more urgent than ever. Clays and clay minerals are naturally occurring, inexpensive, non-toxic materials possessing interesting chemical and physical properties. As a result of interesting surface properties, these have been developed as efficient absorbent in water remediation. Recently, clay-polymer nanocomposites have provided a cost-effective technological platform for removing contaminants from water. Covering research advancements from past 25 years, this review highlights the developments in clay-polymer nanocomposites and their advanced technical applications are evaluated with respect to the background and issues in remediation of toxic metals and organic compounds from water. The extensive analysis of literature survey of more than two decades suggests that future work need to highlight on advancement of green and cost-effective technologies. The development of understanding of the interaction and exchange between toxin and clay-polymer composites would provide new assembly methods of nanocomposites with functional molecules or nanomaterials need to be extended to increase the detection and extraction limit to parts per trillion.
Collapse
Affiliation(s)
- Ansar Anjum
- Department of Applied Sciences and Humanities,, Galgotias College of Engineering and Technology, Greater Noida, 201310, Uttar Pradesh, India.
| | - Deepak Gupta
- Department of Applied Chemistry, Delhi Technological University, Delhi, 110042, India.
| | - Bholey Singh
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, 110036, India
| | - Rajni Garg
- Department of Applied Sciences and Humanities,, Galgotias College of Engineering and Technology, Greater Noida, 201310, Uttar Pradesh, India.
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, 110075, India
| | - Mohd Kashif
- Department of Applied Sciences and Humanities,, Galgotias College of Engineering and Technology, Greater Noida, 201310, Uttar Pradesh, India
| | - Shilpa Jain
- Department of Chemistry, Shivaji College (University of Delhi), Delhi, 110027, India
| |
Collapse
|
21
|
Jiang M, Wang Y, Li J, Gao X. Review of carbon dot-hydrogel composite material as a future water-environmental regulator. Int J Biol Macromol 2024; 269:131850. [PMID: 38670201 DOI: 10.1016/j.ijbiomac.2024.131850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
As water pollution and scarcity pose severe threats to the sustainable progress of human society, it is important to develop a method or materials that can accurately and efficiently detect pollutants and purify aquatic environments or exploit marine resources. The compositing of photoluminescent and hydrophilic carbon dots (CDs) with hydrogels bearing three-dimensional networks to form CD-hydrogel composites to protect aquatic environments is a "win-win" strategy. Herein, the feasibility of the aforementioned method has been demonstrated. This paper reviews the recent progress of CD-hydrogel materials used in aquatic environments. First, the synthesis methods for these composites are discussed, and then, the composites are categorized according to different methods of combining the raw materials. Thereafter, the progress in research on CD-hydrogel materials in the field of water quality detection and purification is reviewed in terms of the application of the mechanisms. Finally, the current challenges and prospects of CD-hydrogel materials are described. These results are expected to provide insights into the development of CD-hydrogel composites for researchers in this field.
Collapse
Affiliation(s)
- Minghao Jiang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yong Wang
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichuan Li
- School of Water Conservancy and Civil Engineering, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xing Gao
- College of Sports and Human Sciences, Post-doctoral Mobile Research Station, Graduate School, Harbin Sport University, Harbin 150008, PR China.
| |
Collapse
|
22
|
Ahmed Z, Chaudhary F, Agrawal DK. Epidemiology, Mechanisms and Prevention in the Etiology of Environmental Factor-Induced Cardiovascular Diseases. JOURNAL OF ENVIRONMENTAL SCIENCE AND PUBLIC HEALTH 2024; 8:59-69. [PMID: 38911615 PMCID: PMC11192553 DOI: 10.26502/jesph.96120206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cardiovascular diseases are a significant cause of mortality worldwide, and their prevalence can be amplified by a range of environmental factors. This review article critically evaluated the published information on the epidemiology and pathophysiological mechanisms of various environmental factors such as air indoor and outdoor air pollution, water pollution, climate change, and soil pollution. Preventative measures to mitigate these effects including public health responses are discussed with gaps in our knowledge for future studies.
Collapse
Affiliation(s)
- Zubair Ahmed
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Fihr Chaudhary
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
23
|
Obiri-Nyarko F, Quansah JO, Asare SV, Fynn OF, Okrah C, Debrah SK, Karikari AY. Determination of threshold values and heavy metal pollution assessment of soils in an industrial area in Ghana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:546. [PMID: 38743357 DOI: 10.1007/s10661-024-12660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Industrial activities have the potential to pollute soils with a wide variety of heavy metals (HMs). In Ghana, however, assessment of HM pollution of soils in industrial areas remains limited. Accordingly, HM soil pollution in one of the industrial areas in Accra, Ghana was assessed. Soil samples were taken and analysed for HMs, including Fe, Zr, Zn, Ti, Sr, Rb, Mn, Pb, Cu, and Co, using X-Ray Fluorescence (XRF). HM geochemical threshold values (GTVs) were determined to establish soil HM pollution levels and identify areas needing remediation. Furthermore, risk assessments were conducted to evaluate the potential ecological and human health risks associated with these metals. The mean concentrations of Fe, Zn, Rb, Sr, Zr, Ti, Mn, Co, Cu, and Pb in the soils were: 27133.83, 147.72, 16.30, 95.95, 307.11, 4663.66, 289.85, 418.54, 44.97, and 112.88 mg/kg, respectively. Generally, the concentrations of HMs decreased with depth, although some lower layers exhibited elevated HM levels. Soil pollution levels were categorized as low for Fe, Rb, Zr, Ti, Mn, Co, and Cu; moderate for Sr and Zn; and considerable for Pb. Notably, the northwestern part of the study area displayed a considerable to very high degree of HM contamination. While HMs in the soils posed low ecological risk, the human health risk assessment indicated potential health effects from Co, particularly in children. The presence of HMs in the soils was noted to originate from both natural geological phenomena and human activities, including industrial operations, agricultural practices, landfill activities, and vehicular emissions.
Collapse
Affiliation(s)
- Franklin Obiri-Nyarko
- Groundwater and Geoscience Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana.
| | - Jude Ofei Quansah
- Environmental Chemistry and Sanitation Engineering Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana
| | - Sandra Vincentia Asare
- Groundwater and Geoscience Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana
| | - Obed Fiifi Fynn
- Groundwater and Geoscience Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana
| | - Collins Okrah
- Groundwater and Geoscience Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana
| | - Samuel Kwadwo Debrah
- Groundwater and Geoscience Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana
| | - Anthony Yaw Karikari
- Environmental Chemistry and Sanitation Engineering Division, CSIR-Water Research Institute, P.O. Box M32, Accra, Ghana
| |
Collapse
|
24
|
Zhu G, Wen Y, Cao K, He S, Wang T. A review of common statistical methods for dealing with multiple pollutant mixtures and multiple exposures. Front Public Health 2024; 12:1377685. [PMID: 38784575 PMCID: PMC11113012 DOI: 10.3389/fpubh.2024.1377685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Traditional environmental epidemiology has consistently focused on studying the impact of single exposures on specific health outcomes, considering concurrent exposures as variables to be controlled. However, with the continuous changes in environment, humans are increasingly facing more complex exposures to multi-pollutant mixtures. In this context, accurately assessing the impact of multi-pollutant mixtures on health has become a central concern in current environmental research. Simultaneously, the continuous development and optimization of statistical methods offer robust support for handling large datasets, strengthening the capability to conduct in-depth research on the effects of multiple exposures on health. In order to examine complicated exposure mixtures, we introduce commonly used statistical methods and their developments, such as weighted quantile sum, bayesian kernel machine regression, toxic equivalency analysis, and others. Delineating their applications, advantages, weaknesses, and interpretability of results. It also provides guidance for researchers involved in studying multi-pollutant mixtures, aiding them in selecting appropriate statistical methods and utilizing R software for more accurate and comprehensive assessments of the impact of multi-pollutant mixtures on human health.
Collapse
Affiliation(s)
- Guiming Zhu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Yanchao Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Kexin Cao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Simin He
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China
| |
Collapse
|
25
|
Tehrani MRF, Besalatpour AA. A combined landfarming-phytoremediation method to enhance remediation of mixed persistent contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37163-37174. [PMID: 38767793 DOI: 10.1007/s11356-024-33606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Contamination of soil and water with petroleum hydrocarbons and metals can pose a significant threat to the environment and human health. This study aimed to investigate the establishment and growth of tall fescue and agropyron in two petroleum-contaminated soils (soil S1 and soil S2) with previous landfarming treatments, and to assess the phytoremediation potential for heavy metal removal from these polluted soils. The results showed that the presence of petroleum hydrocarbons significantly (P < 0.05) reduced plant growth, but plant development was facilitated in soils with prior landfarming treatments. Urease activity in the rhizosphere of agropyron for soil S1 was about 47% higher than the unplanted control soil. The rhizosphere of agropyron and tall fescue eliminated more than 40% and 20% of total hydrocarbon amounts in soil S1, respectively, compared to the unplanted soil. Moreover, the plants grown in the landfarming treatment exhibited higher concentrations of metals (Fe, Zn, Mn, Cu, and Ni) than the control. Based on the findings, the combination of landfarming and phytoremediation techniques can provide an optimal solution for removing mixed pollutants, including petroleum hydrocarbons and metals, from the environment.
Collapse
Affiliation(s)
| | - Ali Asghar Besalatpour
- Department of Soil Science, College of Agriculture, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
26
|
Gou Q, Cai X, Yan Z, Gao Y, Tang J, Xiao W, Cai J. Highly Selective Pb(II) Adsorption by DTPA-Functionalized Graphene Oxide/Carboxymethyl Cellulose Aerogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8002-8014. [PMID: 38566445 DOI: 10.1021/acs.langmuir.3c03954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Graphene oxide (GO) exhibits a strong adsorption capacity for the removal of heavy metal ions from liquids, making it a topic of increasing interest among researchers. However, a significant challenge persists in the preparation of graphene oxide-based adsorbents that possess both high structural stability and excellent adsorption capacity. In this paper, a green and environmentally friendly ternary composite aerogel based on graphene was successfully synthesized. The adsorption capacity of graphene oxide was enhanced through diethylenetriaminepentaacetic acid modification, while the incorporation of composite carboxymethyl cellulose improved the structural stability of the composite aerogel in liquid. The composite aerogel demonstrates robust interactions between its components and features a multiscale porous structure. Adsorption tests conducted with Pb(II) revealed that the GO/DTPA/CMC (GDC) composite aerogel exhibits a favorable adsorption capacity. The study of adsorption kinetics and isotherms indicated that the adsorption process follows the quasi-secondary adsorption model and Freundlich adsorption model, suggesting a chemical multilayer adsorption mechanism, and the maximum adsorption capacity for Pb(II) ions was 521.917 mg/g based on the quasi-quadratic kinetic model fitting. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analyses, performed before and after adsorption, confirmed that the adsorption of Pb(II) primarily occurs through chelation, complexation, proton exchange, and electrostatic interactions between ions and active sites such as hydroxyl and carboxyl groups. This study presents an innovative strategy for simultaneously enhancing the adsorption properties of graphene oxide-based composite aerogels and ensuring solution stability.
Collapse
Affiliation(s)
- Quan Gou
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoming Cai
- Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhengyang Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yu Gao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junwen Tang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Weiqi Xiao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jinming Cai
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Southwest United Graduate School, Kunming 650000, China
| |
Collapse
|
27
|
Yasin MU, Haider Z, Munir R, Zulfiqar U, Rehman M, Javaid MH, Ahmad I, Nana C, Saeed MS, Ali B, Gan Y. The synergistic potential of biochar and nanoparticles in phytoremediation and enhancing cadmium tolerance in plants. CHEMOSPHERE 2024; 354:141672. [PMID: 38479680 DOI: 10.1016/j.chemosphere.2024.141672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.
Collapse
Affiliation(s)
- Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zulqarnain Haider
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rehman
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haseeb Javaid
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Irshan Ahmad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Sulaman Saeed
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bahar Ali
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Zhang Y, Qin K, Liu C. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133459. [PMID: 38219581 DOI: 10.1016/j.jhazmat.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-antibiotic chemicals in farmlands, including microplastics (MPs) and pesticides, have the potential to influence the soil microbiome and the dissemination of antibiotic resistance genes (ARGs). Despite this, there is limited understanding of the combined effects of MPs and pesticides on microbial communities and ARGs transmission in soil ecosystems. In this study, we observed that low-density polyethylene (LDPE) microplastic enhance the accumulation of pyraclostrobin in earthworms, resulting in reduced weight and causing severe oxidative damage. Analysis of 16 S rRNA amplification revealed that exposure to pyraclostrobin and/or LDPE disrupts the microbial community structure at the phylum and genus levels, leading to reduced alpha diversity in both the soil and earthworm gut. Furthermore, co-exposure to LDPE and pyraclostrobin increased the relative abundance of ARGs in the soil and earthworm gut by 2.15 and 1.34 times, respectively, compared to exposure to pyraclostrobin alone. It correlated well with the increasing relative abundance of genera carrying ARGs. Our findings contribute novel insights into the impact of co-exposure to MPs and pesticides on soil and earthworm microbiomes, highlighting their role in promoting the transfer of ARGs. This knowledge is crucial for managing the risk associated with the dissemination of ARGs in soil ecosystems.
Collapse
Affiliation(s)
- Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
29
|
Son YE, Park HS. SscA is required for fungal development, aflatoxin production, and pathogenicity in Aspergillus flavus. Int J Food Microbiol 2024; 413:110607. [PMID: 38308877 DOI: 10.1016/j.ijfoodmicro.2024.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Fungal spores are specialized dormant cells that act as primary reproductive biological particles and exhibit strong viability under extremely harsh conditions. They contaminate a variety of crops and foods, causing severe health hazards to humans and animals. Previous studies demonstrated that a spore-specific transcription factor SscA plays pivotal roles in the conidiogenesis of the model organism Aspergillus nidulans. In this study, we investigated the biological and genetic functions of SscA in the aflatoxin-producing fungus A. flavus. Deletion of sscA showed reduced conidia formation, lost long-term viability, and exhibited more sensitivity to thermal, oxidative, and radiative stresses. The sscA-deficient strain showed increased aflatoxin B1 production in conidia as well as mycelia. Importantly, the absence of sscA affected fungal pathogenicity on crops. Further transcriptomic and phenotypic studies suggested that SscA coordinates conidial wall structures. Overall, SscA is important for conidial formation, maturation and dormancy, mycotoxin production, and pathogenicity in A. flavus.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
30
|
Li C, Xia Y, Wang L. Household unclean fuel use, indoor pollution and self-rated health: risk assessment of environmental pollution caused by energy poverty from a public health perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18030-18053. [PMID: 37217815 DOI: 10.1007/s11356-023-27676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
The lack of access to clean energy remains one of the major challenges in the global energy sector. Access to clean, sustainable and affordable energy, outlined in the seventh Sustainable Development Goals (SDG 7) of the United Nations, plays a crucial role in advancing health (SDG 3), as unclean cooking energy may endanger people's health by causing air pollution. However, due to endogeneity problems such as reverse causality, the health consequences of environmental pollution caused by unclean fuel usage are difficult to be scientifically and accurately evaluated. This paper aims to systematically assess the health cost of unclean fuel usage based on tackling endogeneity, using the data from Chinese General Social Survey. The ordinary least squares model, ordered regression methods, instrumental variable approach, penalized machine learning methods, placebo test, and mediation models are applied in this research. Analytical results demonstrate that households' unclean fuel use significantly damages people's health. Specifically, the use of dirty fuel leads to an average of about a one-standard-deviation decline in self-rated health, demonstrating its notable negative effect. The findings are robust to a series of robustness and endogeneity tests. The impact mechanism is that unclean fuel usage reduces people's self-rated health through increasing indoor pollution. Meanwhile, the negative effect of dirty fuel use on health has significant heterogeneity among different subgroups. The consequences are more prominent for the vulnerable groups who are female, younger, living in rural areas and older buildings, with lower socio-economic status and uncovered by social security. Therefore, necessary measures should be taken to improve energy infrastructure to make clean cooking energy more affordable and accessible as well as to enhance people's health. Besides, more attention should be paid to the energy needs of the above specific vulnerable groups faced with energy poverty.
Collapse
Affiliation(s)
- Chao Li
- Business School, Shandong University, No. 180 Wenhuaxi Road, Weihai, 264209, China.
| | - Yuxin Xia
- HSBC Business School, Peking University, Shenzhen, China
| | - Lin Wang
- Glorious Sun School of Business and Management, Donghua University, Shanghai, China
| |
Collapse
|
31
|
Wang J, Tan Y, Zhan L, Yang H, Li X, Gao F, Qiu S. Sustainable development of environmental protection talents training: Research on the behavior decision of government, university and enterprise under the background of evolutionary game. PLoS One 2024; 19:e0298548. [PMID: 38394217 PMCID: PMC10890725 DOI: 10.1371/journal.pone.0298548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Environmental protection talents training (EPTT) is recognized as a key prerequisite for maintaining environmental sustainability, and in order to study the influence of each player on EPTT. This paper innovatively constructs a tripartite evolutionary game model of government, university and enterprise. The equilibrium points and evolutionary stabilization strategies of each participant are solved by replicating the dynamic equations, and the behaviors of each subject in EPTT are analyzed so as to clarify the behavioral characteristics and optimal strategies of the government's participation in EPTT. The results show that enterprises occupy a more important position in influencing government decisions. The government should reduce the financial incentives for enterprises and replace them with greater policy support. Meanwhile, the government should actively promote the cultivation mechanism that integrates universities and enterprises. The results of the study can provide a decision-making basis for the government to promote the sustainable development of EPTT.
Collapse
Affiliation(s)
- Jinxia Wang
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Yunfeng Tan
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, China
| | - Lingling Zhan
- General college, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Hongjun Yang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, China
| | - Xieling Li
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Fang Gao
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, China
| | - Siyuan Qiu
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, China
| |
Collapse
|
32
|
Lee H, Sam K, Coulon F, De Gisi S, Notarnicola M, Labianca C. Recent developments and prospects of sustainable remediation treatments for major contaminants in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168769. [PMID: 38008308 DOI: 10.1016/j.scitotenv.2023.168769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Rapid industrialisation and urbanisation are contributing to the entry of emerging contaminants into the environment, posing a significant threat to soil health and quality. Therefore, several remediation technologies have been investigated and tested at a field scale to address the issue. However, these remediation technologies face challenges related to cost-effectiveness, environmental concerns, secondary pollution due to the generation of by-products, long-term pollution leaching risks, and social acceptance. Overcoming these constraints necessitates the implementation of sustainable remediation methodologies that prioritise approaches with minimal environmental ramifications and the most substantial net social and economic advantages. Hence, this review delves into diverse contaminants that threaten soil health and quality. Moreover, it outlines the research imperatives for advancing innovative remediation techniques and effective management strategies to tackle this concern. The review discusses a remediation treatment train approach that encourages resource recovery, strengthens the circular economy, and employs a Life Cycle Assessment (LCA) framework to assess the environmental impacts of different remediation strategies. Additionally, the study explores mechanisms to integrate sustainability principles into soil remediation practices. It underscores the necessity for a comprehensive and systematic approach that takes into account the economic, social, and environmental consequences of remediation methodologies in the development of sustainable solutions.
Collapse
Affiliation(s)
- H Lee
- College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - K Sam
- School of the Environment, Geography and Geoscience, University of Portsmouth, University House, Winston Churchill Ave, Portsmouth PO1 2UP, UK
| | - F Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - S De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - M Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n. 4, 70125 Bari, Italy
| | - C Labianca
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Arup, Level 5, Festival Walk, 80 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
33
|
Li L, Yin S, Kang S, Chen Z, Wang F, Pan W. Comprehensive effects of thiamethoxam from contaminated soil on lettuce growth and metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123186. [PMID: 38142029 DOI: 10.1016/j.envpol.2023.123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
The second-generation neonicotinoid thiamethoxam, is prevalent in soils because of its extensive application and persistence. However, the comprehensive effects of thiamethoxam residue in soils on cultivated plants are still poorly understood. This study examined variations of growth state, physiological parameters, antioxidant activity, and metabolites in lettuce after thiamethoxam exposure; the removal effects of different washing procedures were also investigated. The results indicated that thiamethoxam in soils significantly increased the fresh weight, seedling height and chlorophyll content in lettuce, and also altered its lipid, carbohydrate, nucleotide and amino acids composition based on untargeted metabolomics. KEGG pathway analysis uncovered a disruption of lipid pathways in lettuce exposed to both low and high concentrations of thiamethoxam treatments. In addition, the terminal residues of thiamethoxam in lettuce were below the corresponding maximum residue limits stipulated for China. The thiamethoxam removal rates achieved by common washing procedures in lettuce ranged from 26.9% to 42.6%. This study thus promotes the understanding of the potential food safety risk caused by residual thiamethoxam in soils.
Collapse
Affiliation(s)
- Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Shijie Yin
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Shanshan Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fuyun Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Wei Pan
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, 030031, China
| |
Collapse
|
34
|
Su JF, Ahmad MS, Kuan WF, Chen CL, Rasheed T. Electrochemical nitrate reduction over bimetallic Pd-Sn nanocatalysts with tunable selectivity toward benign nitrogen. CHEMOSPHERE 2024; 350:141182. [PMID: 38211795 DOI: 10.1016/j.chemosphere.2024.141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Nitrate is recognized as a highly impactful water contaminant among various pollutants in water. To address the ever-growing demand for water purification, this work investigates the bimetallic palladium (Pd) and tin (Sn) catalysts, which are electrochemically deposited on stainless steel mesh support (Pd-Sn/SS) for the selective conversion of harmful nitrate (NO3-) into benign nitrogen (N2) gas. Results indicate that the bimetallic composition in Pd-Sn/SS electrodes substantially influenced the reaction route for nitrate reduction as well as the performance of nitrate transformation and nitrogen selectivity. It is found that the electrode prepared from Pd:Sn = 1:1 (mole ratio) demonstrates an outstanding nitrate conversion of 95%, nitrogen selectivity of 88%, and nitrogen yield of 82%, which outperform many reported values in the literature. The electrochemically synthesized bimetallic electrode proposed herein enables a new insight for promoting the reactivity and selectivity of nitrate reduction in water.
Collapse
Affiliation(s)
- Jenn Fang Su
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, 23600, Taiwan; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Muhammad Sheraz Ahmad
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Wei-Fan Kuan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, 23600, Taiwan; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan; College of Environment and Resources, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Ching-Lung Chen
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
35
|
Li X, Xu L, Gao J, Yan M, Bi H, Wang Q. Surface modification of chitin nanofibers with dopamine as efficient nanosorbents for enhanced removal of dye pollution and metal ions. Int J Biol Macromol 2023; 253:127113. [PMID: 37774823 DOI: 10.1016/j.ijbiomac.2023.127113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The development of environmentally friendly and low-cost adsorbents with high adsorption capacity remains a challenge. Herein, chitin nanofiber-polydopamine composite materials (CNDA) have been obtained by surface modification of chitin nanofiber using dopamine. According to the results of transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), and X-ray photoelectron spectrometer (XPS), polydopamine have been successfully coated on the surface of chitin nanofiber (ChNF). The ability to remove methylene blue (MB) has been analyzed via standard adsorption experiments, indicating that the maximum adsorption capacity (qmax) can reach 196.6 mg/g at MB initial concentration of 50 mg/L. Most importantly, the adsorption kinetics, isotherm, and thermodynamics were used to investigate the MB adsorption mechanism on composites. This indicated that the polydopamine on the surface of chitin nanofiber (ChNF) plays an important role in the MB dye adsorption. Moreover, the removal ability of CNDA to metal ions has also been investigated, indicating high capacities for Fe3+, Mn2+, Cu2+, and Ni2+. Based on their biodegradability and good adsorption capacity, the CNDA composite material can be considered a promising adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Jianliang Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Manqing Yan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
36
|
Firincă C, Zamfir LG, Constantin M, Răut I, Capră L, Popa D, Jinga ML, Baroi AM, Fierăscu RC, Corneli NO, Postolache C, Doni M, Gurban AM, Jecu L, Șesan TE. Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. J Xenobiot 2023; 14:51-78. [PMID: 38249101 PMCID: PMC10801475 DOI: 10.3390/jox14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Contamination of soil with heavy metals has become a matter of global importance due to its impact on agriculture, environmental integrity, and therefore human health and safety. Several microbial strains isolated from soil contaminated by long-term chemical and petrochemical activities were found to manifest various levels of tolerance to Cr, Pb, and Zn, out of which Bacillus marisflavi and Trichoderma longibrachiatum exhibited above-moderate tolerance. The concentrations of target heavy metals before and after bioremediation were determined using electrochemical screen-printed electrodes (SPE) modified with different nanomaterials. The morpho-structural SEM/EDX analyses confirmed the presence of metal ions on the surface of the cell, with metal uptake being mediated by biosorption with hydroxyl, carboxyl, and amino groups as per FTIR observations. T. longibrachiatum was observed to pose a higher bioremediation potential compared to B. marisflavi, removing 87% of Cr and 67% of Zn, respectively. Conversely, B. marisflavi removed 86% of Pb from the solution, compared to 48% by T. longibrachiatum. Therefore, the fungal strain T. longibrachiatum could represent a viable option for Cr and Zn bioremediation strategies, whereas the bacterial strain B. marisflavi may be used in Pb bioremediation applications.
Collapse
Affiliation(s)
- Cristina Firincă
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Lucian-Gabriel Zamfir
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Mariana Constantin
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
- Department of Pharmacy, Faculty of Pharmacy, University Titu Maiorescu of Bucharest, 040441 Bucharest, Romania
| | - Iuliana Răut
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Luiza Capră
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Diana Popa
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Maria-Lorena Jinga
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Anda Maria Baroi
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Radu Claudiu Fierăscu
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Nicoleta Olguța Corneli
- National Institute of Research and Development for Microbiology and Immunology—Cantacuzino, 103 Spl. Independenței, 050096 Bucharest, Romania
| | - Carmen Postolache
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Mihaela Doni
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Ana-Maria Gurban
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Luiza Jecu
- Biotechnology and Bioanalysis Departments, National Institute of Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independenței, 060021 Bucharest, Romania; (C.F.); (M.D.)
| | - Tatiana Eugenia Șesan
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
- Field Crop Section, Academy of Agricultural and Forestry Sciences, Bd Mărăști 61, 011464 Bucharest, Romania
| |
Collapse
|
37
|
von Mikecz A. Elegant Nematodes Improve Our Understanding of Human Neuronal Diseases, the Role of Pollutants and Strategies of Resilience. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16755-16763. [PMID: 37874738 PMCID: PMC10634345 DOI: 10.1021/acs.est.3c04580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's and Parkinson's disease are rising globally. The role of environmental pollution in neurodegeneration is largely unknown. Thus, this perspective advocates exposome research in C. elegans models of human diseases. The models express amyloid proteins such as Aβ, recapitulate the degeneration of specifically vulnerable neurons and allow for correlated neurobehavioral phenotyping throughout the entire life span of the nematode. Neurobehavioral traits like locomotion gaits, rigidity, or cognitive decline are quantifiable and carefully mimic key aspects of the human diseases. Underlying molecular pathways of neurodegeneration are elucidated in pollutant-exposed C. elegans Alzheimer's or Parkinson's models by transcriptomics (RNA-seq), mass spectrometry-based proteomics and omics addressing other biochemical traits. Validation of the identified disease pathways can be achieved by genome-wide association studies in matching human cohorts. A consistent One Health approach includes isolation of nematodes from contaminated sites and their comparative investigation by imaging, neurobehavioral profiling and single worm proteomics. C. elegans models of neurodegenerative diseases are likewise well-suited for high throughput methods that provide a promising strategy to identify resilience pathways of neurosafety and keep up with the number of pollutants, nonchemical exposome factors, and their interactions.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF − Leibniz Research Institute
of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Duesseldorf, Germany
| |
Collapse
|
38
|
Münzel T, Sørensen M, Hahad O, Nieuwenhuijsen M, Daiber A. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 2023; 20:651-669. [PMID: 37165157 DOI: 10.1038/s41569-023-00873-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Mette Sørensen
- Danish Cancer Society, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
39
|
Shetty SS, D D, S H, Sonkusare S, Naik PB, Kumari N S, Madhyastha H. Environmental pollutants and their effects on human health. Heliyon 2023; 9:e19496. [PMID: 37662771 PMCID: PMC10472068 DOI: 10.1016/j.heliyon.2023.e19496] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Numerous environmental contaminants significantly contribute to human disease, affecting climate change and public and individual health, resulting in increased mortality and morbidity. Because of the scarcity of information regarding pollution exposure from less developed nations with inadequate waste management, higher levels of poverty, and limited adoption of new technology, the relationship between pollutants and health effects needs to be investigated more. A similar situation is present in many developed countries, where solutions are only discovered after the harm has already been done and the necessity for safeguards has subsided. The connection between environmental toxins and health needs to be better understood due to difficulties in quantifying exposure levels and a lack of systematic monitoring. Different pollutants are to blame for both chronic and acute disorders. Additionally, research becomes challenging when disease problems are seen after prolonged exposure. This review aims to discuss the present understanding of the association between environmental toxins and human health in bridging this knowledge gap. The genesis of cancer and the impact of various environmental pollutants on the human body's cardiovascular, respiratory, reproductive, prenatal, and neural health are discussed in this overview.
Collapse
Affiliation(s)
- Shilpa S. Shetty
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Deepthi D
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Harshitha S
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
| | - Shipra Sonkusare
- Department of Obstetrics and Gynecology, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Prashanth B. Naik
- Department of Pediatrics, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Suchetha Kumari N
- CentralResearch laboratory, Cellomics Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangaluru., Karnataka, India
- Department of Biochemistry, K. S. Hegde Medical Academy, Mangaluru, 576018, Karnataka, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
40
|
Butsch C, Beckers LM, Nilson E, Frassl M, Brennholt N, Kwiatkowski R, Söder M. Health impacts of extreme weather events - Cascading risks in a changing climate. JOURNAL OF HEALTH MONITORING 2023; 8:33-56. [PMID: 37799532 PMCID: PMC10548486 DOI: 10.25646/11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/26/2023] [Indexed: 10/07/2023]
Abstract
Background Extreme weather events represent one of the most tangible impacts of anthropogenic climate change. They have increased in number and severity and a further increase is expected. This is accompanied by direct and indirect negative consequences for human health. Methods Flooding events, storms and droughts are analysed here for Germany from a systemic perspective on the basis of a comprehensive literature review. Cascading risks beyond the initial event are also taken into account in order to depict downstream consequences. Results In addition to the immediate health burdens caused by extreme weather events such as injuries, long-term consequences such as stress-related mental disorders occur. These stresses particularly affect certain vulnerable groups, e.g. older persons, children, pregnant women or first responders. Conclusions A look at the cascading risks described in the international literature allows us to develop precautionary measures for adaptation to the consequences of climate change. Many adaptation measures protect against different risks at the same time. In addition to planning measures, these include, above all, increasing the population's ability to protect itself through knowledge and strengthening of social networks.
Collapse
Affiliation(s)
- Carsten Butsch
- University of Bonn, Germany Department of Geography
- University of Cologne, Germany Institute of Geography
| | | | - Enno Nilson
- Federal Institute of Hydrology Koblenz, Germany
| | | | - Nicole Brennholt
- North Rhine-Westphalia State Office for Nature, Environment and Consumer Protection Department of Water Management and Protection Düsseldorf, Germany
| | - René Kwiatkowski
- Federal Office for Civil Protection and Disaster Assistance Department for Risk Management, International Affairs Bonn, Germany
| | - Mareike Söder
- Johann Heinrich von Thünen Institute Coordination Unit Climate and Soil Braunschweig, Germany
| |
Collapse
|
41
|
Zhang X, Zou G, Chu H, Shen Z, Zhang Y, Abbas MHH, Albogami BZ, Zhou L, Abdelhafez AA. Biochar applications for treating potentially toxic elements (PTEs) contaminated soils and water: a review. Front Bioeng Biotechnol 2023; 11:1258483. [PMID: 37662433 PMCID: PMC10472142 DOI: 10.3389/fbioe.2023.1258483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental pollution with potentially toxic elements (PTEs) has become one of the critical and pressing issues worldwide. Although these pollutants occur naturally in the environment, their concentrations are continuously increasing, probably as a consequence of anthropic activities. They are very toxic even at very low concentrations and hence cause undesirable ecological impacts. Thus, the cleanup of polluted soils and water has become an obligation to ensure the safe handling of the available natural resources. Several remediation technologies can be followed to attain successful remediation, i.e., chemical, physical, and biological procedures; yet many of these techniques are expensive and/or may have negative impacts on the surroundings. Recycling agricultural wastes still represents the most promising economical, safe, and successful approach to achieving a healthy and sustainable environment. Briefly, biochar acts as an efficient biosorbent for many PTEs in soils and waters. Furthermore, biochar can considerably reduce concentrations of herbicides in solutions. This review article explains the main reasons for the increasing levels of potentially toxic elements in the environment and their negative impacts on the ecosystem. Moreover, it briefly describes the advantages and disadvantages of using conventional methods for soil and water remediation then clarifies the reasons for using biochar in the clean-up practice of polluted soils and waters, either solely or in combination with other methods such as phytoremediation and soil washing technologies to attain more efficient remediation protocols for the removal of some PTEs, e.g., Cr and As from soils and water.
Collapse
Affiliation(s)
- Xu Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Guoyan Zou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zheng Shen
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Mohamed H. H. Abbas
- Soils and Water Department, Faculty of Agriculture, Soils and Water Department, Benha University, Benha, Egypt
| | - Bader Z. Albogami
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Li Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Ahmed A. Abdelhafez
- Soils and Water Department, Faculty of Agriculture, New Valley University, New Valley, Egypt
- National Committee of Soil Science, Academy of Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
42
|
Rodriguez R, Palma MS, Bhandari D, Tian F. Electrodeposition of Ag/ZIF-8-Modified Membrane for Water Remediation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2291-2300. [PMID: 36716236 PMCID: PMC9933538 DOI: 10.1021/acs.langmuir.2c02947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metal-organic framework (MOF)-based membranes have been widely used in gas and liquid separation due to their porous structures and tunable compositions. Depending on the guest components, heterostructured MOFs can exhibit multiple functions. In the present work, we report a facile and rapid preparation of zeolitic imidazolate framework-8 (ZIF-8) and silver nanoparticle incorporated ZIF-8 (Ag/ZIF-8)-based membranes on stainless-steel mesh (SSM) through a "green" electrodeposition method. The SSM was first coated with a Zn-plated layer which contains mainly zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with a "leaf-like" morphology, providing anchoring points for the deposition of ZIF-8 and Ag/ZIF-8. It takes only 10 min to prepare a uniform coating of Zn5(OH)8(NO3)2·2H2O in aqueous conditions without the use of a strong base; this is by far the most efficient way of making zinc hydroxide nitrate nanocrystals. Following a similar electrodeposition approach, ZIF-8 and Ag/ZIF-8-coated SSM can be prepared within 20 min by applying a small current. The encapsulation of Ag does not alter the chemical composition nor the crystal structure of ZIF-8. The resulting ZIF-8 and Ag/ZIF-8-coated SSM have been tested for their effectiveness for rhodamine B dye removal in a fast vacuum filtration setting. Additionally, growth of E. coli was significantly inhibited after overnight incubation with Ag/ZIF-8-coated SSM. Overall, we demonstrate a fast synthesis procedure to make ZIF-8 and Ag/ZIF-8-coated SSM membranes for organic dye removal with excellent antimicrobial activity.
Collapse
|